Reference: | [1] International Civil Aviation Organization(ICAO). Global Air Traffic Management Operational Concept;ICAO,2005. [2] Y. Lin et al., "Image Processing Techniques for UAV Vision-Based River Floating Contaminant Detection," 2019 Chinese Automation Congress (CAC), 2019, pp. 89-94. [3] X. Yang, L. Tang, H. Wang and X. He, "Early Detection of Forest Fire Based on Unmaned Aerial Vehicle Platform," 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), 2019, pp. 1-4. [4] M. Elloumi, R. Dhaou, B. Escrig, H. Idoudi and L. A. Saidane, "Monitoring road traffic with a UAV-based system," 2018 IEEE Wireless Communications and Networking Conference (WCNC), 2018, pp. 1-6. [5] S. Wang, Y. Han, J. Chen, Z. Zhang, G. Wang and N. Du, "A Deep-Learning-Based Sea Search and Rescue Algorithm by UAV Remote Sensing," 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), 2018, pp. 1-5. [6] M. Shadman Shafkat Tanjim, S. Ahammad Rafi, S. Barua, A. Nushra Oishi and M. Imran Hossain, "FRIQ 1.0: A Guided Quadcopter to Inject Retardant Fluid or Gas Aerially into the Fire Affected Zone," 2020 2nd International Conference on Sustainable Technologies for Industry 4.0 (STI), 2020, pp. 1-5. [7] L. Deng, Y. He and Q. Liu, "Research on Application of Fire Uumanned Aerial Vehicles in Emergency Rescue," 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE), 2019, pp. 1-5. [8] W. Li, D. Hu and Z. Lin, "Indoor Space Dimensional Model Supporting the Barrier-free Path-finding," 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), 2018, pp. 1-9. [9] I. Afyouni, C. Ray, and C. Christophe. "Spatial models for context-aware indoor navigation systems: A survey," Journal of Spatial Information Science, 2012, pp. 85-123. [10] M. Worboys, "Modeling indoor space," Proceedings of the 3rd ACM SIGSPATIAL international workshop on indoor spatial awareness, 2011, pp. 1-6. [11] K. Karur et al., "A survey of path planning algorithms for mobile robots," Vehicles, 2021, pp. 448-468. [12] S. Koenig, M. Likhachev, "Incremental a," Advances in neural information processing systems, 2001, pp. 1539-1546. [13] S. Koenig, M. Likhachev, "D^* lite," Association for the Advancement of AI, 2002, pp. 476-483. [14] P. E. Hart, N. J. Nilsson and B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," in IEEE Transactions on Systems Science and Cybernetics, 1968, vol. 4, no. 2, pp. 100-107. [15] J. Branu et al. "A Comparison of A* and RRT* Algorithms with Dynamic and Real Time Constraint Scenarios for Mobile Robots." SIMULTECH, 2019, pp. 398-405 [16] C. Zammit et al. "Comparison between A* and RRT Algorithms for UAV Path Planning,", Proceedings of the 2018 AIAA Guidance, Navigation, and Control Conference, 2018. [17] W. C. Wright, B. E. Wilkinson, W. P. Cropper and C. E. Oxendine, "Classifying Terrestrial Based Forest Photography with Geographic Information Systems to Model Signal Loss," IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, pp. 6420-6423. [18] A. G. Dubrovin, et al., "Analysis of noise immunity of GLONASS and GPS positioning receivers," IOP Conference Series: Materials Science and Engineering, 2020, vol. 734, no. 1. [19] A. Hameed and H. A. Ahmed, "Survey on indoor positioning applications based on different technologies," 2018 12th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), 2018, pp. 1-5, pp. [20] X. Xin, J. Jiang, and Y. Zou. "A review of visual-based localization," Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence, 2019. [21] N. Piasco et al., "A survey on visual-based localization: On the benefit of heterogeneous data," Pattern Recognition, 2018,vol.74, pp. 90-109. [22] D. Nister, O. Naroditsky and J. Bergen, "Visual odometry," Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, pp. I-I. [23] G. Klein and D. Murray, "Parallel Tracking and Mapping for Small AR Workspaces," 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, 2007, pp. 225-234. [24] J. Engel, V. Koltun and D. Cremers, "Direct Sparse Odometry," in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, vol. 40, no. 3, pp. 611-625. [25] J. Engel, T. Schöps, and D. Cremers, "LSD-SLAM: Large-scale direct monocular SLAM." European conference on computer vision, 2014, pp. 834-849. [26] R. Mur-Artal, J. M. M. Montiel and J. D. Tardós, "ORB-SLAM: A Versatile and Accurate Monocular SLAM System," in IEEE Transactions on Robotics, 2015, vol. 31, no. 5, pp. 1147-1163. [27] A. Gautam, S. Mahangade, V. I. Gupta, R. Madan and K. Arya, "An experimental comparison of visual SLAM systems," 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA), 2021, pp. 13-18. [28] M. Filipenko and I. Afanasyev, "Comparison of Various SLAM Systems for Mobile Robot in an Indoor Environment," 2018 International Conference on Intelligent Systems (IS), 2018, pp. 400-407. [29] M. Colledanchise, and P. Ögren, "Behavior Trees in Robotics and AI: An Introduction," 2017, ArXiv:1709.00084. [30] D. Malyuta, C. Brommer, D. Hentzen, T. Stastny, R. Siegwart, and R. Brockers, “Long-duration fully autonomous operation of rotorcraft unmanned aerial systems for remote-sensing data acquisition,” Journal of Field Robotics, 2020, pp. 137-157. [31] C. Brommer, D. Malyuta, D. Hentzen and R. Brockers, "Long-Duration Autonomy for Small Rotorcraft UAS Including Recharging," 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 7252-7258. [32] J. Wang and E. Olson, "AprilTag 2: Efficient and robust fiducial detection," 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 4193-4198. [33] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler and V. Koltun, "Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-Shot Cross-Dataset Transfer," in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, vol. 44, no. 3, pp. 1623-1637. |