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We first illustrate two examples from stochastic processing networks that are used
to motivate this research.

Motivating Example 1: Consider a queueing system comprised of K infinite ca-
pacity first-in-first-out (FIFO) queues in parallel, and each queue corresponds to a
different class of job traffic. The class £ jobs arrive according to some process with
mean rate z; and are queued up for service, k = 1,..., K. At any point in time,
the system can be in one of S service modes. When service mode s is used, the
first job of queue k receives service with mean rate js;, K = 1,..., K. Therefore,
mode s is associated with the service rate vector Uy = (pigq, ..., plsx ), S = 1,..., 5.
This queueing system is known as the Switched Processing System (SPS), which
captures the essence of a fundamental resource allocation problem in many mod-
ern systems involving heterogeneous processors and multiple classes of job traffic
flows (e.g., parallel computing, wireless networking, call centers, flexible manufac-
turing, etc).

i}

It has been shown in literature (Armony and Bambos 2003, Hung and Michailidis
2008) that, in order to achieve system stability (e.g. the long-term input rate for
each queue is equivalent to its long-term service rate), the input rate vector r =
(x1,...,2x) must lie within the following region:

S
D:{xe]Rf:xk<Zwsusk, forallkzl,...,K},

s=1

where 0 < w, < 1foralls=1,...,5,and Zle ws = 1. Note that the linear con-
straints in D describe that the long-term input rate of each queue k£ can not exceed
its long-term service rate. Further, it can be shown that D is a convex hull gener-
ated by all service rate vectors Uy and their projections on the axes. An example of
such D is shown in the left panel of Figure 1. In addition, a service-mode alloca-
tion policy is called a throughput-maximizing policy if it can stabilize the system
for all input rate vectors © € D. A natural question followed is, under a particular
throughput-maximizing policy 7, how the input rate vector x affects the perfor-
mance measures of interest (such as delay, backlog, etc). In this case, z1, ..., rx
are treated as input factors, while the input domain D is a convex polygon.
Motivating Example 2: Let’s consider the same queueing system introduced in
Example 1. Suppose now all the input rates are fixed (but still inside the region D),
and we consider a throughput-maximizing policy called the “MaxProduct” (Ar-
mony and Bambos 2003, Hung and Chang 2008, Hung and Michailidis 2008). This
policy employs service mode s* at time ¢ if

K
s* = arg max Z T Y () sk,
s=1,--,S 1

where Y} (t) represents the state of queue k (either the number of jobs or the work-
load) at time ¢, and x;, is any chosen positive queue weight. Another interesting
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question is, how the choice of the queue weight vector x = (1, . ..,z ) affects the
performance measures of interest. It has been shown that the weight vector x affects
the MaxProduct policy only through its directions in RX (Hung and Michailidis
2008). Therefore, it suffices to consider the vectors x satisfying that z,+- - -+xx =
1. This constraint can be further reduced to =1 +- - - +xx_1 < 1, which clearly rep-
resents a simplex in Rf‘l. In this case, the queue weights x4, . ..,z are treated
as input factors, while the input domain D is a (K — 1)-simplex. An example of
such D is shown in the right panel of Figure 1.
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Fig. 1. (Left panel): The domain D of the input rate vectors = for a 2-queue system with
three service rate vectors Uy = (3,0), U2 = (2,3), and U3z = (0,4). (Right panel): The
domain D of the weight vectors x (in the MaxProduct policy) for a 3-queue system (where
K=3andz3=1— 21 — x9).

Note that due to the complex structure of dynamics, it is often hard to obtain the re-
lationship between the input factors and the response measures of interest for such
systems. Therefore, this type of problems are often examined through computer
simulations (Hung et al. 2003, Hung and Michailidis 2008). However, simulation
of such complex systems is expensive in terms of CPU time and the requirement of
simulation resources. An natural question is then how one can obtain a comprehen-
sive understanding of system’s performance by performing the minimum possible
number of simulation trials. This has been a challenging task in the area of design
and analysis of computer experiments (DACE).
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In this study, we propose a new UD method that is suitable for any types of design
area under the framework of the so-called number-theoretic method (NTM). The
proposed UD method has an important feature that the optimal design is invariant
under coordinate rotations and can be properly extended so that lower-dimensional
uniformity is also considered (see Section 2 for details). For practical applications,
we also develop a methodology to estimate the target region of computer experi-
ments by utilizing the proposed UD method. Note that the target region here repre-
sents a subset of the input domain in which the experimental output measure(s) of
interest is desired to be produced. For example, let’s consider the queueing system
introduced in Example 1, where one can specify a target region for the input rate
vectors so that the average delay (i.e., the average time waiting until service is first
provided) of jobs in each queue does not exceed a prespecified quantity. By keeping
the input rates in the target region, the system then provides a commitment to a cer-
tain level of quality service. Another example can be found in the recent work done
by Ranjan et al. (2008), where a sequential design based on the Gaussian stochastic
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The uniform design (UD) was first proposed by Fang and Wang (Fang 1980, Wang
and Fang 1981) and has been widely used in computer experiments over the last two
decades (Fang and Lin 2003). Its basic idea is to seek input points to be uniformly
scattered on the input domain so that the relationships between the response(s) and
the input factors can be explored using a reasonable number of experimental trials.
Traditional methods have provided solutions to UD for the experiments without
restrictions (Fang and Wang 1994), i.e., the design area is or can be reasonably
transformed into a unit hypercube [0, 1]%. However, for non-rectangular types of
design areas (such as the input areas shown in the two motivating examples), how
to best perform the UD is not fully discussed in literature. The work done by Fang
et al. (1999b) is closely related to the examples introduced above, wherein they
proposed a “simplex method” to perform a stochastic representation of UD over
convex polyhedrons. The shortcomings for this type of Monte-Carlo methods are:
(i) the represented UD has larger variations; and (ii) they are shown to have rela-
tively low efficiency on approximating the output measures of interest (Fang and

Wang 1994).

(M) HREFGE
Uniform Design over General Input Domains
The uniform design (UD), first proposed by Wang and Fang in 1980, is one of the
space filling designs (Box and Drapper 1987, Cheng and Li 1995, Hickernell 1999,
Wu et al. 2000) that seeks input points to be uniformly scattered on the input region
D. Its basic idea is introduced in the following. Suppose we would like to choose
a set of n experiment points P = {py,...,p,} that are uniformly scattered on an
identi fiable input domain D, D C R . Let M be a measure of uniformity of P
such that smaller M corresponds to better uniformity. Let Z(n) be the set of all
possible sets {p1,...,p,} on D. A set P* € Z(n) is called a uniform design if it
has the minimum value of M over Z(n),i.e.,

M(P*) = min M(P). (1)

The popular measures of uniformity are discrepancy (with various modified ver-
sions), dispersion, mean square error, and sample moments (Fang et al. 2000, Hick-
ernell 1998, Fang and Wang 1994). However, most of these methods for UD are
developed under the assumption that the experimental domain D can be reason-
ably transformed into a unit cube (e.g. rectangles). Motivated by the examples in-
troduced in Section 1, in this study we propose a UD method that is suitable for
experiments with any types of input domain.

A New Measure of Uniformity: Central Composite Discrepancy

We first introduce some notations that are necessary for constructing a new measure
of uniformity called “central composite discrepancy”. For any point = € R, denote
the set

W ={reR:x+a;,<r<z+a}, i=01,...,m—1, )

where ap = —00, a;, = 00, a1 < a2 < -+ < @Qp-1, and a; = 0 for some



1 < 5 < m — 1. Thus, the real line is divided into m parts at the point z. With
the division on each coordinate of a given point x = (zy,...,2x) € D C RE,
the input domain D is decomposed into (at most) m* subregions, where the k-th
subregion is denoted by Dy(z) = {xﬁil) X e X x%’{)} N D, and (iy,...,ik) is
the base-m display of integer k£ — 1. The examples of such a decomposition for a
2-dimensional convex polygon D are shown in Figure 2.

Consider a set of n experiment points P = {py,...,p,} on D and let

A

- -

Fig. 2. (Left panel): The decomposition of D at x with m = 2 and a; = 0. (Right panel):
The decomposition of D at x with m = 3 and a; = 0.

which represents the number of points allocated in the subregion Dy (x) given by
the decomposition of D at z, x € D. The central composite discrepancy is defined
mK

as
1 1 p 1/p
CCDy(n,P) = {U(D) /DmK 2 dx} , 4

where p > 0, v(D) and v(Dy(x)) denote the volume of D and Dy(z), respec-

tively. The optimal allocation of the n experiment points is the set that minimizes
CCDy(n,P), that is,

N(Dy(x),P) _ v(Di(x))
n v(D)

P* = arg min)C’CDp(n,P). ®)

PeZ(n

Note that the goal of placing the quantity 1/v(D) in (4) is to rescale the input
domain D so that it has volume one. However, this does not affect the optimal
solution P* for any given D.

