政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/118643
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113160/144130 (79%)
Visitors : 50755214      Online Users : 680
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大典藏 > College of Commerce > Department of MIS > Theses >  Item 140.119/118643
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/118643


    Title: 應用情感分析於股票趨勢預測 -以台灣人工智慧(AI)概念股為例
    Sentiment Analysis in Taiwan Artificial Intelligence Concept Stock
    Authors: 曾梓閑
    Tseng, Zi-Xian
    Contributors: 姜國輝
    季延平

    Jiang, Guo Hui
    Chi, Yan Ping

    曾梓閑
    Tseng, Zi-Xian
    Keywords: 情感分析
    文字探勘
    機器學習
    時間序列分析
    人工智慧概念股
    Date: 2018
    Issue Date: 2018-07-13 15:16:47 (UTC+8)
    Abstract: 近年來人工智慧的發展及應用備受各界關注,隨著人工智慧發展大躍進,AI概念股在這波浪潮下因運而生,而2017年AI類股相關指數漲贏美股大盤,人工智慧發展對我國也帶來了重要的影響,本研究中對台灣人工智慧概念股做一個初步的調查,並依據技術面與應用面定義出29支台灣AI概念股作為本研究之研究範圍。
    本研究利用財經新聞作為情感分析的來源,計算出情緒指數後利用時間序列分析找出與情緒指數相關的指標,再建立分類模型來預測股票的漲跌。經實證結果發現,情緒指數與人工智慧概念股股價走勢有其影響,推測散戶看到新聞報導後會受到新聞文本的影響進而影響股價走勢,並於2~3 天影響最為明顯。
    另外,本研究實驗結果中也發現結合情緒指數與技術指標建立的分類模型優於單純以技術指標分類模型來預測股價的漲跌趨勢。而加入其他間接指標如國際指標、總體經濟指標、台股資訊指標建立的分類模型優於結合情緒指數與技術指標建立的分類模型,整體分類準確度達82%。
    在結合情緒指數與技術指標的分類模型上,以分類器的準確度及召回率效果而言,KNN的準確率為0.8 及召回率為0.67的分類結果較為優異,以F1-measure而言則是0.65 的隨機森林效果較為優異。
    Reference: [ 1 ] 王宇辰. (2011).亞洲國家股市弱式效率之實證研究.
    [ 2 ] 王洪偉, 張對,鄭麗娟,& 陸頲. (2015). 網路股評對股市走勢的影響:基於文本情感分析的方法. 情報學報, 34(11), 1190-1202.
    [ 3 ] 王慶鴻. (1999).上市公司內部關係人之申報轉讓持股與市場效率之實證研究.政治大學財務管理研究所碩士論文,台北.
    [ 4 ] 李良俊. (2003). 台灣股票市場技術分析有效性之研究. 未出版碩士論文, 實踐大學企業管理研究所, 台北市.
    [ 5 ] 呂家萱. (2014). 新聞頻率, 散戶投資人情緒與股價共動性. 臺灣大學財務金融學研究所學位論文, 1-46.
    [ 6 ] 宋敏晶. (2013).基於情感分析的股票預測模型研究(Doctoral dissertation, 哈爾濱工業大學碩士學位論文).
    [ 7 ] 吳昀錚. (2008). 利用文字探勘技術預測台股加權指數之漲跌趨勢.
    [ 8 ] 吳智良. (2007). 電子類股及金融類股現貨及期貨市場效率性分析. 臺灣大學經濟學研究所學位論文, 1-79.
    [ 9 ] 吳靖東. (2014). 投資人情緒對股票報酬之影響─ 馬可夫狀態轉換模式之應用. 創新與管理, 10(4), 67-94.
    [ 10 ] 倪衍森, 鍾雨潼. (2003). 台灣2002年公開資訊觀測站重大訊息資訊內涵分析.v2003 年兩岸管理科學暨經營決策學術研討會論文集,237-248
    [ 11 ] 林呈勳. (2009). 結合技術指標與財經新聞之股票趨勢預測. 臺北科技大學商業自動化與管理研究所學位論文, 1-57.
    [ 12 ] 林問一. (2004). 以移動平均線、相對強弱指標與交易量檢驗台灣股票市場的效率性.
    [ 13 ] 許菁旂, 黃文聰, & 黃振聰. (2015). 投資人情緒對低波動異常現象的預測力: 市場狀態的影響. 管理學報, 32(4), 399-424.
    [ 14 ] 黃靖娥. (2008). 內線交易宣告對股價的影響. 長榮大學經營管理研究所 (博) 學位論文, 1-68.
    [ 15 ] 游和正, 黃挺豪, & 陳信希. (2012). 領域相關詞彙極性分析及文件情緒分類之研究. 中文計算語言學期刊, 17(4), 33-47.
    [ 16 ] 楊踐為, 李家豪, & 類惠貞. (2007). 應用時間序列分析法建構台灣證券市場之預測交易模型.
    [ 17 ] 劉羿廷. (2016). 運用財經文本情感分析於台灣電子類股價指數趨勢預測之研究 (Doctoral dissertation, 劉羿廷).
