政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/143835
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51585223      Online Users : 876
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/143835


    Title: 基於內容偏好圖卷積網路之完全冷啟動推薦演算法
    Improving Complete Cold-Start Recommendation via Content-based Preference Graph Convolution Networks
    Authors: 王韋勝
    Wang, Wei-Sheng
    Contributors: 蔡銘峰
    Tsai, ‪Ming-Feng
    王韋勝
    Wang, Wei-Sheng
    Keywords: 推薦系統
    冷起動推薦
    圖學習表示法
    Graph Representation
    Recommender System
    Cold-Start Recommendation
    Date: 2022
    Issue Date: 2023-03-09 18:37:16 (UTC+8)
    Abstract: 傳統的混合推薦系統旨在結合協同過濾和內容過濾兩種方式進行推 薦,利用使用者喜好資訊和過去互動過的商品內容資訊來解決資料稀 疏性問題和冷啟動問題。但是,在現實世界中,經常因為產品的性質 讓使用者和產品的互動資料相當稀少或是缺少這些資料,從而導致了 完全冷啟動(Complete Cold Start, CCS)問題,如新聞推薦和新活動推 薦,這是傳統的混合模型無法解決的。
    在本文中,我們提出了偏好內容卷積(Preference Content Convolu- tion, PCC)方法,這是一種基於圖卷積網絡(Graph Convolution Net- work, GCN)的圖學習表示方法,該方法可在接受缺失資料的前提下 同時抽取使用者對內容的喜好特徵並結合內容資訊,進而針對冷啟動 問題進行推薦。我們在現實世界中的線上售票服務資料集和圖書資料 集上進行的實驗驗證此方法,其性能優於其他傳統基於內容過濾的方 法和沒有卷積網路的混合模型,為基於卷積網路的模型指出了一個方 向。
    Conventional hybrid recommender system aims to address the data spar- sity problem and the cold start problem by leveraging collaborative and content- based filtering, simultaneously leveraging the precious user preference infor- mation and staple item content information. However, in many real-world scenarios, such as news and new event recommendations, the nature of items dictates the complete lack of user-item interaction, leading to the complete cold start (CCS) problem, which traditional hybrid models cannot solve.
    In this paper, we propose preference-content convolution (PCC), a con- volutional graph network (GCN) based embedding learning method which jointly captures item content information and user preference over item con- tent. The experiments conducted on the real-world online ticket vending service dataset and news recommendation dataset show that the proposed method significantly outperforms traditional content-based filtering methods and hybrid models without convolution, signifying a promising direction for using the convolution-based model in addressing the CCS problem.
    Reference: [1] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-relational data. Advances in neural information processing systems, 26, 2013.
    [2] I. Cantador, A. Bellog ́ın, and D. Vallet. Content-based recommendation in social tagging systems. In Proceedings of the fourth ACM conference on Recommender systems, pages 237–240, 2010.
    [3] C.-M. Chen, M.-F. Tsai, Y.-C. Lin, and Y.-H. Yang. Query-based music recommen- dations via preference embedding. In Proceedings of the 10th ACM Conference on Recommender Systems, pages 79–82, 2016.
    [4] D. Cohen, M. Aharon, Y. Koren, O. Somekh, and R. Nissim. Expediting exploration by attribute-to-feature mapping for cold-start recommendations. In Proceedings of the Eleventh ACM Conference on Recommender Systems, pages 184–192, 2017.
    [5] M. Elahi, F. Ricci, and N. Rubens. Active learning in collaborative filtering rec- ommender systems. In International Conference on Electronic Commerce and Web Technologies, pages 113–124. Springer, 2014.
    [6] N. Golbandi, Y. Koren, and R. Lempel. Adaptive bootstrapping of recommender systems using decision trees. In Proceedings of the fourth ACM international con- ference on Web search and data mining, pages 595–604, 2011.
    [7] J. Gope and S. K. Jain. A survey on solving cold start problem in recommender systems. In 2017 International Conference on Computing, Communication and Au- tomation (ICCCA), pages 133–138. IEEE, 2017.
    [8] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. Advances in neural information processing systems, 30, 2017.
    [9] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin. Field-aware factorization machines for ctr prediction. In Proceedings of the 10th ACM conference on recommender systems, pages 43–50, 2016.
    [10] Y.Koren,R.Bell,andC.Volinsky.Matrixfactorizationtechniquesforrecommender systems. Computer, 42(8):30–37, 2009.
    [11] M. Kula. Metadata embeddings for user and item cold-start recommendations. In T. Bogers and M. Koolen, editors, Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender Systems co-located with 9th ACM Conference on Recommender Systems (RecSys 2015), Vienna, Austria, September 16-20, 2015., volume 1448 of CEUR Workshop Proceedings, pages 14–21. CEUR-WS.org, 2015.
    [12] B. Lika, K. Kolomvatsos, and S. Hadjiefthymiades. Facing the cold start problem in recommender systems. Expert systems with applications, 41(4):2065–2073, 2014.
    [13] P. Melville, R. J. Mooney, R. Nagarajan, et al. Content-boosted collaborative filter- ing for improved recommendations. Aaai/iaai, 23:187–192, 2002.
    [14] R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In Proceedings of the 2004 conference on empirical methods in natural language processing, pages 404–411, 2004.
    [15] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre- sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.
    [16] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social repre- sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 701–710, 2014.
    [17] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.
    [18] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web, pages 285–295, 2001.
    [19] M. Saveski and A. Mantrach. Item cold-start recommendations: learning local col- lective embeddings. In Proceedings of the 8th ACM Conference on Recommender systems, pages 89–96, 2014.
    [20] B. Shapira, L. Rokach, and S. Freilikhman. Facebook single and cross domain data for recommendation systems. User Modeling and User-Adapted Interaction, 23(2):211–247, 2013.
    [21] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Ad- vances in artificial intelligence, 2009, 2009.
    [22] M. Sun, F. Li, J. Lee, K. Zhou, G. Lebanon, and H. Zha. Learning multiple-question decision trees for cold-start recommendation. In Proceedings of the sixth ACM in- ternational conference on Web search and data mining, pages 445–454, 2013.
    [23] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale infor- mation network embedding. In Proceedings of the 24th international conference on world wide web, pages 1067–1077, 2015.
    [24] H. Wang, M. Zhao, X. Xie, W. Li, and M. Guo. Knowledge graph convolutional net- works for recommender systems. In The world wide web conference, pages 3307– 3313, 2019.
    [25] J. Wei, J. He, K. Chen, Y. Zhou, and Z. Tang. Collaborative filtering and deep learning based recommendation system for cold start items. Expert Systems with Applications, 69:29–39, 2017.
    [26] K. Zhou, S.-H. Yang, and H. Zha. Functional matrix factorizations for cold-start recommendation. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, pages 315–324, 2011.
    Description: 碩士
    國立政治大學
    資訊科學系
    109753110
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109753110
    Data Type: thesis
    Appears in Collections:[Department of Computer Science ] Theses

    Files in This Item:

    File Description SizeFormat
    311001.pdf6469KbAdobe PDF264View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback