政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/128564
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114014/145046 (79%)
造访人次 : 52055080      在线人数 : 568
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/128564


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/128564


    题名: 跳躍風險相關之匯率選擇權: 傅立葉轉換評價法、Martingale法與蒙地卡羅法之比較
    作者: 温晉祥
    Wen, Chin-Hsiang
    贡献者: 林士貴
    Lin, Shih-Kuei
    温晉祥
    Wen, Chin-Hsiang
    关键词: Amin and Jarrow model
    外匯選擇權
    相關跳躍風險
    匯率
    利率
    跳躍風險
    Amin and Jarrow model
    currency option
    correlated jump risks
    exchange rate
    interest rate
    jump risks
    日期: 2020
    上传时间: 2020-02-05 17:30:51 (UTC+8)
    摘要: 本論文觀察最近十多年來國際上幾個主要國家利率與匯率的走勢以及同一個期間內的跳躍情況,發現走勢有相關性存在,並且經常同時發生跳躍。為了此特殊性質,本研究建立一個考慮走勢與跳躍相關的模型來捕捉此特性,稱作考慮相關跳躍模型 (Amin and Jarrow model with correlated jump risks, AJ-CJ)。實證結果發現AJ-CJ比起幾何布朗運動 (Geometric Brownian motion, GBM)、Amin and Jarrow 模型 (Amin and Jarrow model, AJ)、考慮獨立跳躍模型 (Amin and Jarrow model with independent jump risks, AJ-IJ) 可以更加捕捉利率及匯率的特性。利用martingale法與傅立葉轉評價法推導出AJ-CJ下的匯率選擇權評價公式並且比較兩種方法與蒙地卡羅法之計算速度與準確度,發現三種方法的評價結果很接近,且傅立葉轉評價法計算速度比另外兩種方法快許多。實證發現,大多數的例子中,AJ-CJ改善了樣本內及樣本外定價誤差,也代表可以更精準地評價匯率選擇權。研究結果支持利率與匯率存在相關性及跳躍間也存在相關。
    In this paper, we investigate the trends of interest rates and exchange rates in several major international countries in the past ten years and find that the trends are correlated and often jump at the same time. Given the characteristics of correlated jump risks in interest rates and exchange rates, we construct a new model called Amin and Jarrow model with correlated jump risks (AJ-CJ) to capture the movements. The empirical results in exchange rates and interest rates data with the log-likelihood value show that AJ-CJ can capture the interest rates and the exchange rates better than Geometric Brownian model (GBM), Amin and Jarrow model (AJ), and Amin and Jarrow model with independent jump risks (AJ-IJ). After finding the martingale condition, we derive the pricing formula for currency options under AJ-CJ with the traditional martingale method and generalized Fourier transform method. This study adds the Monte Carlo method to verify the evaluation results and compare calculating time. We found that the evaluation result of traditional martingale method and Fourier evaluation method is very close to the Monte Carlo method. The calculating time of Fourier evaluation method is much faster than traditional martingale method and the Monte Carlo method. In addition, the empirical performance of the option data finds that AJ-CJ improves the in-sample and out-of-sample pricing error performances in most cases. Therefore, we conclude that correlated jump risks between interest rates and exchange rates.
    參考文獻: 1. Amin, K. and R. A. Jarrow, 1991, “Pricing foreign currency options under stochastic interest rates,” Journal of International Money and Finance, Vol. 10, 310-329.
    2. Bailey, W and R.M. Stulz, 1989, “The pricing of stock index options in a general equilibrium Model,” Journal of Financial and Quantitative Analysis, Vol. 24, 1-12.
    3. Bates, D., 1991, “The crash of 87: Was it expected? The evidence from options markets,” Journal of Finance, Vol. 46, 1009-1044.
    4. Bates, D., 1996a, “Dollar jump fears, 1984-1992: Distributional abnormalities implicit in currency futures options,” Journal of International Money and Finance, Vol. 15, 65-93.
    5. Bates, D., 1996b, “Jumps and stochastic volatility: Exchange rate process implicit in Deutsche Mark options,” Review of Financial Studies, Vol. 9, 69-107.
    6. Bakshi, G., C. Cao, and Z. Chen, 1997, “Empirical performance of alternative option pricing models,” Journal of Finance, 52, 2003–2049.
    7. Bollen, N. P. B., S. F. Gary, and R. E. Whaley, 2000,” Regime switching in foreign exchange rates Evidence from currency option prices,” Journal of Econometrics , Vol. 94,239-276.
    8. Brigo, D. and F., Mercurio, 2006, Interest rate models—Theory and practice. Springer Verlag, Berlin.
    9. Ornthanalai, G., 2014, “Lévy jump risk: Evidence from options and returns,” Journal of Financial Economics, Vol. 112, 69-90.
    10. Bo. L, Y. Wang, and X. Yang, 2010, “Markov-modulated jump-diffusions for currency option pricing,” Insurance: Mathematics and Economics, Vol. 46, 461-469.
    11. Chan, W. H., 2004, “Conditional correlated jump dynamics in foreign exchange,” Economics Letters, Vol. 83, 23-28.
    12. Chang, M. A., D. C. Cho, and L. Park, 2007, “The pricing of foreign currency options under jump-diffusion processes,” The Journal of Futures Markets, Vol. 27, No. 7, 669-695 .
    13. Doffou, A., and J. E. Hilliard, 2001, “Pricing currency options under stochastic interest rates and jump-diffusion processes,” The Journal of Financial Research, Vol. 24, No. 4, 565-585.
    14. Feiger, G., and B. Jacquillat, 1979, “Currency option bonds, puts and calls on spot exchange and the hedging of contingent foreign earnings,” Journal of Finance, Vol. 34, 1129-1139.
    15. Grabbe, O., 1983, “The pricing of call and put options on foreign exchange,” Journal of International Money and Finance, Vol. 2, 239-253.
    16. Garman, M. B. and S. W. Kohlhagen, 1983. “Foreign currency option values,” Journal of International Money and Finance, Vol. 2, 231-237.
    17. Gerber, H. U. and E. S. W. Shiu, 1994, “Option pricing by esscher transforms,” Transactions of the Society of Actuaries, Vol. 46, 99-140.
    18. Guo, J. H. and M. W. Hung, 2007. “Pricing American options on foreign currency with stochastic volatility, jumps, and stochastic interest rates,” The Journal of Futures Markets, Vol. 27, No. 9, 867-891.
    19. Harrison, J.M. and S.R. Pliska, 1981 “Martingales and Stochastic Integrals in the Theory of Continuous Trading,” Stochastic Processes and Their Applications, Vol. 11, 215-260
    20. Hull, J. and A. White, 1990. “Pricing interest rate derivative securities,” Review of Financial Studies, Vol. 29, 347-368.
    21. Heston, S. and S. Nandi, 2000. A closed-form GARCH option pricing model. Review of Financial Studies, Vol.13, 585–626.
    22. Jorion, P., 1988, “On jump processes in the foreign exchange and stock markets,” The Review of Financial Studies, Vol. 1, No.4, 427-445.
    23. Jarrow, R., and Y. Yildirim, 2003, “Pricing treasury inflation protected securities and related derivatives using an HJM model,” Journal of Financial and Quantitative Analysis, Vol. 38, 337-357.
    24. Li, X. P., Y. Feng, C. F. Wu, and W. D. Xu, 2013, “Response of the term structure of forward exchange rate to jump in the interest rate,” Economic Modelling, Vol. 30, 863–874
    25. Lin. C. H., S. K., Lin, and A. C., Wu, 2015, “Foreign exchange option pricing in the currency cycle with jump risks,” Review of Quantitative Finance and Accounting, Vol. 44, 755-789.
    26. Merton, R. C., 1976, “Option pricing when underlying stock returns are discontinuous,” Journal of Financial Economics, Vol. 63, 3-50.
    27. Musiela, M. and M. Rutkowski, 1998, “Martingale Methods in Financial Modelling,” Journal of the American Statistical Association, Springer-Verlag, Berlin.
    28. Shokrollahi F, A. Kılıçman, M. Magdziarz , 2016, “Pricing European options and currency options by time changed mixed fractional Brownian motion with transaction costs,” International Journal of Financial Engineering, Vol.3, No.1, 1650003.
    29. Xiao, W. L., W. G. Zang, X. L. Zang, and Y. L. Wang, 2010, “Pricing currency options in a fractional Brownian motion with jumps,” Economic Modelling, 935-942
    描述: 博士
    國立政治大學
    金融學系
    100352501
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0100352501
    数据类型: thesis
    DOI: 10.6814/NCCU202000074
    显示于类别:[金融學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    250101.pdf1798KbAdobe PDF20检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