English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51574099      Online Users : 892
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/142116


    Title: YouTube 線上影音廣告的數據分析與決策
    Data analysis and decision-making of YouTube video advertising
    Authors: 蔡璞玥
    Tsai, Pu Yueh
    Contributors: 蘇蘅
    Su, Herng
    蔡璞玥
    Tsai, Pu Yueh
    Keywords: YouTube
    科技接受模式
    線上影音廣告
    YouTube 演算法
    廣告數據
    廣告策略
    YouTube
    Technology acceptance model
    Online video ads
    YouTube algorithm
    Ads data
    Ads strategy
    Date: 2022
    Issue Date: 2022-10-05 09:12:57 (UTC+8)
    Abstract: YouTube 每個月有二十億活躍使用者,是目前全球最多使用者的網路影音平台,YouYube 廣告與消費者溝通的重要性與日俱增,因此有必要探討與理解廣告主購買 YouTube 廣告的意圖、決策過程與效果評估。

    由於 YouTube 廣告以社群平台傳遞為主的創新和科技特色,本研究採深度訪談法,訪問四位不同數位行銷專業的廣告主,探討並分析廣告主在擴展科技接收模式的程序學習任務中,如何接受及採納 YouTube 與 Google 的使用者數據,如何解讀為消費者偏好,加上自身產業經驗及合作團隊的配合,認知 YouTube 廣告的價值及廣告策略。

    本研究發現以科技接受模式觀察廣告主的感知易用性,發現 YouTube 演算法和多元數據工具,提供多數廣告主更豐富、客製化的訊息分析,有助對其產品消費者和服務對象的快速深入理解;值得注意的是,廣告主感知 YouTube 和Google 資訊數據的有用性,當廣告主使用相關工具及資訊系統時,認為可以帶來工作績效的提升,評估廣告效果。研究發現,受訪者感知易用性越高,使用態度越積極。他們感知易用性越高,其感知有用性也相對增加。

    受訪的廣告主如果具有相當的社群平台科技認知以及豐富的使用經驗,更能強化在決策中對於 YouTube 科技及數據分析的好感以及有用性,對於新興串流廣告發展採用演算法以及客製化消費者的洞察具有市場應用價值;而 Google提供的數位數據工具,也適合強化廣告主在廣告決策中的過程應用及修正,對於廣告效果的達成,增加了信任感和靈活度。
    With two billion monthly active users, YouTube is currently the world`s largest user of online video and audio Platform, the importance of YouTube advertising and communication with their customers is increasing nowadays. It is necessary to explore and understand the advertiser`s intention to purchase YouTube advertising, their decision-making process and how they perceive YouTube advertising value.

    The study aims on how advertisers accept YouTube technological changes and have also made changes in advertisements related to the Technology Acceptance Model. Due to the creative and technological features of YouTube advertising, this research adopts the in-depth interview method, interviewing four advertisers with different digital marketing experiences, to discuss how much digital information they need working on decision-making.

    This study has found that most advertisers agreed that they could save time and effort when utilizing YouTube data and tools. Advertisers also believe that it would improve ads performance and comprehend the effects of perceived usefulness. The research confirms that the advertisers accept and adopt the user data of YouTube and Google, can take advantage of the data provided by apps and platforms, thus making online advertising more effectively used. The factors that affect YouTube advertising value and its effect on purchasing intention are thoroughly examined. The more credible and usefulness of the YouTube statistics perceived by the advertisers, the more positive they intend to purchase YouTube ads. Both the convenience and informativeness of YouTube data can influence advertisers’ decision-making intention and action. The YouTube algorithms and multiple digital tools can provide most advertisers with rich and customized information analyses that can help them target customers quickly and improve work performance. This highlights algorithms and digital tools will bring more positive effects to streaming advertising.

    These digital data provided by Google are also suitable for enhancing the process application and correction of advertisers in advertising decision-making, which increases the confidence and flexibility for the advertising effects.
    Reference: 中文文獻

    李美華(2013)。《以再現與產製觀點探討網路媒體與客家文化》。客家委員會補助大學校院發展客家機構計畫。新竹市:交通大學。

    范麗娟(2004)。〈深度訪談〉,《質性研究》。台北市:心理。

    陳正芬譯(2014)。《演算法統治世界》。臺北:行人。(原書Steiner, C. [2012]. Automate This: How Algorithms Came to Rule Our World. New York: Portfolio.)

