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Abstract

The correlation of returns in international stock markets exist asymmetric
structure, which cause extremely tail dependence. The copula functions are commonly
used to describe the dependence between random variables. Most literatures use basic
pair-copulas to model the dependence of two variables, like stocks, bonds and
exchange rates. This article try to use multivariate copulas, mainly 4-copula, and
regime-switching method to construct a portfolio dependence, and extend to asset
allocation.

Given the fitting regime-switching copula, we use the model to decide
investment strategy. We try to select the optimal weights of portfolio by different
objective function, and we adapt a dynamic anticipative model, which can take all
new information for parameters estimation. Empirically, we find that the copula-based
model with regime-switching can capture more variation, and decrease the return loss

from downside co-movement.

Key word: asset allocation, multivariate copula, regime-switching
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1. Introduction

The correlation structure across financial markets has faced a lot of tremendous
fluctuation. During the last few years, mainly from 2007 to 2010, several financial
crisis induced lots of huge losses for many funds and investors. There is sufficient
evidence that negative returns are more dependent than positive returns in
international equity markets. Maximizing the returns is no longer the only target for
investment. Because the probability of loss increases sharply, people start to pay more
attention to risk management.

In financial and economics, the asymmetry phenomenon in stock markets has
been researched in various aspects. Ang & Chen (2002) give a test for asymmetric
correlation based on conditional correlations. Ribeiro and Veronesi (2002) present that
there is a higher correlations between international stock markets during market
downturns. Ang & Bekaert (2002a, 2002b) set a Markov switching model for
international returns and international asset allocation with two regimes respectively.
Patton (2004) observes significant asymmetry evidence in the dependence of financial
returns both in the marginal distributions and in the dependence structure.

Aiming to obtain more efficiency for modeling lower returns correlation, lots of
papers use copulas to describe the integrated distribution between assets. In recent
years, the most popular method for dynamic time-varying copula model is
regime-switching copula. Patton (2006) tests a model for asymmetry exchange rate
dependence between Deutsche mark and the yen with time-varying copulas. Pelletier
(2006) decomposes the correlation matrix with Markov regime switching. Okimoto
(2008) also use a Markov switching model to capture more asymmetry evidence.
Chollete et al. (2009) model the international financial returns in G5 and Latin
American with a multivariate regime switching. Garcia and Tsafack (2011) test the

extreme comovement between equity and bond markets. Candido et al. (2012) use
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hidden Markov chain (MC) allowing the unobserved time-varying dependence
parameter to vary according to both a restricted ARMA process and an unobserved
two-state MC. Manner and Reznikova (2012) generally provide a survey on various
time-varying copulas.

Definitely, there are many methods for optimal asset allocation strategy. There
are two main methods of asset allocation. The first one is anticipative model. The
anticipative strategy does not take account of future observations, and decides the
investment strategy at decision date, by Blake, Cairns and Dowd (2001, 2003), Huang
(2010), Huang & Lee (2010). The second method is adaptive model, which can take
all new information for future strategy, as dynamic control (e.g., Haberman & Vigna,
2002, Jangmin et al., 2006, Emms & Haberman, 2007). Due to the difficult to acquire
closed form solution, the application of dynamic control still exist some limitations.
The first and also the most important is a suitable multivariate model. Most of these
models are based on Brownian motions, but that cannot capture stock market
downturns. A powerful technique to solve the problems is stochastic time-changing.
No matter what categories the model belongs to, fitting and modeling with time is
absolutely essential. Luciano and Schoutens (2006) consider a common gamma
process with two independent Brownian motion, Cont and Tankov (2004) proposed a
bivariate correlated Brownian motion.

In our paper, we use the regime-switching copula set a multivariate dependent
model , and capture time-changing information, especially the lower tail risk. Huang
(2010) propose the model that use multi-period anticipative concept to enhance the
dynamic effect. According to the empirical results, we find that our model can capture

more possible risks, and select optimal weights of the portfolio to get better returns.



