行政院國家科學委員會專題研究計畫 成果報告

根據情緒自動配樂之美術影像幻燈展示系統 研究成果報告(精簡版)

畫	類	別	:	個別型
畫	編	號	:	NSC 96-2221-E-004-006-
行	期	間	:	96年08月01日至97年07月31日
行	單	位	:	國立政治大學資訊科學系
	畫 行	畫 編 行 期	畫 編 號 行 期 間	行期間:

計畫主持人:沈錳坤

計畫參與人員:碩士班研究生-兼任助理人員:陳俊豪 碩士班研究生-兼任助理人員:李政德 碩士班研究生-兼任助理人員:余孟芝 碩士班研究生-兼任助理人員:謝棋安 博士班研究生-兼任助理人員:邱士銓

處 理 方 式 : 本計畫涉及專利或其他智慧財產權,2年後可公開查詢

中 華 民 國 97年12月12日

行政院國家科學委員會補助專題研究計畫成果報告

根據情緒自動配樂之美術影像幻燈展示系統

計畫類別: ☑ 個別型計畫 □ 整合型計畫

計畫編號:NSC 96-2221-E-004-006

執行期間:96年08月01日至97年07月31日

計畫主持人:沈錳坤

共同主持人:

計畫參與人員:李政德、陳俊豪、余孟芝、謝棋安、邱士銓

成果報告類型(依經費核定清單規定繳交): ☑ 精簡報告 □完整報告

本成果報告包括以下應繳交之附件:

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

Ш出席國際學術會議心得報告及發表之論文各一份

□ 國際合作研究計畫國外研究報告書一份

處理方式:除產學合作研究計畫、提升產業技術及人才培育研究計畫、列管計 畫及下列情形者外,得立即公開查詢 ☑涉及專利或其他智慧財產權,□一年☑二年後可公開查詢

執行單位:政治大學資訊科學系

中華民國97年7月31日

根據情緒自動配樂之美術影像幻燈展示系統

ABSTRACT

In this report, we propose the emotion-based Impressionism slideshow system with automatic music accompaniment. While conventional image slideshow systems accompany images with music manually, our proposed approach explores the affective content of painting to automatically recommend music based on emotions. This is achieved by association discovery between painting features and emotions, and between emotions and music features respectively. To generate more harmonic Impressionism presentation, a linear arrangement method is proposed based on modified traveling salesman algorithm. Moreover, some animation effects and synchronization issues for affective content of Impressionism fine arts are considered. Experimental result shows our emotion-based accompaniment brings better browsing experience of aesthetics.

1. INTRODUCTION

There was a painting-music flash movie, "Vincent", composed by England's singer Don Mclean for the impressionism artist Vincent Van Gogh, distributed over the internet. Along with Mclean's epic-like tone, this movie leads us to the deepest inner world and the soulful sympathy of Van Gogh. The consonance between painting and music is important for fine art slideshow.

Some works have been done on slideshow system for photos. The work proposed by Hua et al. [3], arranges photos by time, scene, or content similarity with incident music. They also proposed a system, Photo2Video [4], to convert photos to motion video with designated music. Photo2Video explores attentive area, topic, and human face of photos and applied "Ken Burns" effects for motion photo clip. Another work proposed by Chen et al. [1] generates music-driven photo slideshow where each frame is tiled by multiple photos.

Basically, painting in digital form is one type of photos. Those systems developed for photo slideshow may be employed for painting. However, some characteristics are distinguished painting from photo [2]. Spatial variations of color and number of unique colors in paintings are larger than real scenes. Perceptual edges in photos of real scenes are intensity edges while those of paintings are pure color

edges. In particular, paintings have more affective content than photos. Impressionists are more concerned with conveying emotions. Van Gogh had written to his brother, stating "It is emotion, the sincerity of one's feeling for nature that draws us …" Renoir always painted happier aspects of life, expressing joyful emotions and carefree impression. While the incidental music of existing photo slideshow systems is designated manually by users, it is desirable to automatically accompany painting images with music based on the affective content of paintings.

In this report, we propose the emotion-based approach to generate Impressionism slideshow with automatic music accompaniment. Figure 1 shows an example of slideshow, for nine Impressionism painting, generated by our proposed approach. The paintings are grouped into three clusters based on their affective content. Music is accompanied for each group based the corresponding emotion. For harmonic presentation, an inter-cluster arrangement process is performed. A bridge of music clip between adjacent clusters is created and each display of painting is synchronized with the occurrence of music strong beat.

