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Abstract 

 

    This paper first constructs a grouping model with heterogeneous
1
 population under the 

setting of complete information. When player can observe other's type, the result is non-segre

gation: most players have no intention to move and they can match with the one who brings 

them the best payoff in the original group. The equilibrium state is always efficient. 

    We then construct another grouping model with incomplete information and double 

mutation. The result shows that, although non-segregation equilibria may emerge as stable 

equilibria in the short run, only segregation equilibria can be stochastically stable in the long 

run. This is because most of non-segregated states can switch to the others by the same re-

sistance and some of them can easily switch to segregated state, but it is hard to switch back. 

 

 

 

 

 

 

 

 

 

 

                                                      
1
 Here we define heterogeneous population as a population where players have different types. 
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1. Introduction and Literature Review 

 

    Grouping happens on every utility-maximizing people in the world. Some 

grouping have the characteristic of adherence, which means people can choose to 

match with the same one if he wants, just as marriage, friendship, and joint venture. 

Some grouping does not have adherent characteristic and thus people must rematch at 

every time, e.g. clubs (people cannot estimate the partners he will play with tonight), 

library studying (quiet student may be beset by other noisy students). The result of 

adherent grouping is intuitive: people finally find a partner to match with and contin-

ue the game until one of the participants dissatisfy. Thus, no matter what the initial 

group proportion is, if people can match with someone who brings him the best pay-

off (or payoff higher than his aspiration, see Borgers, 2000) then he will not move. If 

most people are lucky enough on matching or we prolong the times of re-match be-

fore moving, then the result of grouping is undoubtedly non-segregation. Since eve-

ryone can match with the best partners, they have no incentive to leave.    

    But once the matching is not adherent and randomized, then the result will vary 

depending on the existence of complete information. If information is complete, then 

player can easily find the best partner he needs and thus has no reason to move out. 

That is what we want to show in chapter two. 

    If information is incomplete, some people might consider the environment he 

lives in. If there is another better place to play the repeat random matching, Some 

people who dissatisfy the partners may play with might decide to move to another 

group. Consider the types of people as n and n groups, then the result will be a segre-

gation because if non- segregation exists some people cannot have the best payoff. If 

their tolerance (see Foster and Young, 2006) are low and no transaction cost exists, 

then by try-error process people will select and move to the best environment.  
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    But there still exist some other possible equilibrias: people may choose to stay  

if the environments of other groups is not better than his group or the information is 

obstructed such that people cannot know other groups' performance. Thus the equilib-

ria may be non-segregated. That is, the static equilibria with incomplete information 

can be segregated or non-segregated.  

    In real world even without transaction cost e.g. move cost, there still exist some 

obstruction factors such that non-segregation may happen, like incomplete infor-

mation. The type of players may be hard to know by others, and even hard for some 

investigation institutions due to large access cost. All of these factors will hinder the 

formation of segregation. In chapter 3, we can derive that equilibrium can be 

non-segregated or segregated due to the obstruction of information and failed estima-

tion of another group from both aspects: player-based and institution-based estimation. 

However the equilibrium is a short-term and static equilibrium. 

    In further discussion, we try to construct a long-term and dynamic equilibrium 

and have a stochastic potential test just like adapt play (by Young, 2001). The stochas-

tic stable state is undoubtedly segregated, because a little mutation can switch an 

non-segregated state to segregated state, but the switching back needs more mutations. 

In intuition it is not so hard to infer: once some players are not so rational, the 

non-segregated state can be broken due to worse performance for most players. 

    Another useful literature in this paper is social equilibrium (Jackson and Watts, 

2008). In chapter 2 we construct a model based on social equilibrium, which will be 

non-segregated and almost social efficient, but this model has some drawbacks: too 

little move of players and lack of the process of being non-segregation. These draw-

backs lead to an unrealistic result. 

    Most concepts of grouping in this paper originate from Schelling(1971) and his 

followers, such as Carrington et al.(1996) and Milchtaich(2002).  
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2. Grouping Equilibrium with Complete Information 

 

    Consider a population in which there are two types of players and two groups. 

Player can enjoy full payoffs with the partner of same type by playing the same strat-

egies which are their favorite, or enjoy less payoffs by playing the same strategies 

which are not their favorite. If player matches with different type partner and both of 

them play the same strategies, then there must be one enjoy less payoffs and the other 

enjoy full payoffs. If players fail to cooperate and play the different strategies, both of 

them will get nothing. Every player can access the type information of other players, 

choose opponent in same group freely, and if they need to match with someone in an-

other group they must move with moving cost, ϵ (small but positive). That is, move 

is a method to seek for better opponent. Thus, the reasonable decision of player is to 

match with the same type if possible. Since the information is clear, same type player 

of a group will firstly match with each other and all of them have no intension to 

move because they cannot better off by paying moving cost. Movement in this envi-

ronment will be fewer.    

We try to construct an analogous concept as social equilibrium (Jackson and 

Watts, 2010), and denote it by grouping equilibrium. Assume that two groups G1, G2 

and there are two types of players in this model: tennis-preferring and bil-

liards-preferring, denoted by T.P. and B.P. player with strategy decision si = {T, B} , 

partner decision ai, and decision and move decision mi = {1,2}. The partner deci-

sion is matching a partner in the group mi, that is, ai ∈ Gmi
. The initial population 

size of G1, G2 is n1, n2 and the corresponding proportion of T.P. player of G1, G2 is 

𝑝1
𝑇𝑒 , 𝑝2

𝑇𝑒. There are three possible matching matrixes in this model:  
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For a T.P. player matched with T.P. player, 

 Tennis Billiard 

Tennis (a,a) (0,0) 

Billiard (0,0) (b,b) 

 

For a T.P. player matched with B.P., T.P. chooses the row strategy and B.P. chooses the 

column. 

 Tennis Billiard 

Tennis (a,b) (0,0) 

Billiard (0,0) (b,a) 

 

For a B.P. player matched with B.P., 

 Tennis Billiard 

Tennis (b,b) (0,0) 

Billiard (0,0) (a,a) 

 

    Now we define the concept of grouping equilibrium in brief. 

 

Definition 1. 

    Assume 𝑎𝑖 is the matching partner of player i and 𝑎𝑖 ∈ 𝐺𝑚𝑖
, strategy decision 

𝑠𝑖 = {𝑇, 𝐵}, and move decision 𝑚𝑖 = {1,2}, ∀𝑝𝑙𝑎𝑦𝑒𝑟 𝑖. A strategy profile 

(𝑠𝑖
∗, 𝑠−𝑖

∗ , 𝑚𝑖
∗, 𝑚−𝑖

∗ , 𝑎𝑖
∗, 𝑎−𝑖

∗ ) is a grouping equilibrium if, for each player i, (𝑠𝑖
∗, 𝑚𝑖

∗, 𝑎𝑖
∗) 

is the best response to the strategies (𝑠−𝑖
∗ , 𝑚−𝑖

∗ , 𝑎−𝑖
∗ ) for other players such that  

𝜋𝑖(𝑠𝑖
∗, 𝑠−𝑖

∗ , 𝑚𝑖
∗, 𝑚−𝑖

∗ , 𝑎𝑖
∗, 𝑎−𝑖

∗ , 𝑛1, 𝑛2, 𝑝1
𝑇𝑒 , 𝑝2

𝑇𝑒) 

≥ 𝜋𝑖(𝑠𝑖, 𝑠−𝑖
∗ , 𝑚𝑖, 𝑚−𝑖

∗ , 𝑎𝑖, 𝑎−𝑖
∗ , 𝑛1, 𝑛2, 𝑝1

𝑇𝑒 , 𝑝2
𝑇𝑒) 
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for 𝑠𝑖 = {𝑇, 𝐵}, 𝑚𝑖 = {1,2}, and 𝑎𝑖 ∈ 𝐺𝑚𝑖
. 

 

    The concept of social equilibrium (Jackson and Watts, 2010) is a state of player 

cannot better off by playing with another player ,or by changing strategy, or by both 

aspect in the presupposition that any other players will not be worse off. Thus the 

grouping equilibrium must be the state that player match with the same type as his in 

order to enjoy the best they can have. Any player in mix-match can better off by find-

ing anyone who belongs to the same type in another mix-match in a group. In the end 

there will be zero to two players who cannot find the same type as his, and they can 

try to move to another group for pure-match. It is trivial to discuss these players who 

cannot pure-match if the population is large. Thus we can conclude that in the group-

ing equilibrium there are no movements and the proportion is approximately same as 

initial proportion because most players can find the same type partners thus have no 

reason to move out and pay the moving cost. Moreover, the grouping equilibria is effi-

cient because all players match with the same type partners. Although sometimes 

some remaining players cannot match with the same type or match with no one be-

cause all other same type players have the best matching, this will not affect the claim 

that grouping equilibria is efficient. 

 

Proposition 2. 

    Consider a two-group model with complete information. The initial population of 

𝐺1, 𝐺2 is 𝑛1, 𝑛2 and the corresponding proportions of T.P. player of 𝐺1, 𝐺2 are 

𝑝1
𝑇𝑒 , 𝑝2

𝑇𝑒. Payoffs are given above. Assume that 𝑝1
𝑇𝑒𝑛1, 𝑝2

𝑇𝑒𝑛2, (1 − 𝑝1
𝑇𝑒)𝑛1, (1 −

𝑝2
𝑇𝑒)𝑛2 are all even. The grouping equilibrium of two-group model with complete in-

formation is that proportion of 𝐺1, 𝐺2 are 𝑝1
𝑇𝑒 , 𝑝2

𝑇𝑒 and population are 𝑛1, 𝑛2, stay 

unchanged. All T.P. players match with T.P., play strategy T, and do not move. All B.P. 
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players match with B.P. player, play strategy B, and do not move. 

 

    However the result may be unrealistic because moving between groups is a 

common phenomenon. Moreover, grouping equilibrium only shows the grouping state, 

but lack the process of grouping. In the next chapter we consider another model to 

explain the process of grouping and show a realistic result. 
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3. Two-Group Grouping Model with incomplete information 

 

    Consider a model mostly following the setting in chapter 2 but something dif-

ferent. In this population, players are divided into two groups initially and have the 

right to select to move to another group in the end of every period. Periods can be in-

finite and each period contains R rounds. In each round, player is matched with an-

other one but he cannot know what set his opponent will bring. The only information 

he has is the statistics published by an independent institution, which will investigate 

the proportion of tennis-preferring and billiard- preferring, and what sport sets they 

brought in past rounds. Thus, in every round players make decision based on the in-

stitution information and we can infer that players which are belong to same type, that 

is, T.P. or B.P., will choose the same strategy unless they make a mistake in strategy 

making. After matching up R rounds, in the end of period all players have the chance 

to choose move or not due to their evaluation of the situation of two groups.  

    Moreover, there always exists information obstruction in real world such that 

players cannot access complete information of another group. We add this character- 

istic into model: player cannot access the type of others. That means complete infor-

mation no longer exist but there are two ways to access partial information: player 

investigation and institution investigation. player can sample some players in another 

group to learn the type of sport they played in last period (notice that player can only 

sample one period, not m period), or he can know the expected average payoff of an-

other group, which is investigated and calculated by the institution of another group. 

This is because all institutions will investigate the strategy players using in every pe-

riod and the proportion of T.P. and B.P. players. In the end of phase they will calculate 

the expected average payoff (because it is costly to investigate the type of each play-

ers’ opponents in every periods) and announce it to players of two groups. Thus player 
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knows the proportion, strategy distribution of his group, and the approximate average 

payoff of another group, but he cannot learn the detailed proportion and strategy dis-

tribution of another group due to the information obstruction.    

 

3.1 Setting of Incomplete Information 

   

    With complete information, grouping equilibrium demonstrates that the propor-

tions and group sizes of equilibria are roughly as initial ones. However, if complete 

information no longer exists, the group state will not remain non- segregation state 

affected mostly by the initial state. Here we list some possible information and rule 

restriction of this model mentioned above:  

 

i. Players don’t know the type of their opponents and they are randomly matched 

with each other in each round of the period.  

ii. There exists a fair institution in each group. The institution will investigate the 

proportion of players of each type in the group and the strategies they use in 

every round.  

iii. One of the partial information channel, by which player can access the group 

proportion and the strategy distribution of each type players in his group, and the 

average expected payoff of another group, is the institution investigation. Be-

cause the actual average payoff of each player is costly to reach for two institu-

tions. (especially when T.P. players choose tennis and B.P. player choose billiards, 

it is costly to investigate the type of every partner of each player matching up in 

all rounds because even players themselves cannot distinct the type of their part-

ners.) Thus institution will infer the approximate average payoff by the propor-

tion of players of each type and strategies they used in all rounds, and institution 
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will announce the group expected average payoff to all players of two groups. 

The approximate average payoff also has another aspect: expectation. When 

players choose to move or stay they will take this expectation into consideration: 

how much will he gain in expectation if moving to another group? 

iv. According to the group proportion and the strategy distribution (investigated by 

institution), player can choose the best strategy depending on his memory of past 

m rounds. The m length is determined by the memorial ability of players. For a 

player preferring tennis, given the proportion of T.P. players of the group in pe-

riod t, pTe,t, and the strategy profile of his opponents, s−i
r,t = (p−i,Te

r,t , p−i,Bi
r,t ) , 

where p−i,Te
r,t

 means the proportion of T.P. players choosing tennis despite i 

player himself in past m rounds and p−i,Bi
r,t

 means proportion of B.P. players 

choosing tennis despite i player himself in his group. Here we simply assume 

player redeems all rounds in his memory are equal weighted. The player’s best 

response is 

 

(a) Tennis, if a ∙ pTe,t ∙ p−i,Te
r,t + a ∙ (1 − pTe,t) ∙ p−i,Bi

r,t > b ∙ pTe,t ∙ (1 − p−i,Te
r,t ) + b ∙

(1 − pTe,t) ∙ (1 − p−i,Bi
r,t ). 

(b) Billiards, otherwise. 

 

v. Another information channel about the different group is player investigation. 

Player can choose to believe the investigation of his own more or the institution 

investigation more. Here we denote the relative weight by δ. As mention before, 

players have two information channels to access another group: by institution or 

themselves. The latter is that players will investigate the strategies of players of 

another group use by themselves. However, the investigation samples only a few 

not all players of another group in the end of period. Since all they know about 
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the other group is the expected average payoff which is given by institution of 

another group and the self-investigation, they will use them to decide moving or 

not. This is player’s rule of moving formula: For a player i in group 1, 

  

∀δ ∈ [0,1],    if  δEPI
2 + (1 − δ)EPII

2 − EPi
1 > 0, then move, 

where EPI
2 =

∑ πi(sh
2 )H

h=1

H
, which means the player sample average payoff 

  πi(x)is i′s payoff with mixed strategy x; 

sh
2 is the sample from group2 by player i and sample size is H; 

EPII
2 is institution announcing expected payoff; 

EPi
1 is the player′s expected payoff if staying in the next phase. 

 

    One more mention, if player moves to new group, he will replace his memory by 

the new group data in the past m rounds from the institution. 

 

 

3.2  equilibrium with incomplete information  

 

    Now we can infer the stable strategy in one group model under the above rules. 

Assume that every period contains large enough round and players in a group ran-

domly matched with each other and choose strategy under the last m rounds’ infor-

mation. If they are in initial period (t=1) and in the first m rounds (r=1~m), players 

choose strategy at their will. Noticing that if choosing at will in first m rounds there 

will be enormous possible profiles, however, profile in the next period must be 

(1,1), (1,0), or(0,0). There will be no such existence like (0,1) due to the preference 

contradiction. Thus there will be only three strategy profiles in the remaining rounds. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

15 
 

Moreover, these three strategy profiles are also stable if the players in the group adapt 

them.  

    Check the stability of sr,t = (1,1), (1,0), or(0,0) for group 1 or 2, ∀t = 1,2, 

…. and r ∈ {1,2, … , R}. By appendix A we know if F(r − 1, t) = pTe,tp−i,Te
r−1,t +

(1 − pTe,t)p−i,Bi
r−1,t >

a

a+b
 then players’ strategy distribution sr,t = (1,1). Thus the 

strategy sr,t = (1,1) is stable because pTe,t ∙ 1 + (1 − pTe,t) ∙ 1 >
a

a+b
. We can find 

that sr,t = (0,0) is also stable by the above method. As for sr,t = (1,0), which 

means p−i,Te
r−1,t = 1 and p−i,Bi

r−1,t = 0, it follows that (r − 1, t) = pTe,t. Then we know 

(1,0) is stable if 
a

a+b
≥ pTe,t ≥

b

a+b
 ,and (1,0) will change to (1,1) if pTe,t ≥

a

a+b
, 

change to (0,0) if 
b

a+b
≥ pTe,t. 

    Extend to the best response of T.P. and B.P. players in a group when the current 

round is r and current period is t, BRr,t = (pTe
r,t , pBi

r,t) where pTe
r,t

 means the propor-

tion of T.P. players choosing tennis in past m rounds and , pBi
r,t

 means the proportion 

of B.P. players choosing tennis in past m rounds. Given any strategy distribution in 

the last m rounds, denoted by sm,r,t: 

 

(a) If previous strategy sm,r,t = (1,1), then BRr,t = (1,1), ∀r ∈ {1,2, … , R} and t =

1,2, …. 

(b) If sm,r,t = (1,0), then  

 BRr,t = (1,1), if pTe,t >
a

a+b
 

 BRr,t = (1,0), if 
a

a+b
≥ pTe,t ≥

b

a+b
 

 BRr,t = (0,0), if 
b

a+b
> pTe,t  

(c) If sm,r,t = (0,0), then BRt
r = (0,0). 
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    Under above results, we can calculate the expected average payoff announced by 

institution in the end of every period, since they infer the payoff by proportion of each 

type and strategy profile. The form of expected average payoff is 

 

Previous strategy 

sm,r,t 

 

 

(1,1) 

 

(1,0) 

 

(0,0) 

pTe,t >
a

a + b
 

 

 

apTe,t+b(1-pTe,t) 

 

apTe,t+b(1-pTe,t) 

 

a(1-pTe,t)+bpTe,t 

 
a

a+b
> pTe,t >

b

a+b
  

 

 

apTe,t+b(1-pTe,t) 

 

a-2apTe,t(1-pTe,t) # 

 

a(1-pTe,t)+bpTe,t 

 
b

a + b
> pTe,t 

 

 

apTe,t+b(1-pTe,t) 

 

a(1-pTe,t)+bpTe,t 

 

a(1-pTe,t)+bpTe,t 

 

(#): apTe,t ∙ pTe,t + a(1 − pTe,t) ∙ (1 − pTe,t) = a − 2apTe,t(1 − pTe,t) 

    apTe,t ∙ pTe,t is the expected payoff of T.P. player and a(1 − pTe,t) ∙ (1 − pTe,t) 

is that of B.P. player. 

 

To concern that, if sm,r,t is (1,0) and group proportion satisfy pt >
a

a+b
 or 

b

a+b
> pt the strategy of coming rounds will change just mentioned above.  

 

Now we start to figure out two-group-equilibrium, especially the recurrent class. 

At the end of every period, player will decide whether to move depending on the ex-
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pected payoffs he might gain in the future, just like the difference of potential energy 

which makes water flow. However some information will obstruct the flow and thus 

create non-segregation stable state or recurrent class. 

Recalling the moving rule of player is 

 

∀δ ∈ [0,1],    if  δEPI
2 + (1 − δ)EPII

2 − EPi
1 > 0 then move, for player i in group 1; 

∀δ ∈ [0,1],    if  δEPI
1 + (1 − δ)EPII

1 − EPi
2 > 0 then move, for player i in group 2. 

 

    Thus what makes the recurrent classes different is the relative weight between 

investigated by institution and that by player himself. Here we list a lot of possible 

states and discuss the stability of each one. Assuming in a model there are two groups 

G1, G2 and corresponding group size is n1, n2, corresponding group proportion of 

players preferring tennis is p1, p2.  

    To confirm that the equilibrium of incomplete information is stable, we must as-

sume the self-investigation of players will sample their favorite strategy as much as 

possible. Notice that stability of a player means that even if his self-investigation 

overestimates the number of those whose strategy decisions of last round are just as 

the preference of player himself (e.g. T.P. player of G1 samples all tennis, EPI
2 =

Hπi(Tennis)

H
= a, even if the actual strategy distribution is mostly billiard strategy), the 

player still choose to stay in his original group. To find a stable state of a recurrent 

class (but not stable) we must assume all players are “lucky” enough to sample strate-

gies which are just as his preference when we try to construct the regret formula of 

each player.  

    Now we precede the inference of equilibrium with incomplete information. Giv-

en the initial population size of T.P. players in the model is 𝑁𝑇𝑒∗
 and the population 
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size of B.P. players in the model is 𝑁𝐵𝑖 ∗
. Denote a state by 

(p1
Te, p2

Te, s1
m,r,t, s2

m,r,t, 𝑁1, 𝑁2), where pi
Te is the proportion of group i, si

m,r,t
 is the 

previous strategy distribution of group i in round r and period t, and 𝑁𝑖 is the size of 

group i. It follows that the variables p1
Te, p2

Te, 𝑁1, 𝑁2 of any states must satisfy the 

condition: 

 

(a) p1
TeN1 + p2

TeN2 = NTe∗
. 

(b) (1 − p1
Te)N1 + (1 − p2

Te)N2 = NBi∗
 

 

We denote the condition as (#). The followings are derivations for equilibria: 

 

i. We claim that (p1
Te, p2

Te, (1,1), (1,1), 𝑁1, 𝑁2) and (p1
Te, p2

Te, (0,0), (0,0), 𝑁1, 𝑁2) 

is a recurrent class, ∀1 > p1
Te, p2

Te > 0, and p1
Te, p2

Te, 𝑁1, 𝑁2 satisfy (#).  

 

If previous strategies of two groups are both (1,1), s1
m,r,t = s2

m,r,t = (1,1), will 

this state be stable? For a tennis preferring player, since aδ + (1 − δ) (apk
Te +

b(1 − pk
Te)) − a < 0, ∀δ, k ∈ {1,2}, the regret will be always small than zero 

under any relative weight the expected payoff investigated by individual or in-

stitution. There is no incentive for tennis preferring player in two groups move to 

another one. However, for a billiard preferring player, his regret aδ +

(1 − δ) (apk
Te + b(1 − pk

Te)) − b > 0, ∀δ ∈ [0,1], k ∈ {1,2}. This means that 

T.P. player won’t move but B.P. player will. The proportion of each group will 

change, but soon it will recover to the original proportion in first phase because 

T.P. player’s regret is negative and that of B.P. player is still positive. Thus this 

state may not be stable, but must be recurrent. (it is stable state if p1
Te, p2

Te ∈
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{1,0}) The detailed proportion path of these two groups is pt=1 = (p1
Te, p2

Te),  

p2 = (
p1

Ten1

p1
Ten1+(1−p2

Te)n2
,

p2
Ten2

p2
Ten2+(1−p1

Te)n2
) , p3 = (p1

Te, p2
Te), … ..., loop. This infer-

ence can be applied if s1
m,r,t = s2

m,r,t = (0,0), and 1 > p1
Te, p2

Te > 0. 