2. Copulas: basic definition and concepts

In this article, we focus on the dependence of 4 assets portfolio. Except Gaussian
and t copula, other copula functions, mainly Archimedean copulas, do not have a
general multivariate distribution function. Umberto et al. (2004, 2012) explain
complete and explicit copula methods in finance and more application. For capturing
the asymmetric risks, we induct the 4-copulas p.d.f. and c.d.f which can get tail
dependence of the data, and we use copula sampling method to generate random

variables for simulation.

2.1. Pair copula
By Sklar(1959), a pair copula is a joint distribution functions of standard uniform

random variables:

C(v,z)=PWU, <v,U, <2) (2.1)

where v,z e[0,1].
So from probability theory, that the probability-integral transforms of the r.v.s X
and Y, are distributed as uniform:
U =FKWX), U,=F({)
And we can use copula to give a joint function at (x, y):

Fx,y)=P(X <x,Y <y)=C(F(x), /() 2.2)

2.2. Multivariate copulas

According to Schweizer and Sklar (1983), an n-dimentional copula
C(u,,u,,...,u,) s a multivariate distribution function in [0,1]":
F(x,x),...,x,)=C(u,u,,....,u,)

:C(E(Xl),Fz(xz)’“"Fn(xn)) (23)

and we can write the joint density function of the n-dimentional variable X as



VACTE PR A C(upuz,---aun)-ll[f,-(xf)
i (2.4)

where f; denotes the density function of variable x;.

By the concepts of n-dimentional copulas, we can use them to describe the
correlation between the variables, some like assets. Obviously, the result of copula
fitted is effected by which copula we choose. For different kind of assets, we can

select appropriate copula expected to display the correct data information.

2.3. Parametric families of n-dimentional copulas

In this article, we aim to get suitable weight of asset allocation by copulas. The
most we care about is the downside co-movement between assets. Regarding to above
section, we are going to present several common families of copulas, which include
symmetry ones, and tail dependence ones. We introduce main copulas used below:

P.S. Tail dependence:

t :hmwj U iy £1=0,1-6,1-6,1-0)
x & 51 1-6

2.3.1 Symmetry copulas
a) Gaussian copula

The Gaussian copula is defined by the cdf
Cy (uyotty s 1,) = D (7 (), @7 (10,), D7 (1), @7 (1))
and the pdf by
1 1 -
c?(”n“za”w%) ZWCXP(_EQJ(R : _[)Q'J
-1 -1 -1 - T
where ¢ =(®" (), @ (1), 7 (1), @' (u,)) .

Gaussian copula has no tail dependence and its dependence parameter R is the

correlation matrix.



b) Student-f copula

The Student-¢ copula is defined by the cdf
Czte,v (v, 0y, uy,u) =1y, (t,;l(ul),t;l(uz),t;(u3),t1;l(u4))

and the pdf by

v+n v) ) | R =3
r ry— I+—¢' R
03 1) |

vl

r(‘;] r(vzﬂj 111[(1+g:]2

i

Cr, (W 1y, 10,) = |R|f
1 1 1 1 V,
where ¢ = (" ().t ().t ()t ()
Student-¢ copula, some like Gaussian copula, has a correlation matrix coefficient R,
and a degree of freedom v . Specially different from the Gaussian copula, it shows

some symmetry tail dependence.

2.3.2 Asymmetry copulas
a) Gumbel Copula

The Gumbel copula is defined by the cdf

CG(“lv”z’”w’h) = eXp{_[i (_ln”;)a:| }
and the pdf by

4 (_lnu_)a—l
CG(u1a“2’u3a“4) = HM—I-CG(ul,uz,u3,u4)-
i=1 i
3/a—4

{{i(—lnui)a} 7 +6(0{—1)|:i(—]nui)a:|

+Ha-(1a —7)[i(—lnui)“} 7

i

+Ha-)(2a-1)(3a - 1){i (~In uu)“} _ }

i=1



The Gumbel copula has only upper tail dependence. So as we need, we use the
Gumbel survival copula which is be rotated 180 degrees and have the same pdf as

before:

EG(ul,LtQ,u3,u4) :cG(l—ul,l—uz,l—u3,1—u4)

and it has only the tail dependence

n n i N\la
U L Zzl(_)(_l) (l) B 4_6_21/0: +4‘31/a _41/a

T :0’ T = . ll 3 3 21/0{ 31/(1
) SO L0 R

n-1
Z"Zl (n—l—i

b) Clayton copula

The Clayton copula is defined by the cdf
4 -l/a
CC (uy,uy 1y, u,) = {Zui“ —3}
i=1
and the pdf by

A 4 ~(Va+4)
e (uy,uy,up,uy) =1+ a)(1+2a)(1+ 3a)Hu;(“”) . {Zu,.“ - 3} ,
i=1

i=l1

which has only upper tail dependence

TU o TL :(le/a _ (ijl/a
’ n-1 3

The copula distribution we refers above have different characters, and the tail
dependence is helpful to describe the data correlation. Due to the various functions,
we can select adequate copula to fit as the joint distribution function of financial data.
In this paper, we focus on the risk control and want to avoid big loss for our fund

value, so we expect to obtain higher value by copula models.



3. Copula model selection

Our model aims to capture the type of asymmetric dependence found in
international equity and bond markets. For asset allocation, we need to reduce the
fluctuations in invested assets, especially downside co-movement. By means of
regime-switching copula, we want to distinct more fluctuations in indices to maximize
the portfolio returns.

Therefore, we need to allow for asymmetry in tail dependence, regardless of the
possible marginal asymmetry or skewness. Copulas, also known as dependence
functions, are an adequate tool to achieve this aim. And simultaneously, for marginal

distribution of asset returns, we also try to obtain the evidence of asymmetry.

3.1 marginal distribution

It ‘s well known that the residuals obtained from a GARCH model are generally
non-normal. This observation has exposed possibility of fat-tailed distribution.
Hansen(1994) proposed a new density to model the GARCH model residuals, which
is a extension of the Student-# distribution with skewed factors. The Hansen’s skewed

Student-# distribution is defined by

d(z;n,1) = (3.1)

where

1 r(n+1j
aE4/Ic77_ b*=1+31"-a*, c= 2

EEa

b

and 77 and A denote the degree-of-freedom parameter and the asymmetry parameter

respectively. We will write Z~ST(77 , 1) which means the random variable Z has the



density d(z;n,A).
After the introduction of the residuals distribution, we continue to finish our

models. For marginal distributions for the returns of given assets, we use

ARMA(1,1)-GARCH(1,1)-Skewed-z model to fit asset returns:

r, =M tar,  tbe,  te& &

i“it—1 it it

2 2 2
O = kz' P& 1490,
z,, ~ST(n,,4,)

(3.2)
The variables 7;, represents the log returns of equity i , O, f, denotes the conditional
variances of 7;,. The parameters of the marginal distributions are grouped into one
factor 6 =(36,,...,8,) with &, =(u,,a,,b,.k;, p..q,.17,, %)

3.2 Dependence structure

Our dependence model is characterized by tow regimes, one the normal regime

(s, =1) corresponds to a symmetric dependence where the conditional joint normality
can be supported, and a second regime assumed as a worse state (s, =0 ), corresponds
to the asymmetric regime in which markets are strongly more dependent for negative
returns than for positive returns. The conditional copula is given by:

- . QN A
F(xl,xz,x3,x4)—C(ul,uz,u3,u4,6’ ,0 |S;)

=s,-CY (ul,uz,ua,u4;t9N)+ (1-s)-C" (ul,uz,u3,u4;t9A) (3.3)
where u, = F;(x;) ,and s, =0,1 is a state variable that follows a Markov chain
process with a constant transition probability matrix as below.

P 1-
M = © ;
1-P QO
P=P(s,=1|s,,=1) and Q=P(s,=0]|s_, =0).

In the previous chapter, we talk about a lot of copula functions. According to the

variety features of these functions, we have several choices to fit our model.



Additionally, we will compare the fitness with no regime-switching copula to observe

the improvement.

