政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/110912
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114105/145137 (79%)
造访人次 : 52201356      在线人数 : 719
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/110912


    题名: Investigation of potential volcanic risk from Mt. Baekdu by DInSAR time series analysis and atmospheric correction
    作者: 林士淵
    Kim, Jung-Rack;Lin, Shih-Yuan;Yun, Hye-Won;Tsai, Ya-Lun;Seo, Hwa-Jung;Hong, Sungwook;Choi, YunSoo
    贡献者: 地政系
    关键词: Mt. Baekdu;ground deformation;differential interferometric SAR;time series analysis;water vapor
    日期: 2017-02
    上传时间: 2017-07-12 10:01:54 (UTC+8)
    摘要: Mt. Baekdu is a volcano near the North Korea-Chinese border that experienced a few destructive eruptions over the course of its history, including the well-known 1702 A.D eruption. However, signals of unrest, including seismic activity, gas emission and intense geothermal activity, have been occurring with increasing frequency over the last few years. Due to its close vicinity to a densely populated area and the high magnitude of historical volcanic eruptions, its potential for destructive volcanic activity has drawn wide public attention. However, direct field surveying in the area is limited due to logistic challenges. In order to compensate for the limited coverage of ground observations, comprehensive measurements using remote sensing techniques are required. Among these techniques, Differential Interferometric SAR (DInSAR) analysis is the most effective method for monitoring surface deformation and is employed in this study. Through advanced atmospheric error correction and time series analysis, the accuracy of the detected displacements was improved. As a result, clear uplift up to 20 mm/year was identified around Mt. Baekdu and was further used to estimate the possible deformation source, which is considered as a consequence of magma and fault interaction. Since the method for tracing deformation was proved feasible, continuous DInSAR monitoring employing upcoming SAR missions and advanced error regulation algorithms will be of great value in monitoring comprehensive surface deformation over Mt. Baekdu and in general world-wide active volcanoes.
    關聯: Remote Sensing, 9(2), 138
    数据类型: article
    DOI 連結: http://dx.doi.org/10.3390/rs9020138
    DOI: 10.3390/rs9020138
    显示于类别:[地政學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    138.pdf13911KbAdobe PDF2638检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