 

ii. We also claim that (p1
Te, p2

Te, (1,0), (1,0)) is a recurrent class and a equilibrium 

with incomplete information if 
1−2pi

Te(1−pi
Te)+pj

Te

2−2pi
Te(1−pi

Te)
> 𝛿 ≥ 0 holds, ∀p1

Te, p2
Te ∈

[
a

a+b
,

b

a+b
] and p1

Te, p2
Te, 𝑁1, 𝑁2 satisfy (#).        

 

If s1
m,r,t = s2

m,r,t = (1,0), we can firstly exclude the possible recurrent classes if 

one of p1
Te, p2

Te ∈ [1,
a

a+b
] ∪ [

b

a+b
, 0], since any group in that threshold have un-

stable strategy (1,0) by the above discussion. If both groups’ proportions are in 

the threshold of [
a

a+b
,

b

a+b
] and for player in group i, the proportions of two 

group i,j satisfy the restriction 
1−2pi

Te(1−pi
Te)+pj

Te

2−2pi
Te(1−pi

Te)
> 𝛿 ≥ 0 ⋯ (∗), then this state 

will be a recurrent class since aδ + (1 − δ) (a − 2api
Te(1 − pi

Te)) − apj
Te < 0. 

This means that if players trust the investigation of institution over the above 

level (specific weight), then there will be little difference between their group 

and the other group in their view. If the weight is not higher than the level, they 

might move due to the “lucky sample” such that they believe another group is 

better than original one, even if actually it is not. In a word, they are deceived by 

their own sampling, however the deceive may be good for all players because it 

help all players group to segregated state, s1
m,r,t = (1,1), s2

m,r,t = (0,0), and 

p1
Te = 1, p2

Te = 0 (or group 1 and 2 exchange) and enjoy the best they can have, 
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which is social efficient. 
2
 

 

iii. Consider the state of s1
m,r,t = (1,1), s2

m,r,t = (1,0), p1
Te ∈ (0,1), p2

Te ∈ [
a

a+b
,

b

a+b
]. 

It must be neither stable nor recurrent. Since under any size of δ, T.P. players in 

the group j and B.P. players in group i will move due to the difference of poten-

tial payoffs. Finally this will be a segregation state, namely 

s1
m,r,t = (1,1), s2

m,r,t = (0,0), and p1
Te = 1, p2

Te = 0. The process also fits with 

states of s1
m,r,t = (1,1), s2

m,r,t = (0,0), p1
Te ∈ (0,1), p2

Te ∈ (0,1) and states of 

s1
m,r,t = (0,0), s2

m,r,t = (1,0), p1
Te ∈ (0,1), p2

Te ∈ [
a

a+b
,

b

a+b
]. 

 

iv. In the last part, we claim that all segregated states are recurrent classes and equi-

librias with incomplete information, no matter what strategy distribution of the 

state is or what groups’ size are.  

 

It is obviously to find that segregated states, i.e. p1
Te = 1, p2

Te = 0, (s1
m,r,t, s2

m,r,t) 

∈ {((1,1), (1,1)),((1,1),(0,0)),((0,0),(0,0))}, are stable states and recurrent classes. 

 

 

Definition 3. 

    Consider a two-group model with group size 𝑛1, 𝑛2, group proportion 𝑝1, 𝑝2, 

strategy decision 𝑠𝑖 = {𝑇, 𝐵}, and move decision 𝑚𝑖 = {1,2}, ∀𝑝𝑙𝑎𝑦𝑒𝑟 𝑖. A strategy 

profile (𝑠𝑖
∗, 𝑠−𝑖

∗ , 𝑚𝑖
∗, 𝑚−𝑖

∗ ) is a two-group equilibrium if, for each player i, (𝑠𝑖
∗, 𝑚𝑖

∗) is 

the best response to the strategies (𝑠−𝑖
∗ , 𝑚−𝑖

∗ ) for other players such that    

                                                      
2
 Some segregated states may not be social efficient, e.g. s1

t−1,m = (1,1), s2
t−1,m = (1,1) or s1

t−1,m =

(0,0), s2
t−1,m = (0,0).  
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𝜋𝑖(𝑠𝑖
∗, 𝑠−𝑖

∗ , 𝑚𝑖
∗, 𝑚−𝑖

∗ , , 𝑛1, 𝑛2, 𝑝1, 𝑝2) ≥ 𝜋𝑖(𝑠𝑖, 𝑠−𝑖
∗ , 𝑚𝑖, 𝑚−𝑖

∗ , 𝑛1, 𝑛2, 𝑝1, 𝑝2) 

for 𝑠𝑖 = {𝑇, 𝐵}, 𝑚𝑖 = {1,2}. 

 

 

 

Proposition 4.  

Consider two types of players matching with each other in a two-group game 

with the chance to move in every end of period. From inference above, we can claim 

that for group 1,2, corresponding proportion 𝑝1, 𝑝2, and corresponding previous 

strategy profile: 

 

(a) (𝑝1
𝑇𝑒, 𝑝2

𝑇𝑒 , (1,1), (1,1), 𝑁1, 𝑁2) and (𝑝1
𝑇𝑒, 𝑝2

𝑇𝑒, (0,0), (0,0), 𝑁1, 𝑁2) is a recurrent 

class, ∀1 > 𝑝1
𝑇𝑒 , 𝑝2

𝑇𝑒 > 0, and 𝑝1
𝑇𝑒 , 𝑝2

𝑇𝑒 , 𝑁1, 𝑁2 satisfy (#). 

 

(b) (𝑝1
𝑇𝑒, 𝑝2

𝑇𝑒 , (1,0), (1,0)) is a recurrent class and a equilibrium with incomplete in-

formation if 
1−2𝑝𝑖

𝑇𝑒(1−𝑝𝑖
𝑇𝑒)+𝑝𝑗

𝑇𝑒

2−2𝑝𝑖
𝑇𝑒(1−𝑝𝑖

𝑇𝑒)
> 𝛿 ≥ 0 holds, ∀𝑝1

𝑇𝑒 , 𝑝2
𝑇𝑒 ∈ [

𝑎

𝑎+𝑏
,

𝑏

𝑎+𝑏
] and 

𝑝1
𝑇𝑒 , 𝑝2

𝑇𝑒 , 𝑁1, 𝑁2 satisfy (#).   

 

(c) For 𝑝1
𝑇𝑒 = 1, 𝑝2

𝑇𝑒 = 0, (𝑠1
𝑚,𝑟,𝑡, 𝑠2

𝑚,𝑟,𝑡) ∈ {((1,1), (1,1)),((1,1),(0,0)),((0,0),(0,0))} , 

the state is a recurrent class and equilibrium with incomplete information. 

 

We try to simplify proposition 3. as a table form with different block labels. 

These labels will be used in the following discussion:: 
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si
m,r,t

 (a)  (1,1) (b)  (1,0) (c)  (0,0) 

 

(A)  𝑝𝑖
𝑇𝑒 >

a

a+b
 

 

Recurrent if another 

group’s strategy dis-

tribution is (1,1), stable 

if two groups are seg-

regated. 

(Aa) 

 

Neither stable nor re-

current. 

(Ab) 

Recurrent if another 

group’s strategy dis-

tribution is (0,0), stable 

if both groups are seg-

regated. 

