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1.  The Construction Procedure 

Huang and Babri (1998) propose an elegant construction method to set up a real-valued 
single-hidden layer feed-forward neural network (SLFN) with N hidden nodes that 
successfully learns N distinct samples with zero error.  In a correlated real-valued single-
hidden layer feed-forward neural network (SLFN), the weight vectors in the input layer of all 
its hidden nodes are linearly dependent.  Tsaih and Wan (2007) realize that the SLFN 
constructed by Huang and Babri (1998) is correlated.  They further show that the correlated 
SLFN has the property of hyperplane preimages.  The correlated SLFN provides a 
hyperplane-preimage approach for the nonlinear regression problem with the assumption of 
linear preimage.  Such usages motivate a study of the construction procedure for creating a 
correlated SLFN with less than N hidden nodes that perfectly fits N distinct samples.  

The proposed construction procedure will initially set up one hidden node and then 
recruit (add) more (linearly dependent) hidden nodes during the learning process.  In the 
literature, there are some similar procedures; for instance, the tiling algorithm for binary-
valued layered feed-forward neural networks (cf. Me’zard and Nadal, 1989), the cascade-
correlation algorithm (cf. Fahlman and C. Lebiere, 1990), and the upstart algorithm for 
binary-valued layered feed-forward neural networks (cf. Frean, 1990). In contrast to these 
researches, this study copes with the correlated real-valued SLFN. 

In the context of estimation, the response y equates f(x, w) + δ where w is the parameter 
vector and δ is the error term.  Usually, the function form of f is predetermined and fixed 
during the process of deriving its associated w from a given data set of observations {(1x, 
1y), …, (Nx, Ny)}, with cy being the observed response corresponding to the cth observation cx. 

The least squares estimator (LSE) is one of the most popular methods for estimating.  If 

ŵ  denotes any estimate of w, then LSE is defined to minimize 
N

c 1=
∑ ce2, where 

ce = cy - f(cx, ŵ ).    (1) 
The generalized delta rule proposed in (Rumelhart, Hilton, and Williams, 1986) for the 
learning process of SLFN is a kind of (nonlinear) LSE.  The LSE, however, is known to be 
very sensitive to outliers. 

In the literature of linear regression analysis, there are two approaches of dealing with 
outlier problems: deletion diagnostics and robust estimators (cf. Rousseeuw and Leroy (1987, 
page 8)).  The diagnostic approach assesses the influence of an individual observation or a 
subset of observations to the LSE.  The diagnostic approach is useful to assess the adequacy 
of the underlying assumption and to identify unexpected characteristics of the data.  One 
way for the diagnostics is to identify the observations that leave the largest change in the 
diagnostic quantity (cf. (Cook and Weisberg, 1982)(Atkinson, 1985)) when they are excluded 
from the fitted data set. 

As for the robust statistics approach, the robustness analysis (cf. (Hampel, 1986)) limits 
the attention to a “trimmed” sum of squared residuals instead of adding all the squared 
residuals as in the LSE.  If only the first q of those ordered squared residuals are included in 
the summation, then the least trimmed squares (LTS) estimator is defined as 

Minimize 
q

c 1=
∑ [c]e2,  (2) 



where [c]e2 denotes the ordered squared residuals; that is, [1]e2 ≤ [2]e2 ≤ …≤ [N]e2.  Zaman, 
Rousseeuw, and Orthan (2001) suggest that ⎣0.75N⎦1 is a reasonable value for q in most 
empirical studies. 

Atkinson and Cheng (1999) adapt the forward search algorithm proposed in (Atkinson, 
1994) to develop the LTS estimates.  The forward search algorithm consists of randomly 
adopting an (initial) subset of m+1 observations to fit the linear regression model, ordering 
the residuals of all N observations, and then augmenting the subset gradually by including 
extra observations based upon the smallest squared residuals principle. 

