Reference: | [ 1 ] 王宇辰. (2011).亞洲國家股市弱式效率之實證研究. [ 2 ] 王洪偉, 張對,鄭麗娟,& 陸頲. (2015). 網路股評對股市走勢的影響:基於文本情感分析的方法. 情報學報, 34(11), 1190-1202. [ 3 ] 王慶鴻. (1999).上市公司內部關係人之申報轉讓持股與市場效率之實證研究.政治大學財務管理研究所碩士論文,台北. [ 4 ] 李良俊. (2003). 台灣股票市場技術分析有效性之研究. 未出版碩士論文, 實踐大學企業管理研究所, 台北市. [ 5 ] 呂家萱. (2014). 新聞頻率, 散戶投資人情緒與股價共動性. 臺灣大學財務金融學研究所學位論文, 1-46. [ 6 ] 宋敏晶. (2013).基於情感分析的股票預測模型研究(Doctoral dissertation, 哈爾濱工業大學碩士學位論文). [ 7 ] 吳昀錚. (2008). 利用文字探勘技術預測台股加權指數之漲跌趨勢. [ 8 ] 吳智良. (2007). 電子類股及金融類股現貨及期貨市場效率性分析. 臺灣大學經濟學研究所學位論文, 1-79. [ 9 ] 吳靖東. (2014). 投資人情緒對股票報酬之影響─ 馬可夫狀態轉換模式之應用. 創新與管理, 10(4), 67-94. [ 10 ] 倪衍森, 鍾雨潼. (2003). 台灣2002年公開資訊觀測站重大訊息資訊內涵分析.v2003 年兩岸管理科學暨經營決策學術研討會論文集,237-248 [ 11 ] 林呈勳. (2009). 結合技術指標與財經新聞之股票趨勢預測. 臺北科技大學商業自動化與管理研究所學位論文, 1-57. [ 12 ] 林問一. (2004). 以移動平均線、相對強弱指標與交易量檢驗台灣股票市場的效率性. [ 13 ] 許菁旂, 黃文聰, & 黃振聰. (2015). 投資人情緒對低波動異常現象的預測力: 市場狀態的影響. 管理學報, 32(4), 399-424. [ 14 ] 黃靖娥. (2008). 內線交易宣告對股價的影響. 長榮大學經營管理研究所 (博) 學位論文, 1-68. [ 15 ] 游和正, 黃挺豪, & 陳信希. (2012). 領域相關詞彙極性分析及文件情緒分類之研究. 中文計算語言學期刊, 17(4), 33-47. [ 16 ] 楊踐為, 李家豪, & 類惠貞. (2007). 應用時間序列分析法建構台灣證券市場之預測交易模型. [ 17 ] 劉羿廷. (2016). 運用財經文本情感分析於台灣電子類股價指數趨勢預測之研究 (Doctoral dissertation, 劉羿廷). [ 18 ] 董理, 王中卿, & 熊德意. (2017). 基于文本信息的股票指數預測. 北京大學學報 (自然科學版), 53(2), 273-278. [ 19 ] 謝鎮宇, & 梁婷. (2010). 意見探勘在中文評鑑語料之應用(Doctoral dissertation). [ 20 ] 戴柏儀. (2012). 台灣股市效率市場之研究-以 42 日移動平均線為例. 淡江大學財務金融學系碩士在職專班學位論文, 1-72. [ 21 ] 簡智宏. (2015).應用文字探勘技術於概念股輿情與股價共同移動之研究-以蘋果概念股為例. [ 22 ] 蕭文姃, 顏慧明, 謝昌隆, & 周德佳. (2014). 上市櫃電子公司購併與分割宣告效果之研究. 管理資訊計算, 3, 292-303. [ 23 ] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022. [ 24 ] Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of computational science, 2(1), 1-8. [ 25 ] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. [ 26 ] Cavalcante, R. C., Brasileiro, R. C., Souza, V. L., Nobrega, J. P., & Oliveira, A. L. (2016). Computational intelligence and financial markets: A survey and future directions. Expert Systems with Applications, 55, 194-211. [ 27 ] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. [ 28 ] Dey, L., Chakraborty, S., Biswas, A., Bose, B., & Tiwari, S. (2016). Sentiment Analysis of Review Datasets Using Naive Bayes and K-NN Classifier. arXiv preprint arXiv:1610.09982. [ 29 ] Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The journal of Finance, 25(2), 383-417. [ 30 ] Fama, E. F. (1998). Market efficiency, long-term returns, and behavioral finance1. Journal of financial economics, 49(3), 283-306. [ 31 ] Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89. [ 32 ] Ferdous, R. (2009, November). An efficient k-means algorithm integrated with Jaccard distance measure for document clustering. In Internet, 2009. AH-ICI 2009. First Asian Himalayas International Conference on (pp. 1-6). IEEE. [ 33 ] Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of human genetics, 7(2), 179-188. [ 34 ] Fung, G. P. C., Yu, J. X., & Lam, W. (2002, May). News sensitive stock trend prediction. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 481-493). Springer, Berlin, Heidelberg. [ 35 ] Gerrish, S., & Blei, D. M. (2010, June). A Language-based Approach to Measuring Scholarly Impact. In ICML (Vol. 10, pp. 375-382). [ 36 ] Gidofalvi, G., & Elkan, C. (2001). Using news articles to predict stock price movements. Department of Computer Science and Engineering, University of California, San Diego. [ 37 ] Grandin, P., & Adan, J. M. (2016). Piegas: A Systems for Sentiment Analysis of Tweets in Portuguese. IEEE Latin America Transactions, 14(7), 3467-3473. [ 38 ] Griffiths, T. L., Jordan, M. I., Tenenbaum, J. B., & Blei, D. M. (2004). Hierarchical topic models and the nested chinese restaurant process. In Advances in neural information processing systems (pp. 17-24). [ 39 ] Groth, S. S., & Muntermann, J. (2011). An intraday market risk management approach based on textual analysis. Decision Support Systems, 50(4), 680-691. [ 40 ] Gupta, A., Pruthi, J., & Sahu, N. (2017). Sentiment Analysis of Tweets using Machine Learning Approach. [ 41 ] Han, E. H. S., Karypis, G., & Kumar, V. (2001, April). Text categorization using weight adjusted k-nearest neighbor classification. In Pacific-asia conference on knowledge discovery and data mining (pp. 53-65). Springer, Berlin, Heidelberg. [ 42 ] Hasan, K. A., Sabuj, M. S., & Afrin, Z. (2015, December). Opinion mining using naive bayes. In Electrical and Computer Engineering (WIECON-ECE), 2015 IEEE International WIE Conference on (pp. 511-514). IEEE. [ 43 ] Kalaivani, P., & Shunmuganathan, K. L. (2014, March). An improved K-nearest-neighbor algorithm using genetic algorithm for sentiment classification. In Circuit, Power and Computing Technologies (ICCPCT), 2014 International Conference on (pp. 1647-1651). IEEE. [ 44 ] Kim, K. J., & Han, I. (2000). Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert systems with Applications, 19(2), 125-132. [ 45 ] Kim, S. M., & Hovy, E. (2007). Crystal: Analyzing predictive opinions on the web. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). [ 46 ] Kumar, D. A., & Murugan, S. (2013, February). Performance analysis of Indian stock market index using neural network time series model. In Pattern Recognition, Informatics and Mobile Engineering (PRIME), 2013 International Conference on (pp. 72-78). IEEE. [ 47 ] Kuo, R. J., Chen, C. H., & Hwang, Y. C. (2001). An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy sets and systems, 118(1), 21-45. [ 48 ] Lawrence, R. (1997). Using neural networks to forecast stock market prices. University of Manitoba, 333. [ 49 ] Lita, L. V., Schlaikjer, A. H., Hong, W., & Nyberg, E. (2005, July). Qualitative dimensions in question answering: Extending the definitional QA task. In Proceedings of the national conference on artificial intelligence (Vol. 20, No. 4, p. 1616). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999. [ 50 ] Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1), 1-167. [ 51 ] Lock, D. B. (2007). The Taiwan stock market does follow a random walk. Economics Bulletin, 7(3), 1-8. [ 52 ] MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability(Vol. 1, No. 14, pp. 281-297). [ 53 ] Mei, Q., Ling, X., Wondra, M., Su, H., & Zhai, C. (2007, May). Topic sentiment mixture: modeling facets and opinions in weblogs. In Proceedings of the 16th international conference on World Wide Web (pp. 171-180). ACM. [ 54 ] Mittermayer, M. A. (2004, January). Forecasting intraday stock price trends with text mining techniques. In system sciences, 2004. proceedings of the 37th annual hawaii international conference on (pp. 10-pp). IEEE. [ 55 ] Nirmala Devi, K., & Jayanthi, P. (2016). SENTIMENT CLASSIFICATION USING SVM AND PSO. Int J Adv Engg Tech/Vol. VII/Issue II/April-June, 411, 413. [ 56 ] Oliveira, A. L., & Meira, S. R. (2006). Detecting novelties in time series through neural networks forecasting with robust confidence intervals. Neurocomputing, 70(1-3), 79-92. [ 57 ] Pang, B., Lee, L., & Vaithyanathan, S. (2002, July). Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10 (pp. 79-86). Association for Computational Linguistics. [ 58 ] Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135. [ 59 ] Pak, A., & Paroubek, P. (2010, May). Twitter as a corpus for sentiment analysis and opinion mining. In LREc (Vol. 10, No. 2010). [ 60 ] Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259-268. [ 61 ] Phua, P. K. H., Ming, D., & Lin, W. (2000, July). Neural network with genetic algorithms for stocks prediction. In Fifth Conference of the Association of Asian-Pacific Operations Research Societies, 5th-7th July, Singapore. sn. [ 62 ] Ruiz, E. J., Hristidis, V., Castillo, C., Gionis, A., & Jaimes, A. (2012, February). Correlating financial time series with micro-blogging activity. In Proceedings of the fifth ACM international conference on Web search and data mining (pp. 513-522). ACM. [ 63 ] Schumaker, R. P., & Chen, H. (2009). Textual analysis of stock market prediction using breaking financial news: The AZFin text system. ACM Transactions on Information Systems (TOIS), 27(2), 12. [ 64 ] Schumaker, R. P., Zhang, Y., Huang, C. N., & Chen, H. (2012). Evaluating sentiment in financial news articles. Decision Support Systems, 53(3), 458-464. [ 65 ] Taboada, M., Brooke, J., & Stede, M. (2009, September). Genre-based paragraph classification for sentiment analysis. In Proceedings of the SIGDIAL 2009 Conference: The 10th Annual Meeting of the Special Interest Group on Discourse and Dialogue (pp. 62-70). Association for Computational Linguistics. [ 66 ] Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational linguistics, 37(2), 267-307. [ 67 ] Tay, F. E., & Cao, L. (2001). Application of support vector machines in financial time series forecasting. Omega, 29(4), 309-317. [ 68 ] Teixeira, L. A., & De Oliveira, A. L. I. (2010). A method for automatic stock trading combining technical analysis and nearest neighbor classification. Expert systems with applications, 37(10), 6885-6890. [ 69 ] Yoo, P. D., Kim, M. H., & Jan, T. (2005, November). Machine learning techniques and use of event information for stock market prediction: A survey and evaluation. In Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference on (Vol. 2, pp. 835-841). IEEE. [ 70 ] Van Eyden, R. J. (1996). The application of neural networks in the forecasting of share prices. [ 71 ] Wang, B., Huang, H., & Wang, X. (2012). A novel text mining approach to financial time series forecasting. Neurocomputing, 83, 136-145. [ 72 ] Wilson, T., Hoffmann, P., Somasundaran, S., Kessler, J., Wiebe, J., Choi, Y., ... & Patwardhan, S. (2005, October). OpinionFinder: A system for subjectivity analysis. In Proceedings of hlt/emnlp on interactive demonstrations (pp. 34-35). Association for Computational Linguistics. [ 73 ] White, H. (1988). Economic prediction using neural networks: The case of IBM daily stock returns. [ 74 ] Zhong, S. (2005, July). Efficient online spherical k-means clustering. In Neural Networks, 2005. IJCNN`05. Proceedings. 2005 IEEE International Joint Conference on (Vol. 5, pp. 3180-3185). IEEE. |