(Ac) 

 

(B)  

 
a

a+b
> 𝑝𝑖

𝑇𝑒 >  
b

a+b
 

 

 

Same as above 

(Ba) 

Recurrent if 

1−2𝑝𝑖
𝑇𝑒(1−𝑝𝑖

𝑇𝑒)+𝑝𝑗
𝑇𝑒

2−2𝑝𝑖
𝑇𝑒(1−𝑝𝑖

𝑇𝑒)
   

> 𝛿 ≥ 0 

(Bb) 

 

Same as above 

(Bc) 

 

(C)  
b

a+b
> 𝑝𝑖

𝑇𝑒 

 

 

Same as above 

(Ca) 

 

Neither stable nor re-

current 

(Cb) 

 

 

Same as above 

(Cc) 
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4.  Stochastic Stability with Double Mutations 

 

    This chapter we start to build a system of total potential of all recurrent classes to 

confirm which class is most stochastic stable under dynamic mutation model. For 

simplicity here we must set another assumption: there are two possible mutations in 

dynamic model, one is strategy mutation and the other is move mutation. Strategy 

mutation means an individual switch his strategy irrationally and by enough switching 

we can notice that the group’s total strategy distribution (from now on) changes. 

Move mutation means two individuals of different group exchange their position, that 

is, if a move mutation happens between a T.P. player and a B.P. player then these two 

groups will maintain their size but change proportions. If we count an individual 

strategy mutation as 1, then the move mutation is 2 due to it needs two individual to 

make mistake. 

    Consider a model whose total size of T.P. players is N1 and size of B.P. players 

is N2. Define a recurrent class (1,0,(1,1),(0,0)) by typical segregation, that is, typical 

segregation shows all players of same type gathered in same group and choose their 

favorite strategy. Then the corresponding size of two groups of typical segregated 

state is N1 and N2. Following we construct all possible recurrent classes under these 

settings and calculate the total potential. 

    We must give an extinct boundary condition of the total size N1 and N2: 
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a

b
N2 > N1 >

b

a
N2 and N1 >

a

b
N2 or 

b

a
N2 > N1. This is because under the condition 

of N1 >
a

b
N2 or 

b

a
N2 > N1, namely the difference of two type population is large, 

one kind of recurrent class, (p
1
Te, p

2
Te, (1,0), (1,0)) with proper p1

Te, p2
Te, cannot exist.   

 

 

4.1.  Stochastic stability when type size difference is small 

 

4.1.1.  Specifications of recurrent classes 

 

    Assume that the difference of two type size is not so large, 
a

b
N2 > N1 >

b

a
N2. 

Despite typical segregation there will be two untypical segregations: (1,0,(1,1),(1,1)) 

and (1,0,(0,0),(0,0)), and we denote typical segregation as (i) and untypical ones as 

(ii)(a) and (ii)(b). Another kind of recurrent classes is in the block of (Bb), namely 

proportions of two groups is in the threshold (
b

a+b
,

a

a+b
) and satisfying the restriction 

(*), and the strategy distributions are all (T,B). We denote them as (iii). Another kind 

is classes in the block of (Ba) and (Ca): all players play tennis and thus the strategy 

distribution is (T,T), denoted by (iv). The final one is in the block of (Ac) and (Bc), 

denoted by (v). Here is the list: 

 

(i) Typical segregation (1,0,(1,1),(0,0)) 

(ii) Untypical segregation (1,0,(1,1),(1,1)) and (1,0,(0,0),(0,0)). We denote 

(1,0,(1,1),(1,1)) by (ii)(a) and (1,0,(0,0),(0,0)) by (ii)(b). 

(iii) Recurrent classes in which two group all in the block of (Bb). 

(iv) Recurrent classes in which two group all in the blocks of (Ba) and (Ca), or one 
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is in (Aa) and the other is in (Ba) or (Ca). 

(v) Recurrent classes in which two group all in the blocks of (Ac) and (Bc) ,or one 

is in (Cc) and the other is in (Ac) or (Bc). 

 

 

    The reason why we eliminate recurrent classes that both groups in the block (Aa) 

of (iv) or both in the block (Cc) of (v) is that, the total size of T.P. and B.P. players are 

not disproportionate such that there will not the existence of “too much” T.P. players 

in both group (but there is still chance of “too much” T.P. players in one group but the 

other group is not). Thus there will not be such existence of too much B.P. players in 

both groups. 

 

 

4.1.2.  Transition between classes in the same specification  

 

    First, we claim that every class in (iii) have a corresponding class which has the 

same proportion distribution in (iv) and another one in (v). Notice that all the classes 

in (iii), whose strategy distribution is both groups play (T,B) and their proportions 

satisfy the restriction (∗), can mutate to the classes of (iv) and (v) by mutate their 

strategy distribution. That means in (iv) and (v), there is a corresponding class for 

each class in (iii) and they have the same proportion distributions despite the strategy 

distributions are not the same. We call the class in (iv) and (v) “mirror class” of its 

corresponding class. Thus we can infer that all classes in (iii) can mutate to corre-

sponding mirror class in (iv) or (v) by strategy mutation of both group. 
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                      (iii) 

 

 

(iv) 

 

 

We then construct the transition resistances in the same specification. The fol-

lowing is specification (iii): 

 

                    τ1   τ2    ..……    τK−1 

 

        (iii)                        

                    τ1   τ2    ..……    τK−1 

 

where the total recurrent classes in (iii) is K and τk ≥ 1. About specification (iv) and 

(ii)(a): 

             

            1      ………………      1     1 
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  (iv)                                             (ii)(a) 

 

            1      ………………      1     1 

 

This is specification (v) and (ii)(b), which are analogous to (iv) and (ii)(a): 

 

            1      ………………      1     1 

 

   (v)                                             (ii)(b) 

 

            1      ………………      1     1 

 

    The reason why we place (ii)(a) and (iv) together is that the strategy distribution 

of (ii)(a) is (T,T), same as (iv). That means an single individual move mutation can 

make (ii)(a) switch to (iv), and vice versa. This switching works on (ii)(b) and (v), 

too. 

    The reason why the inner resistance of (iii) and that of (iv) and (v) are not the 

same is, for every recurrent class in (iii) there is a corresponding class in (iv) and (v), 

however for every class in (iv) there is not always a corresponding class in (iii) due 

the restriction (*). Some classes of (iv) and (v) whose proportion distributions do not 

satisfy (*) cannot be a recurrent class when they mutate to (iii) by only strategy muta-

tion. Thus we know the resistance between each recurrent class of (iii) may be larger 

than that of (iv) and (v), i.e. 1, due to the restriction (∗). We denote all resistances be-

tween classes in (iii) by τ1, τ2, … . , τK−1, where K is the number of recurrent classes in 

(iii) and τk ≥ 1. 
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    Moreover, we can claim that all recurrent classes in (iii) have the same stochastic 

potential due to the same resistance, and that all recurrent classes in (iv) and (ii)(a) 

have the same stochastic potential due to the same resistance. So do all recurrent 

classes in (v) and (ii)(b). 

 

 

 

lemma 5.  

 

The following shows that some classes have the same stochastic potential: 

 

(1) all recurrent classes in (iii). 

(2) all recurrent classes in (iv) and (ii)(a). 

(3) all recurrent classes in (v) and (ii)(b). 

 

the resistance in (1) is 𝜏1, 𝜏2, … . , 𝜏𝐾−1, where K is the number of recurrent classes in 

(iii) and 𝜏𝑘 ≥ 1, resistance in (2) and (3) is 1.   

 

proof: above. 