The C-step2 of Rousseeuw and Van Driessen (2002) can release quite fast a series of 
subsets of observations whose corresponding total squared residuals are refined gradually.  
The last subset results in a good linear fitting function which is an approximation of the LTS 
estimator.  
2.  The Mapping Requirement and Notations 

An SLFN provides a nonlinear mapping between x and y, whose form is y = f(x). f is a 
nonlinear function whose parameters (i.e., weights and biases) are derived from a given data 
set of mapping samples {(x1, t1), …, (xN, tN)} with xc1 ≠ xc2, c1 ≠ c2, and with tc the target 
value of y corresponding to xc. x ≡ (x1, x2,…, xm)T ∈ Rm where xj is the jth input component, 
with j from 1 to m. 

Hereafter, m and p denote the numbers of adopted input and hidden nodes, respectively; 
2
0jw  stands for the bias of the jth hidden node; 2

jw ≡ ( 2
1jw , 2

2jw , …, 2
jmw )T for the weights 

between the jth hidden node and input layer; 3
0w  for the bias of the output node; and 3w ≡ 

( 3
1w , 3

2w , …, 3
pw )T for the weights between the output node and all hidden nodes. Characters in 

bold represent column vectors; the superscript T indicates transposition. 
Let the tanh(t) activation function be used by all hidden nodes and a linear activation 

function be used by the output node. Thus, given the cth sample xc, the activation value of the 
jth hidden node ac( 2

0jw , 2
jw ) and the output value yc are as follows: 

ac( 2
0jw , 2

jw ) ≡ tanh( 2
0jw +

m

i 1=
∑ 2

jiw c
ix );                  (3)  

yc ≡ 3
0w +

p

j 1=
Σ 3

jw ac( 2
0jw , 2

jw ).                         (4)   

Given the N mapping samples, let v( 2
0jw , 2

jw ) ≡ (a1( 2
0jw , 2

jw ), a2( 2
0jw , 2

jw ), …, 
aN( 2

0jw , 2
jw ))T ∈ (-1,1)N be the responding vector of the jth hidden node with the cth 

component being ac( 2
0jw , 2

jw ). Furthermore, let 1 be a N × 1 vector with all components 1 and 

T ≡ (t1, t2, …, tN)T ∈ RN. Thus, the set of simultaneous equations 3
0w +

p

j 1=
Σ 3

jw tanh( 2
0jw +

m

i 1=
∑ 2

jiw  
c
ix ) = tc ∀ c = 1, …, N is equivalent to system (5), which states that T is in the space spanned 

by 1 and p responding vectors, {v( 2
0jw , 2

jw ), j = 1, …, p}. 

3
0w 1 +

p

j 1=
Σ 3

jw v( 2
0jw , 2

jw ) = T.                        (5) 

                                                           
1 Hereafter, ⎣x⎦ is the largest integer not larger than x. 
2  C stands for “concentration".  The idea of C-step has been implemented in the built-in function lts.reg of Splus which is a commercial 

statistical computing package published by MathSoft Co.. 



Hereafter, let aRb ≡ a - 
||||

T

b
ab

|||| b
b  denote the residual of vector a regarding b after the 

part parallel with the vector b has been taken away.  
||||

T

b
ab

|||| b
b  is the projection of a in the 

direction of b; and aRb is orthogonal to b since bT aRb = bT (a-
||||
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b
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b ) = 0. 
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bbb
 denote the 

residual of vector a regarding the ordered sequence of linearly independent vectors {b1,…, bk} 
after the part in the (sub-)space spanned by {b1,…, bk} has been taken away.  
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Lemma 1.  Furthermore, a = 
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},...,{

},...,{
T

},...,{

11

1111

−

−−

jj

jjj

bbb

bbbbba

||R||

R

},...,{

},...,{

11

11

−

−

jj

jj

bbb

bbb + aR{b1,…,bk} 

and Lemma 2 lists some properties associated with the above proposed residual vector. 
 