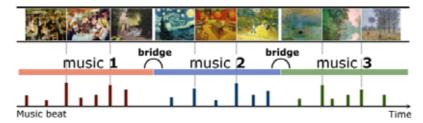


Figure 1. An example of proposed slideshow.

2. SYSTEM OVERVIEW

There are three components in the proposed slideshow system, painting-emotion discovery, music accompaniment and composition, shown in Figure 2. First, for those painting without annotation of emotions, affective features are extracted and the corresponding emotions are discovered. This is achieved by association discovery between painting features and emotions from training data (painting with annotation of emotions). Then, paintings are clustered according to the corresponding emotions. To recommend music for each cluster, the association discovery between emotions and music features is performed to recommend music. Finally, an inter-cluster ordering is generated by arrangement module while each painting is animated by *ROI (region of interest)* determination and motion generation for plentiful spatio-temporal experiences. Then, synchronization is performed by alignment of music strong

beat with painting display. Moreover, for the gaps between each painting and each music clip, some strategies are applied to smooth the disharmony.

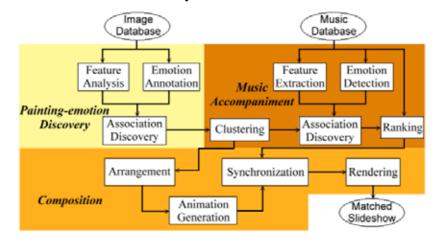


Figure 2. Flowchart of proposed slideshow system.

3. PAINTING-EMOTION DISCOVERY

3.1 Painting Features

Painting is characterized by color, light, texture, line, etc. Among them, the first three affects emotions strongly. Emotions are sensitive to color. For example, Van Gogh's "*The Night Café*" tried to express with red and green the terrible passions of human nature. For color and light, we extract *dominant color*, *color coherence vector (CCV)*, and *color moment*. The extent of coarseness in the surface of painting is decided by texture. There exists relationship between brushwork and texture. For texture, we extract some statistic measures from *gray level co-occurrence matrix (GLCM)*, and compute the *primitive length* of texture.

Dominant Color We calculate the color histogram of a painting. Those colors occur below 10% of area would be omitted. In color description, since the property of impressionists are good at presenting color change by complementary colors, like Van Gogh's *"Wheatfield with Crows"*, we utilize the *opponent color theory* formulated by Ewald Hering based on artistic color concepts, in which L means luminance, S means red-green channel, and LM means yellow-blue channel.

Color Coherence Vector Since the color histogram's lack of spatial information, we employ another histogram-based approach for comparing images. The color coherence is defined as the degree to which pixels of that color are the members of those large similarly-colored regions, so the pixels would be categorized into coherence or incoherence.

Color Moment Color distribution can be regarded as a probability distribution and characterized by its central moments. It is so-called color moment. The color moment computes index regarding only the dominant features instead of entire color distributions. The first three central moments of each color channel are calculated, including average, variance and skewness.

Gray Level Co-occurrence Matrix By considering the spatial relationship of pixels, GLCM measures the frequency of adjacent pixel patterns. It is a 2-d matrix of joint probability Pd,r (i, j) between pairs of pixels, separated by a distance, d, in a given direction, r [2]. If the texture is coarse, the pairs of pixels would have similar gray levels. Some features of GLCM are extracted, including energy, contrast, correlation, entropy, and homogeneity.

Primitive Length The pixels of the same gray-level with wide area stand for coarse texture and little area stands for fine texture. A primitive is a continuous set of maximum number of pixels in the same direction with the same gray level. Each primitive is defined by its gray level, length and direction. We extract five features: short and long primitive emphasis, gray-level uniformity and primitive length uniformity, and primitive percentage.

3.2 Painting-emotion Association Discovery

The proposed approach accompanies painting with music based on the corresponding emotions. Therefore, we must discover the association between painting features and emotions in advance. The graph-based approach, *Mixed Media Graph (MMG)*, which was originally designed to find correlations across multimedia objects [6], is adopted and modified for the association discovery.