3.3 Estimation
The maximum likelihood method (MLE) could be very computationally

intensive, especially in the case of a high dimension, because it is necessary to
estimate jointly the parameters of the marginal distributions and the parameters of the
dependence structure represented by the copula. Let us denote the observed data by
3, ={X,,....,X,} where X, ={x,...x,,} . The log likelihood function is given by:

r

L(5,6;3,) =D log [(X,36,013,.,)

=1 (3.4)
Where 6=(p",p",P,0) is the parameters grouped of the copula and the transition
matrix. For the time series model of changes in regime, Hamilton(1989, 1994,
Chapter 22) presents a filter procedure to perform this kind of evaluation. With

¢=(s,1-5,)", we denote the density function conditionally to the state variable S, :

_f(xz;5’6|§t—l’st :1):|

T £(x,:6.013,,.5,=0)

4
C(“lauz’”v”bg s, :l)'Hﬁ(xi,t;é;)

i=1

4
c(ul,uz,uS,u4;6’|s[ = 0)‘Hﬁ(x,-,z;5,-)
L =1 (3.5)

By the density function 7,, we can write the past returns as
f(Xt;570|§[—]’St)=§t'77t (36)
and it can be integrated to a unconditional density function:

1
[(X38,013.)=2 P(s,=5|3,36,0) f(X,;6,0] 3,5, = ).
s=0 (3 7)
The conditional probability, denoted by

A

S =[P(s, =113,,;6,0), P(s,=0]3,,;5,0)]', (3.8)

9



in different regime state can be computed by Hamilton filter. Given a starting value
521‘0 , the optimal inference and forecast for each date t in the sample can be found by

the following iterating equations:

é - M (3.9)
" 1'(§t|t—1 @ 77z) .
S =M-&, (3.10)
where © denotes element-by-element multiplication. Finally, the log likelihood
function can be calculated of this algorithm:
T
L(5,6;3,)= log f(X,;6,0]3,.,)
t=1
T A
— z log (ép—lﬂt )
=1 (3.11)

Furthermore, from chapter 2, we know that the joint distribution density can be
written as a copula density product the margin density. According to the formula, the
log likelihood function can be written as

L(6,6,3;)= Zlog(C(um-u’%)'li[f,-(xi)J

4
=3 1(5;3)+L.(5,6;3,)
(3.12)

where
L(6:3,)= ZIng(xnﬁl
L(5,0:3,)= Y log £,(3,:8,|3,).
t=1

We see that the log likelihood function can be decomposed into two positive
terms: one term involving the copula density and its parameters, and one term
involving the margins and all parameters of the copula density. Because of the
numerous parameters needed to estimate from marginal distribution and copula

function, it is difficult to estimate all parameters at one step. For that reason, our

10



structure allows for a two-step estimation method, proposed by Joe and Xu(1996),

called inference for the margins or IFM:

1. As a first step, we estimate the marginal distribution’s parameters:

4
0 = argmax ZLi(éi;gt)

5=(81.+64)eA ‘o1

2. Asasecond step, given O, we estimate the copula’s parameters:

6 = arg max L.(0,0;3,)

0O

where A, © represent the sets of all possible values of &, @ respectively. For the second
step, René and Georges(2011) give a proposition of the decomposition of the copula’s

log likelihood function.

3.4 Portfolio selection
After we have estimated all parameters by two steps, we continue to decide the
method how to choose the best weights for our portfolio. The fund invested by the

weights and asset returns are denoted by

F(t+)=F(t)- i w, (1) (1+7.(1))
= (3.13)

where F(¢) means the fund we hole at time ¢, w,(¢#) and r,(¢) are the weights and daily

returns of every asset. Here we try to use two objective functions:

1) Quadratic cost function :
By Wang and Huang (2010), we consider the periodical targets at each time ¢,
where ¢ = 1,...,n, where n is the last date. The target value hold at time ¢ is
F*t+)=F*@)(1+r*(@)), (3.14)
where r*(¢t) = Max(r,,r,(t)), 7 1s the guarantee rate, and 7, (¢)1s the minimum return

of the four assets at time ¢. The target fund represent we can invest no worse than the

11



target rate, such as risk-free rate, to satisfy we will have a reasonable return. The cost

function at time ¢ is defined as

C)=0(F*(O)~F() +x(F*(O)~F(®), for t=1..n (3.15)

The former part of the cost function is to control the final fund value, to reduce the
risk of asset matching. The second part of the cost function is to hold the downside
risk. The higher § means the achievement of the fund final target is more important.
The higher ¥ means we take more attention to the downside risk than the asset
matching.