Lemma 1: If a is linearly dependent with b, then aRb = 0. Similarly, if a can be linearly 
represented by the set of vectors {b1,…, bk},3 then aR{b1, …,bk} = 0. 
 

Lemma 2: (i) aRb is orthogonal to b.  (ii) aR{b1, …,bk} is orthogonal to the subspace spanned 
by the set of linearly independent vectors {b1,…, bk}.  (iii) If aR{b1, …,bk} = 0, then 
aR{b1, …,bk+1} = 0. 
 

3.  The Proposed Construction Procedure 

Table 1 presents the proposed procedure for constructing a correlated SLFN appropriate for 
fitting the mapping embedded in {(x1, t1), …, (xN, tN)}. 

Table 1. The proposed deterministic procedure for constructing an appropriate correlated 
SLFN for the mapping requirement of {(x1, t1), …, (xN, tN)}.  T ≡ (t1, t2, …, tN)T and v(w0,w) 
≡ (a1(w0,w), a2(w0,w), …, aN(w0,w))T is a N × 1 vector with the cth component being ac(w0,w) 
≡ tanh(wT xc + w0), in which w ≡ (w1, w2, …, wm)T. 

Step 1: Calculate TR1.  If TR1 = 0, then (i) claim that the fitting job requests no hidden 

node; (ii) set the bias of output node as 
11
1T

T

T

 and the weight vector between the output 

                                                           
3 Namely, a is in the (sub-)space spanned by {b1,…, bk}. 



node and the input layer as 0; and (iii) stop. 

Step 2: Apply the C-step to all N observations to obtain the m+1 input samples that are 
linearly independent.  Let I(m+1) be the set of indices of these samples and I(N) be 
the set of indices of all samples. 

Step 3: Calculate ct~  which equates tanh-1(
2minmax

1min

)()(

)(

+−

+−

∈∈

∈

c

Nc

c

Nc

c

Nc

c

tt

tt

II

I ) from {tc: ∀ c ∈ I(m+1)}.  

Next, apply the linear regression method to the data set {(xc, ct~ ): ∀ c ∈ I(m+1)} to 
get a set of m+1 weights. 

Step 4: Set one hidden node in the network whose values of 2
10w  and 2

1w  are assigned 
as the values of the weights obtained in Step 3, and initial values of 3

0w  and 3
1w  are 

assigned as 1min
)(

−
∈

c

Nc
t

I
 and 2minmax

)()(
+−

∈∈

c

Nc

c

Nc
tt

II
, respectively. Then set γ1 = 1 and p = 

1. 

Step 5: If 3
0w 1 +

p

j 1=
Σ 3

jw v( 2
0jw , 2

jw ) = T, then (i) claim that the fitting job requests p hidden 

nodes with the bias and weights being the above 3
0w , 2

0jw , 2
jw , and 3

jw  for all 1 ≤ j 

≤ p; and (ii) stop. 

Step 6: If 3
0w 1 +

p

j 1=
Σ 3

jw v( 2
0jw , 2

jw ) ≠ T, then solve 
γ,0

min
w

|| )},(),,(,),,(,{T 2
10

22
0

2
1

2
10

R wvwvwv1 γwww ppK
||2 and let 

( *
0w ,γ*) ≡ arg(

γ,0

min
w

|| )},(),,(,),,(,{T 2
10

22
0

2
1

2
10

R wvwvwv1 γwww ppK
||2). 

Step 7: set γp+1 = γ*, 2
0,1+pw = *

0w , 2
1+pw = γp+1

2
1w , and p +1  p. 

Step 8: Apply the linear regression method to the data set {((ac( 2
10w , 2

1w ), ac( 2
20w , 2

2w ), …, 
ac( 2

0pw , 2
pw ))T, tc): ∀ c ∈ I(N)} to get values of 3

0w  and 3
jw , ∀ j = 1, …, p. Then go to 

Step 5. 

 

Step 2 releases m+1 linearly independent input samples through applying the C-step to 
all N input samples.4  Let I(m+1) be the set of indices of these (linearly independent) input 

samples.  Step 3 calculates ct~  via tanh-1(
2minmax

1min

)()(

)(

+−

+−

∈∈

∈

c

Nc

c

Nc

c

Nc

c

tt

tt

II

I ) ∀ c ∈ I(m+1).  Then Step 3 

applies the linear regression method to the data set {(xc, ct~ ): ∀ c ∈ I(m+1)} to get the 
unique solution of ( 2

10w , 2
1w ) of system (6), which is a system of m+1 linear equations in m+1 

unknowns. 

                                                           
4 The choices of the subset at Step 2 can be adapted by other considerations (cf. Stromberg (1993)). 



2
10w + 

m

j 1=
∑ 2

1 jw c
jx  = ct~  ∀ c ∈ I(m+1).   (6) 

Step 4 sets up the network with one hidden node whose values of ( 2
10w , 2

1w ) are assigned 
as obtained in Step 3.  The initial values of 3

0w  and 3
1w  are assigned as 1min

)(
−

∈

c

Nc
t

I
 and 

2minmax
)()(

+−
∈∈

c

Nc

c

Nc
tt

II
, respectively.  According to Rousseeuw and Van Driessen (2002), this 

setup network renders ce2 = 0 ∀ c ∈ I(m+1) and is a good approximation of the LTS 
estimator. 

Step 5 denotes the stopping criterion of the proposed procedure. 
The minimization in Step 6 and the assignment in Step 7 determine the bias and weights 

for the connections of the input nodes to the most newly recruited hidden node.  All biases 
and weights for the connections of the input nodes to the previously recruited hidden nodes 
are unchanged.  Furthermore, the assignment of Step 7 renders the constructed SLFN 
correlated since 2

jw = γj
2
1w , j =1, …, p. 

4.  The Correctness of the Proposed Procedure 

We now prove that the correlated SLFN constructed by the procedure stated in Table 1 meets 
the mapping requirement of {(x1, t1), …, (xN, tN)} without error. 

Tsaih and Wan (2007) state that, for any given {(xc, tc): ∀ c = 1, …, N}, there exists a set 
of {( 2

0jw ,γj
2
1w ), j =1, …, N-1} such that the associated square matrix (1, v( 2

10w , 2
1w ), …, 

v( 2
0,1−Nw ,γN-1

2
1w )) is invertible and the mapping requirement is achieved perfectly.  Therefore, 

we have Lemma 3 and the proposed procedure will stop at any p with 0 ≤ p ≤ N-1. 
 

Lemma 3: If p < N-1, then there always exist w0 and γ such that )},(,),,(,{),( 22
0

2
1

2
10

2
10

R
ppwww wvwv1wv Kγ  ≠ 0. 

Proof of Lemma 3: Suppose there is a p < N-1 such that there are no w0 and γ to render 

)},(,),,(,{),( 22
0

2
1

2
10

2
10

R
ppwww wvwv1wv Kγ ≠ 0.  In other words, p < N-1 and there are no w0 and γ such that v(w0, 

γ 2
1w ) is linearly independent with {1, v( 2

10w , 2
1w ), v( 2

20w , 2
2w ), …, v( 2

0pw , 2
pw )}.  This 

contradicts with the statement of Tsaih and Wan (2007).    Q.E.D. 
 
When the procedure stops at Step 1, the SLFN constructed at Step 1 meets the mapping 

requirement of {(x1, t1), …, (xN, tN)} without error since TR1 = 0.  On the other hand, it is 
obvious to have Lemma 4, which states the necessary condition of a SLFN with p hidden 
nodes appropriate for the mapping requirement of {(x1, t1), …, (xN, tN)}.  Thus the stopping 
criterion stated in Step 5 is suitable. 
 
