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Diffy Pentagon

Abstract

In Diffy box, we write down numbers on the four vertices of square, and then on the midpoint of
each side write the difference between the two numbers at its endpoints. It is known that the
numbers on the four vertices of a square will converge to zero finally. In this article, we use the

same operations as Diffy box to discuss pentagons which we call" Diffy pentagon .  We find it will

converge, too.

Keywords: Diffy pentagon, Strong induction
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Chapter 1 Introduction

Diffy box, also called difference box, is a simple method that provide us subtraction practice.
The idea’s original author is unknow, we could only trace back to Professor Juanita Copley of the
University of Houston who has introduced it as a problem-solving activity in professional

development sessions.

To create a Diffy box is as follows:

1. Draw asquare, and label each vertex with a ( rational ) number.

2. On the midpoint of each side write the difference between the two numbers at its endpoints.

3. Inscribe a new square in the old one, using these new numbers to label the vertices.

4. Repeat this process, and continue inscribing new boxes until reaching a square that has all four

vertices labeled 0.

In Diffy box, we only consider squares. And here, we use the same operations as Diffy box to

discuss pentagons which we call” Diffy pentagon.” We try to find its convergence laws.



Chapter 2 The Description of the Convergence Properties

2.1 Definitions and Theorems

Definition 2.1 Let a,b,c,d,e be nonnegative integers, we define an ordered set (abcde) bethe
five vertices of the regular-pentagon, and another ordered set )abcde( be the five vertices of

the anti-pentagon.

Note that we often use the first element of the ordered set (abcde) to be the upper left of the
regular-pentagon, and in clockwise order. ~ Also, we use the first element of the ordered set

Jabcde( tobethe upper left of the anti-pentagon, and in clockwise order.

Example 2.1 Let a,b,c,d,e be nonnegative integers, we take an ordered set (abcde) onthe
regular-pentagon as in Figure 2.1. And an ordered set )abcde( on the anti-pentagon as in

Figure 2.2.

Figure 2.1: Regular-pentagon Figure 2.2:  Anti-pentagon

Definition 2.2 We define the child of an ordered set (abcde) to be the ordered set
) a—=b| |b—c| |c—d| |d—e| |e—a|( and (abcde) aparentof )|a—b| |b—c|

|c—d| |d—e| |e—al( (seeFigure2.3).



Also, we define the child of an ordered set )abcde( to be the ordered set (|e—a| |a—b]|
|b—c| |c—d| |d—e|) and )abcde( aparentof (|e—al| |a—b| |b—c| |c—d|
|d—e|) (seeFigure 2.4).

And write their relation as parent = child.

b a-b  |b-c]

le - al |c - d|

e d d- el

Figure 2.3:  The first pentagon is the parent, and the second pentagon is the child.

a b \a - b
le - al b - c|
c =
d ld-e| |c-d|

Figure 2.4:  The first pentagon is the parent, and the second pentagon is the child.

It is easy to see if we rotate both anti-pentagon and its child ( see Figure 2.4) counterclockwise 36°

through the center, we obtain the regular-pentagon and its child ( see Figure 2.5), and vice versa.

a_ b b |a - bl la-b| |b-c|
a c le-a| |6 - ¢l
AG =) Q" e e
d e d |d-e| |c-d| d - el
Figure 2.5:

Since (abcde) and )abcde( differ by a rotation of 36°, sometimes, we don’t want to
distinguish between them. For convenience, we define an ordered set [abcde]tobe (abcde)

or )abcde(.



Definition 2.3 For any [al b1 C1 d1 el] = [8.2 b2 Co d2 6‘2] = [8.3 b3 C3 d3 93] = ..
= [aibicidie] = ... = [akbkckdgey] ...If there exists one [ax by ¢k dk ex] = [a: b: ¢t d; ef], for
the smallest t, k, and k > t, then we call [a;b;cidie] = ... = [ak-1bk-1Ck-1dk1€k1]

= [ax bk ck di ex] the cycle convergence of [a; by ¢; d; 4]

Example 2.2 Take a pentagon with [3 1 2 4 1], find its cycle convergence.

Solution :
Since [31241] (1)
= [21232] )
= [01111] 3)
= [10001] 4
= [01001] (5)
= [11011] (6)

Since the ordered set (3) is equal to (6), by Definition 2.3, we take t = 3 and k = 6, and then call
[01111] = [10001] = [01001] = [11011]=[01111] the cycle convergence of

[31241].

Definition 2.4 [ab cde] is isomorphic to [a' b' ¢’ d' "] and denoted by

[abcde] = [a b'c d eT if they have the same child.

Definition 2.5 [abcde] and [a' b’ c' d'e] are similar and denoted by [abcde] ~ [a b'c'd e]

if i =ki, whereie{a, b, c, d, e}, k is a nonzero integer.



Example 2.3 Two pentagons : [312 4 1] and [3k k 2k 4k K], k be any positive integer. Find their

cycle convergences.

Solution :
Since [31241] Since [3k k 2k 4k k]
= [21232] = [2k k 2k 3k 2k]
= [01111] = [0kkkK]
= [10001] = [k00O0K]
— [01001] — [0k0OK]
= [11011] = [kk0kKk]

Since the ordered set [0 111 1] isequalto[1101 1],

[01111] = [10001] = [01001] = [11011]=[01111]isthecycle convergence of
[31241].

Since the formula [0 k k k k] is equal to [k k 0 k K],

[Okkkk] = [kO00k] = [0kO0OKk] = [kkOkk]=1[0kk kK] is the cycle convergence of

[3k k 2k 4k K].

Note that they have the same kind of cycle convergences which just need to multiply each

component number by k .

Theorem 2.1 For any [abcde], where a, b, ¢, d, e are nonnegative integerswitha=b=c=d =

e, then the child of the pentagon is [0 00 0 Q].



Proof :
Sincea=b=c=d=e¢,
[abcde] = [la—b| |b—c| |c—d| |d—e| |e—a|]=100000]

And the proof is complete.

Theorem 2.2 Leta, b, c, d, e be any nonnegative integers, and k be any integer, then [ab c d €]

and [a+k b+k c+k d+k e+k] are isomorphic.

Proof :

ltiseasytosee [abcde] = [la—b| |b—c| |c—d| |d—e| |e—al]
and [a+k b+k c+k d+ke+k] = [|a—b| |b—c| |c—d| |d—e| |e—a|]
Since they have the same child

[abcde] = [at+kb+kc+k d+ke+Kk].

Theorem 2.3 Forany [abcde], a, b, c, d, e be any nonnegative integers, and a, b, c, d, e are not
all equal, if one of its child isas [0 0 0 n n] or [0 0 n O n] or [n 0 n n n] for some positive n, then it
must have a cycle convergence constituted by [0 00nn], [00n 0 n], and [n0nnn], incyclic

order.

Proof :

First, we make a relation with [000nn],[00n0On],and [n0Onnnj.
Let [0 0 0 n n] be a regular-pentagon,

then its child is [0 0 n 0 n],

and then its child is [n 0 n n n],

and thenits childis[nn000]. ( see Figure 2.6)



0 0 0 0 n n
n
= e =
n n 0 n n 0
Figure 2.6:  The first pentagon is [0 0 0 n n], and then [0 0 n 0 n],

and then [n0nnn],and then [nn 00 0].

Since [a b c d €] is a cycle order pentagon, it is easy to see [nn 00 0] =[00 0 nn] by a cyclic
rotation, and similarly for [0 0 n 0 n] and [n 0 n n n}, thus the theorem hold for regular-pentagons.
Next, let [0 0 0 n n] be an anti-pentagon.

Thenitschildis[n00n0],

and then its child is [n 0 n n n],

and thenitschildis[0nn00]. (see Figure 2.7)
0 0 0 n_ 0 It
Loy - L o0y
n 0 n n 0 0
Figure 2.7:  The first pentagon is [0 0 0 n n], and then [n 0 0 n 0],

and then [n 0 nnn], and then [Onn 00].

Since [a b c d e] is a cycle order pentagon, it is easy to see [0nn00] =[00 0 nn] by a cyclic
rotation, and similarly for [0 0 n 0 n] and [n 0 n n n], thus the theorem holds in anti-pentagons.
Therefore, if one child of any cycle order pentagonas [000nn],[00n0n], or

[n 0 n nn], then it must have a cycle convergence which is constituted by [000nn], [00n0n],

and [n O nnn], in cyclic order.



Remark 2.1 Forany[abcde]and[a b'c'd e],wherea, b,c,d,e a’,b’,c,d, e are
nonnegative integers, and a, b, c, d, e are not all equal, and a', b", ¢', d', e" are not all equal, either.
If[abcde] = [a'b'c'd e’],and one of them has a cycle convergence, then the other must has

the same cycle convergence.

Theorem24 If 0 =a <M and 0 =b < M,then 0 = Ja-b] < M.

Proof :

Since 0 =a <M and 0 =b <M
= 0-M <a-b <M-0
= -M <a-b <M

= 0= Ja—bl <M

2.2 Description of Feature

In our study, we find that for any [a b ¢ d €], where a, b, c, d, e are all nonnegative integers and not

all equal, then its child must make a cycle convergence as the following figure, where n is any

/ [000nn]

[n0nnnf

positive integer.

[0 0 n0nj

Next, we will take an example to show this feature.



Example 2.4 Take a pentagon with [5 3 2 1 3], please find its cycle convergence.

Solution :
Since [63213]
= [21122]
= [01010]
— [11110]
= [10001]
— [10010]=[01010]
By this feature, we say
[01010] = [11110] = [10001] = [10010]=[01010]

is the cycle convergence of the pentagon with [53 2 1 3].

Note that if we rotation with these three pentagons and letn =1, we will get [00n0On] =[0101 0],
[nOnnn]=[11110],and[000NN] =[1000 1].

At next section, we prove for any [a b ¢ d e] of pentagon, a, b, c, d, e be any nonnegative integer,

and a, b, ¢, d, e are not all equal, then [a b ¢ d €] must have a cycle convergence which constituted

by [000nn],[00n0n],and [n0nnn] for some positive natural number n.

For convenience, we call:

[0O00NnnNn] istypel
[OONnON] istypell

[nOnnn] istypell



And by Theorem 2.3, we get for any pentagon, if one of its child is as like as type I or typeII or

typelll, then it must have a cycle convergence as:

type I = typell = typell = type I

ortypell = typell = type I = typell

ortypelll = type I = typell = typell

And all cycle convergences just have three ordered sets.
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Chapter 3 Pentagon with Cycle Convergence

3.1 Introduction

Let [a b c d e] be a cycle order pentagon, a, b, c, d, e are all nonnegative integers and not all equal,
and let m = min{a, b, c, d, e}, then at least one element of [a —m, b —m, ¢ —m, d —m, e —m] must be
zero.

Since [a—m, b —m, ¢ —m, d —m, e —m] and [a b ¢ d e] have the same child, by Theorem 2.2,
[a—m,b—m,c—m,d—m,e—m] = [abcde],anditis easy to see if one of them has a cycle
convergence, the other must have the same cycle convergence, too. So we just need to prove

[a—m, b —m, ¢ —m, d —m, e —m] has a cycle convergence.

3.2 The Proof with Strong Induction

We let [a b ¢ d e] be a cycle order pentagon again, and assume at least one element of a, b, c, d, e be

zero. By strong induction to prove cycle convergence, we check the following pentagons first:

1. [10000] = [10001]=[00011] (type I)

0

0o 0 0 1 1

2. [11000]=[00011] (typeI)

11



1 0
0 0
0
1
0 0

11
. [L0100]=[00101] (type)

w

1

01

1 0

4. [11100] = [00101] (typeIl)
! 0 0 0
IOI - IQI _ 01
0 0 - 1 0
5. [11010] = [01111]=[10111] (typell)
0

|l
~
&
®
=
~

1 0 I
I 0
O =0,
0 1 y
L [11110]=[10111] (typell)

1 0

(3]

And then, we assume for any pentagon must have cycle convergence if the value of max{a, b, c, d, e}
equal 1,2,3, - - - M —1.
Finally, we just need check if the value of max{a, b, c, d, e} equal M, then the pentagon still has

cycle convergence, too.

12



To check this, assume that n is the number of M’s and t is the number of 0’sina, b, ¢c,d,e. We let
the remaining elements of pentagon, we call x,y,z,and let 0 <x,y,z<M. And then, classify with

the numbers of elements of " M " and " 0 " as the following cases:

Il Casel.

Letn=1,andt=1,

1):IM0xyz]
[MOxyz] = [Mx[x—ylly—z|M—7]
Leta=|x—y|,b=|ly—2z|,c=M—z,
Since0<x,y,z<M,and0<c<M, by Theorem24,0 = a, b < M.
Andthen [Mx|x—y|ly —z|M—z] =[Mxabc] = [M—cM —x|x—al||a—b||b—c]]
By Theorem2.4,0 = |x—al,|la—b],|[b—c] < Mandsince0 = M—x,M—c < M,
[M—c M —x |x —a| |a —b| |b —c|] must have cycle convergence.

And then, [M 0 x y z] has cycle convergence, too.

0 M x M x M-x
M X M-¢ |x-a|
= Mz byl = e « =
Z y |. b

N Ib-c|la-b]

(2):;[Mx0yz]
[Mx0yz] = [M—xxyly—z|M—Z]
Since0<y,z < M,byTheorem2.4,0 = |y—z] < M.
Since 0<M-—Xx,X,y,M—z < M, [M—xxy|y—z] M —z] must have cycle convergence.

And then, [M x 0y z] has cycle convergence, too.

X
M-x x

M 0

O =0

13



Il Case 2.
Letn=1,andt=2,
(1):[MO0Oxy]
[MOOXyY] = [MOX|x—y|M—y]
(@) Ifx=y:Bycasel (1), [MO0x|x—y] M—y] has cycle convergence.
And then, [M 0 0 x y] has cycle convergence, too.
) fx=y:[MOX|X—=Yy|M—y] =[MOXOM—X] = [XMxxM—x]
= [M—XxM—x0|M—2x| M —2x]]
Since0 <M —Xx,x<M, by Theorem2.4,0 = |[M—2x|] < M.
Therefore, [M —x M —x 0 [M —2x| [M —2x|] must have cycle convergence.

And then, [M 0 0 x y] has cycle convergence, too.

2 M_0 M 0 M M-x M-x
M 0 . X X
= M.y X — Mx — = |M-2x| 0
oo be-y] 0 Mex ¥ |M-2x]|

(2):[M0x0vy]
[MOXx0y] = [MxxyM—y] = [yM—x0|x—y||M—2y[]
Since0< M-y, X,y < M,byTheorem2.4,0 = |[M—2y|, [x—y|] < M.

Since0<M—x<M, [yM—x0 |x—y| [IM—2y|] must have cycle convergence.

And then, [M 0 x 0 y] has cycle convergence, too.

0 M x M-x
M x y 0
=l » O
.1 ’ 0 y |M _2.1'1 |x-.l‘ |

3):[MOxy0]
[MOxy0] = [Mx|x—y|yM]

Let 2= |X —y|,since 0 < x,y <M, by Theorem2.4,0 = a<M.

14



So[Mx|x—ylyM]=[MxayM] = [OM—x|x—al] |y —a] M —y]
Since 0 = a<Mand0<x,y<M,byTheorem24,0 = |x—al, |y—al<M
Since0 <M —x,M—y <M, [0 M—x |x—a| |y —a] M —y] must have cycle convergence.
And then, [M 0 x y 0] has cycle convergence, too.

M-x

4 M x M x
M X _ 0 |x-al
O =l =0 =)
0 v v M

v -al

(4):[Mx00vy]
[Mx00y] = [M—xx0yM—y]
Since0<M—x, M —y, x,y <M, [M—xx0y M —y] must have cycle convergence.

And then, [M x 0 0 y] has cycle convergence, too.

Il Case 3.
Letn=1,andt=3,
(1):[M000X]
[M000X] = [MOOXxM—x]
Since 0 <M —x <M, by case 2 (1), [M 00 x M —x] has cycle convergence.
And then, [M 0 0 0 x] has cycle convergence, too.
0 0

M
M 0
O = s

X 0

(2:[M00x0]
15



[MOOX0] = [MOxxM] = [OMx0M —x]

Since0<x<M = 0<M-—x<M,bycase 2 (2), [0 Mx0M —x] has cycle convergence.

And then, [M 0 0 x 0] has cycle convergence, too.

Il Case 4.
Letn=1,and t =4,
(1):[M0000]
[M0000] = [MOOOM] = typel

So [M 00 0 0] has cycle onvergene.

Il Caseb.
Letn=2,andt=1,
1):[IMMOxy]
[MMOxy] = [OMX|x—y|M—y]
(@) Ifx=y:Since 0 <x,y <M, by theorem2.4,0 < |x —y| <M.
By case 1 (1), [0 M x |[x —y| M —y] has cycle convergence.
And then, [M M 0 x y] has cycle convergence, too.
(b) fx=y:[OMXx|x—y|M—y] =[0Mx0M—x] :
Since 0 <M —x <M, by case 2 (2), [0 M x 0 M —x] has cycle convergence.

And then, [M M 0 x y] has cycle convergence, too.

16



2):IMMxO0vy]
[MMx0y] = [OM—xxyM—y]
Since0 <M —x,M—y, x,y <M, [0 M—xxy M —y] has cycle convergence.

And then, [M M 0 x y] has cycle convergence, too.

3): [MOMxy]
[MOMxy] = [MMM—X [x—y| M —y]
@ Ifx=y:[MMM—X|[x—y|M—y]=[MMM—x0M —X]
Since0 <M —x <M, by case 5 (2), [M MM —x 0 M —x] has cycle convergence.
And then, [M 0 M x y] must have cycle convergence, too.
(b) f x=y:Letk=min{ M —x, X —y[, M—y }
Then[MMM —x|x—=y|M—y] =[M—KkM—KM—x—k|x—y| —kM —y —K]
Since at least one element of M —x —k, |x —y| —k, M —y —k is zero and all elements
of M —k,
M —x —k, |x —y| —k, M —y —k are smaller then M.
It means [M —k M —k M —x —k |x —y| —k M —y —k] has cycle convergence.

And then, [M 0 M x y] has cycle convergence, too.



4):[MxMO0y]
[MXMOy] = [M—XM—-—XxMyM—y]
Since0<x,y<M,weget0<M—x,M—y <M
Letk=min{ M —x, M —y, y}
Then[M —XxM—xMyM—y] ®[M—X—KM-—x—kM-—ky—kM—y—k]
Since at least one element of M —x —k, y —k, M —y —k is zero and all elements of M —x —K,
M —k, y —k, M —y —k are smaller then M, it means [M —x —k M —x —k M —k'y —k M —y —K]

has cycle convergence. And then, [M x M 0 y] has cycle convergence, too.

M-x M-x M-x-k  M-x-k
M M e,
Q - M-y O M T My-k O M-k
y 0 ¥ y-k

Il Case 6.
Letn=2,andt=2,
(1): [MMO0O0X]
[MMO0OOX] = [OMOXxM —x]
By case 2 (3), [0 M 0 x M —x] has cycle convergence.

And then, [M M 0 0 x] has cycle convergence, too.

(2: [IMMO0x0]
[MMOx0] = [0MxxM]
By case 5 (3) : [0 M x x M] has cycle convergence.

And then, [M M 0 x 0] has cycle convergence, too.

18



3):[MOMOX]
[MOMOXx] = MMMxM—x] = [X00M—x|M—2x|]
Since 0 <x,M—x <M, by Theorem2.4,0 = |[M—2x| <M.

Andsince0 = x,M—x, |[M —2x| <M, [x 00 M —x |M —2x|] has cycle convergence.

And then, [M 0 M 0 x] has cycle convergence, too.

4): [MxMO0Q]
[MxM00] = [M—XxM—xMO0M]
Since 0 <M —x <M, by case 5 (3), [M —x M —x M 0 M] has cycle convergence.

And then, [M x M 0 0] has cycle convergence, too.

Il Case 7.

Letn=2,andt=3,

(1):[MM000]
[MMO0O0O0] = typel

So [M M 0 0 0] has cycle convergence.

19



(2:[MOMO0O0]
[MOMOO] = typell

So [M 0 M 0 0] has cycle convergence.

Il Case 8.
Letn=3,andt=1,
1):IMMMO0X]
[MMMOX] = [00MxM —x]
Since 0 <M —x <M, by case 2 (1), [0 0 M x M —x] has cycle convergence.

And then, [M M M 0 x] has cycle convergence, too.

(2:IMMOMX]
[MMOMX] = [ODMMM—xM —x]
Since0 <M —x <M, bycase5 (1), [0 MM M —x M —x] has cycle convergence.

And then, [M M 0 M x] has cycle convergence, too.

20



Il Case9.
Letn=3,andt=2,
(1):IMM MO0 0]
[MMMO00O] = [OOMOM] = typell

So [M M M 0 0] has cycle convergence.

M 0 0
M M
O = W
0 0 0
(2):[M M 0 M 0]
[MMOMO]=[MOMMM] = typell
So [M M 0 M 0] has cycle convergence.
M 0 M
M 0
O = ul
0 M M

l Case 10.

Letn=4,andt=1,

(1): [MMM M O]
[MMMMO]=[MOMMM]~= typell

So [M M M M 0] has cycle convergence.

21



Since all the pentagons have cycle convergences with the largest value of a, b, c, d, e is equal M, by
strong induction, all the pentagons must have cycle convergences if all the elements of pentagons are

nonnegative integers and not all equal.

22



Chapter 4 Conclusion and Promotion

In our study, we find all the Diffy pentagons must have the following features if their elements are
all nonnegative integers and not all equal:
1. All the Diffy pentagons must have cycle convergences.

2. All the cycle convergences must have the same type as the following figure for some integer n:

[00011 nf

[n0nnnf )
\ [00n0n]

3. If all the values of vertices of pentagon are equal, this Diffy pentagon must converges to

[00000]

Next, if we take [a b ¢ d €] to be a cycle order pentagon and assume at least one element of a, b, c, d,
e is negative, we can subjoin one value which equal the absolute of the min{ a, b, ¢, d, e }. Then the
new pentagon must be isomorphic to the first pentagon.

Also, if at least one element is rational, we can multiply each element by the least common multiple
of denomicators such that all numbers of this pentagon become integers, then we can use the method
above such that all numbers of this pentagon become nonnegative integers.

By these two ways, we can easily promote our conclusion to rational number.

During our study, we still find there are some rules of cycle convergences with hexagon, heptagon,

and so on. | hope this article can help us to continue to study Diffy pentagon even further.
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Appendix

Strong induction

The principle of mathematical induction asserts that P(k) being true implies P(k+1) is true, but
sometimes is not enough.  Strong induction is a variant on proof by induction. It comprises of the
following steps:

1. Setup astatement P(n), neN

2. Confirm n=1is true.

3. Assume P(1), P(2), P(3), ...... , P(K) are true.

4. Show P(k+1) is true.

And then, we can say P(n) is true for all ne N.

Example 1 Let P(n) be n is the product of primes, where n is integer and n>1.

Proof:
It is easy to check P(2) is ok.
Assume P(2), P(3), P(4), ...... , P(K) are true.
Then we just need prove k+1 is the product of primes.
First, if k+1 is a prime:
Then P(k+1) = (k+1), it means P(k+1) is true.
Second, if k+1 is not a prime:
Then there must has someiandj N, suchthatk+1=1i x j,wherel < i,j< k.
Since P(i), P(j) are true forall 1 < i, j < Kk,

we have P(k+1)=P(i) x P(j) is also true and the proof is completed.
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Example 2 Every positive integer n can be expressed as n = a,2" + a, 12" 1 + ... + a,2° + a;2 + ay,

where a; is 0 or 1 and r is some nonegative integer.

Proof:
Forn=1:Let ag=1, ok.
Assumenisokforalll = n = k—1.
We just need to show n =Kk is ok, too.

Let n =k be even:

Then g is an integer and % = k—1

Let % = arzr + ar712r71 + ...+ a222 +a2+a

Thenn=k=2a2" +a, 2"+ ... + a,2° + a;2° + ay2

Let n = k be odd:

k-1

Then k=1 is an integer and Té k—1

Let % = arzr + ar*12r71 + ...+ a222 + a2 + ag

Thenn=k=a2™" +a, 12"+ ... + 32> + a;2% + ap2 + 1 and the proof is complete.
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