 

 

4.1.3. Transition between specification (i) and (iii) 

 

    About (i) and (iii), from typical segregation to (iii), two groups must switch its 

proportion first and then switch to strategy distribution (T,B). We choose a class of (iii) 

whose group proportion is easiest for typical segregation to switch and denote the 
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class as “easy-achieve”, “e.a.”. Define pea
Te = arg minh(

a

a+b
− ph

Te, ph
Te −

b

a+b
), where 

ph is the proportion which belongs to any recurrent class in (iii). Then pea is the 

possible proportion which is closest to 
a

a+b
 or 

b

a+b
 and the recurrent class which pea 

belongs to is e.a. class. We give a further definition of two proportions which belong 

to e.a. class, denoted by pea1
Te  and pea2

Te . Of course, one of them is pea
Te. pea1

Te = pea
Te 

or pea2
Te = pea

Te.  

It needs ω1
3 individual move mutations for a proportion of segregated state to 

switch to pea and needs [
mb(N1+N2)

a+b
]∗ individuals strategy mutations, thus the total 

mutations we need is ω1 + [
mb(N1+N2)

a+b
]∗. However, the mutations needed for switch-

ing back is some move mutations such that one of group proportion is out of the 

threshold (
b

a+b
,

a

a+b
), denoted by ω2 = min ((

a

a+b
− p

ea1
Te ) N1, (p

ea1
Te −

b

a+b
) N1, (

a

a+b
−

p
ea2
Te ) N2, (p

ea2
Te −

b

a+b
) N2). 

 

                       τ1     τ2      ..……     τK    

 

            (iii) 

                     

                     

                       ω2      ω1 + [
mb(N1+N2)

a+b
]∗ 

   

 

lemma 6. 

                                                      
3
 ω1 =  min ((1 − pea1

Te )N1, pea1
Te N1, (1 − pea2

Te )N2, pea2
Te N2). 

ea 

 (i) 
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The resistance from specification (i) to (iii) is  

 

𝜔1 + [
𝑚𝑏(𝑁1+𝑁2)

𝑎+𝑏
]∗where 𝜔1 =  𝑚𝑖𝑛 ((1 − 𝑝

𝑒𝑎1
𝑇𝑒 )𝑁1, 𝑝

𝑒𝑎1
𝑇𝑒 𝑁1, (1 − 𝑝

𝑒𝑎2
𝑇𝑒 )𝑁2, 𝑝

𝑒𝑎2
𝑇𝑒 𝑁2). 

 

From (iii) to (i), the resistance is 

𝜔2 = 𝑚𝑖𝑛 ((
𝑎

𝑎+𝑏
− 𝑝

𝑒𝑎1
𝑇𝑒 ) 𝑁1, (𝑝

𝑒𝑎1
𝑇𝑒 −

𝑏

𝑎+𝑏
) 𝑁1, (

𝑎

𝑎+𝑏
− 𝑝

𝑒𝑎2
𝑇𝑒 ) 𝑁2, (𝑝

𝑒𝑎2
𝑇𝑒 −

𝑏

𝑎+𝑏
) 𝑁2). 

 

4.1.4.  Transition between specification (ii), (iii), (iv), and (v) 

 

About (ii), (iii), (iv), and (v): since in (iv) or (v) there are corresponding classes 

(mirror class) for all classes of (iii), the switching is easy: from (iii) to (v) or (iv) the 

groups only need to switch their strategy distribution from (T,B) to (T,T) or (B,B). 

The mutations needed to switch from (T,B) to (T,T) is 

[mN1 ∙ min(
a

a+b
− p

i
Te, p

i
Te −

b

a+b
) + mN2 ∙ min(

a

a+b
− p

j
Te, p

j
Te −

b

a+b
)]

∗

,∀group i, j 

 

Since in (iii), class “e.a” is the class whose group proportion is closest to 
a

a+b
 or 

b

a+b
, we can infer that e.a. class has the minimal resistance to mutate to (v) or (iv) in 

all recurrent classes of (iii). Then the resistance is  

[mN1 ∙ min(
a

a + b
− p

ea1
Te , p

ea1
Te −

b

a + b
) + mN2 ∙ min(

a

a + b
− p

ea2
Te , p

ea2
Te −

b

a + b
)]

∗

 

 

Denoted by ω3, where pea1
Te  is the proportion of group 1 of e.a. recurrent class 

and pea2
Te  is that of group 2 of e.a. class, just as we mentioned in 4.1.3. 

For another aspect: from (iv) or (v) to (iii), all classes must switch its group pro-
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portions and strategy distribution from (T,T) or (B,B) to (T,B). This is a small strategy 

mutation and need [
mb(N1+N2)

a+b
]

∗

 mutations. By the way, the transition between (ii)(a) 

and (iii) must pass (iv)/(v), thus similar argument apply. So does (ii)(b). The graph is 

printed in the next page: 

 

 

     

 

               (iii) 

 

 

               ω3                 ω3 

                    [
mb(N1+N2)

a+b
]

∗

                                                  [
mb(N1+N2)

a+b
]

∗

 

     (iv)                         (ii)(a)     (ii)(b)                   (v) 

 

 

 

 

lemma 7. 

The resistance from (iii) to (iv) or from (iii) to (v) is  

[𝑚𝑁1 ∙ 𝑚𝑖𝑛(
𝑎

𝑎+𝑏
− 𝑝

𝑒𝑎1
𝑇𝑒 , 𝑝

𝑒𝑎1
𝑇𝑒 −

𝑏

𝑎+𝑏
) + 𝑚𝑁2 ∙ 𝑚𝑖𝑛(

𝑎

𝑎+𝑏
− 𝑝

𝑒𝑎2
𝑇𝑒 , 𝑝

𝑒𝑎2
𝑇𝑒 −

𝑏

𝑎+𝑏
)]

∗

, 

which is denoted by 𝜔3.  

The resistance from (iv) to (iii) or from (v) to (iii) is 

[
𝑚𝑏(𝑁1+𝑁2)

𝑎+𝑏
]

∗

 . 

e.a. 

Mirror Mirror 

move mutations 
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proof: above. 

 

 

 

4.1.5. Transition between (i), (ii), (iv), and (v) 

 

The last part is (i), (ii), (iv), and (v). We firstly check the process from (i) and (v) 

to (iv).(the process from (iv) and (i) to (v) is the same) From the process for a typical 

segregation mutating to classes of (iii), we consider two path: 1
st
 path is that (i) transit 

to (ii)(a) first and then transit to (iii); 2
nd

 path is (i) directly transit to (iii) by the fol-

lowing method: 

 

 

The 2nd path 

 

 G1    G2 

 

 

 

(T,T)  (B,B)          (T,T) (B,B)           (T,T)  (T,B)         (T,T) (T,T) 

(1)                  (2)                  (3)                (4) 

 

Explanation: 

(1) A typical segregation 

(2) Group 1 and 2 switch their proportions by some move mutations, 
aN2

a+b
, until group 
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2’s proportion is equal to 
a

a+b
.  

(3) Group 2 switches its strategy distribution from (B,B) to (T,B). 

(4) Since in group 2 the proportion of T.P. players is large enough, soon the strategy 

distribution will switch to (T,T) automatically. We denote the class of (4) by relay 

class.  

 

 

Moreover, from (ii)(b) and (v) to (iv), there will be three possible paths: first is  

mutate to typical segregation (i) by a small strategy mutation (if one group switch its 

strategy from (B,B) to (T,B) then the typical segregation happens) and then through 

1
st
 path to mutate to (iv). Second is mutate to typical segregation (i) and then through 

2
nd

 path to mutate to (iv). The last one is mutate directly to (iv) by strategy mutation: 

 

The 3rd path 

 

      G1  G2                              G1   G2 

 

                  Both groups switch their 

                  strategy distribution 

     (B,B) (B,B)                           (T,T)  (T,T) 

 

    The resistance of 3
rd

 path is [
ma(N

1
+N2)

a+b
]

∗

 since the needed mutations for group 1 

to switch its strategy distribution from (B,B) to (T,T) is [
maN1

a+b
]

∗

 and that for group 2 

to do so is [
maN2

a+b
]

∗

. 
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    To compare easily, we give a graph below to describe the flows. One thing to no-

tice is that from any class of (iv) or (v) transit to (i), the the resistance is [
mbN2

a+b
]

∗

 be-

cause only by a small strategy mutation of a relative small size group the groups will 

soon switch to typical segregation. The following graph is rooted by the relay class of 

(iv), that is the process will use 1
st
 path: 

 

 

 

                 
aN2

a+b
+ [

mbN2

a+b
]

∗

                                 [
mbN2

a+b
]

∗

  

 

 

 

 

                     (iv)                      (ii)(a)    (ii)(b)     (v) 

 

And this is by 2
nd

 path: 

 

 

 

                                           [
maN2

a+b
]

∗

              [
mbN2

a+b
]

∗

 

 

 

 

 

                     (iv)                      (ii)(a)      (ii)(b)     (v) 

(i) 

(i) 
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The last one is 3
rd

 path, rooted by any class of (iv): 

 

 

 

 

        (iv)                                                       (v) 

                                     [
ma(N

1
+N2)

a+b
]

∗

 

 

    By calculation we know that, under large enough m the path with minimal re-

sistance is 1
st
 path (Through relay class). This is very intuitive: once m is large, it 

means that a strategy distribution switching for a group is getting harder. Thus com-

paring with 2
nd

 and 3
rd

 path, 1
st
 path needs less strategy mutations and of course it is 

the minimal resistance path. 

 

 

lemma 7. 

 

From the specification (v) to (iv), the transition will firstly pass typical segregation, 

(i), and then transit to the relay class of (iv). The total resistance is  

 

𝑎𝑁2

𝑎 + 𝑏
+ 2 [

𝑚𝑏𝑁2

𝑎 + 𝑏
]

∗

 

 

From (iv) to (v), the resistance is the same. 
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proof: above 

 

4.1.6. The stochastic potential of classes in each specification 

 

    From lemma 5, 6, and 7, we have enough information about the resistance be-

tween each specification and can construct stochastic potential now. Because (v) is 

analogous to (iv) and the relay class is the class with minimal resistance of all class in 

(iv), we only need to compare (i), (ii), e.a. class of (iii), and relay class of (iv). 

 

 

The (i)-tree: 

 

 

                        (iii) 

                                                   

 

                               ω2 

 

 

 

                [
mbN2

a+b
]

∗

                                     [
mbN2

a+b
]

∗

 

                           

(iv)                    (ii)(a)              (ii)(b)        (v) 

 

(i) 

Total less than 
a−b

a+b
N2 
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        Total N2 − 1                                                 Total N2 − 1                  

 

    We claim that the stochastic potential of (i)-tree is 2 [
mbN2

a+b
]

∗

+ ω2 + MRT, 

where MRT is the sum of total move resistance in (ii), (iii), (iv), and (v); ω2 is the 

minimal move mutations needed for e.a, equal to min ((
a

a+b
− p

ea1
Te ) N1, (p

ea1
Te −

b

a+b
) N1, (

a

a+b
− p

ea2
Te ) N2, (p

ea2
Te −

b

a+b
) N2). class to switch one of its group propor-

tions out of the threshold [
b

a+b
,

a

a+b
].  

 

lemma 8. 

The stochastic potential of (i)-tree is 2 [
𝑚𝑏𝑁2

𝑎+𝑏
]

∗

+ 𝜔2 + 𝑀𝑅𝑇, where 𝑀𝑅𝑇 is the sum 

of total move resistance in (ii), (iii), (iv), and (v). This means the typical segregated 

state's stochastic potential is  2 [
𝑚𝑏𝑁2

𝑎+𝑏
]

∗

+ 𝜔2 + 𝑀𝑅𝑇. 

 

    Now check the stochastic potential of e.a. class of (iii):  

 

The (iii)-tree 

 

 

 

                 [
mb(N1+N2)

a+b
]

∗

       ω1 + [
mb(N1+N2)

a+b
]

∗

                 [
mb(N1+N2)

a+b
]

∗
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    We claim that the stochastic potential of (iii)-tree is ω1 + 3 [
mb(N1+N2)

a+b
]

∗

+ MRT. 

Obviously the potential is larger than that of (i)-tree. This means all classes in (iii) 

have more stochastic potential than typical segregation. 

 

 

lemma 9. 

 

The stochastic potential of (iii)-tree is 𝜔1 + 3 [
𝑚𝑏(𝑁1+𝑁2)

𝑎+𝑏
]

∗

+ 𝑀𝑅𝑇, where 𝑀𝑅𝑇 is the 

sum of total move resistance in (ii), (iii), (iv), and (v). This means that all the recur-

rent classes in (iii) have the stochastic potential 𝜔1 + 3 [
𝑚𝑏(𝑁1+𝑁2)

𝑎+𝑏
]

∗

+ 𝑀𝑅𝑇. 

 

proof: above 

 

 

About the relay class of (iv) and (ii)(a): we know that the resistance from (ii)(a) 

to (iv) is a single move mutation, and so is the inverse direction resistance. Thus the 

potential of (ii)(a) and all classes in (iv) are the same. (so are (ii)(b) and (v)) We can 

discuss them at same paragraph. 
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The (iv)-tree: 

 

 

 

 

                  ω3 

 

                        

                      
aN2

a+b
+ [

mbN2

a+b
]

∗

                           [
mbN2

a+b
]

∗

 

 

 

   

 

 

 

 

    The stochastic potential of (iv)-tree is  
aN2

a+b
+ 2 [

mbN2

a+b
]

∗

+ ω3 + MRT, where ω3 

is [mN1 ∙ min(
a

a+b
− p

ea1
Te , p

ea1
Te −

b

a+b
) + mN2 ∙ min(

a

a+b
− p

ea2
Te , p

ea2
Te −

b

a+b
)]

∗

. Com-

pare this with the potential of typical class, we can derive that when ω2 is smaller 

than ω3 +
aN2

a+b
 then the stochastic potential of typical class is the smallest one, and 

vice versa. Since both ω2 and 
aN2

a+b
 are move mutations and ω2 = min ((

a

a+b
−

p
ea1
Te ) N1, (p

ea1
Te −

b

a+b
) N1, (

a

a+b
− p

ea2
Te ) N2, (p

ea2
Te −

b

a+b
) N2), much smaller than 

aN2

a+b
, 

we can infer that the stochastic stable state of the dynamic model is typical class.  

e.a. 

The mirror of e.a. class 

The relay class 
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    One more thing to notice is that, since both ω2 and 
aN2

a+b
 are move mutations and 

ω2 <
aN2

a+b
, it means the stable state will not change even if we impose a multiplier φ 

on all move mutations and claim that move mutation is much easier or harder than 

strategy mutation( i.e. φ is much smaller or larger than 1).    

    Since (ii)(a) has the same stochastic potential as (iv) and the (v)-tree is analogous 

to the (iv) tree, we can infer that all recurrent classes in (iv) and (v), and untypical 

segregated states (ii)(a) and (b), have the same stochastic potential which is equal to 

 
aN2

a+b
+ 2 [

mbN2

a+b
]

∗

+ ω3 + MRT. 

 

 

lemma 10. 

 

The stochastic potential of (iv)-tree is  
𝑎𝑁2

𝑎+𝑏
+ 2 [

𝑚𝑏𝑁2

𝑎+𝑏
]

∗

+ 𝜔3 + 𝑀𝑅𝑇, where 𝜔3 is 

[𝑚𝑁1 ∙ 𝑚𝑖𝑛(
𝑎

𝑎+𝑏
− 𝑝

𝑒𝑎1
𝑇𝑒 , 𝑝

𝑒𝑎1
𝑇𝑒 −

𝑏

𝑎+𝑏
) + 𝑚𝑁2 ∙ 𝑚𝑖𝑛(

𝑎

𝑎+𝑏
− 𝑝

𝑒𝑎2
𝑇𝑒 , 𝑝

𝑒𝑎2
𝑇𝑒 −

𝑏

𝑎+𝑏
)]

∗

. Thus all 

recurrent classes in (iv) and (v), and untypical segregated states (ii)(a) and (b), have 

the same stochastic potential which is equal to  
𝑎𝑁2

𝑎+𝑏
+ 2 [

𝑚𝑏𝑁2

𝑎+𝑏
]

∗

+ 𝜔3 + 𝑀𝑅𝑇. 

