|
English
|
正體中文
|
简体中文
|
Post-Print筆數 : 27 |
Items with full text/Total items : 113648/144635 (79%)
Visitors : 51577527
Online Users : 909
|
|
|
Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/110912
|
Title: | Investigation of potential volcanic risk from Mt. Baekdu by DInSAR time series analysis and atmospheric correction |
Authors: | 林士淵 Kim, Jung-Rack;Lin, Shih-Yuan;Yun, Hye-Won;Tsai, Ya-Lun;Seo, Hwa-Jung;Hong, Sungwook;Choi, YunSoo |
Contributors: | 地政系 |
Keywords: | Mt. Baekdu;ground deformation;differential interferometric SAR;time series analysis;water vapor |
Date: | 2017-02 |
Issue Date: | 2017-07-12 10:01:54 (UTC+8) |
Abstract: | Mt. Baekdu is a volcano near the North Korea-Chinese border that experienced a few destructive eruptions over the course of its history, including the well-known 1702 A.D eruption. However, signals of unrest, including seismic activity, gas emission and intense geothermal activity, have been occurring with increasing frequency over the last few years. Due to its close vicinity to a densely populated area and the high magnitude of historical volcanic eruptions, its potential for destructive volcanic activity has drawn wide public attention. However, direct field surveying in the area is limited due to logistic challenges. In order to compensate for the limited coverage of ground observations, comprehensive measurements using remote sensing techniques are required. Among these techniques, Differential Interferometric SAR (DInSAR) analysis is the most effective method for monitoring surface deformation and is employed in this study. Through advanced atmospheric error correction and time series analysis, the accuracy of the detected displacements was improved. As a result, clear uplift up to 20 mm/year was identified around Mt. Baekdu and was further used to estimate the possible deformation source, which is considered as a consequence of magma and fault interaction. Since the method for tracing deformation was proved feasible, continuous DInSAR monitoring employing upcoming SAR missions and advanced error regulation algorithms will be of great value in monitoring comprehensive surface deformation over Mt. Baekdu and in general world-wide active volcanoes. |
Relation: | Remote Sensing, 9(2), 138 |
Data Type: | article |
DOI 連結: | http://dx.doi.org/10.3390/rs9020138 |
DOI: | 10.3390/rs9020138 |
Appears in Collections: | [地政學系] 期刊論文
|
Files in This Item:
File |
Description |
Size | Format | |
138.pdf | | 13911Kb | Adobe PDF2 | 627 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|
著作權政策宣告 Copyright Announcement1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.
2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(
nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(
nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.