    陳向明(2002)。《社會科學質的研究》。臺北:五南。

    陳百齡(2005)。〈想像的群眾?真實的商品?—閱聽人圖像之組織形構分析〉,《圖書與資訊》,51: 頁35-48。

    陳亭羽、田季芳(2008)。〈網路廣告效果衡量指標之探討〉, 《管理與系統》,15(2): 177-208。

    陳春富(2008)。〈想像的群眾?真實的商品?—閱聽人圖像之組織形構分析〉,《廣播與電視》,28: 頁71-94。

    張玉佩(2005)。〈從媒體影像觀照自己:觀展/表演典範之初探〉。《新聞學研究》,82: 41-85。

    張玉佩(2011)。〈線上遊戲之閱聽人愉悅經驗探〉。《中華傳播學刊》,19: 61-95。

    張芬芬(2010)。〈質性資料分析的五步驟: 在抽象階梯上爬升〉。《初等教育學刊》, 35: 87-120。

    張卿卿(2016)。〈線上影音接收,傳散與產製上傳行為探討:多元動機之觀點〉。中華傳播學刊,30: 61-107。

    高淑清(2008)。《質性研究的18堂課-首航初探之旅》,高雄:麗文文化。

    萬文隆(2004)。〈深度訪談在質性研究中的應用〉,《生活科技教育月刊》,37(4):17-23。

    潘淑滿(2004)。《質性研究:理論與應用》。台北:心理出版社。

    劉欣飴(2009)。〈以社會能供性觀點探討資訊科技認知對合作意願影響之研
    究〉,《資訊社會研究》,16:89-135。

    蔡蕙如(2020)。〈串流媒體時代下的閱聽人商品觀點再檢視:以傳播政治經
    濟學觀點分析 Netflix 追劇勞動〉,《中華傳播學刊》,37:83-112。

    蘇蘅(2019)。《傳播研究方法新論》。臺北:雙葉書廊。

    英文文獻

    Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information systems research, 9(2), 204-215.

    Ajzen, I., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological bulletin, 84(5), 888.

    Atkinson, M., & Kydd, C. (1997). Individual characteristics associated with World Wide Web use: an empirical study of playfulness and motivation. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 28(2), 53-62.

    Bodgan, R. C., & Biklen, S. K. (1982). Qualitative Research For Education: An Introduction to Theory and Method. Boston: Ally & Bacon.

    Bryant, L.V., (2020). The YouTube Algorithm and the Alt-Right Filter Bubble. Open Information Science, 4(1), 85–90.

    Bucher, T. (2012). Want to be on the top? Algorithmic power and the threat of invisibility on Facebook. New Media & Society, 14(7), 1164-1180.

    Burgess, S., Sellitto, C., Cox, C. and Buultjens, J. (2009) User-generated content (UGC) in tourism: benefits and concerns of online consumers. 17th European Conference on Information System, Verona.

    Carlson, J. R. , & Zmud, R. W. (1999). Channel expansion theory and the experiential nature of media richness perceptions. Academy of Management Journal, 42(3): 153-170.

    Chau, C. (2010). YouTube as a participatory culture. New directions for youth development, 2010(128), 65-74.

    Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for YouTube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 191-198.

    Daft, R. L., & Lengel, R. H. (1984). Information richness: A new approach to managerial behavior and organizational design, Research in Organizational Behavior, 6, 191–233.

    Daft, R. L., & Lengel, R. H. (1986). Organizational information requirements, media richness and structural design. Management Science, 32(5), 554–571.

    Davenport, T. H., & Beck, J. C. (2001). The attention economy. Ubiquity,2001(May), 1-es.

    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982–1002.

    Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., ... & Sampath,D. (2010, September). The YouTube video recommendation system. In Proceedings of the fourth ACM conference on Recommender systems (pp.
    293-296).

    Derlega, V., J., Metts, S., Petronio, S. & Margulis, S. T. (1993). Self-disclosure. Sage Publications.

    De Marchi, L. (2018). How do YouTube algorithms calculate value? An analysis of the production of value for digital music videos using the social logic of the derivative, MATRIZes 12(2), 193-216.

    Duffett, R., Petroșanu, D. M., Negricea, I. C., & Edu, T. (2019). Effect of YouTube marketing communication on converting brand liking into preference among millennials regarding brands in general and sustainable offers in particular. Evidence from South Africa and Romania. Sustainability, 11(3), 604.