Lemma 4: Regarding the mapping samples of {(x1, t1), …, (xN, tN)}, the SLFN with p hidden 

nodes is appropriate for the mapping requirement if 3
0w 1 +

p

j 1=
Σ 3

jw v( 2
0jw , 2

jw ) = T. 

 

Consider the case of 3
0w 1 +

1

1

−
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p

j

3
jw v( 2
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0w 1 +
p

j 1=
Σ 3
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Q.E.D. 
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Lemma 7:  The (sub-)space spanned by the set of linearly independent vectors {b1,…, bk} is 
equivalent with the one spanned by the set of orthonormal vectors 
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Proof of Lemma 7: Let us prove by induction.  It is trivial for the case of any set of two 
linearly independent vectors {b1, b2} since b2Rb1 is orthogonal to b1 and b1Rb2 is orthogonal 
to b2. 

Now consider the case of any set of k+1 linearly independent vectors {b1,…, bk+1} with k 
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A Constructive Learning Procedure∗ 

RAY TSAIH 

Department of Management Information Systems, National Chengchi University, No.64, Sec. 2, Jhihnan Rd., Wunshan District,Taipei 

City 116, Taiwan 

This study explores a deterministic learning procedure for the realization of a real-valued single-hidden layer feed-forward neural network 

(SLFN) with tanh activation functions of the hidden-layer nodes for arbitrary mapping problems. 

1.  The Constructive Learning Procedure 

The proposed learning procedure will use none hidden node initially and recruit (add) more hidden nodes during the 
learning process. The goal of the proposed constructive learning procedure is to create a SLFN for fitting perfectly all 
given mapping samples. In the literature, there are some similar procedures; for instance, the tiling algorithm for 
binary-valued layered feed-forward neural networks (cf. [1]), the cascade-correlation algorithm (cf. [2]), and the upstart 
algorithm for binary-valued layered feed-forward neural networks (cf. [3]). In contrast to these researches, this study 
copes with the real-valued SLFN. 

2.  The Mapping Requirement and Notations 

An SLFN provides a nonlinear mapping between x and y, whose form is y = f(x). f is a nonlinear function whose 
parameters (i.e., weights and biases) are derived from a given data set of mapping samples {(x1, t1),…, (xN, tN)} with xc1 
≠ xc2, c1 ≠ c2, and with tc the target value of y corresponding to xc. x ≡ (x1, x2,…, xm)T ∈ Rm where xj is the jth input 
component, with j from 1 to m.  

Hereafter, m and p denote the numbers of adopted input and hidden nodes, repsectively; 2
0jw  stands for the bias of 

the jth hidden node; 2
jw ≡ ( 2

1jw , 2
2jw ,…, 2

jmw )T for the weights between the jth hidden node and input layer; 3
0w  for the 

bias of the output node; and 3w ≡ ( 3
1w , 3

2w ,…, 3
pw )T for the weights between the output node and all hidden nodes. 

Characters in bold represent column vectors; the superscript T indicates transposition. 
Let the tanh(t) activation function be used by all hidden nodes and a linear activation function be used by the output 

node. Thus, given the cth sample xc, the activation value of the jth hidden node ac( 2
0jw , 2

jw ) and the output value yc are as 
follows: 

ac( 2
0jw , 2

jw ) ≡ tanh( 2
0jw +

m

i 1=
∑ 2

jiw c
ix );                  (1) 

 

yc ≡ 3
0w +

p

j 1=
Σ 3

jw ac( 2
0jw , 2

jw ).                         (2)    

Given the N mapping samples, let v( 2
0jw , 2

jw ) ≡ (a1( 2
0jw , 2

jw ), a2( 2
0jw , 2

jw ),…, aN( 2
0jw , 2

jw ))T ∈ 

(-1,1)N be the responding vector of the jth hidden node with the cth component being ac( 2
0jw , 2

jw ). 
Furthermore, let 1 be a N × 1 vector with all components 1 and T ≡ (t1, t2, …, tN)T ∈ RN. Thus, the 

set of simultaneous equations 3
0w +

p

j 1=
Σ 3

jw tanh( 2
0jw +

m

i 1=
∑ 2

jiw c
ix ) = tc ∀ c = 1, …, N is equivalent to 

system (3), which states that T is in the (sub-)space spanned by 1 and p responding vectors, 
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43028F. 