    [ 18 ] 董理, 王中卿, & 熊德意. (2017). 基于文本信息的股票指數預測. 北京大學學報 (自然科學版), 53(2), 273-278.
    [ 19 ] 謝鎮宇, & 梁婷. (2010). 意見探勘在中文評鑑語料之應用(Doctoral dissertation).
    [ 20 ] 戴柏儀. (2012). 台灣股市效率市場之研究-以 42 日移動平均線為例. 淡江大學財務金融學系碩士在職專班學位論文, 1-72.
    [ 21 ] 簡智宏. (2015).應用文字探勘技術於概念股輿情與股價共同移動之研究-以蘋果概念股為例.
    [ 22 ] 蕭文姃, 顏慧明, 謝昌隆, & 周德佳. (2014). 上市櫃電子公司購併與分割宣告效果之研究. 管理資訊計算, 3, 292-303.
    [ 23 ] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
    [ 24 ] Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of computational science, 2(1), 1-8.
    [ 25 ] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
    [ 26 ] Cavalcante, R. C., Brasileiro, R. C., Souza, V. L., Nobrega, J. P., & Oliveira, A. L. (2016). Computational intelligence and financial markets: A survey and future directions. Expert Systems with Applications, 55, 194-211.
    [ 27 ] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
    [ 28 ] Dey, L., Chakraborty, S., Biswas, A., Bose, B., & Tiwari, S. (2016). Sentiment Analysis of Review Datasets Using Naive Bayes and K-NN Classifier. arXiv preprint arXiv:1610.09982.
    [ 29 ] Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The journal of Finance, 25(2), 383-417.
    [ 30 ] Fama, E. F. (1998). Market efficiency, long-term returns, and behavioral finance1. Journal of financial economics, 49(3), 283-306.
    [ 31 ] Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89.
    [ 32 ] Ferdous, R. (2009, November). An efficient k-means algorithm integrated with Jaccard distance measure for document clustering. In Internet, 2009. AH-ICI 2009. First Asian Himalayas International Conference on (pp. 1-6). IEEE.
    [ 33 ] Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of human genetics, 7(2), 179-188.
    [ 34 ] Fung, G. P. C., Yu, J. X., & Lam, W. (2002, May). News sensitive stock trend prediction. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 481-493). Springer, Berlin, Heidelberg.
    [ 35 ] Gerrish, S., & Blei, D. M. (2010, June). A Language-based Approach to Measuring Scholarly Impact. In ICML (Vol. 10, pp. 375-382).
    [ 36 ] Gidofalvi, G., & Elkan, C. (2001). Using news articles to predict stock price movements. Department of Computer Science and Engineering, University of California, San Diego.
    [ 37 ] Grandin, P., & Adan, J. M. (2016). Piegas: A Systems for Sentiment Analysis of Tweets in Portuguese. IEEE Latin America Transactions, 14(7), 3467-3473.
    [ 38 ] Griffiths, T. L., Jordan, M. I., Tenenbaum, J. B., & Blei, D. M. (2004). Hierarchical topic models and the nested chinese restaurant process. In Advances in neural information processing systems (pp. 17-24).
    [ 39 ] Groth, S. S., & Muntermann, J. (2011). An intraday market risk management approach based on textual analysis. Decision Support Systems, 50(4), 680-691.
    [ 40 ] Gupta, A., Pruthi, J., & Sahu, N. (2017). Sentiment Analysis of Tweets using Machine Learning Approach.
    [ 41 ] Han, E. H. S., Karypis, G., & Kumar, V. (2001, April). Text categorization using weight adjusted k-nearest neighbor classification. In Pacific-asia conference on knowledge discovery and data mining (pp. 53-65). Springer, Berlin, Heidelberg.
    [ 42 ] Hasan, K. A., Sabuj, M. S., & Afrin, Z. (2015, December). Opinion mining using naive bayes. In Electrical and Computer Engineering (WIECON-ECE), 2015 IEEE International WIE Conference on (pp. 511-514). IEEE.
    [ 43 ] Kalaivani, P., & Shunmuganathan, K. L. (2014, March). An improved K-nearest-neighbor algorithm using genetic algorithm for sentiment classification. In Circuit, Power and Computing Technologies (ICCPCT), 2014 International Conference on (pp. 1647-1651). IEEE.
    [ 44 ] Kim, K. J., & Han, I. (2000). Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert systems with Applications, 19(2), 125-132.
    [ 45 ] Kim, S. M., & Hovy, E. (2007). Crystal: Analyzing predictive opinions on the web. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL).
    [ 46 ] Kumar, D. A., & Murugan, S. (2013, February). Performance analysis of Indian stock market index using neural network time series model. In Pattern Recognition, Informatics and Mobile Engineering (PRIME), 2013 International Conference on (pp. 72-78). IEEE.
    [ 47 ] Kuo, R. J., Chen, C. H., & Hwang, Y. C. (2001). An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy sets and systems, 118(1), 21-45.
    [ 48 ] Lawrence, R. (1997). Using neural networks to forecast stock market prices. University of Manitoba, 333.