In MMG graph, all the objects and associated attributes are represented as vertices. For objects with n types of attributes, MMG graph will be an (n+1) layered graph with n types of vertices plus one more type of vertices for the objects. There are two types of edges in MMG graph. The object-attribute-value link (*OAV-link*) is the edge between an object vertex and an attribute vertex. The other type, nearest neighbor link (*NN-link*), is the edge between two attribute vertices. An edge is constructed between an attribute vertex and its k nearest neighbor. After the construction of MMG graph, to find the correlations across the media, the mechanism of *random walk with restart* is employed to estimate the affinity of attribute vertices with respect to the query vertices. For the detail computation of affinity, refer to [6].

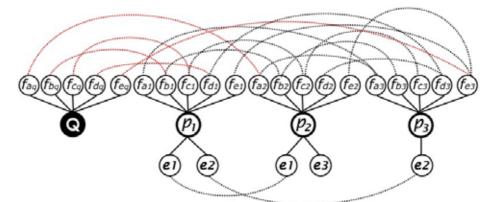


Figure 3. Painting Affinity Graph.

In our approach, we call it painting affinity graph (PAG). In PAG, we create an object vertex for each painting object vertex, two types of attribute vertices, emotion and painting feature are created and connected. Five painting feature attribute vertices are created for each painting object vertex, including dominant color, CCV, color moment, GLCM and primitive length. For a painting with m emotions, m emotion attribute vertices are created. NN-link is constructed between two emotion attribute vertices if both are of the same emotion. Nearest neighbor of NN-link between two painting feature attribute vertices is determined by the similarity measure of respect painting feature. Figure 3 shows an example of PAG for three annotated painting. The painting object p1, with features {fa1, fb1, fc1, fd1, fe1}, is annotated with emotions {e1, e2}. Given an un-annotated painting Q with painting features {faq, fbq, fcq, fdq, feq}, PAG will find the most likely emotions based on the affinity.

4. MUSIC ACCOMPANIMENT

4.1 Emotion-based Clustering

To recommend music based on the emotions, we have to organize paintings such that those with similar emotions are grouped in a cluster and find out the common emotions of each cluster.

We employ the ROCK algorithm [8] for emotion-based clustering. ROCK is a novel clustering algorithms for data with boolean and categorical attributes.

4.2 Music-emotion Association Discovery

For each cluster of paintings, one music clip is recommended for accompaniment. The basic idea to music recommendation is based on each cluster's common emotions explored by the painting-emotion discovery component. To find the recommended music, association discovery between emotions and music features is performed. The music features used in this work are melody, rhythm and tempo, which

are adopted from our previous work [5]. The music-emotion discovery process is based on MMG as well. We call it music affinity graph.

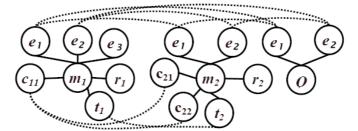


Figure 4. Music Affinity Graph.

Music elements which affect the emotion include melody, rhythm, tempo, mode, key, harmony, dynamics and tone-color. Among these music elements, melody, mode, tempo and rhythm have stronger effects on emotions. Generally speaking, major scale is brighter, happier than minor; rapid tempo is more exciting or tenser than slow tempo. In our previous work [5], we proposed an algorithm to identify the mode of a music piece. We utilized chord as the melody feature and proposed the chord assignment algorithm to take mode and key of melody into consideration. The rhythm feature is derived from beat detection followed by repeating pattern discovery. The feature tempo is calculated from resolution of the music and beat density of the most repetitive pattern. For the detail of music feature extraction, refer to [5].

Figure 4 illustrates a music affinity graph with respect to the query emotions {e1, e2}. Given query emotions, music affinity graph will find the most likely music features based on the affinity. These found music features are then employed to rank the database music and to recommend music for query emotions.

5. COMPOSITION

5.1 Linear Arrangement

In order to generate a harmonic slideshow, linear arrangement is performed for display order of paintings. The basic idea of arrangement is to schedule the display order such that the dissimilarity of affective content between adjacent paintings is as less as possible. The Earth Mover's Distance (EMD) [7] is employed to measure the dissimilarity of painting features, since it mimics the human perception of texture similarities.

Recall that paintings with similar emotions are clustered. There are two levels of arrangement, intra-cluster and inter-cluster. The intra-cluster arrangement creates an ordering for paintings within a

cluster. Having computed the dissimilarity for each pair of paintings and constructed the corresponding complete graph, we model the intra-cluster arrangement as the bottleneck Traveling Salesman Problem (TSP) from developed algorithm, which tries to find the Hamilton cycle with the minimal length of the longest edge. An example is illustrated in Figure 5.