    Figueiredo, F., Almeida, J. M., Gonçalves, M. A., & Benevenuto, F. (2014). On the dynamics of social media popularity: A YouTube case study. ACM Transactions on Internet Technology (TOIT), 14(4), 1-23.

    Fuchs, C. (2008). Internet and society: Social theory in the information age. London, UK: Routledge.

    Galbraith, J. R. (1974). Organization design: An information processing view.Interfaces, 4(3), 28-36.

    Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA:Houghton Mifflin Company.

    Godfrey, A., Seiders, K., & Voss, G. B. (2011). Enough is enough! The fine line in executing multichannel relational communication. Journal of Marketing, 75(4),94-109.

    Goffman E. (1959). The presentation of self in everyday life. New York: Anchor.

    Ha, L., & James, E., L. (1998). Interactivity reexamined: A baseline analysis of early business websites. Journal of Broadcasting & Electronic Media, 42(4), 457-474.

    Haridakis, P., & Hanson, G. (2009). Social Interaction and Co-Viewing with YouTube: Blending Mass Communication Reception and Social Connection.Journal of Broadcasting & Electronic Media, 53, 317-335.

    Heeter, C. (2000). Interactivity in the context of designed experiences. Journal of Interactive Advertising, 1(1), 3-14

    Ishii, K., Lyons, M. M., & Carr, S. A. (2019). Revisiting media richness theory for today and future. Human Behavior and Emerging Technologies, 1(2), 124-131.

    Iskandar, M., & Iskandar, B. P. (2012). Crossing through the information barrier.Journal of Business and Management, 1, 384-388.

    Iye R, Okuhara T, Okada H, Yokota R, Kiuchi T. (2021). A Content Analysis of Video Advertisements for Dietary Supplements in Japan. Healthcare, 9(6): 742.https://doi.org/10.3390/healthcare9060742

    Heeter, C. (2000). Interactivity in the context of designed experiences. Journal of interactive advertising, 1(1), 3-14.

    Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of marketing, 60(3), 50-68.

    Huh, J., & Malthouse, E. C. (2020). Advancing computational advertising:Conceptualization of the field and future directions. Journal of Advertising, 49(4), 367-376.

    Kim, S.-T., & Lee, Y.-H. (2006). New functions of Internet mediated agenda-setting:Agenda-rippling and reversed agenda-setting. Korean. Journal of Journalism and Communication Studies, 50(3), 175-205.

    Kosterich, A., & Napoli, P. M. (2016). Reconfiguring the audience commodity: The institutionalization of social TV analytics as a market information regime.Television & New Media, 17(3), 254-271.

    Lee, D. Y., & Lehto, M. R. (2013). User acceptance of YouTube for procedural learning: An extension of the Technology Acceptance Model. Computers & Education, 61, 193-208.

    Lobato, R. (2019). Netflix nations: The geography of digital distribution. New York, NY: New York University.

    Manetti, G.; Bellucci, M. (2016), The use of social media for engaging stakeholders in sustainability reporting. Account. Audit. Account. J. 2016, 29, 985-1011. doi:10.1108/AAAJ-08-2014-1797.

    Martin, H., Saifuddin A., Jaeho C., Billy L., & Jonathan, L. (2018). Communicating with Algorithms: A Transfer Entropy Analysis of Emotions-based Escapes from Online Echo Chambers, Communication Methods and Measures, 12(4),
    260-275.

    Meehan, E. (1990). Why we don`t count: The commodity audience. Logics of television: Essays in cultural criticism, 117-137.

    Miles, J. (2014). YouTube marketing power: How to use video to find more prospects, launch your products, and reach a massive audience. McGraw Hill Professional.

    Miller, K. (2012). Playing along: Digital games, YouTube, and virtual performance.Oxford University Press.

    Mir, I. A. (2017). Users on Social Network Sites—Flight from Reality and Its Effects on Acceptance of Social Network Advertising: A Gratification Perspective. Journal of Creative Communications, 12(2), 98-121.

    Moat, H. S., Preis, T., Olivola, C. Y., Liu, C. and Chater, N. (2014). Using big data to predict collective behavior in the real world, Behavioral and Brain Sciences,37(1), 92-93.

    Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & management, 38(4), 217-230.

    Mubarak, K., Hilal, M. I. M., (2019) Effect of YouTube usage and marketing communication on brand preference. Journal of Marketing, 4(1); 20-27.