 

proof: above. 

 

 

 

    By lemma 8, 9, and 10. We know that the typical segregated state, (i), has the 

minimal stochastic potential. Moreover, if move mutations is much easier than strate-

gy mutations, the stable state is still typical segregated state. This is because there is 
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no more move mutations than MRT in the stochastic potential of (iii)-tree (lemma 9). 

Another reason is that in the stochastic potential of (iv)-tree and (v)-tree, both ω2 

and 
aN2

a+b
 are move mutations but ω2 <

aN2

a+b
 (lemma 10). 

 

 

Proposition 11. 

 

If 
𝑎

𝑏
𝑁2 > 𝑁1 >

𝑏

𝑎
𝑁2, then the stochastic stable state of model with incomplete infor-

mation is typical segregated state, (1,0,(1,1),(0,0)). 

 

 

proof: above 

 

 

4.2. Stochastic stability when type size difference is large 

 

    However, proposition 11 is based on the size of two group is close, i.e. 

a

b
N2 > N1 >

b

a
N2, will the stochastic stable state still be typical segregation if 

N1 >
a

b
N2 or 

b

a
N2 > N1? 

    We can deduce that if N1 >
a

b
N2 or 

b

a
N2 > N1 then the specification distribu-

tion will change: the existence of (Bb) will distinguish and thus (iii) no longer exist. 

That means the model is just like the simplified version of above model. The only 

difference is that we remove the specification: recurrent classes in which two group 

all in the block of (Bb). Moreover, the classes of (iv) and (iv) will change a little. Here 
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we replace the list: 

 

(i)Typical segregation (1,0,(1,1),(0,0)) 

(ii)Untypical segregation (1,0,(1,1),(1,1)) and (1,0,(0,0),(0,0)). We denote 

(1,0,(1,1),(1,1)) by (ii)(a) and (1,0,(0,0),(0,0)) by (ii)(b). 

(iv)Recurrent classes in which two group all in the blocks of (Aa) and (Ba), or 

one is in (Ca) and the other is in (Aa) and (Ba). 

(v)Recurrent classes in which two group all in the blocks of (Bc) and (Cc) ,or 

one is in (Ac) and the other is in (Bc) and (Cc). 

 

 If we set (i) as the root: 

 

 

The (i)-tree 

 

 

 

 

                    [
mbN2

a+b
]

∗

                            [
mbN2

a+b
]

∗

 

                           

(iv)                    (ii)(a)              (ii)(b)               (v) 

 

 

        Total N2 − 1                                                 Total N2 − 1                  

 

(i) 
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lemma 12. 

     The stochastic potential of (i)-tree is 2 [
𝑚𝑏𝑁2

𝑎+𝑏
]

∗

+ 𝑀𝑅𝑇
∗ , where 𝑀𝑅𝑇

∗  is the sum 

of move resistance of (iv) and (v). 

 

If rooted by the relay class of (iv): 

 

The (iv)-tree 

 

 

                        

                     
aN2

a+b
+ [

mbN2

a+b
]

∗

               [
mbN2

a+b
]

∗

 

 

   

 

 

lemma 13.  

     The stochastic potential of (ii), (iv), and (v) are all 
𝑎𝑁2

𝑎+𝑏
+ 2 [

𝑚𝑏𝑁2

𝑎+𝑏
]

∗

+ 𝑀𝑅𝑇
∗ , 

where 𝑀𝑅𝑇
∗  is the sum of move resistance of (iv) and (v). 

 

    To note that lemma 12 and 13 is based on the assumption N1 >
a

b
N2 or 

b

a
N2 > N1. Obviously the stochastic stable state is typical segregation, no matter how 

small the chance of move mutation is, i.e. φ does not matter, because there is no 

more move mutations than 𝑀𝑅𝑇
∗  in the (i)-tree. 

 

The relay class 
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Propostion 14. 

    If N1 >
a

b
N2 or 

b

a
N2 > N1, then the stochastic stable state of model with in-

complete information is typical segregated state, (1,0,(1,1),(0,0)). 

 

proof: above. 

 

 

4. Conclusion 

 

    Two-group model shows another result, far from the grouping equilibrium. Equi-

librium of two-group model may be segregated or non- segregate depending on the 

obstruction of information and misconception of players, and it also shows that with 

double mutations the stochastic stable state is the typical segregated state. Moreover, 

it solves the drawback of grouping equilibrium: move is easily to happen if people are 

dissatisfying on the payoff, and two-group model also shows the process of grouping 

formation. We can find that in the random and inherent match game, people will try to 

find another group to maximize his payoff. But when infor- mation is not clear on 

some aspects: players cannot distinct the type of each other and those in another group, 

or people might be "deceived" by the investigation of his or a fair institution, then 

non-segregation equilibrium will happen. However in a dynamic process, we will no-

tice that in most situations, typical segregation is stable because only a small strategy 

change, the equilibrium of non-segregation will easily be broken by strategy muta-

tions.  

    Since we know that in the dynamic model, after periods the equilibrium will be 
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segregated as a typical segregation, which means efficiency for every player. Thus, 

what else a government should do is to increase the speed of process to form a typical 

segregation. Government can increase the speed by increase the number of re-matches 

in a given period (such like a week, a month). Once the number of match is increased, 

the probability of making mutation in strategy decision in a given period is increased. 

From Chapter 4 we know typical segregation is more stable than other recurrent clas-

ses, since the probability of mutation is increased we can infer the model is easier to 

derive a typical segregation, namely efficient equilibria. 

    Another method to solve the problem of inefficiency is removing the obstruction 

of information. However, it is costly for government to investigate the type of all 

players, and sometimes the information is always incomplete. In this situation, meth-

od of increasing the number of re-matches in a given period is a better choice. 
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Appendix A. 

 

    Assume that in the same group, the proportion of players who choose to bring 

tennis in T.P. type is p
T
 and that in B.P. type is p

B
. The proportion of T.P. players in 

this group is p and the size of the group is Ni. 

    Then for a T.P. player, he will choose tennis if  

app
T

+ a(1 − p)p
B

> ap(1 − p
T

) + b(1 − p)(1 − p
B

) 

 

    For a T.P. player, he will choose tennis if  

bpp
T

+ b(1 − p)p
B

> bp(1 − p
T

) + a(1 − p)(1 − p
B

) 

 

    Simplify we yield 

pp
T

+ (1 − p)p
B

>
b

a + b
 

pp
T

+ (1 − p)p
B

>
a

a + b
 

 

    Thus for sS
r−1 = (1,1) or (0,0) to mutate to (1,0), we need the proportion of 

players who choose to bring tennis in T.P. type to change, that is, 
b

a+b

1

p
, or the propor-

tion of players who choose to bring tennis in T.P. type to change, 
b

a+b

1

1−p
. (select the 

minimum) Consider the corresponding proportion, total population, and m memory 

periods, the minimum mutations are [
mbNi

a+b
]∗. For (1,1) to (0,0) or (0,0) to (1,1), the 

minimum mutations are [
maNi

a+b
]∗. For (1,0) to (1,1) or (0,0), the minimum mutations 

are [mNi ∙ min (
a

a+b
− p, p −

b

a+b
)]∗.  
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