For inter-clustering arrangement, the display order among clusters is scheduled. We compute the dissimilarity between each pair of clusters, which is defined as the dissimilarity between the last painting of one cluster and the first painting of the other cluster. While inter-cluster dissimilarity is asymmetric, we model the inter-cluster arrangement problem as the Asymmetric Traveling Salesman Problem. There exist several heuristic algorithms for Bottleneck and Asymmetric Traveling Salesman Problems.

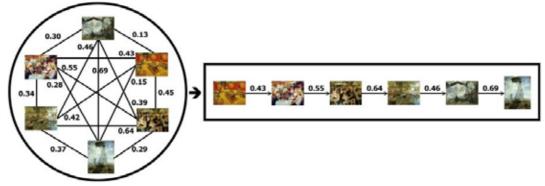


Figure 5. Intra-cluster arrangement.

Figure 6. An example of zooming and panning.

5.2 Close-up Animation

To highlight the spatial information of affective content of painting, along with the temporal feelings of music, we create the animated effects into each interval of painting display by motion patterns, such as panning and zooming. For these motion patterns, we have to extract some close-up areas in each painting and treat it as key-frames. In this work, the ROI is adopted as the close-up area. The ROIs are determined by face detection and attention model of saliency map. Figure 6 is an example of animation.

5.3 Synchronization and Rendering

The effects of synchronization of temporal structure between paining and accompanied music play

a vital role on the affective impression of viewers. The temporal structure congruency emphasizes the simultaneous accents between auditory and visual content. To achieve this, beat information for each music clip is detected and the beginning of each animated clip is aligned to the occurrence of strong beat.

Moreover, though inter-cluster arrangement tries to minimize the distance between adjacent clusters, it is beneficial to reduce the visual gap between the adjacent paintings from two clusters by transition effects. As the dissimilarity between adjacent paintings is below a threshold, the cross-fade effect is applied while beyond this threshold, the cut effect is applied. The duration of transition effect is determined by the strength of music beats.

For the gap between adjacent music clips, we generate musical bridges based on the motives of music clips and the concept of chord progression in Harmony Theory. The process of bridge generation is explained by the illustration in Figure 7. Figure 7 shows three music clips along with corresponding motives and accompanied chords. For example, the motive of the first clip is motive a whose pitch contour is a downward curve. The accompanied chords of motive a are I and IV. In our approach, musical bridges, shown as dotted box, will be inserted. To generate the bridge, first, the chords of the bridges are generated based on chord progression. Then, melody sequences which harmonized with the generated chords are treated as the candidate motives. Finally, the fitting function of genetic algorithm is employed to generate the most appropriate bridge whose melody contour minimizes the gap between adjacent motives.

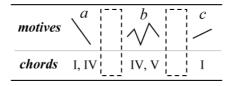


Figure 7. An example of bridge generation.

6. EVALUATIONS

To evaluate the effectiveness of the proposed approach, we evaluate the audiovisual performance by subjective experiments. This evaluation procedure mimics and modifies from that of [1]. We perform experiment on 138 impressionism paintings by nine impressionists, including Claude Monet, Pierre-Auguste Renoir, Vincent Van Gogh, Alfred Sisley, Mary Cassatt, Camille Pissarro, Paul Cezanne, Toulouse Lautrec. These images Edgar Degas and are collected from web sites. http://www.impressionniste.net/ http://www.artchive.com/, and http://fineartfile.idv.tw/. For the accompanied music, we perform experiments on 160 classical piano music from 12 musicians, including Bach, Beethoven, Brahms, Chopin, Debussy, Handel, Mendelssohn, Mozart, Ravel, Schumann and Tchaikovsky. These music objects in MIDI format are collected from web sites http://www.kunstderfuge.com/ and http://www.classicalmusicmidipage.com/. These music objects are segmented into clips by our previous work [5]. The emotion model adopted in this experiment is Russell's circumplex model. Two painting sets used and the ordered music to accompany with are listed in Table 1.

The slideshows created by ACDSee (http://www.acdsystems.com) and Photo Story (http://www.microsoft.com), are employed in this experiment for comparison. The ACDSee generates one-by-one presentation and is not able to accompany images with music. Photo Story supports some camera effects on photo display, and it is affordable to synchronize between photo and music. However, for those existed music, Photo Story must designate manually.

Table 1. Description of painting sets to be evaluated.

Painting set 1	Painting set 2
Number of paintings = 65	Number of paintings = 61
Display length = $5 \min. 41 \text{ sec.}$	Display length = $5 \text{ min. } 17 \text{ sec.}$
1. "Song without Words, Op.19, No.5" of Mendelssohn	1."Moonlight Sonata, No.14, Mv.1" of Beethoven
2. <i>"Clair de Lune"</i> of Debussy	2."Scenes from Childhood, Op.15, No. 7" of
3. "Nocturne No.9 in B major, Op.32, No.1" of Chopin	Schumann

Emotionality (Emo)	Do you think it reach emotional coordination? How do you feel the presentation of appearance?	
Aesthetics (Aes)		
Experience (Exp)	Do you think it reach appreciation aesthetics?	
Atmosphere (Atm)	How do you feel the audiovisual effect?	
Acceptance (Acc)	Do you want to use it to taste fine-art?	

Table 2. List of five criteria for evaluation.

We invited 18 persons to participate this experiment. Each person is asked to view the slideshows. The accompanied classical music is of the same length. Then they are asked to give scores from 1 to 10 to express their satisfaction for the questions listed in Table 2, that higher score indicates better satisfaction.

We set the score of ACDSee to 5 as the baseline. Figure 8 shows the results of subjective evaluations. It is observed that our system gets higher satisfaction than others on average, especially for the criterion of emotionality and experience. This comes from the consideration of the affective content in our proposed approach. However, there is little difference between ours and Photo Story for the

criterion of atmosphere. Perhaps this is because the dynamics of beats is not so strong in classical piano music.

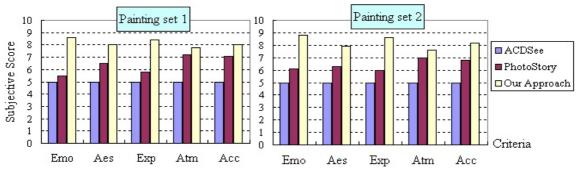


Figure 8. Subjective evaluations for Impressionism paintings.

7. CONCLUSIONS

In this work, we presented a generic framework to automatically recommend accompanied music for impressionism slideshow based on affective content. The kernel of the proposed approach is the association discovery from painting features to emotions and from emotions to music features. Five features of painting and three of music were extracted. In the composition stage, the TSP algorithm was modified to perform the linear arrangement and the animated effects are applied. Finally, some synchronization issues are considered. Experimental result shows our accompaniment approach gives viewers more pleasant appreciating experience.

REFERENCES

- [1] Chen, J. C., Chu, W. T., Kuo, J. H., Weng, C. Y. and Wu, J. L. Tiling Slideshow. In Proc. of ACM Intl. Conference on Multimedia (MM'06), 2006.
- [2] Cutzu, F., Hammoud, R. and Leykin, A. Estimating the Photorealism of Images: Distinguishing Paintings from Photographs. In Proc. of IEEE Intl. Conference on Computer Vision and Pattern Recognition (CVPR'03), 2003.
- [3] Hua, X. S., Lu, L. and Zhang H. J. Content Based Photograph Slide Show with Incidental Music. In Proc. of Intl. Symposium on Circuits and Systems (ISCAS'03), 2003.
- [4] Hua, X. S., Lu, L. and Zhang H. J. Photo2Video A System for Automatically Converting Photographic Series into Video. *In Proc. of ACM Intl. Conference on Multimedia (MM'04)*, 2004.

- [5] Kuo, F. F., Chiang, M. F., Shan, M. K. and Lee, S. Y. Emotion-based Music Recommendation by Association Discovery from Film Music, *In Proc. of ACM Intl. Conference on Multimedia (MM'05)*, 2005.
- [6] Pan, J. Y., Yang, H. J., Faloutsos, C. and Duygulu, P. Automatic Multimedia Cross-modal Correlation Discovery. *In Proc. of Intl. Conference on Knowledge Discovery and Data Mining* (*KDD'04*), 2004.
- [7] Rubner, Y., Tomasi, C. and Guibas L. The Earth Mover's Distance as a Metric for Image Retrieval. *Intl. Journal of Computer Vision*, 40(2), 2000.
- [8] Sudipto, G., Rajeev, R., and Kyuseok, S. ROCK: A Robust Clustering Algorithm for Categorical Attributes. *Information Systems*, *25*(*5*), 2000.

計畫成果自評

■ 就研究內容與原計畫相符程度、達成預期目標情況

本研究計畫的主要目的在研究並開發根據情緒自動搭配音樂之繪畫影像幻燈展示系統。本 研究內容已達成預期目標。此系統分析並萃取印象畫派美術影像及音樂的內容特徵、探勘 美術影像特徵、音樂特徵與情緒的關聯關係,透過情緒為中介為美術影像找到適合的音 樂。為了產生和諧的播放效果,系統針對使用者所選取的畫作分群,並根據畫作特徵相似 度線性排列播放順序,以產生和諧的播放序列。為了加強視覺與聽覺的效果,系統也找出 畫作富情意或視覺焦點的區域以做為特寫鏡頭,並且搭配鏡頭平移、放大縮小、溶解等過 場特效。在聽覺上為前後兩首音樂產生串聯效果的間奏或過門。系統偵測音樂重拍,以與 畫面的播放同步。並且考慮音樂與畫作播放在時間長度上的對齊。最後,系統產生 Flash 或視訊形式的 Slideshow。

■ 研究成果之學術或應用價值

本計畫的研究成果,在學術價值方面,我們提出透過情緒為中介,為美術影像找到適 合的音樂電影配樂。我們也提出利用根據畫作特徵相似度線性排列播放順序,以產生和諧 的播放序列的方法。為了加強視覺與聽覺的效果,我們也找出畫作富情意或視覺焦點的區 域以做為特寫鏡頭,並且搭配鏡頭平移、放大縮小、溶解等過場特效。

在應用價值方面,計畫中音樂情緒探勘的技術及應用,將有助於台灣發展與音樂美感 有關的科技。在應用系統方面,如前所述,本計畫所開發的技術將可應用在美術影像與音 樂的幻燈展示系統上。尤其隨著數位家庭科技的發展,本計畫的應用將可普遍地應用在未 來數位家庭中。

■ 是否適合在學術期刊發表或申請專利

本計畫的研究成果除了完成的兩篇碩士論文之外,部分研究成果已經發表在 2007 年於 德國舉行的 ACM International Conference on Multimedia 及 2008 年於台灣舉行的 Pacific-Rim Conference on Multimedia。我們也正在整理研究結果,準備投稿到 IEEE Multimedia Magazine.

■ 主要發現或其他有關價值

本計畫的研究發現針對印象畫派,畫作所傳達的情緒適合做為音樂搭配的中介。而衡 量顏色和諧程度的 harmonic feature 適合描述畫作所傳達的情緒。 附件二

可供推廣之研發成果資料表

□ 可申請專利	□ 可技術移轉	日期: <u>97</u> 年 <u>7</u> 月 <u>31</u> 日
國科會補助計畫	計畫名稱:根據情緒自動配樂之美術景 計畫主持人:沈錳坤 計畫編號:NSC 96-2221-E-004-006	
技術/創作名稱	根據情緒自動配樂之美術影的	象幻燈展示系統
發明人/創作人	沈錳坤、李政德	
技術説明	本系統分析並萃取印象畫派美術影像及音影像特徵、音樂特徵與情緒的關聯關係, 像找到適合的音樂。為了產生和諧的播放 選取的畫作分群,並根據畫作特徵相似度 生和諧的播放序列。為了加強視覺與聽覺 富情意或視覺焦點的區域以做為特寫鏡或 大縮小、溶解等過場特效。在聽覺上為前 的間奏或過門。系統偵測音樂重拍,以與 慮音樂與畫作播放在時間長度上的對齊。 視訊形式的 Slideshow。	透過情緒為中介為美術影 效果,系統針對使用者所 線性排列播放順序,以產 的效果,系統也找出畫作 頁,並且搭配鏡頭平移、放 後兩首音樂產生串聯效果 書面的播放同步。並且考
可利用之產業 及	 可利用於文化、娛樂與藝術教育產業 數位相框的美術影像幻燈展示系統 	
可開發之產品		
技術特點	運用資料探勘技術,對美術影像的視覺及 徵的分析。	音樂的聽覺內容做情緒特
推廣及運用的價值	本計畫所開發的技術將可應用在美術影像 上。尤其隨著數位家庭科技的發展,本計 在未來數位家庭的數位相框或百貨商場的	畫的應用將可普遍地應用