{v( 2
0jw , 2

jw ), j = 1, …, p}. 
 

3
0w 1 +

p

j 1=
Σ 3

jw v( 2
0jw , 2

jw ) = T.                        (3) 

 

Hereafter, aRb ≡ a-
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bbbb + aR{b1, …,bk}. Furthermore, we have Lemma 1 below, which 

lists some properties associated with the above proposed residual vector. 
 

Lemma 1: (i) If a is linearly dependent with b, then aRb = 0. Similarly, if a can be linearly represented by the set of 
vectors {b1,…, bk},1 then aR{b1, …,bk} = 0. (ii) aRb is orthogonal to b. Similarly, aR{b1, …,bk} is orthogonal to all vectors in 
the set {b1,…, bk}. (iii) If aR{b1, …,bk} = 0, then aR{b1, …,bk+1} = 0. 

3.  The Proposed Constructive Procedure 

Table 1 presents the proposed procedure for constructing a SLFN appropriate for fitting the mapping embedded in {(x1, 
t1), …, (xN, tN)}. 

Table 1. The proposed deterministic procedure for constructing an appropriate SLFN for the mapping requirement of {(x1, t1), …, (xN, tN)}. T ≡ (t1, 

t2, …, tN)T and v(w0,w) ≡ (a1(w0,w), a2(w0,w), …, aN(w0,w))T is a N × 1 vector with the cth component being ac(w0,w) ≡ tanh(wT xc + w0), in which w ≡ 

(w1, w2, …, wm)T. 

Step 1: Calculate u0 =
|||| 1

1
 and TRu0 ≡ T - (u0)T T u0. 

Step 2: If TRu0 = 0, then (i) claim that the fitting job requests no hidden node; (ii) set the bias of output 

node as 0T

0T

u1
uT

 and the weight vector between the output node and the input layer as 0; and (iii) 

stop. 

Step 3: If TRu0 ≠ 0, then solve 
w,0

min
w

||TR{v(w0,w)}||2 and let w0
* and w* be the obtained optimal solution. 

                                                 
1 Namely, a is in the (sub-)space spanned by {b1,…, bk}. 



Then set 2
10w = w0

*, 2
1w = w*, u1 ≡

||),(||
),(

2
1

2
10

2
1

2
10

wv
wv

w
w

, and p = 1. 
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for all 1 ≤ j ≤ p-1; and (iii) stop. 
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||TR{u1,…,up,v(w0,w)}||2 and let w0
* and w* be the obtained optimal 

solution. Then (i) set 2
0,1+pw = w0

*, 2
1+pw = w*, up+1 ≡
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++ , set p +1  p; and 

(ii) go to Step 4. 

4.  The Correctness of the Proposed Procedure 

We now prove that the procedure stated in Table 1 creates an appropriate SLFN that meets the mapping requirement of 
{(x1, t1), …, (xN, tN)} without error. 

Lemma 2 below is obvious from system (3) and the definition of the residual vector. Lemma 2 states the necessary 

condition of a SLFN with p hidden nodes appropriate for the mapping requirement of {(x1, t1), …, (xN, tN)}. Note that, 

from Lemma 1 (iii), )},(),...,,({ 22
0

2
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2
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R
ppww wvwvT = 0 results in }),,(),...,,({ 22

0
2
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R 1wvwvT
ppww = 0. Thus the condition stated in Steps 2, 

5, and 7 are suitable stopping criteria. 