    Nance, W. D., & Straub, D. W. (1996). An investigation of task/technology fit and information technology choices in knowledge work. Journal of Information Technology Management, 7, 1-14.

    Napoli, P. M. (2011). Audience evolution: New technologies and the transformation of media audiences. Columbia University Press.

    Neuman, W. R., Guggenheim, L., Jang, S. M., & Bae, S. Y. (2014). The dynamics of public attention: Agenda-setting theory meets big data. Journal of Communication. 64, 193-214.

    Novak, T. P., Hoffman, D. L., & Duhachek, A. (2003). The influence of goal‐directed and experiential activities on online flow experiences. Journal of consumer psychology, 13(1-2), 3-16.

    O’Callaghan, D., Greene, D., Conway, M., Carthy, J., & Cunningham, P. (2015).Down the (white) rabbit hole: The extreme right and online recommender systems. Social Science Computer Review, 33(4), 459-478.

    Papasolomou, I., & Melanthiou, Y. (2012) Social Media: Marketing Public Relations’ New Best Friend. Journal of Promotion Management, 18 (3),319-328.

    Pashkevich, M., Dorai-Raj, S., Kellar, M., & Zigmond, D. (2012). Empowering online advertisements by empowering viewers with the right to choose the relative
    effectiveness of skippable video advertisements on YouTube. Journal of Advertising Research, 52, 451-457.

    Roberts, K. K. (2010). Privacy and perceptions: How Facebook advertising affects its users. The Elon Journal of Undergraduate Research in Communications,1(1), 24-34.

    Shao, G. (2009). Understanding the appeal of user-generated media: A uses and gratification perspective. Internet Research, 19(1), 7-25.

    Song, J. H., & Zinkhan, G. M. (2008). Determinants of perceived web site interactivity. Journal of marketing, 72(2), 99-113.

    Sukoco, B. M., & Wu, W. Y. (2011). The effects of advergames on consumer telepresence and attitudes: A comparison of products with search and experience attributes. Expert Systems with Applications, 38(6), 7396-7406.

    Trevino, L. K., Lengel, R. H., & Daft, R. L. (1987). Media symbolism, media richness, and media choice in organizations: a symbolic interactionist perspective. Communication Research, 14(5), 553-574.

    Tufekci, Z. (2018). YouTube, the great radicalizer. The New York Times, 10(3),2018.

    Tutty, L. M., Rothery, M. A., & Grinnell, R. M. (1996). Qualitative research for social workers: Phases, steps, & tasks. Allyn and Bacon.

    Vakratsas, D., & Ambler, T. (1999). How advertising works: what do we really know?. Journal of marketing, 63(1), 26-43.

    van Dijk, A. (2009). Society and discourse: How social contexts influence text and talk. Cambridge: Cambridge University Press.

    Walker, J. D., Killip, D. E., & Fuller, J. L. (1985). The significance of the admission interview in predicting students` performance in dental school. Journal of
    Medical Education.

    Wen, T. J., Chuan, C. H., Yang, J., & Tsai, W. S. (2022). Predicting Advertising Persuasiveness: A Decision Tree Method for Understanding Emotional (In) Congruence of Ad Placement on YouTube. Journal of Current Issues
    Research in Advertising, 43(2), 200-218.

    Wheeless, L. R. & Grotz, J. (1977). The measurement of trust and its relationship to self-disclosure. Human Communication Research, 3(3), 250-257.

    White, M., Wijaya, M., & Epston, D. (1990). Narrative means to therapeutic ends.WW Norton & Company.

    Yoo, C. Y. (2007). Implicit memory measures for web advertising effectiveness. Journalism & Mass Communication Quarterly, 84(1), 7-23.

    Zhang, K. & Katona, Z. (2011). Contextual Advertising. Marketing Science, 31(6),
    980-994.

    網站部分

    Paige Cooper (2021.06.21)。〈How Does the YouTube Algorithm Work in 2021? The Complete Guide〉,《Hootsuite》,取自
    https://blog.hootsuite.com/how-the-youtube-algorithm-works/
    Description: 碩士
    國立政治大學
    傳播學院碩士在職專班
    106941010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106941010
    Data Type: thesis
    DOI: 10.6814/NCCU202201591
    Appears in Collections:[傳播學院碩士在職專班] 學位論文

    Files in This Item:

    File Description SizeFormat
    101001.pdf35789KbAdobe PDF2222View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback