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Abstract

In this thesis, we analyze K stability on compact Fano hypersur-
faces from K energy. We first represent the K energy into an explicitly
formula. Then we compute the derivative by using some analytic tech-
niques. Furthermore, we introduce some structures of tropical geometry
to analyze the main result. Finally, we give some examples of compact

Fano hypersurface to test and verify the formula we get.
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1 Introduction

Definition 1.1 Let M be a Hermitian complex manifold with Hermitian metric g.
In local coordinates (z1,+ -+ ,2n), g can be written in th form
n
ij=1
where {g;5} is a positive definite Hermitian matriz function. The associated Kdhler

form defined by

i~ _
w=-s Z gi;dzi N\ dz;,

ij=1
which is closed, i.e. dw = 0. A complex manifold M equipped with a Kdhler metric

15 called a Kdhler manifold.

Definition 1.2 The Kdhler metric is called a Kdhler-FEinstein metric if its Ricci

curvature form is a constant multiple of its Kdahler form.

In 1954, E. Calabi conjectured that a compact Kahler manifold M has a unique
Kéhler metric in the same class whose Ricci form is any given 2-form representing
the first Chern class ¢;(M). In particular, the conjecture closely related to the
existence of Kahler-Einstein metrics on a compact Kéhler manifold M with its first

Chern class ¢; (M) definite.

The question was proved for negative first Chern classes independently by
Thierry Aubin and Shing-Tung Yau in 1976 (cf, [1], [18] ). When the first Chern
class is zero, it was proved by Yau in 1977 as an easy consequence of the Calabi
conjecture [18]. Therefore, Kéhler-Einstein metrics exist on the underlying manifold

as the first chern class ¢; (M) being zero or negative.

The uniqueness of this two cases was proved by Calabi himself. In 1986, Bando
and Mabuchi proved the uniqueness of Kahler-Einstein metrics on compact Fano

manifolds. A Fano manifold is a Kahler manifolds with positive first Chern class.



So the remaining case is the existence of Kahler-Einstein metrics of constant scalar

curvature.

In 1957, Matsushima proved that a necessary condition for the existence of
a Kéhler—Einstein metric is that the Lie algebra (M) of holomorphic fields is re-
ductive [13]. Yau conjectured that when the first Chern class ¢; (M) is positive, a
Kéhler variety has a Kéhler—Einstein metric if and only if it is stable in the sense
of geometric invariant theory. In 1983, Futaki[6] proved that the Futaki invarient
far is zero if M has a Kahler-Einstein metrics. The Futaki invarient fj; is a char-
acter of the Lie algebra n(M). In 1988, D. Burns and P. De Bartolomeis proved
that the projective bundles does not admit a Kahler metric with constant scalar
curvature(cf, [2], [8], [15]). In 1989, Gang Tian proved that any complex surface M
with ¢;(M) > 0 has a Ké&hler—Einstein metric if and only if (M) is reductive.

In Tian[17] and Donaldson[5], the notion of K stability was introduced. In

Mabuchi[12], the definition of K stability is related to K energy.

Definition 1.3 Let M be a compact Kdhler manifolds with positive first Chern
class c1(M). Let wy and wy be any two Kdhler metrics in c1(M), there is a smooth

function @, unique up to the addition of constants, satisfying:
i —
w1 = wy + —(9(930
2m

Put wy, = wo + S%@&o and defined
™

M) == [ ([ otrte) ~mat)as,

where R(ws) is the scalar curvature of the metric, n is the complex dimension of
M, and V is the volume of M with respect to wg. The functional M is called the

K energy.



Proposition 1.4 Using the notation as above, we have:

(a) M(wo,wr) = —M(wy,wo),

(b) M(wo,wr) + M(wy,wz) = M(wp,ws),

where wo, wy, wy are the Kdhler metrics in ¢y (M).

Proof.

(a) By the definition of K energy, we have w; = wg ~+ —88g0 and ws = wy +
s—a&p Set s =1—1, we can get wy = wy — —83@ =w + —38( v) and

Wit = Wy + (1 — t)%aagp =wy + t%(?@(—go)

M(wp,w1) = ——/ / 5) — n)wl)ds

.| L / / Rlwn_s) — nut,) — dt

B\ / / Rlwr1) — n)wl,)dt
\ / / Riwn_) — )l )dt

— —M wl, WO)

(b) Let w; = wp + L@Egpl, We = Wy + siﬁggol and wy = wy + L@Egp%
’/T

t+1
Wi = w1 + t—aa@ Then set u = g = %, we have

Wy = wq + —88@ = wy + —88@1 + —88g02 =w; + —88(@1 + ¢7) and
Way = Wo + 2u—00901, Way = w1 + (2v — 1)—53302 = wp + —30% +
) 2 27 2

7 —



wOa wl + M<w1> w2)

= ——/ /901 (ws) — n)w dS——/ /M R(wiy1) — n)wpy, ) dt
= ——/ / 201 (R(wzu) — n)wh, ) du — —/ / 202 (R(wsy) — n)wy, ) dv

_ _V/O (/Jw(gpl—{—gpg)(R(WQs)_n)w28>ds
— M, wn).

Q

In this thesis, we setup notations: Let w be the Kahler form of the Fubini-
Study metric on CP". Let M be a hypersurface in CP" defined by the polynomial
F = 0 of degree d. To make sure that M is anFano manifold, d must less or equal
to n. Let Ag,---, A\, be integers such that Z)‘i = 0. Let F; be the polynomial

1=0

defined by
F(Zo, -+, Zy) = F(t %, -+t 7,),

and let M; be the hypersurface defined by the zero set of F;. Let o(t) be a one

parameter family of automorphisms of CP" which can be written as
0<t)[ZOJ T >Zn] = [tAOZ()v co 7t>\nZn]'

Consider that o(t) is generated by the holomorphic vector field X = Z A Z

M; is the image in geometry sence. The degeneration of M by X 1s deﬁned as
the hypersurface in C x CP" by G(t,Z) = Fy(Z) = 0. The central fiber of the
degeneration is defined as the intersection of the degeneration with the set {0} x CP",
excluding the factor ¢ = 0. Using these automorphisms, we can define a family of
Kéhler forms w; = o(t)*w on M such that aw; € ¢;(M), where « is a rational
number. Tian[17] showed that lii%t%M(w,wt) = A exists, where M(w,w;) be

the K energy with respect to the metric aw and aw;. Clearly, both (n —d + 1)w



and (n — d + 1)w,; are Kéhler forms of M in ¢;(M). Define M(t) = M((n —d +
Dw, (n —d + 1)w;). Mabuchi[12] showed that M(t) has a lower bound if M admit

a Kahler—Einstein metric.

Proposition 1.5 (Tian) Using the notation as above, we have:

t%/\/l(t) = w /Mt(Ric(w|Mt) — (n—d+ Dw|a)0w™ 2,

where 0 is defined as

g L TNz
AN

and Ric(w|p,) is the Ricci form of w|py, .

Definition 1.6 We say that M is K stable if for any holomorphic vector field X on
CP"™ with N, - , \n integers and A2 + - -+ \2 # 0,

. .d
%%ta./\/l(w,wt) < 0.
If the above quantity is nonpositive for all vectors X on CP", we say M is K

semistable.

In 1992, Ding and Tian[3] proved that a cubic surface in CP* has a Kihler-
Einstein orbifold metric if it is semistable in the sence of Mumford. Tian[17] showed
that a Kahler-Einstein metric exists on a compact Kahler manifold M with positive
first Chern class ¢;(M) and without any nontrivial holomorphic field if and only

if the K energy is proper. In particular, if M has no nonzero holomorphic vector

field, M is K stable.

Donaldson|5] gives a very similar definition of K stability in algebraic geometry

sence.



Definition 1.7 The pair (M, L) is K stable if for each test configuration for (M, L)
the Futaki invariant of the induced action on (Mo, L], ) is less than or equal to zero,

with equality if and only if the configuration is a product configuration.

Donaldson showed that if (M, L) is a toric variety such that the Mabuchi
functional is bounded below on the invariant metrics and any minimising sequence
has a K convergent subsequence, then (M, L) is K stable with respect to toric
degenerations. In 2005, Donaldson proved that the Kahler metric with constant
scalar curvature implies K semistability. In the same year, he proved that the

Kahler metric with constant scalar curvature minimizes the Mabuchi function.

In order to state the main result, we make a little change for some notations: let

M be defined by the zeros of the polynomial
= @)

F(Zoy-  Za) = Y w230 - 25" (1.1)

=0

of degree d. Let (Ao, - -+, \,) be rational numbers satisfying Z Ai = 0. Let

i=0
A= &12;(]{2:0 AkQty, (1.2)
Let
(o, -, x —Orglgp —Z)\ka l)—l—Za Ty, (1.3)
and let
@) =90, e 0) (1.4
i-th

Remark. In this thesis, K stable means either K stable and K semistable. On
the other hand, for the application in Geometric Invariant Theory, we just need to

assume that t is a real number and g, - - - , \,, are rational numbers.



Theorem 1.8 For generic (Ao, -+, A\y), we have

lim ti./\/l(t)

t—0 dt

2

el e (15)
= AL LS [T i) - Do)

The purpose in this thesis is to find an effective way to verify the K stability for
hypersurface. Since the K energy is the nonlinear version of the Futaki invariant, it
is harder than find an effective way to compute the Futaki invariant. In [3] or [17],
if the central fiber is normal, the quantity A is the real part of the corresponding
Futaki invariant. The limit in theorem 1.8 depends not only on the central fiber,
but also on the whole degeneration F;. We represent the K energy into an explicitly
formula in section 3. Then we compute the limit of t%/\/l(t) by using some analytic

manners and a result of Phong and Sturm|[14] in section 4.

Note that (1.1),(1.2),(1.3) and (1.4) be considered in the tropical semiring.

We will introduce some structures of tropical geometry in section 2.



2 Tropical Geometry

In this section, we will introduce some structures of tropical geometry.

For a complex plane curve C, we restrict it to the open subset (C*)? of the

(affine or projective) plane and then map it to the real plane by the map

Log : (C*)? — R?

2= (21,22) +— (x1,22) = (log |z, log|22]).
The image A = Log(C N (C*)?) is called the amoeba of the given curve C.

Example.

C={2€(C)?| exp®z +exp 'z =1}

Figure 1
Q

In the example above, the curve C' contains exactly one point whose z;-coordinate
is zero, namely (0,e*). Since log0 — —oo as ¢ tends to 0, a small neighborhood
of the point (0,¢*) is mapped by Log to the tentacle of the amoeba A pointing to
the left. Similarly, a small neighborhood of (e°,0) mapped by Log to the tentacle
pointing down, and point of the form (z,e — €’z) with |z| — oo to the tentacle

pointing to the upper left.



Consider the maps

Log, : (C*)? — R?

_10g|21| _10g|Z2|)

(21,22) > (—log;|21], —log, |22]) = ( logt ' logt

for small + € R. Then the image I' = Log,(C N (C*)?) is similar to amoeba of C,
but the width of A will shrink to zero as ¢ tends to zero. We called I' the tropical

curve determined by C'.

1z,

24

C={z€(C)|e’ntetn=1}

Figure 2. The tropical curve corresponding to the amoeba in figure 1.

The curve with graph showed in Figure 2 is not unique. So we consider not
only the curve C' = {z € (C*)?|e "z + e *25 = 1} but the family of curves
Cy ={z € (CQ‘ t°2) 4+ t*zp = 1} for small ¢+ € R. This family has the property
that C; passes through (0, *) and (¢7°,0) for all ¢, and hence all log,(C; N (C*)?)
have their horizontal and vertical tentacles at zo = 4 and z; = 5, respectively. So if
we take the limit as ¢ tends to 0, we shrink the width of amoeba to zero. We called

this the tropical curve determined by the family C;.

Definition 2.1 A formal series of the form Zaqtq, a, € C satisfying:
q€Q

(i) the set {q € Q| ay # 0} is bounded below,



(ii) the denominators of q is a finite set

is called a Puiseuz series or a fractional power series. A field K of Puiseux series

15 a collection of Puiseux series.

Given a € K with the expression a = Z aqt?, denote the valuation of a by
q€Q

vala = inf{g € Q| a, # 0} = min{q € Q| a, # 0}.

For any element a = Zaqtq € K, as t small enough, a approximate to the
q€Q

term with the smallest exponent, i.e. a ¢vala

vala . So applying the map log, we get

log, |a| =~ log, |a tva1“| = vala + log; |ay,,| = vala

vala

for small ¢. Using this approximate, the map Log, and take the limit for £ — 0 is

correspond to the map

Val: (K*)? — R?

(21, 22) > (w1, 29) := (—valz;, —val z).

Hence, we can now give a severe definition of plane tropical curves :

Definition 2.2 A plane tropical curve is a subset of R? of the form Val (CN(K*)?),
where C' is a plane algebraic curve in K*. (Strictly speaking we should take the
closure of Val(C' N (K*)?) in R* since the image of the valuation map Val is by

definition contained in Q*.)

Note that this definition is now purely algebraic and is not concerned with any
limit taking processes.
For example, consider the curve C' = {z € K*|t°z + t'2 = 1}. If (z1,2) €
C N (K*)? then Val (21, 2) can give three different kinds of result :

10



1. If val z; > —5 then the valuation of zp = t % —tz; is —4 since all exponents of
t in tz; are bigger than —4. Hence these points map precisely to the left edge

of the tropical curve.

2. If val z > —4 then the valuation of z; = ¢ ° —t 12, is —5 since all exponents
of t in ¢~ 'z are bigger than —5. Hence these points map precisely to the

down edge of the tropical curve.

3. If val z; < —5 and val zo < —4 then the equation t°z; + t*z, = 1 shows that
val(t°z)) = val (t*2,), i.e. valz; = valz, + 1. This leads to the upper right

edge of the tropical curve.

So we can get the same graph by this definition.

Let C C K? be a plane algebraic curve given by the polynimial equation
C={(z1,2) € K2| f(z1,25) = Z aijziz3 = 0}
i,jeN
for some a,; € K of which only finite many are nonzero. Note that the valuation of

a summand of f(z1, z2) is
val (a;;28 2)) = val ay; +ival z; + jval 2.

Now if (21, z9) is a point of C' then all these summands add up to zero. In particular,
the lowest valuation of these summands must occur at least twice since otherwise
the corresponding terms in the sum could not cancel. For the corresponding point
(x1,29) = Val(21, 22) = (—val 2y, —val z5) of the tropical curve, this means that in

the expression
g(x1, 32) == max{iz; + jzs — vala| (i, j) € N*witha;; # 0} (2.1)

the maximum is taken on at least twice. It follows that the tropical curve determined
by C'is contained in the “corner locus” of this convex piecewise linear function g,

the corner locus is the locus where ¢ is not differentiable.

11



Theorem 2.3 (Kapranov) The closure of the amoeba A C R* coincides with the
corner locus of the convex piecewise linear function g. If the valuation val : K* — R

is surjective, then A coincides with the corner locus of g.

Remark. Kapranov’s theorem shows that the tropical curve determined by C' is

precisely the corner locus of g.

For example, let us consider the curve C' = {(21, 22) € KQ} otttz =1} C K?
again. The corresponding convex piecewise linear function with respect to C' is
g(x1, x9) = max{z; —5,x9—4,0}. Figure 3 shows that the relation between tropical

curve and the convex piecewise linear function g.

Figure 3. A tropical curve as the corner locus of a convex piecewise linear function.

In order to represent these piecewise linear functions as the notation of the

original polynomial, we need to introduce two operators.

Definition 2.4 Let T := RU {—o00}, we define operators & : T x T — T, and
O©:TxT—=T by

r@y:= max{z,y},
Oy = x+vy.

12



The operator @ 1s called the tropical addition, and the operator ® is called the

tropical multiplication.

Since for each a € T, a ® (—00) = a, x ©® 0 = z, so T has the additive identity

element —oo and the multiplicative identity element 0.

Definition 2.5 For each a € T, n € Z, define

a =n X a.

And define tropical division to be their usual subtraction:

TQQY =T —Y.

Moreover, define

n

@ai = max{ay, - ,a,},

i=1
n

@ai:z a1+ ag + -+ Q.

i=1

Definition 2.6 A semiring is a set S equipped with two binary operations ”+” and

»o»

, called addition and multiplication, respectively, such that:

(1) (S,+) is a commutative monoid with identity element 0.

(i1) (S,-) is a monoid with identity element 1.
(11i) The multiplication is distributive with respect to the addition.

(1v) Multiplication by 0 annihilates S, i.e. for alla € S, a-0=0-a=0.

13



Remark. (T,®,®) = (RU{—o0}, max, +) is a semiring.
Using the notation above, (2.1) can be written as
g(x1,29) = @(—V&l a;) © 2 © a5’
i,J
We call this expression the tropicalization of the original polynomial f. It can be

considered as a polynomial in the tropical semiring. For example, the tropicalization

of the polynomial t5z; + t*z, = 1 is just

(-5) ONANS (—4) O x9 D 0= max{a:l — 5, Ty — 4, 0}

Now, we generalize this concept into the polynomial with n variables:
p

f(2)=f(z1,-+ ,20) = Z a; 2" - - - zi». The tropicalization of f is

g(@) =g(xr, - 2,) = {naX{ilffl + -+ iy, —vala;}

1 @ Val az @ x@“ @ @Zn

where z; = —valz;, i, € N, forall 1 < j<n, 1 <7 <p.

In section 1, we setup the notations: M be defined by the zeros of the polyno-
mial
Ld ol (i)
F(Zo, -+ Zn) =Y ;25" - Z3

1=0

of degree d. Let (Ao, -+, \,) be rational numbers satisfying Z A = 0. Let
i=0

— - (4)
A= &%(kgo Aeay’).
Let

Y(zo, -+ ,2,) = min ( —Z)\kal)%—Za L),

0<i<p

and let

14



These notations can be considered as the equation in the tropical semiring. Let M

be defined by the zeros of the polynomial

NG
F = @ —val a;) @yo Y Q. @y@a%)

of degree d, where y; = —val Z;, for all j = 0,--- ,n. Let (Ao, -+ ,\,) be rational
numbers satisfying @ A = 0. Let

i=0
"N oald )
)\:@)\00 @...@ASQH'
Let
p @a(i) ® (i) @a() ® (4)
Y(@o, -+, 2n) = =P (A @ OA™) @ (2™ OO ™)),
i=0
and let ’
a(") a a(z
(@) = <@ (A 0 A2%) 0 2°4).
i=0

15



3 An explicit formula for the K energy

In this section, we analyze the K energy of smooth hypersurfaces of CP" and

get an explicit formula.
For the sake of completeness, we need a lemma for Tian[16] stated.
Lemma 3.1 Let M be the smooth hypersurface defined as the zero of {F' = 0}. We

use w to denote the Fubini-Study metric on CP" as well as the Kahler form on M,

which s the restriction of w on M. Let

VP
=1 1
¥ og (Z?:O IZi|2)(d_1)7 (3 )
where [Zy, -+ , Zy,) is the homogeneous coordinate in CP". Then we have
Ric(w) = (n—d+ 1w = —%35@. (3.2)

Proof. Fori=0,1,--- ,n, set
1 . ~ .
Ui = {[207 7ZnH ’Z’L| > §’ZJ‘7.7 —~ 0717"' ] #Z}

be open set in CP". U ,U; = CP". We just prove this lemma on Uj,. Let z =

(21,7, 2n) where z; = 72 for ¢ = 1,--- ,n, which is the local coordinate system
0

of Uy. Since (M, g,J) be a complex manifold with Hermitian metric g, we have

w(u,v) = g(Ju,v). Using the coordinate system, the Fubini-Study metric can be

written as
i — i — Y 27
:_E:"d'Ad_:_E J — J dz:; \dz 3.3
¢ 2 IR N T o L T ) e B9

n
where |2]* = E |zi]%. On any open set V in Uy, since the equation F' = 0, we can
i=1

solve z;. Write

21 = 21(22,+ , 2n) (3.4)

16



for a holomorphic function z;. Under the local coordinate system (zg,- - , z,), the

Kahler form w on V can be written as

e _
W= Z grdz; N dzy,

=
0z .
and let a; = —, i =2,--- ;n.Then by (3.3) and (3.4), we have
-~ (5]' zkij zﬁﬁj
TETTEREE T AP (1P
_ zkzlaj ajﬁk ~ ‘le ajak
(L1212 1422 (142>
for j,k=2,--- ,n. Since the Ricci tensor is given by
_ Plogdellgm) |
Im — — , 0, T = 2, ) T
8zlﬁzm

So its Ricel curvature form is

Rie(@) = 5 3 Rimdoy N5y = — =00 log det(77).

I,m=2

Now, we need to compute the determinant det(g,z). In order to do this, we let

Kjp = 651 + aja, — (Zj + Z10;) (21 + Zrap).-

1+ 2|2

Then

i 1 .
G5 = Ty pplom ik =20 (3.5)

The matrix K = (Kz) can be represented by

1

1
K=I+AA" - —— _BBH,
1+ |22

where

A = <a27"' 7a’n)T7
B

= (Zo +Z1a2, -+ ,Zn + Z10,)

17



By the notation above, we get

KA = (I+AA" — P Bf)A
= A+ (AAT)A - EE (BB™)A
= A+ (A"AA - TW(BHA)B
= (1+|a]*)A - - ‘ZP(BHA)B.
KB = (I+ AA" — %IZIQ B"B
=B+ (AA"B - = ‘ZP(BBH)B
= (A"B)A+ B — %W(BHB)B
= (A"B)A+ (1 — BT )B
1+ 2|2

Hence, the vector subspace span{A, B} is K —invariant. Furthermore, K is identity

on the complement of span{A, B}. So we have

detk = (4 faP)i— By L pap
\ L4227 1422
— 1 2 1 AN 1 2 B2 BHA2
—1+|Z|z((+|a|>(+|zl) (1+]al®)|BI* + B A[)
1 2 2 21 12 2 2 2 - 912
- _1+|Z|2(1+|a| + |22+ |2*|af® — |B)? = |al?|B] +(;aizi+zl|a| %)
. =

_ 2 2 2 2
= —1+‘Z|2{1+\a1 + 127 + |2[7]al
_(’z/|2 + ’Zl|2‘a|2 + Zaizizl + Zaﬁizl) + | Zaizi + Zl\a]2|2
=2 =2 =2
—al’(|Z'P + [2aflal® + ) aizz + Y @ziz)}
=2 =2

1 n n n
= m(l =+ |CL|2 =+ |Zl|2 + Zaizﬁl —f- Z@Eizl —|— | Z(liZiF)
=2 =2 =2

1 2 - 2

(3.6)
where 2" = (23, , 2,). Let f be the defining function of M on Uy, i.e.
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A Ln F
S G e O R
f (7Z07 7ZO) Zg

Then
of
021 Dz Fi .
L= — = Ead = —— — 2 LR .
al 8ZZ 8][‘ Fl Y ? ) Y n? (3 7)

9z

oF
where we define F; = 97 for i = 0,--- ,n. Then by the homogeneity of F', we have

(2

- . E ZZ Zl
(ZZQ A _(,-2 EZ)) 2 (3.8)
. Fy ‘
- _FlZo(; Z;Fy) fox
on M. By (3.5), (3.6), and (3.8), we have
“ 1
detng = mdetKjE
— 1 1 (z”: ) (3.9)
- 2\n 2 il )
(1 +1=?)" [F 2 =
Then by (3.1), we get
1 1 " FP
detg = 2\n—d+1 2 2izg |2€l 1
! (L+ [z2)n=dtt |[F1[2 (1 + [2]2)9~
S 1 1 | Zo| DIV E]?
(1 + |z[?)n—a=t '8_f|2|ZO|2(d—1) (Ximo 1Zi]?) D
0z
1 i
X e’.
(1 + |z[)n=t |ﬁ|2
62’1

The conclution follows from the formula of the Ricci curvature and the above equa-

tion. Q

In order to represent the K energy in terms of the polynomial F'| we need the

following purely algebraic lemma:

Lemma 3.2 With the same notations as above, let n be a (1,1) form on CP". Let
7 : C"*t — CP" be the projection. Let

= % N adZ; A dZ), (3.10)

Jk=1

19



Then on M,

an:od'EF Fj\ n—
7= j|VFJ|2k Jw™ ! (3.11)

for |Z)? = Z | Z:]2.

=0
Proof. As the proof of Lemma 3.1, we just have to deal with the problem on
oF 1
Uy N {87 # 0}, where Uy = {[Zo, -+ , Z,]| |1 Zo| > 5\2]-],]' =1,2,---,n} in CP™.
1
Note that a3,

well defined. Define Az on CP" as follows:

i,7 =0,--+,n, are homogeneous functions of order (-2), so (3.11) is

1
n— 7 e —(n—1)(n—2)
AW = (3-) H(=1)2
> (1R Agde A Adzp A Nz AdZ A NdE A A dE.
Gk=1

(3.12)

2

where the symbol “™7” over dz; and dZz; means these two differential forms are

deleted from the expression. Define b = (b, - ,b,) by

621 821 F2 Fn
b= (1,—ag, -+ ,—ap) = (1, — ==+ ——) = (1,2, .-+ =L,
( , —ag, , —a ) ( 822 azn) ( Fl Fl)
Then the equation (3.12) can be represented by
' 1( )(n—2)
—(n—1)(n—2
nAW = (=) (—1)2
» 2m (3.13)
Y Agbibrdz A ANdzg AdE A A dE,
k=1
on M. Let
’1: n
n= % lz_l amdzl AN dEm, (314)
and fix s,¢. By (3.12), we have
i — n—2
—dzs NdzZg A ANw
2m -
e A A S 4 d A A2
= 27szs A dz A o 1;1 adz N dZy, N\ w (3.15)
. 1 7
i L sheDee) _ _
= (2—) (—1)2 (—1)" " Agdzy Ao ANdzp NdzZy N -+ N dZ,.
T
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We also have the following fact :

. . n
7 2 _
%dzs A dZ, /\ — E dzy A\ dZp N W™ 2

| n " ims (3.16)
_ at sB
= (> Y
n(n o 1) a,B=1 a,B=1
By (3.3), we have
) n!

)y (~1yin

dzy A+ Ndzy NdZy N -+ NdZ,. (3.17)

= (52 T+ 2P

By (3.15), (3.16), and (3.17), we get

1
‘ —n(n—1
(%)”(—1)2 ( )Aszdzl A Ndzy NdZ1 A -+ - NdZ,
T, snn=1)  (n—2)! B
= (%) (_) Wd?«j/\ “ANdz, NdzZy N -+ - NdZ,
( Z gat s,B
aﬂ:l a,B=1
So
(n — 2)' \ at sB
A = Ty 2 (" Z g (3.18)

a,f=1 a,f=1
for s,t =1,--- ;n. By (3.18), we have

S (n=2)
Z Ajkb b = 1+| |2)nt1

P N ) n o (3.19)
( Z 9%,z Z T S )
a,B=1 7,k=1 1,k,a,8=1

Now, we need to deal with the right hand side of (3.19).
From (3.10) and (3.14), we have
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g = G| Zo|?, l,m # 0;
Z zjajm = —d0m|Z0|2, m 7é 0,
j=1
- . (3.20)
> amag = —aglZo’,  1#0;
k=1
Z ngka]% = d06|ZO|2.
[ jik=1
Since ¢*% = (1 + 12%) (0 + 2aZs), from (3.20), we have
Z g (L4 12[) D (ap + 2aZs)ay3
a,f=1 aB 1
(14 |2]?) Z ION Z ZaZp0,3)
o f=1 5=l (3.21)
= (1+ 21)(Q_ sl 2ol + a5l Zol*)
a=1
= |Zo*(1 + |2I")
=0
By (3.8), we have
n n F
Zzlb, 2 — Zziai = F?
i=1 =2
on M. By (3.7), (3.20) and the equation above
Z gjkb bk 1 + ‘Z| ) Z <5j]€ + ijk)bjgk
Ji,k=1 jk 1
= (142 Zb b + Z 2;Zkb;b)
k=1 (3.22)
Z o | Eif*
= (14 |z =
(1+ ]z )| |}le|2
VF
= (14 |2]*)+——=.
1+ )
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n
> 99" ag5hb
j7k‘7a7/8:1

n

= (141217 D (Bar+ 2aZ) (05 + 2Z8)aqzbibr
J.k,a,6=1

> e =0 GogF o Fp
— 17.12(1 2\ £=a,f=0 "af
ZoP (L ) =

By (3.21), (3.22) and (3.23), we have

> 0%a5 > g — Y g™,

a,f=1 7,k=1 7.k,a,0=1 o
LIVEP Yoy 2 k=0 QL
—17.12(1 2 3=0"4J 712(1 2\2 £=j,k=0 "3k~ J
|Zo[* (1 + [2*)® TAE — | ol( +|Z\) AE
— |7 2 1 2| ]
| Zo*(1 4 |2]?) 2 Z as3 Z ]VFP
Hence the expression (3.13) can be replaced by
_ i 5 (—1(n-2) 1 |VF|2
Aw' 2= (—)"1(=1)2 Zol?P——————(n—2
nAw (271') ( ) / | 0| (1+|Z|2)n_1(n ) |F1|2
i B i ajEFij

—~

455 — 2
=0 ,k=0 V|

By (3.3) and (3.9), we have
1

i Oy s-D-2 1 - |VF)]?
— )" — 1)1(=1)2
g R (1 +|z[*)" |Ff?

w - (27r

dzg A\ -+ Ndzpy NdZog N\ -+ N dZ,.

By (3.25) and (3.26), we get

A n—2 — 7 2 P J
nnw no115 et (2ua

1L YiolZil? 10 Zn o bRl
= = d Z = L n—1
n—1 |ZO|2 | 0| ( Qg )w

n

where | Z|* = Z |Zi]%. So we complete the proof.
i=0

23

Ydzo N+ ANdzp NdZy A -+ N dZ,.

(3.23)

(3.24)

(3.25)

(3.26)



Lemma 3.3 Let ¢ be the function defined in (3.1) and let

_Z?:o >‘j|Zj|2 . _Z?:o )‘j|Zj|2
>j-0 2l |2

Then we have

Laga A OO A w2
27

1 N OXF o YoMl - (3.27)
Furthermore, we have
— / Op N OO N w
(3.28)

o ‘n—l n_d+1/ n—1
N n—l/Z |VF|2 + n—1 M@w '

Proof. Let n = QL&,D A 06 be a (1,1) form on CP". Let 7 : C"** — CP" be the
7r

projection, and let

. n
7

7T*7] = %jkzodjkdzj VAN de;

as in (3.10). Then we have

79 N
0Z; 07,

Y
=
I

J

By the equation above, we have

n n oF —
n Zj:OAj|Fj|2—Z] 0(2 )\ZaZ)F .
15 = (d—1)—
=0 i |ZP|VE]? ( )|Z|2
and
3F
vER ZPIFT
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on M. By Lemma 3.2, we get (3.27)

7 _
— 0P NOIANW 2 =nAw"?
2w

AL N asF R
_ ‘ | (Z&jj_zj,ko jk= J k)wn—l

n—1 = |V F|?
_ 1 (Z?:o )‘j‘Fj‘Q - Z;L:O (XF)jFJ' _ (d _ 1)@ X XF ZZk:o ij?j?k)wn_l
n—1 |VF|? |VF|*
n 2 n Eal 2 n - T
_ 1 (Ej:O )‘j‘Fj| _ (d— 1)9 _ (ijo (XF>ij’VF‘ _XFZj,k:O ijFij))w”_l
n—1% |VFJ? IVE
1 o NIEP ~ XF - .
= —(d—-1)0 — FHw"
Now, let n = %850. By Lemma 3.2, we have
0
AR / 1 Do NI _
— 000 Nw"? = ! ~ S5t 3.29
or 7 no1C V2 o (8:29)

By(3.27), (3.29) and the Stokes Theorem, we get (3.28)

L/ 0(p/\59/\¢d”‘2

=~ /Z |VF|2 w"” l—i—(d—l)/MHw"_lJr/M(—n)w”_l)
1—(n—d+1)/M(9w”‘1).

a
Theorem 3.4 The K energy M(t) can be represented as
2 [t 1 N XF, | ——
Mo =5 [ ([ =X (o) T
dJi > ; [VE[7 (3.30)

+(n—d+ 1)0w""))dr,
where

Fr(207 e 7Zn) = F<707)\OZO> e 7717)\nZn)
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and M, is the zero set of F,. = 0. In particular, we have

d XF, ) Tt
taM /Z |VF\2 Fi)jw

(3.31)
(n—d+1)/ O™ ).

Proof. By Proposition 1.5, we have

M(1) =2<”d_ 1)/1 (/ %(Rz‘c(wmr)—(n—d+1)w\Mr)9w”_2)dr

- Al /lt(/M () ) dr
2n—1) [ 11 XFp
-2 d )/1 </Mj<_n—1;(|VFI2)j(F’”)jw

n—d+1
+—
n—1

E %[(/ﬁ(—é(é—?@fﬂwwn*

+(n—d+ 1)8w""))dr.

0w ")) dr

By the fundamental theorem of calculus, we get

d 2 LI XB L e
MY _td/Mt( tjzo(lvM?)j(Ft)Jw

(n —d+ 1)9w”_1)
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4 The limit of the derivative of the K energy

d
In last section, we get a explicit formula of t—M(t). Here, we are going to

dt

d
compute the limit lltin(l)ta./\/l(t) in Theorem 3.4. In order to do this, we need some
—

combinatoric techniques first.
Let (d;,0;),1 =0,--- ,p, be a sequence of pair of nonnegative rational numbers.
Let 99 = 0. We assume that the sequence is “generic” in the sence that
1. All é;, i« = 0,---,p, are distinct numbers. Hence, each ¢;,i = 1,---,p, is
positive rational number.
2. Define the line &;(z) = 0;+ 02,4 =0, -+, p. None of three such lines intersect

at the same point.

Now, suppose (0;,0;), i = 0,---,p, are generic, define (ix,r%), & = 0,--- ,m,

by induction as follows: let ig = 0, rg = 0. If (ig, 7x) has been defined, then

1. If for any r > ry

5ik + 04,1 < (51 + o1, 1 7é Tks

then let m = k and stop.

2. If not, then define 451 and 7,1 > 7 such that

Oip + 03 Th1 = Oipy T Ty Tt < 0i + OiTkn, (4.1)
where i = 1,--- ,p. Note that (ig,7x), k =0,--- ,m, are unique definite since
(0;,07), 9 =0,--+ ,p, are generic.

From the process above, we have the obvious.
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Remark. (i, 1), &k = 0,1,---, is a finite sequence. In particular, the sequence

stop at (i, rm). Indeed, by the construction of i;'s, we have
Tig > 04y > -+ > 0j > -

Hence all i;'s must be distinct. Since 0 < 7, < p, we have at most p + 1 distinct

i1’s. The second statement follows from the first item of the construction above.

Let
&(x) = min(9; + o). (4.2)

i>0
The function &(z) is a piecewise linear function, which be non-smooth at ry, k =

1,--+,m. And the function £(z) is differentiable almost everywhere.

Lemma 4.1 Assume that o;, = 0, we have

m—1

ST (=65, + G o+ 0ty —1) = /Oooé’(w(f’(:v)—l)dx. (4.3)

k=0

Proof. Note that £ = 9, , is a constant function if z large enough.

| e@as = i [ €@ia = fime®) - s0) =5, -5,

Using the summation by parts, we have

) m—1 m~—1
/ (@)de =r1(05)" + D 0t (reyr —10) = > reya(0 — 07,
0 k=1 k=0
By definition of 7,k = 0,--- ,m, in (4.1), we have
=05, + 04y = (04, = 04 )Th41, for K =0,--- ,m — 1.

Thus we have

3
L

(_5ik + 6ik+1)(0ik + Oiprr — 1)

S
il
—Oo

(]

7“k+1(‘7¢2k — o} ) = (6i, — 0i)

Tk+1

k=0
oo

= | @) - 1.

0
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Consider the smooth hypersurface M C CP" defined by the polynomial F' =0

0
of degree d. Let X = Z )\iZZﬁ_Z be the vector field for integers (Ao, -, A,) such
i=0 ‘

that Z A; = 0. Let M; be defined by the equation

=0
Fi(Zy,--+ ,Z,) =F(tZy,-- ,t7"7,). (4.4)
We write F; as
L 0 i
Fi(Zo  Za) =Y ag®Z50 - 23, (4.5)
=0

where 0g = 0, and 6; > 0,i=1,---,p. And

d=—A= min (Z(—)\k) 'a,(f)).

0<i<p
By (4.4), we have
al® (@) o® )
X(2o° -2y ) = (6 +0)Zy° - 27" (4.6)
fori=0,---,p.
The sequence (4, a,(f)),i =0,---,p,k =0,---,n, be the pair of nonnegative
rational numbers which satisfies

1. All 6;,7=0,--- ,p, are distinct;

2. None of the three lines defined by 9; + 04,(;)95 for2=0,---,p, intersect at the

same point, where £ =0,--- ,n.
So we may assume that the choice of (A\g,---,\,) is generic. Without loss of
generality, we may assume that ap = 1, and 0 = 6y < 61 < --- < J,. We also
assume that ag,--- ,a, are all nonzero. Moreover, since M is smooth, we see that

for each 0 < k < n, there is an 0 < ¢ < p such that a,(f) =0.

Let
1 4
Ui ={[Zo,-,Z,) € CP“\ | Z;| > §|Zj|, j=0,---,n}.
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Then UU; = CP". Let P, ={Z;, =0} and P,; = P,NP;fori # jandi,j =0,--- ,n.
1

Let o > 0 be chosen so that o < p m>1{1((51) Let d(-,-) be the distance induced by

the Fubini-Study metric w on CP", and define

Vi={zeCP"|d(z,Py) < [tI°}, i #j, i, =0,--- ,n.

al? (0) "
By (4.5), we have t °F, — Z° --- Z;“"O as t — 0. Intuitively, M; goes to the

(0)
hyperplanes defined by Z;° --- ZTOZ‘;O) =0.

Lemma 4.2 There is a o1 > o such that for any 0 < k <n and
one can find a unique | # k such that
Z
— | < [t|™
<1

for t small enough, where [Zy, -+ , Z,] € M.

Proof. Since [Zy,- -+ ,Z,| € Uy, we have |Z;| < 2|Z;|, 7 =0,--- ,n. By (4.5) we

have
af) al? d 3 ming>1(6;)| 77 |d
1250 - Zgm | <20 aglt| 0| Z, | (4.7)
i=1

Suppose for any [ # k, we have

Z,

7 =1,

Zy,

then

(0) (0)
|Z6° - Zim | 2 87 Zel

But we choose o, by

L.
og<oy< EIZHZI{I(@)

So we get a contradiction to (4.7). Hence we get the existence part.
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For the uniqueness, suppose there are [, m # k such that
Zl Zm
— | <[t || < [t
2 < 122 <

for ¢ small enough, then [Zy, -+, Z,] € V|! . This is a contradiction. So we are

done. 0

Now, we will prove that for ¢ small enough, the connected component of

M, \ UZFIV;; are graphs of functions over P;, where

In order to do this, we first let
Qi = {2, 7ZnH [Zo, -~ v Zi1,0, Zigry e , Zn) € B},

for i =0,---,n. By the setting (1.4) and (1.5) in first section, we have

(2o, -+ 20) = min (84 8+ 0 @0 + -« + azy), (4.8)
SISp
and
dilx) = anin (646, + alz), (4.9)
for k=0,---,n.

Lemma 4.3 For o > 0 small enough, there is a constant g > 0 such that the
solutions of z1 of f = 0 satisfies
|21 = | < ol |1t

fori=1,--- ,agi’“) — agik“), k=0,---,m—1. Furthermore, the balls BF =
{z € Cl|z = @b < [k} fori =1, af —a{**") k=0, ,m — 1, do not

intersect each other if t small enough.

Z Zn
Proof. Without loss of generality, we assume that (z1,---,z,) = (71, e ,7)
0 0
on Uy. Then F; = 0 can be written as
P 5 O] (4)
F=> ath g =0 (4.10)
i=0
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with ag = 1 and d; = 0. The sequence (5i,agi)), 1 =20,---,p, is assumed to be a

generic sequence.

For (z1,--- ,2,) € P, N U, we have
=
fori = 2,---,n. The indices 7 and k are always set by i =1, - - ,ozgi’“) —aﬁi“l), k=
0,---,m — 1, in this proof, unless otherwise stated. We choose £; > 0 such that

€1 < min min (04 §; + agi)rkﬂ —1(re +1)).

0<k<m i7ik,ik41

Define f; and g, as follows

(ig) (i) (ig41) (ik41)
— 52 S Olnk 67- X Qg (077
fk faikt k24 cee 2 +aik+1t k12 RN 7
and
gr. = f— Ji-
k (ik) (ik+1) f
Let 7 be the (o;* — ay ") - th roots o
. (k1) (ig) i i
_azk+1 tai/ﬁ—l 3, 232 +1 —042% | zg:kﬂ)failk).

CLZ'k

Then we have

5+t < b < e
for some constant C' independent of t. And we also have

1t]°|gi| < |t[Vr () +er—do

on BY and

|t|5|fk| > |t’¢1(7’k+1)+€o+d0

3 1
on 8Bf. We choose o and ¢y small enough such that e — do > Zel and gg < 151.

1
So we have do < 151, and then

1
‘fk’ > |t|¢1(rk+1)—5+so+do > ‘t|¢1(rk+1)—5+€0+161
2

>t TTIET S e -srean) > g,
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on 0Bf . By the Rouché Theorem, f; and f have the same number of solutions in
BF. Since f;, has only one solution in BY, there is only one solution z, of f = 0
satisfies

[

|21 — @f| <l

Suppose there are two balls Bf and Bfll such that Bf N Bfll # ¢, then for each

z € BN Bfll, we have
i — i | S Jof = 2|+ |2 = ] S Tt (1ef] + g D)
Since t small enough, we have

1
oF — ol < 5 max{|ey], o}

Say, |©f| < |¢f!]. This means B} C B!

i >, we get a contradiction. So if ¢ is small

enough, BY's do not intersect each other. Q

Proposition 4.4 Using the notation as above, we have

", XF (_
/ Z(W) (F)jw"
Mn@Qi j— tloj (411)

S —sa® = / " )W) — 1)ds,

fori=0,---.n, ast — 0.

Proof. In this proof, we omit the constants in an inequality for convenience. So
A < B means there is a constant C' independent of ¢ such that A < C'B. It suffices
to prove the case ¢ = 1 because the proof of other cases are similarly. If ago) =0,
then ] = 0, so the proposition holds automatically. Now we assume that ozgo) > 1,

and we only prove this property on M; N Q1 N U,.

For the sake of simplicity, let F' = F;. As the setting in Lemma 4.3, the indices

(@) o lme1) ..

i,k are always runninginz = 1,--- ;a3 " —o - ,m—1, unless otherwise
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stated. For fixed 1, k, attaching the Bf in the above lemma for each p € PN Uy,

we get a bundle BF. On each bundle B¥, since |z]| > [t|, we have

> () T = S0 o)

Zk Zk 1)
— (64 6, 4+ (5 + 8, )l

(ix) a(lk+1)

aq 1
( 5 + 5%“)( (@k)(ag k) 1) . aglkJrl)(angJrl) . 1)) .\ (1)
(@ _ i) ’
- =00 + 83, 0™ 4 (03, = G ) (0 + ol = 1)
= —o+ (i) Gren) +o(1)
Q" — g
(4.12)

ast — 0 for k =0,--- ;m — 1, where o(1) — 0 as t — 0. The equation (4.12) is
also true for p € Py NU; for I # 0 by the same process. Hence the equation holds
forpe P. If m: Q, — P is the projection, and gz’i = —% — 0ast — 0, by
(4.10), we have

detm = o(1) (4.13)

as t — 0. Hence by (4.12), (4.13) and the main result in [3] for hypersurfaces, we

have

n

XF = a1
/]\/[tr]Ql z:: (|th|2) (Ft)jw

= (-6l + Z i — O (o™ + ") — 1)) Vol (CP") + o(1)

as t — 0. We know that Vol(CP" ') = 1. By Lemma 4.1, we get

XF,
(Ft) 'wn—l
/JwtﬂQlj 0 ‘VE‘2)] !

S s - / () () (2) — 1)da

as t — 0. By the same argument, we get (4.11) holds for i =0, --- ,n. Q
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Lemma 4.5 Let p be a fized point in M, and let d(z,p) be the distance from x €
CP" to p defined by the Fubini-Study metric. Let B,(e) = {x € CIP’"’ d(xz,p) < e€}.

Then there are constants C, o independent of p and t such that

/ W't < Ce? 2 loge? (4.14)
MtﬂBp(E)

for t small enough, where € = |t|.

Proof. Consider the function p : R — R which is defined by

1 itz ef0,1];
plx) =
0 LifzeR\[0,1].

d
/ uJrz—l S / p( (x7p) )wnfl‘
thBp(S) Mt E

Since F; be the defining function of M;. Then in the sence of distribution, we have

Then we have

Then we have

/Mt p(d(w,p) o=l

3

_ d(xap) W d(l‘,p) ¥aY o ‘FtP wn—l
- d/mp( AN +/mm”( SIS SR AL T

Now we have to estimate the right hand side of (4.15). For the first term, we have

(4.15)

c =

/ p(d(x,p) W < Ce*, (4.16)
cpr

1
Assume that p € Uy = {[Zo, -+, Zn]| | Z0| > §|Zj|,j =1,---,n}. Then by (4.5),
we have
E :t(SZ(()ifh

(0) CY%o)

where f, — fo = 2,7 -z

n

# 0. Note that f; is defined in Lemma 4.3. If
we define dV = (QL)"dzl ANdzZ; A -+ ANdz, A dzZ, 1s the Euclidean measure and
T
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|z|* = |21]? + - - - + |24|?, using integration by part, we have

d = E|?
/ p( (x’p))éaalog | t| wn—l
CP" m

e TL Zz‘ 2\d
e (im0 lZil) (4.17)
< o Sl [ ol
&7 Jlzl<2e
For the second term of the right hand side of (4.17), we have
C ~
= / log|f;|dVo| = Ce***loge™" + Ce?| log | fi|dVo|, (4.18)
€ |z|<2e |2]<2
. OO :
where fi(z1, -+, 2,) = filez1, -+ ,e2,)/eM »". If o is small enough, by (3.5)

. ©
again, we have f, — fo = 2, -+ z,‘;”) # 0. Phong and Sturm [14] showed that

| teglnav < c (4.19)
|2]<2

for t small enough. By (4.15), (4.16), (4.17), (4.18) and (4.19), we have

d
/ wnfl S / p( (‘er) )wn—l
MnNBp(e) M €

d(x7p) d([L’,p) 7’ ¥aY |Pj7f|2 —1
= d/ p(———= w”+/ P —00log ———=—=—=w"
cpr ( € ) cpn ( € >27T (Zi:o |Zz“2)d

< Ce™ + Ce® + —2‘
€

log | feldVp|

|2|<2e

= Ce™ 4+ Ce™ + Ce®™ ?loge ' + 6’52”_2| log |ft|dVO}

|z]<2
< Ce’?loge .

Note that in this proof, A < B means there is a constant C' such that A < CB. Q4

Lemma 4.6 There exists a constant C' > 0 such that for t small

Z/ W't < OJt* log |t
iy VM

Proof. Let £ = [t|”. Fix i, , clearly, {B,(¢)| p € P;} be an open covering of P;;.
There is a constant Cj independent of € such that we can choose py,--- ,pn € P,

where m = | , satisfying

0
€2n74]

UZ;:prk (5) ) PZ]

36



By the definition of V;}, we have

U By, (26) S VL.

Hence we have

Then

n—1 20 —1
w <> CJt|* loge
> >

i#] ]
= Ot|* log [t| .

Lemma 4.7 There exists a constant C independent of t such that for any measur-

able subset E of M,

{/ o NI Nw" 2| < C+/log [t| ! - \/meas(E)
E

where
=lo |VF|2
RSNV AD

and
9 — _Z?:O )\’L‘Zl‘Q
>io | Zil?

Proof. Since M, is a submanifold, the Ricci curvature has an upper bound. So

by (3.1), there exists a constant C' such that

— 99y < Cw. (4.20)
2m
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By the setting in section 1, we know that [t*Z,,--- ,t*Z,] € M, if and only if
(Zo, -+, Zy,] € M, so we have

IVE(tZy, - ™7, Z 1t F 2 (Zo, -, Zn).
Since M is smooth, we have an estimate
—Clog [t|™" < |g| < Clog|t|™
for some constant C. By (4.20), using integration by parts, we have

/ |Vgp|2w”_1 < C’/ (le] + log|if|_1)<,u"_1 < Clog|t]_1.
My

My

Since F is a measurable subset of M;, by Cauchy inequality, we have

’/8@/\5«9/\w"‘2’ g/\8g0|§0\/log\t]1\/meas(E
E B

Q
Proof of Theoreml.8. By Proposition 4.4, we have
XF, 4
(Fy)jw"
/]\‘/[thZJ — |VFt|2)j t)j
'~ [ @) i) - v
0
fort=0,--- ,n,ast — 0. So
“~  XF
Lo z<—|wt72>mw_l
R (4.21)

= —6d— Z/ (@) (W)(x) — 1)dz + o(1)

as t — 0. By (3.27) in Lemma 3.3, we have

/ L 9o N DO A w2
MA(URoQs) 2T

1 / - XFE Zﬁ—o Ai‘<Ft)i’2 1
- L) (F); — == +(d—1)f)w" .
MAUT,Q0) (Z (IVFtP)j t)j ‘VFHZ )

n—1 ’
j=0
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2 im0 Ml (F)il®

Note that 6 and are bounded, we have

|V F}|?
XFt . e
/ 3 wrp) ol < (190] + !
Mt\ = OQZ ] =0 Mt\(U?ZUQi)

By Lemma 4.7, we have

[ el e
Mt\(U?:()Qi)
< Cy/log [t|=Y\/meas(M, \ Ut Q;) + meas( M, \ Ul ,Q;).

Consider [Zy, -+, Z,] € M \ Ul ,Q;, without loss of generality, we may assume
that [Zo, -+, Z,] € Up. By (4.7) in Lemma 4.2, we can find k # 0 such that

21| < [£7] Z0]
for t small enough. Since [Zy, -+, Z,] & Qk, there exists a j # 0, k such that
12)| <171
So we get [Zy, -+, Z,] € Vﬁt for some constant C. Hence
M \ U 0Q; C Ui V5™ (4.22)

By Lemma 4.6, we have

n XE .
Ey) qw"
/Mz\(UZ Q) AZO (|VFt’2) ( t)A

< S X o) e =

C
iz I MOVEE A=

(4.23)

as t — 0. By (4.21) and (4.23), we have

XFt T et
Fy)jw™
/Mtj « ’vF|2 ( t)gw
XF, . " XF, o
= (F)w" +/ 1) (F),w"
/ 2_:(|th|2) t)j Mt\(ugloQi)jz_;ﬁthlz)j t)j

th( 70Q1

= —6d— Z/ Wi(x) (i) — 1)dx + o(1)
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a0 (0) .
as t — 0. If M, is defined as the zero set of Z;° ---Z,OL‘”0 = 0 counting the

multiplicity, since 6 is a bounded function, we have

/ Qw"_lz/ Sw™ 4 o(1)
M, Mo

as t — 0. Zhiqgin Lu [10, Theorem 5.1] showed that

/ [ — —é.
Mo n

By (3.31) in Theorem 3.4, we have

10 = SRS v - i) +o01)
as t — 0. Hence
.. d
gi%td_&M(tl d—1 O S
= (-2 s [ @) - 1)ds)
for generic (A, -+, An). Q

Since for a Kéhler—Einstein manifold, the K energy has a lower bound, Lu[11]

give a general result of theorem 1.8.

Theorem 4.8 (Lu) If M is a Kihler—Finstein hypersurface with positive first Chern
class, then we have

Ad=1)(n+1) 4 Z /OOO (@) (Wl(x) — 1)dz < 0

n

for any Ao, -+, N\, € R with Z/\Z- =0.
i=0

Here, we give two effective ways to verify the K stability for hypersurface.
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Theorem 4.9 Let M be a compact Fano hypersurface defined by the zeros of the
polynomial F' of degree d > 1. If one can find a sequence (A, -+, \,) with Z A =

0 such that A < 0, then there is no Kahler—FEinstein metric on M.

Proof. By the equation (1.2), if A = max Z )\ka,(f)) < 0, then we have
0<i<p —

Z )\ka,(f) < 0, for all 0 <7 < p. By the equation (1.3) and (1.4), we have either
k=0

-3
k=0
for some 0 < j < por

Z)\ a(“ —|—oz,(€“:c ,0< 2 <b,

— Z)\kozk” , T > b,
k=0

for some i1 # 19, 0 < iy,iy < p, x € [0,b), 0 < b < 00. So either ¢.(z) = 0 on [0, c0)

Yi(z) =

or
a,(f) 0<z<h,

Yile) =

0 ,z >0,

for some 0 < 7 < p, x € [0,b), 0 < b < co. By theorem 1.8 and the fact alij) > 1,

we hane

Hence M is not K stable. By theorem 4.8, we know that there is no Kahler—Einstein

metric on M. Q

Theorem 4.10 Let M be a compact Fano hypersurface on CP" defined by the zeros
of polynomial F(Zy,--- ,Z,) of degree d > 1. Suppose that for some k =0,--- ,n,
we have ozl(j) =0 foralli =0,---,p. Then there is no Kdhler—FEinstein metric on

M.
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Proof. Without losing generality, we assume that F' miss the term Z,. Write

P (i) i
F(Zo, Za) = > aZit - 72
1=0

1
Take \; = —i,1=1,---,n, and \g = % From the equation (1.2), we have
_ )y _ ~y 0
A= &1%);(; Apay) = (%1%);(; Apay’) < 0.
By theorem 4.9, there is no Kahler—Einstein metric on M. a
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5 Some Examples

Example 5.1. In CP? let M be defined by the zeros of the polynomial
F(2,21,2) = 28 + 22 + 23 + 2221 + 22020 + 2212

of degree 2. Let A\, A, Ay be 3 rational numbers sum to 0. By the equation (1.2),

we have

A= maX{Z/\O, 2)\1, 2)\2, )\0 + /\17 /\0 + )\2, )\1 + )\2} > 0.

And by (1.3), (1.4), we have

iﬂ(l'o, Ty, LCQ) = m1n{—2)\0 + 2%0, —2)\1 + 2£C1, —2)\2 + 2%2,
—)\0—)\1+x0+x1,—)\0—)\2+x0+x2,—)\1 —)\2+JI1+ZL’2}.
1/10(1’) = 1’I11Il{—2/\0 + 2(13, —2/\1, —2)\2, —>\0 - )\1 +x, —)\0 — )\2 + x, —)\1 — )\2}
77/}1(1’) = min{—2/\0, —2)\1 T 21‘, —2)\2, —/\0 SN )\1 -+ Z, —)\0 - )\2, —)\1 — )\2 + ZE}
w2<.’17) = min{—2)\0, —2)\17 —2)\2 + 223, —)\0 - )\1, —)\0 — )\2 + Z, —)\1 — )\2 + LE}

For the 3 numbers A\, A; and Ay, we must consider 3 cases:
Casel: A\g =0, Ay >0, Ay < O.

In this case, since 2X\g = 0 = A1 + g, (Ao, A1, A2) not be generic. But theorem 4.8
shows that (1.5) is valid for any choice of Ao, -+, A, € R.

A= maX{O, 2)\1, —2)\1, )\1, —)\1, O} = 2/\1 > 0.

o(z) = min{2z, —2A;, 2\, — A\ + 2, A\ + 2,0} = —2)\; as x > 0,

1(z) = min{0, =21 + 22,2\, — A + 2, A\, 2}
oM\ 420 if 0<z < A,

0 ,lf $2)\1,
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Yo(x) = min{0, =21, 2A; + 22, =\, A\ + x, 2} = —2)\; as ¢ > 0.
So ¢Yy(x) =0 as x>0, y(z) =0 as x > 0, and

2 Lif 0< 2 <\,

U (x) =
0 ,lf T 2 )\1.
By the equation (1.5), we have
d
lim t— M(t)
t—0 dt \
2, 2\ -1 ! = o o
- —@—i——§+/P2-Mx+/ 0@4mx+/ 0@4mx+/ 0-(=1)dz)
2 2 0 At 0 0

= —3)\1 + 2)\1 - _)\1 < 0.

Case2: \g >0, \1 >0, Ay <O.
We may assume that \g > A and Ay = =g — A1.

A= max{2>\0, 201, =200 — 2A1, Ao + A1, —Aq, —/\0} =2) > 0.

Yo(x) =min{=2\g + 2z, =21, 2o + 21, — Ao — A1 + 2, A\ + 2, Ao}
—2Xo+2x ,if 0< 2z <A — Ay,
oM F 2> A — AL
P1(x)  =min{=2\g, =21 + 22,2Xg + 2X1, = Ao — A+ T, A1, Ao + 2}
= -2 asz > 0.

wg(fﬂ) = min{—2)\0, —2)\1, 2)\0 -+ 2)\1 -+ 25[}, —)\0 — )\1, )\1 -+ xZ, )\0 + Q?}
= —2)pasz > 0.
So ¢j(x) =0as x>0, 1y(x) =0as x>0, and

2 if 0<ax<Ag— A,
0 ,lf $Z>\o—>\1.

Yo(x) =

By theorem 1.8, we have
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. .d
lim tEM(t)

t—0

2, 2\-1-3  [N7h > > >
= —(—O——I-/ 2-1d:v+/ O-(—l)da:—l—/ O-(—l)da:—l—/ 0-(—1)dx)
2 2 0 A 0 0

0—A1
= —3/\() + 2)\0 — 2/\1 = —/\0 — 2)\1 < 0.
Case3: Ay < 0, A < 0, Ay > 0.
We may assume that \g > A\ and Ay = —X\g — \1.

A= max{2>\0, 201, =200 — 2A1, Ao + A1, —Aq, —/\0} = —2) —2)\; > 0.

Yo(r) = min{—2Xg + 2z, =2X1,2X0 + 2A;, = Ao — A1 + 2, A\ + 2, N}
=2\ + 2\ if 2 > 0.
P1(x)  =min{—2\g, =21 + 22,2 g + 2A1, —Ag — A1 + 2, A1, Ao + 2}
— 2N+ 2\ if 2 >0,
Po(x) =min{—=2Xg, —2A1, 20 + 2\ + 22, =g — A\, A+ 2, Ao + 2}
200 +2A1 + 22 Lif 0 < x < =2)\g — Ay,
—2X\g Lif x> —2)g — A

So Yy(x) =0as x> 0,9;(z) =0as x> 0, and

2 if 0<x< =2\ — Ay,
0 ,lf I2—2)\0—)\1

Uy() =
By theorem 1.8, we have

limt%./\/l(t)

t—0 SV
2. (=20 —2X\;)-1- ~2Xo-\

= —(—( Ao = 2h) 3+/ 2 1dz)
2 2 0

= 3/\0+3)\1—4/\0—2)\1 :)\1—/\0 < 0.

1 2
For example, let (Mg, A1, Ag) = (_5’ —3 1). Then we have

1 2 1 2 1 2
A :max{(——)Q,(——)2,12,(——)1—|—(——)1,(——)1+11,(——)1+11}
3 3 3 3 3 3
4 21
=max{—=,—=,2,—-1,-, =} =2.
33 33
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And

4 2
- -2, 1+z,—- +ux,

2
YPo(x) = min{g + 2z, 3 3

1
—g}:—Qas:UzO,

2 4 2 1
Py (x) = min{g, 3 + 22, —2,1+ x, 373 +z}=—-2asx >0,

2 4 2 1
¢2($) Zmin{—,—,—2+2x,1,———|—x,———i—x}
3 5 3 3
:min{g,—2—|—2x,—§+x}
. 4
242z ,if 0<2x< =,
— 3
2 £ o> 4
- if x> -,
3 — 3

So ¢Yy(x) =0as x>0, Yy (z) =0as x> 0, and

) 4
, 2 7lf OSJ]<§,
Yy(r) = 4
0 ,if x> —.
3
By theorem 1.8, we have
d
g M)
4
2,2-1-3 g 8 1
=\ =(= 2-lde)=-3+- =—2 <
(73 +/0 i

So we know that M is K stable.

0.

Example 5.2. In CP? let M be defined by the zeros of the polynomial

3 2 2
F(z0, 21, 22, 23) = 25 + Dz12023 — T2523 + 22523

14 2 3

of degree 3. Let (Mg, A1, A2, A3) = (=, =, ——=, —=). Then we have
55 5 5
6 1 1 7 1
A= —_ ===, —=}=—=<0.
max{—z,—5: =5 "5/ = 73
. .6 1 1
¢($0,£L’1,$2,1’3) = mln{g + 3.%’2, g + T + i) + s, g + 21’0 -+ X3,
And
6 11 7 1
—min{~, =, = 42z, <} = = >0
7,00(1') mln{57575+ l‘,5} 5 as T = U,

46
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6 1 17 1
di(2) = min{y, - + 2,

55 755 5
6 1 17 1
@Z)g(l‘):mln{g—FgQﬁ,g—{—Qf,g,g—{—Ql’}:gaSQS'ZO,

3 (x) :min{g,é—kx,é—kx,g—kx}

%—1—:1: Jf 0< oz < 1,

- 9 if z>1.
Fo >

So ¢y(x) =0, Yy(z) =0, Yy(x) =0 as x > 0, and

1 ,if 0<z <1,

Uy (x) =
0 ,if x>1.
By theorem 1.8, we have
. /4
fon M)
——-2-4 1
2 5 16
= —(=—— 1:0dzx) = — > 0.

i +A D=1

So we know that M is not K stable. Since A < 0, we can also use theorem 4.9 to

get the same result quickly. a

Example 5.3. In CP? let M be defined by the zeros of the polynomial

2 2
F(z0,721,22) = 21 — 525 — 32122

1 1
of degree 2, F' miss the term z. Let (Ag, A1, A2) = (=,0

50, —5) We have

1
A = max{0, —1, —5} = 0.

. 1
(o, 11, T2) = min{2z4, 1 + 224, 3 + x1 + 22}

And
1
o(z) = min{0, 1, 5} =0asz >0,
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1(z) = min{2x,1, % +x}

1
o) = min{0,1+2z,§ +z}=0asxz >0.

So ¥y(z) =0, Yy(x) = 0 and

) 1
, 2 7lf OSJZ<§,
Pi(z) = 1
0 ,if > —.
2
By theorem 1.8,
1
. .d 2 0-1-3 92
i1 M(1) = 5 (~ +/0 2dr) =1 > 0,

Hence there is no Kéahler-Einstein metric on M. This example is satisfies the

conclusion of theorem 4.10. Q
Example 5.4. In CP?, let M be defined by the zeros of the polynomial
F (29, 21, 20, 23) = 25 + 82325 — 62021 + 52323
of degree 3. Let (Mg, A1, Ao, Ag) = (=10, —17,—20,47). Then we have
A = max{—30,—54,—37,7} =7 > 0.

U(xo, 1, T2, x3) = min{30 + 3¢, 54 + 221 + 29, 37 + 229 + x1, =7 + 229 + x3}.

And
Yo(x) = min{30 + 3z,54,37 + 2z, -7} = =T as x > 0,

Y1 (x) = min{30,54 4+ 22,37+ 2, -7} = =T as x > 0,

() = min{30,54 + z,37, =7 + 2z}
—7+4+2x ,if 0<2x< %,

- 37
30 Lif x> —.
A ¢ > 5

48



¥3(z) = min{30,54,37, -7+ z}
—7+z if 0<2z<37,

30 ,if x> 37.
So ¢y(z) =0, ¢1(z) =0 as x > 0, and
) 2 ,if0§x<3—7,
2\T) =
0 ,if x23—7,
2
. 1 it 0< 2 <37,
Vy(z) =
0 ,if x> 37.
By theorem 1.8, we have
d
limt— M (t)
t—0 dt 37 \
2 224 9 11
= —(—7 +/22-1dx+/ 1-de):—0>0.
3 3 0 0 9

By theorem 4.8, there is no Kahler-Einstein metric on M.

Example 5.5. In CP'®, let M be defined by the zeros of the polynomial
F= 32877 12374 + 9820722718 1 187274, 744 + 10125, 73,733
—98Z3 732 + TAZS, Z8, 738 + 69728 ZaX 7t 4 36 Z30 28 733 + 61258 732

2 2
y i =1,3,---,99, \; = ——,1=2,4,---,100.
7+ 1 1

of degree 50. Let \g = 0, A; =
Then we have

109 7 56 7 20 19 5 25 1

— 2—————————————:
A=max{32 - o e T T 03 1 5

109
ZZJ(ZL‘(), tee ,1'100) = m1n{—32 + 18[E0 + 321‘1, ? + 36[132 + 142784,

7 56
—3 4+ 1023 4 22299 + 18271, FH + 229 + 4x33 + 44263,

7 20
-+ 8.’B16 + 33323 + 39%787 — + 31([22 + 19[B37,
4 19 11

D
—— + 6£L‘29 + 6$3() + 382779, —g + 26%29 + 171’33 + 71‘70,

i

1
_E + 19I37 + 18[1771 + 13{23'99, —5 + 181‘60 + 321‘79}.
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Now, we have to calculate ¥;(x),7 =0, ---,100.
109 75 72 19 5 25 1
— min{-32+ 18z, —2 L X L2 W 90 2 2
Vo(z) = min{-32+ 18z, ==, TR AT 5)
—32 4 18« ,lf O§$<E,
B —= ifx>19
5 M=y
109 75 72 19 5 25 1
— min{—32 432y 2 L0 02 19 9 o0 1
¥iz) = min{—32+ 32z, ==, TR AT 5)
32432 if 0<z<
_ : L6
S i
5 64
109 75 72 19 5 25 1
— min{—32. —~ LA A i N \ W >
Valw) = mind =32, 2= 4368, =5, o5, T T T3 T 5l - o220,
109 7 5672 19 5 25 1
~ min{-32 —2 L e e A RO SR
%(1’) mm{ ) 37 2 x785747117 207 37 447 5} 3 aSLL‘_O,
109 7 56 792019 5 25 1
— minf-32 —2 L2 F20 29 2 29 v 3900 >
1/}9(‘%.) mln{ ; 37 2785+ $,4,11, 207 37 447 5} 3 asx_O,
109 7 56 7 20 19 5 25 1
— minf_32 27 L9201 i L N S U O
%6(55) mln{ 37 37 2785?4+8x7117 207 37 447 5} 3 asx_O,
109 7 56 7 20 19 5 25 1
— min{-32 o _Li99p X0 L S ggp 27 0 29 Ty >
V2(7) = min{—32, g $,85,4,11+3 R RETYE 5} 32 as x> 0,
109 7 56 7 20 19 5 25 1
— minf_32 22 L 901 N——=r° 2 Y/ -
Vaslw) = min{ =32, ==, =5, eo. T T30 Ty Ty T 5 T w20
109 7 56 720 19 5 %5 1
—min{ 30, 2 L0 LAY 1 e P oge 220 I 30 s>
Vaol@) =min{ =32, ==, =5, 55 1 i g T0 3 H2e Ty ) = B2 ase 20,
109 7 567 20 19 5 25 1
— min{-32, — —- 2 L2 7 e S G >
Vao(r) = min{=32, —=, =5, ops o — gy H 0B mg g Tk = B2 as e 20,
109 75 72 19 5 %5 1
—minf—32 2 L0 LA T 0 e 20 I L 30>
¢33(x) mln{ P 3 5 2785+ I74a117 20’ 3+ 7.’L’, 447 5} 3 aSl'_O,
109 7 56 7 20 19 25 1
— min{—32, — L 2 L= 49, 22 2 22 v >
s7(x) = min{—32, = 2’85’4’11+ 9z, 50° "3 44+19x, 5} 32 as x>0,
109 75 72 19 5 25 1
—min{_g39 2 L0 L AU 19 0 20 1 e >
Voo(w) = min{ =32, ==, =5, oxs 10 T Tog T3 Tagr 5 187k = 32asw 20,
109 7 56 7920 19 5 25 1
— min{-32 —2 _L 2 e S B
Yos(e) = min{ =32, ==, —9, o+ 1 T T T 5l T T2 as w20,
109 75 72 19 5 2% 1
~ min{-32 —2 L2 LA 19 0 NN L 30 a0 >
Yro(r) = min{=32, ==, =0, ee o Ty T3 T T Tt = R as e 20,
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09 7 56720 19 5 25 1
= min{-32, —, — 418z, =, L 2 22 2 g V= 32asa >
Y71(x) = min{—-32, 3 2+ T U1l 203 44+ 8z, 5} 32 as x>0,
109 7 56 7 20 19 5 25 1
— min{-32, —> L 2L e R R W1
Yrslw) = min{ =32, ==, =5, g5, 1 T30 I —op T3 T 5 T R as w20,
109 756720 19 2% 1
— min{-32, — L 2 L2 7 L2 2 g9l s 30asa >
Yr9(w) = min{ '3 9°85°4° 117 20 x, 3 T 5—1—3 x} 32 asx >0,
109 75 72 19 5 25 1
= min{-32, —2 4 g, —~ 2 L2200 20 Ty >
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,100. By theorem 1.8, we have
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