 



Lemma 2: Regarding the mapping samples of {(x1, t1), …, (xN, tN)}, the SLFN with p hidden nodes is appropriate for 

the mapping requirement if the associated }),,(),...,,({ 22
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ppww  equals 0. 

 

Namely, if TRu0 = 0 at Step 2 of Table 1, in which u0 = 
|||| 1
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for all j = 2, …, p, and u0 ≡
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TR{u1,…,up,u0}. Thus, if TR{u1,…,up} = 0 at Step 5 of Table 1, then T =
p

j 1=
Σ 3

jw v( 2
0jw , 2

jw ) and the mapping 

requirement asks for p hidden nodes. If TR{u1,…,up,u0} = 0 at Step 7 of Table 1, then T = 3
0w 1 

+
p

j 1=
Σ 3

jw v( 2
0jw , 2

jw ) and the mapping requirement asks for p hidden nodes. 

The following Lemmas 3 and 4 show that the proposed procedure will generate a sequence of orthonormal vectors. 
 

Lemma 3: If p < N-1, then there always exist w0 and w such that v(w0, w)R{u1, …,up,u0} ≠ 0. 
Proof of Lemma 3: Suppose p < N-1 and there are no w0 and w such that v(w0, w)R{u1, …,up,u0} ≠ 0. In other words, p < N-1 
and there are no w0 and w such that v(w0, w) is linearly independent with {u1, …, up, u0}. This contradicts with the 
statement of [4] that, for any given {xc ∀ c = 1, …, N}, there exists a set of {( 2

0jw , 2
jw ), j =1, …, N-1} such that the 

associated square matrix (1, v( 2
10w , 2

1w ), …, v( 2
0,1−Nw , 2

1−Nw )) is invertible.      Q.E.D. 
 

Lemma 4: When the proposed procedure stops at some p, 1 ≤ p ≤ N-1, all vectors in the set of {u1, …, up} or {u1, …, up, 
u0} are orthonormal. 
Proof of Lemma 4: It is trivial for the case of p = 1 and {u1}. As for the case of p = 1 and {u1, u0}, 

from steps 6 and 7 of Table 1, TRu1 ≠ 0, u0 ≡
||R||

R
1

1

u1

u1 , and TR{u1,u0} = 0. Thus u0 is non-zero and, from 

Lemma 1 (ii), orthogonal to u1. Namely, {u1, u0} is an orthonormal set. 
Now consider the case of any p with 2 ≤ p ≤ N-1. Then, for each 1 ≤ j ≤ p-1, from Lemma 3, 

there exists w0 and w such that v(w0,w)R{u1,…,uj, u0} is not zero and thus, from Lemma 1 (iii), 
v(w0,w)R{u1,…,uj} is not zero. Furthermore, as stated in Step 8 of Table 1, TR{u1,…,uj,u0} ≠ 0. Thus 
TR{u1,…,uj} ≠ 0, there exists a non-zero v(w0,w)R{u1,…,uj} that TR{u1,…,uj} = TR{u1,…,uj,v(w0,w)} 
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orthogonal to each other. Namely, ||TR{u1,…,uj}||2 ≥ ||TR{u1,…,uj,v(w0,w)}||2. Therefore, the optimization of 
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min
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K  is a unit vector and, from Lemma 1 (ii), orthogonal to the set 

of vectors {u1, …, uj}. So, all vectors in the generated set {u1, …, up} at Step 8 are orthonormal. 



From Steps 6 and 7 of Table 1, if TR{u1,…,up} ≠ 0, u0 =
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uu1  and TR{u1,…,up,u0} = 0, then u0 is non-zero and, 

from Lemma 1 (ii), orthogonal to all vectors in the set {u1, …, up}. Namely, {u1, …, up, u0} is an orthonormal set. 

  Q.E.D. 
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