We want to minimize the future cost to determine our weights per period.
Consequently, we can write the value function as:

V(E,)= ngnE (GO I|E,) (3.16)

where G(n=>"" v"C(u)denote the discounting future costs, /', denote the

information we obtain until time 7, and 7, = {w(s),s =¢,£+1,...,n—1} represents the

investment strategy of the future. By the objective function to control the future cost,

we can obtain an optimal weights for every period.

2) Target volatility

For risk-control target, target volatility is one of the most popular methods that
we can control the volatility and make the fund value have smaller fluctuation. For the
purpose, we can fix our investment not to be so risky, and have a conservative
decision. We restrict the volatility of fund to keep as the historical data, for

maintaining the return stability.
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4. Empirical analysis

4.1 The Data

For general portfolio, we select four major stock indices as our assets. We
employ the daily observations of S&P500, DAX, CAC40 and FTSE as proxy for
target stock indices. The S&P500 index, which began from 1957, based on the
common stock prices of 500 American companies. The DAX for the Deutsche Aktien
Index, started from July 1, 1988, is a total return index of 30 selected German blue
chip stocks traded on the Frankfurt Stock Exchange. The CAC40 for the French
Cotation Automatique Continue Index, founded by December 31, 1987, represents a
capitalization-weighted measure of the 40 most significant values among the 100
highest market caps on the Paris Bourse. FTSE100 for the Financial Times Stock
Index, began on January 4, 1984, is a share index of the stocks of the 100 companies
listed on the London Stock Exchange with the highest market capitalisation. Our
sample covers the period from January 1, 2001 to December 31, 2010.

Table 1 provides summary statistics on the selected stock market returns. The
period is from Jan 1, 2001 to Dec 31, 2005. We use the former five years to fit our
model to obtain initial parameters, and the latter five years to compare the returns that
we simulated.

From Table 1, we can see that S&P500 index has the lowest average daily returns
and variance and DAX index has the highest daily returns and variance. In addition,
all stock indices have significant non-zero skewness and positive excess kurtosis. The
Jarque-Bera test is large and significant, that imply the assumption of normality is

rejected.
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Table 1.

Descriptive statistics of daily returns of stock indices

Statistics S&P500 DAX CAC40 FTSE100
Mean -0.0023 -0.0124 -0.017 -0.0077
Median 0.0399 0.057 -0.0039 0.0415
Maximum 5.5744 8.005 7.0023 5.9038
Minimum -5.0468 -9.5756 -8.775 -5.5888
Std. Dev. 1.1595 1.7851 1.5579 1.2013
Skewness 0.1673 -0.0724 -0.0414 -0.0866
Kurtosis 5.2973 6.06 6.6065 6.4996

Jarque-Bera Statistics ~ 273.9771 477.0597 661.5252 624.0853

4.2 Estimation of the marginal models

Table 2 presents the estimates of the ARMA(1,1)-GARCH(1,1) model with
skewed-¢ marginal distribution. The residuals of returns is measured via  and 4. We
can observe that excluding FTSE100 index, the other three index have relative
significant degree-of-freedom #. For the asymmetry parameter 4, all stock returns
have significant negative results. That means the skewed-¢ marginal distribution has

preferable fitness.
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Table 2.

Parameter estimates of the ARMA(1,1)-GARCH(1,1) model with skewed-z distribution

Parameters S&P500 DAX CAC40 FTSE100
C 8.12E-05 1.12E-03 7.86E-04 4.61E-05
(-0.8359) (1.8312) (1.4592) (1.6962)
AR 0.6131 -0.9215 -0.8893 0.8594
(2.3478) (-14.8262) (-11.4875) (14.0233)
MA -0.6698 0.8893 0.8579 -0.9097
(-2.7257) (12.0435) (9.9349) (-18.6771)
K 6.63E-07 9.26E-07 8.07E-07 9.36E-07
(1.4769) (1.4703) (1.5724) (2.2799)
ARCH 0.0654 0.0786 0.0679 0.0967
(4.1193) (5.4283) (5.0598) (5.7082)
GARCH 0.9285 0.9188 0.9281 0.8937
(54.5186) (64.5159) (69.5413) (51.2900)
Y 19.4204 16.7852 13.2190 45.7799
(2.1702) (2.3549) (3.2871) (0.8590)
A -0.0819 -0.1019 -0.0644 -0.1718
(-1.9855) (-2.5126) (-1.4754) (-3.9792)
LLF 3891.4768 3471.5935 3624.4153 3974.4093
AIC -3883.4768 -3463.5935 -3616.4153 -3966.4093
BIC -3863.0504 -3443.1671 -3595.9889 -3945.9829

The value in the brackets is t-value of each variable.
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4.3 Estimation of the copula models

For our copula models, we will compare the efficiency between single copula
and regime-switching copula. Table 3 shows the estimates of the copula model which
with no regime change. According to our assumption for four assets, the correlation
matrix p has six parameters to be estimate. We can observe that Student-# copula has a
larger LLF and the lower AIC/BIC, because of it can represent a little more tail
dependence than Gaussian copula. The correlation matrix between the two copula
model are nearly the same. All parameters are significant.

Table 4 and Table 5 reports the parameter estimates of regime-switching copulas
which based on Gaussian copula and Student-z copula respectively. We try seven
different group, that the copula for state 1 is Gaussian or Student-¢ copula, the normal
state by our means, and the copula for state 2 have four copula as we introduce in
chapter, which represent the worse state. Generally, all the regime-switching copulas
have much better fitness than one-state copula, because the higher LLF and lower
AIC/BIC. Compared with Gaussian-based and Student-z-based copula, the latter
shows preferable results than the former. It’s because of that the Student-7 copula can
capture a little more tail dependence. Especially, the best one of these groups are
Student-¢ to Student-¢ copula. We think it is due to the Gumbel survival copula and
Clayton copula can only emphasize the lower tail dependence, almost all upper tail
dependence cannot be categorized to them. So the effects of the lower tail dependent
copulas are inferior to the 7-f copula. Figure 1(a) to Figure 2(c) shows the copula

correlation matrix by the estimated parameter.
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Table 3.

The parameter estimates of the one-state copula

Gaussian Student's t

P 0.5726 (31.0510) 0.5763 (31.4412)

0.4922 (12.3043) 0.5058 (20.2162)

0.4702 (10.9119) 0.4835 (18.9385)

0.8809 (27.8615) 0.8834 (59.8286)

0.7545 (19.3190) 0.7578 (34.1483)

0.8358 (63.3171) 0.8355 (66.4608)

\ 10.1663 (3.8298)
LLF 1900.1345 1943.5874
AIC -1892.1342 -1935.5943
BIC -1871.7081 -1915.1610

The value in the brackets is t-value of each variable.
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Table 4.

Parameter estimates of regime-switching copulas-based on Gaussian copula

State 1  Gaussian

State 2 Gaussian Student-¢ Gumbel survival Clayton
P 0.9621 (72.2967)  0.9286 (24.9906) 0.9311 (26.7870)  0.9851  (52.3512)
0 0.9487 (44.2238)  0.9494 (32.3855) 0.4675 (1.9485) 0.6154  (3.6219)
State 1
p 0.6703  (4.1419) 0.7524 (4.2017) 0.5248 (20.9537) 0.5515  (23.8965)
0.5584  (4.1942) 0.6330 (4.8332) 0.4372 (14.2188) 0.4687  (12.2749)
05142  (4.4175) 0.5878 (6.8053) 0.4118 (11.6795) 0.4432  (9.8821)
0.8377 (31.4639)  0.8331 (10.8127) 0.8854 (50.8228) 0.8837  (39.0685)
0.6778 (14.6014)  0.7210 (12.1790) 0.7485 (27.6431)  0.7537  (20.8912)
0.8032 (14.9563)  0.8623 (6.4107) 0.8429 (56.8496) 0.8419  (64.2134)
State 2
alpha 2.6114 (10.7613)  2.7973  (3.0778)
p 0.4281  (8.6002) 0.4384 (9.6793)
0.3932  (8.4551) 0.4006 (9.1042)
0.4029  (9.4352) 0.3939 (11.5986)
0.9400 (14.0210) 09187 (69.9711)
0.8621 (51.8244)  0.7884 (15.4843)
0.8807 (46.2354)  0.8191 (15.4039)
v 9.1851 (4.1144)
LLF  1959.4272 1966.5813 1922.4718 1924.9460
AIC  -1945.4272 -1951.5813 -1913.4718 -1915.9460
BIC  -1909.6810 -1913.2818 -1890.4920 -1892.9662

The value in the brackets is t-value of each variable.
18



Table 5. Parameter estimates of regime-switching copulas-based on Student-¢ copula

State 1 Student-¢
State 2 Student-¢ Gumbel survival Clayton
P 0.9832  (78.4811) 0.9846 (82.3797)  0.9941  (32.0426)
0 0.9912  (178.8721) 0.6417 (2.8567)  0.7634 (1.9426)
State |
p 0.3899 (8.5768) 0.5635 (29.3086  0.5693  (23.7038)
0.3680 (8.7167) 0.4912 (19.5524) 0.4986  (10.0261)
0.3856  (10.3103) 0.4687 (18.2887)  0.4753 (9.0117)
09393 (117.7902) 0.8861 (63.1876)  0.8860  (35.8058)
0.8408  (22.1183) 0.7569 (35.4438)  0.7577  (21.0728)
0.8596  (22.3328) 0.8358 (66.2149)  0.8358  (66.1418)
v 31.4173  (3.5896) 10.3769 (4.6112) 103168  (2.8925)
State 2
alpha 24721 (15.1919)  2.5695 0.9423
p 0.6596 (4.1796)
0.5646 (4.3458)
0.5236 (4.9505)
0.8529  (24.3870)
0.7173 (4.0624)
0.8263 (5.5464)
v 9.7811 (0.5830)
LLF 1990.4350 1944.6560 1946.5220
AIC -1962.0340 -1934.6560 -1936.1580
BIC -1928.7740 -1909.1230 -1911.3100

The value in the brackets is t-value of each variable.
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Figure 1(a). Gaussian-Gaussian copula
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Figure 1(d). Gaussian-Clayton copula

21



Figure 2(c). Student-¢ - Clayton copula
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4.4 Simulation procedure for optimal portfolio asset allocation

As we discuss in chapter 4.1, we take the estimated results as our simulation
parameters, and contrast our results of investment strategy with historical data.
According our model, we estimate the parameters of marginal distribution first, and
continue to obtain the parameters of copula models. Considering that, we should start
our simulation by copula sampling. By using the Matlab toolbox, we can easily
sample multivariate Normal and Student-# copula, given the correlation matrix (and
the degree of freedom for Student-¢). For multivariate Archimedean copulas, we can
use the following algorithm sampling Archimedean copulas, based on
Laplace-Stieltjes transform, also known as the Laplace transform of the distribution,
see Feller (1971, p. 439), Marshall and Olkin (1988), and Marius and Martin(2011)

for advanced algorithms.

Algorithm of Sampling Archimedean copulas
(1) sample Vv ~F=LS"[y]

2) sample B ~Ew®),jell.n}
(3) set U;=v(R,/V), jeil,..n;

(4) return U=(U,,.,U,)"

By the algorithm, we can sample multivariate Archimedean copulas given the
parameter a. Table 6 list the Laplace-Stieltjes transform of the Archimedean copulas
used by our models. By sampling copula variables, we can get the marginal residuals
to forecast future returns for every asset.

To make our investment strategy more dynamic and efficient, we re-estimate all
parameters of our model, select the best weights of portfolio, and re-assess the

optimal investment at each decision date, assumed per four weeks here.
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Table 6.

Commonly used one-parameter Archimedean generators

Family Parameter w(t) V~F=LS"[v]
Clayton 6 € (0,0) (1+1)™"° r'(1/6,1)
Gumbel 0 e (1,0) exp(—£"") S(1/86,1,cos’ (7 /20),1)

I is the Gamma distribution, and S is the Stable distribution.