    [ 49 ] Lita, L. V., Schlaikjer, A. H., Hong, W., & Nyberg, E. (2005, July). Qualitative dimensions in question answering: Extending the definitional QA task. In Proceedings of the national conference on artificial intelligence (Vol. 20, No. 4, p. 1616). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.
    [ 50 ] Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1), 1-167.
    [ 51 ] Lock, D. B. (2007). The Taiwan stock market does follow a random walk. Economics Bulletin, 7(3), 1-8.
    [ 52 ] MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability(Vol. 1, No. 14, pp. 281-297).
    [ 53 ] Mei, Q., Ling, X., Wondra, M., Su, H., & Zhai, C. (2007, May). Topic sentiment mixture: modeling facets and opinions in weblogs. In Proceedings of the 16th international conference on World Wide Web (pp. 171-180). ACM.
    [ 54 ] Mittermayer, M. A. (2004, January). Forecasting intraday stock price trends with text mining techniques. In system sciences, 2004. proceedings of the 37th annual hawaii international conference on (pp. 10-pp). IEEE.
    [ 55 ] Nirmala Devi, K., & Jayanthi, P. (2016). SENTIMENT CLASSIFICATION USING SVM AND PSO. Int J Adv Engg Tech/Vol. VII/Issue II/April-June, 411, 413.
    [ 56 ] Oliveira, A. L., & Meira, S. R. (2006). Detecting novelties in time series through neural networks forecasting with robust confidence intervals. Neurocomputing, 70(1-3), 79-92.
    [ 57 ] Pang, B., Lee, L., & Vaithyanathan, S. (2002, July). Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10 (pp. 79-86). Association for Computational Linguistics.
    [ 58 ] Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135.
    [ 59 ] Pak, A., & Paroubek, P. (2010, May). Twitter as a corpus for sentiment analysis and opinion mining. In LREc (Vol. 10, No. 2010).
    [ 60 ] Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259-268.
    [ 61 ] Phua, P. K. H., Ming, D., & Lin, W. (2000, July). Neural network with genetic algorithms for stocks prediction. In Fifth Conference of the Association of Asian-Pacific Operations Research Societies, 5th-7th July, Singapore. sn.
    [ 62 ] Ruiz, E. J., Hristidis, V., Castillo, C., Gionis, A., & Jaimes, A. (2012, February). Correlating financial time series with micro-blogging activity. In Proceedings of the fifth ACM international conference on Web search and data mining (pp. 513-522). ACM.
    [ 63 ] Schumaker, R. P., & Chen, H. (2009). Textual analysis of stock market prediction using breaking financial news: The AZFin text system. ACM Transactions on Information Systems (TOIS), 27(2), 12.
    [ 64 ] Schumaker, R. P., Zhang, Y., Huang, C. N., & Chen, H. (2012). Evaluating sentiment in financial news articles. Decision Support Systems, 53(3), 458-464.
    [ 65 ] Taboada, M., Brooke, J., & Stede, M. (2009, September). Genre-based paragraph classification for sentiment analysis. In Proceedings of the SIGDIAL 2009 Conference: The 10th Annual Meeting of the Special Interest Group on Discourse and Dialogue (pp. 62-70). Association for Computational Linguistics.
    [ 66 ] Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational linguistics, 37(2), 267-307.
    [ 67 ] Tay, F. E., & Cao, L. (2001). Application of support vector machines in financial time series forecasting. Omega, 29(4), 309-317.
    [ 68 ] Teixeira, L. A., & De Oliveira, A. L. I. (2010). A method for automatic stock trading combining technical analysis and nearest neighbor classification. Expert systems with applications, 37(10), 6885-6890.
    [ 69 ] Yoo, P. D., Kim, M. H., & Jan, T. (2005, November). Machine learning techniques and use of event information for stock market prediction: A survey and evaluation. In Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference on (Vol. 2, pp. 835-841). IEEE.
    [ 70 ] Van Eyden, R. J. (1996). The application of neural networks in the forecasting of share prices.
    [ 71 ] Wang, B., Huang, H., & Wang, X. (2012). A novel text mining approach to financial time series forecasting. Neurocomputing, 83, 136-145.
    [ 72 ] Wilson, T., Hoffmann, P., Somasundaran, S., Kessler, J., Wiebe, J., Choi, Y., ... & Patwardhan, S. (2005, October). OpinionFinder: A system for subjectivity analysis. In Proceedings of hlt/emnlp on interactive demonstrations (pp. 34-35). Association for Computational Linguistics.
    [ 73 ] White, H. (1988). Economic prediction using neural networks: The case of IBM daily stock returns.
    [ 74 ] Zhong, S. (2005, July). Efficient online spherical k-means clustering. In Neural Networks, 2005. IJCNN`05. Proceedings. 2005 IEEE International Joint Conference on (Vol. 5, pp. 3180-3185). IEEE.
    Description: 碩士
    國立政治大學
    資訊管理學系
    1053560163
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1053560163
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.MIS.003.2018.A05
    Appears in Collections:[Department of MIS] Theses

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback