Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/128564
|
Title: | 跳躍風險相關之匯率選擇權: 傅立葉轉換評價法、Martingale法與蒙地卡羅法之比較 |
Authors: | 温晉祥 Wen, Chin-Hsiang |
Contributors: | 林士貴 Lin, Shih-Kuei 温晉祥 Wen, Chin-Hsiang |
Keywords: | Amin and Jarrow model 外匯選擇權 相關跳躍風險 匯率 利率 跳躍風險 Amin and Jarrow model currency option correlated jump risks exchange rate interest rate jump risks |
Date: | 2020 |
Issue Date: | 2020-02-05 17:30:51 (UTC+8) |
Abstract: | 本論文觀察最近十多年來國際上幾個主要國家利率與匯率的走勢以及同一個期間內的跳躍情況,發現走勢有相關性存在,並且經常同時發生跳躍。為了此特殊性質,本研究建立一個考慮走勢與跳躍相關的模型來捕捉此特性,稱作考慮相關跳躍模型 (Amin and Jarrow model with correlated jump risks, AJ-CJ)。實證結果發現AJ-CJ比起幾何布朗運動 (Geometric Brownian motion, GBM)、Amin and Jarrow 模型 (Amin and Jarrow model, AJ)、考慮獨立跳躍模型 (Amin and Jarrow model with independent jump risks, AJ-IJ) 可以更加捕捉利率及匯率的特性。利用martingale法與傅立葉轉評價法推導出AJ-CJ下的匯率選擇權評價公式並且比較兩種方法與蒙地卡羅法之計算速度與準確度,發現三種方法的評價結果很接近,且傅立葉轉評價法計算速度比另外兩種方法快許多。實證發現,大多數的例子中,AJ-CJ改善了樣本內及樣本外定價誤差,也代表可以更精準地評價匯率選擇權。研究結果支持利率與匯率存在相關性及跳躍間也存在相關。 In this paper, we investigate the trends of interest rates and exchange rates in several major international countries in the past ten years and find that the trends are correlated and often jump at the same time. Given the characteristics of correlated jump risks in interest rates and exchange rates, we construct a new model called Amin and Jarrow model with correlated jump risks (AJ-CJ) to capture the movements. The empirical results in exchange rates and interest rates data with the log-likelihood value show that AJ-CJ can capture the interest rates and the exchange rates better than Geometric Brownian model (GBM), Amin and Jarrow model (AJ), and Amin and Jarrow model with independent jump risks (AJ-IJ). After finding the martingale condition, we derive the pricing formula for currency options under AJ-CJ with the traditional martingale method and generalized Fourier transform method. This study adds the Monte Carlo method to verify the evaluation results and compare calculating time. We found that the evaluation result of traditional martingale method and Fourier evaluation method is very close to the Monte Carlo method. The calculating time of Fourier evaluation method is much faster than traditional martingale method and the Monte Carlo method. In addition, the empirical performance of the option data finds that AJ-CJ improves the in-sample and out-of-sample pricing error performances in most cases. Therefore, we conclude that correlated jump risks between interest rates and exchange rates. |
Reference: | 1. Amin, K. and R. A. Jarrow, 1991, “Pricing foreign currency options under stochastic interest rates,” Journal of International Money and Finance, Vol. 10, 310-329. 2. Bailey, W and R.M. Stulz, 1989, “The pricing of stock index options in a general equilibrium Model,” Journal of Financial and Quantitative Analysis, Vol. 24, 1-12. 3. Bates, D., 1991, “The crash of 87: Was it expected? The evidence from options markets,” Journal of Finance, Vol. 46, 1009-1044. 4. Bates, D., 1996a, “Dollar jump fears, 1984-1992: Distributional abnormalities implicit in currency futures options,” Journal of International Money and Finance, Vol. 15, 65-93. 5. Bates, D., 1996b, “Jumps and stochastic volatility: Exchange rate process implicit in Deutsche Mark options,” Review of Financial Studies, Vol. 9, 69-107. 6. Bakshi, G., C. Cao, and Z. Chen, 1997, “Empirical performance of alternative option pricing models,” Journal of Finance, 52, 2003–2049. 7. Bollen, N. P. B., S. F. Gary, and R. E. Whaley, 2000,” Regime switching in foreign exchange rates Evidence from currency option prices,” Journal of Econometrics , Vol. 94,239-276. 8. Brigo, D. and F., Mercurio, 2006, Interest rate models—Theory and practice. Springer Verlag, Berlin. 9. Ornthanalai, G., 2014, “Lévy jump risk: Evidence from options and returns,” Journal of Financial Economics, Vol. 112, 69-90. 10. Bo. L, Y. Wang, and X. Yang, 2010, “Markov-modulated jump-diffusions for currency option pricing,” Insurance: Mathematics and Economics, Vol. 46, 461-469. 11. Chan, W. H., 2004, “Conditional correlated jump dynamics in foreign exchange,” Economics Letters, Vol. 83, 23-28. 12. Chang, M. A., D. C. Cho, and L. Park, 2007, “The pricing of foreign currency options under jump-diffusion processes,” The Journal of Futures Markets, Vol. 27, No. 7, 669-695 . 13. Doffou, A., and J. E. Hilliard, 2001, “Pricing currency options under stochastic interest rates and jump-diffusion processes,” The Journal of Financial Research, Vol. 24, No. 4, 565-585. 14. Feiger, G., and B. Jacquillat, 1979, “Currency option bonds, puts and calls on spot exchange and the hedging of contingent foreign earnings,” Journal of Finance, Vol. 34, 1129-1139. 15. Grabbe, O., 1983, “The pricing of call and put options on foreign exchange,” Journal of International Money and Finance, Vol. 2, 239-253. 16. Garman, M. B. and S. W. Kohlhagen, 1983. “Foreign currency option values,” Journal of International Money and Finance, Vol. 2, 231-237. 17. Gerber, H. U. and E. S. W. Shiu, 1994, “Option pricing by esscher transforms,” Transactions of the Society of Actuaries, Vol. 46, 99-140. 18. Guo, J. H. and M. W. Hung, 2007. “Pricing American options on foreign currency with stochastic volatility, jumps, and stochastic interest rates,” The Journal of Futures Markets, Vol. 27, No. 9, 867-891. 19. Harrison, J.M. and S.R. Pliska, 1981 “Martingales and Stochastic Integrals in the Theory of Continuous Trading,” Stochastic Processes and Their Applications, Vol. 11, 215-260 20. Hull, J. and A. White, 1990. “Pricing interest rate derivative securities,” Review of Financial Studies, Vol. 29, 347-368. 21. Heston, S. and S. Nandi, 2000. A closed-form GARCH option pricing model. Review of Financial Studies, Vol.13, 585–626. 22. Jorion, P., 1988, “On jump processes in the foreign exchange and stock markets,” The Review of Financial Studies, Vol. 1, No.4, 427-445. 23. Jarrow, R., and Y. Yildirim, 2003, “Pricing treasury inflation protected securities and related derivatives using an HJM model,” Journal of Financial and Quantitative Analysis, Vol. 38, 337-357. 24. Li, X. P., Y. Feng, C. F. Wu, and W. D. Xu, 2013, “Response of the term structure of forward exchange rate to jump in the interest rate,” Economic Modelling, Vol. 30, 863–874 25. Lin. C. H., S. K., Lin, and A. C., Wu, 2015, “Foreign exchange option pricing in the currency cycle with jump risks,” Review of Quantitative Finance and Accounting, Vol. 44, 755-789. 26. Merton, R. C., 1976, “Option pricing when underlying stock returns are discontinuous,” Journal of Financial Economics, Vol. 63, 3-50. 27. Musiela, M. and M. Rutkowski, 1998, “Martingale Methods in Financial Modelling,” Journal of the American Statistical Association, Springer-Verlag, Berlin. 28. Shokrollahi F, A. Kılıçman, M. Magdziarz , 2016, “Pricing European options and currency options by time changed mixed fractional Brownian motion with transaction costs,” International Journal of Financial Engineering, Vol.3, No.1, 1650003. 29. Xiao, W. L., W. G. Zang, X. L. Zang, and Y. L. Wang, 2010, “Pricing currency options in a fractional Brownian motion with jumps,” Economic Modelling, 935-942 |
Description: | 博士 國立政治大學 金融學系 100352501 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0100352501 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202000074 |
Appears in Collections: | [金融學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
250101.pdf | 1798Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|