政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/144729
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113318/144297 (79%)
造访人次 : 51101695      在线人数 : 930
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/144729


    题名: 無預處理深度學習之生物辨識認證系統於數位圖書館
    Authentication System of Biometrics without Preprocessing Deep Learning in Digital Library
    作者: 李正吉;林聖邦;李崇瑋
    Lee, Cheng-chi;Lin, Shang-bang;Li, Chung-wei
    贡献者: 圖資與檔案學刊
    关键词: 數位圖書館;卷積神經網路;深度學習;指靜脈辨識;預處理
    Digital library;Convolutional neural networks;Deep learning;Finger-vein recognition;Preprocessing
    日期: 2022-06
    上传时间: 2023-05-19 14:04:51 (UTC+8)
    摘要: 隨著科技與網路的快速發展,有許多傳統圖書館結合資訊科技邁向圖書館數位化。但目前數位圖書館在認證使用者方面,大多以帳號密碼登入為主,可能有資訊安全上的疑慮。目前指靜脈辨識技術已在多個地方實際運用,如能把指靜脈辨識技術運用在登入數位圖書館上,將能提高閱覽時的安全性,又能增加便利性。目前在指靜脈辨識上大多是先將圖片預處理,凸顯特徵後再去做指靜脈辨識,過程繁瑣。因此本研究實驗是使用不經過預處理的圖像,讓深度學習模型辨識指靜脈圖像,藉此減少預處理過程。我們使用SDUMLA與FV-USM資料庫的指靜脈圖像資料做測試實驗,測試ImageNet LSVRC圖像分類大賽中較出名的深度學習模型。實驗結果比較不同模型的辨識度,最後以ResNet的辨識度最高。
    With the rapid development of technology and Internet, many traditional libraries are moving towards digitization by integrating information technology. However presently most digital libraries rely on account and password log-in to authenticate users, thus there may be some concerns about information security. At present, finger vein identification technology has been applied in many fields. If this technology can be applied to access digital libraries, it will improve the security and convenience of reading. Currently, most features identified by digital vein identification is excuted after image preprocessing, which is a complicated process. Therefore, in this study, images without preprocessing were used to enable the deep learning model to identify the images of finger veins, thus reducing the preprocessing process. We used the digital vein image data from SDUMLA and FV-USM database to do test experiments to investigate the well-known deep learning model in ImageNet LSVRC image classification competition. The identifications of different models were compared among experimental results, and ResNet has the highest identification.
    關聯: 圖資與檔案學刊, 100, 1-29
    数据类型: article
    DOI 連結: http://dx.doi.org/10.6575/JILA.202206_(100).0001
    DOI: 10.6575/JILA.202206_(100).0001
    显示于类别:[圖資與檔案學刊] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML2180检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