We first generate four weeks stock returns for each path by using the parameters
of the model. In this paper, we simulate 10,000 stock return paths. Second, we choose
the optimal weights for each asset given the predicted future returns for each path, and
get the average weights of these 10,000 paths. Next, we take all new information for
the historical data each decision date, to re-estimate the parameters for the new five
years data and repeat to acquire portfolio weight and fund values.

Figure 2 shows the results of asset allocation simulation from Jan 1, 2006 to
Dec13, 2010, and the empirical fund values are presented in Table 7. We assume the
parameters #=1, x=1000 for quadratic cost function, and the other is target
volatility. We choose the Student-¢ copula and Student -7 regime-switching copula for
out-of-sample test, duo to they have larger log-likelihood value and lower BIC.
Simultaneously, we set a simple model that the four asset returns have a jointly
multivariate Normal distribution. Obviously, the Student ¢-# copula has the
outstanding result at all period. By given different state, regime-switching copula can

avoid more financial loss than other models and obtain higher returns.
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Table 7.

The Fund values of the out-of-sample performance for the two objective functions and

three different models

Obj. Fun.  Model  2006/3/31 2006/6/30 2006/9/30 2006/12/31 2007/3/31 2007/6/30 2007/9/30 2007/12/31 2008/3/31 2008/6/30
M-Drisk t-copula,  110.349 100.793 108.072  120.196 120.143  136.053 128.802  137.700 108.865  109.871
t-tcopula  110.867 103.150 110599  123.006 122953 139234 131.814 140919 111411  112.440
multi-N  104.719 101.006  106.891 115998 115.767 125817 119492  121.854 107.575  107.854
Target var t-copula,  105.937 100.094 102909  110.323 109.604  117.042 109.974  114.252  99.763 98.350
t-tcopula  109.115 103.097 105996  113.633 112.892  120.553 113273  117.680 102.756  101.301
multi-N  104.262 98.996 104.888 113401 112.291  121.896 117415 119386 102442  103.994
Obj. Fun.  Model  2008/9/30 2008/12/31 2009/3/31 2009/6/30 2009/9/30 2009/12/31 2010/3/31 2010/6/30 2010/9/30 2010/12/31
M-Drisk t-copula,  104.335 74.243 - 64.803 71185  83.534 89.603  88.030 81.972  86.059 95.933
t-tcopula  106.775 75668  66.047 78.667  86.056 92.308  90.687 84.446  88.657 98.829
multi-N - 103.578 69.156  58.624 74282  81.723 86.302  79.415 75554 74.163 84.418
Target var t-copula, 92.966 67.110  58.577 69.769  71.204 84.610  83.124 71404 81.264 90.587
t-tcopula  95.754 09.123  60.334 71.862  79.520 87.148  85.618 79.726  83.701 93.304
multi-N 98.189 61.652 = 50.842 65.420  72.079 71.035  76.599 74265  773.927 82.122

M-D risk is the cost function composed by matching risk and downside risk, and Target var is the target

volatility. We choose the best performance copula model to simulate out-of-sample test. Excluding the

Student-f copula and ¢-¢ regime-switching copula, we also set a multivariate Normal distribution of

assets to compare the results.

Figure 2. The simulation results of asset allocation.
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5. Conclusion

In this paper, we propose a regime-switching copula-based model that can
separate the equity returns to two regimes, a normal state that returns goes up and
down by random, and a worse state that returns obviously have downside
co-movement with large possibility. We capture the well-known phenomenon that
there exists asymmetric behavior between international stock markets. By use of
Hamilton filter, we can analyze the transition probability which provide sufficient
about the current condition of markets.

For asset allocation strategy, we use the model fitted by in-sample and simulate
the future returns contrasted to out-of sample. We adapt “moving-window” method
that makes our sample data can update per period, and re-estimate the parameters of
our model for fitting new information. The empirical results display that our model
can decide optimal weights of portfolio, and we can avoid suffering huge loss in

financial crisis.
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