The basic idea of the proposed central composite discrepancy is that each point
x in D is treated as a “center”’, and uniformity is measured over all decomposed
subregions around it. In the special case when D is a hyper-rectangle, m = 2,
a; = 0,and p = 1, it is equivalent to the so-called “symmetrical L,-discrepancy”
(Ma 1997a). Note that the central composite discrepancy and the symmetrical dis-
crepancy both share the same intuition that the optimal design is invariant under
coordinate rotation. However, the former can be applied to the entire class of input



domains while the latter can merely be applied to hyper-rectangles.
The Weighted Uniform Design

Let f(z) be a continuous function defined on D, f(z) > 0 for all x € D and
[p f(x)dx = 1. How do we find a set of n points P = {py,...,p,} on D so that
they have a “good representation” for f(x)? By utilizing the measure of uniformity
defined in (4), we next define the weighted central composite discrepancy by

k()P)

P 1/p
WCCD;,(n, P) { / — F(Dy(2)) dx} ,
pm
(6)
where F'(Dy(z)) = [p, () f(x)dx represents the proportion of points expected to
be allocated on each subregion Dy (z), k = 1,...,m". Therefore, a good repre-

sentation for f(x) will be the set of points P* that minimizes WCC Dy ,(n, P).

Note that if f(x) corresponds to a probability density function and p is chosen
to be 1, then the quantity defined in (6) is a rotation-invariant version of the so-
called “F'-discrepancy” (Fang and Wang 1994). However, the interpretation of the
function f(x) is not restricted here. In general, it can represent the “weight” (or
“importance”) of each point = in D - the larger the value of f(x) is, the more
important the point x is considered. Some examples of how to choose the function
f(x) in correspondence with the prespecified targets of experiment are shown later
in Section 3.

Construction of Nearly Uniform Designs

It is known that solving P* is a NP hard problem as the number of allocated design
points goes to infinity. In practice, a computationally more efficient way is to con-
struct a so-called nearly uniform design (NUD) with a low measure of uniformity.
Traditional techniques for constructing the NUDs are the good lattice point method
and its modifications (Wang and Fang 1981, Fang and Li 1995, Ma 1997b), the
method based on searching only a subset of U-type designs (Fang and Hickernell
1995), the construction methods based on Latin squares (Fang et al. 1999a) and
orthogonal designs (Fang 1995), the threshold accepting method based on U-type
designs (Winker and Fang 1998, Fang et al. 2001), the method by collapsing two
uniform designs (Fang and Qin 2003), and the cutting method (Ma and Fang 2004).
In order to deal with general types of input domain, here we utilize an efficient ap-
proach (called “switching algorithm™) that have been widely used in design litera-
ture (Winker and Fang 1998, Fang et al. 2001) and cluster analysis (e.g. K-means
clustering, Sharma 1996). The steps of the switching algorithm are summarized in
the following.

The Switching Algorithm

Step 1: Superimpose N candidate grids gy, ..., gy on the primary input domain
and denote the new input domain by D = {¢i, ..., gn}. Arbitrarily choose an
initial design P©) = {gy,..., g,} from D,seti = 0.

Step 2: Set j = 1 and PO+ = P@),



Step 3: Let g* = argmin ¢ p\pisy CCDy(n, {g} UPV \ {g;}).
If CCDy(n, {g*} UPU\ {g;}) < CCD,(n, PUY),
set PUHY = {g"}UPIN {g;}.

Step 4: Setj =5 + 1.If 5 < n, go to Step 3; otherwise go to Step 5.

Step 5: If PU+D £ PG seti =i + 1 and go to Step 2; otherwise return P,

(R) #EREFH

We show that:
(i) solving P requires at most O(N**?) computations of CCD,(n, P); and
(ii) the resulting P'™*) approximates very well the optimal design P*.

Fact 1 For any given P C D = {q1,...,gn}, 0 < [CCD,(n,P)] < 1.

Fact 2 CCD,(n, PY) is a non-increasing function of i.
Fact 3 If p is a positive integer and P+ £ PO in Step 5, then

[CCD,(n, PO — [CCD,(n, PP > —

— npN1+pmK :
Proof. Define

mK
geD k=1
it is clear that 1¥/ (n, P) is a positive integer and by definition

P _ W(nv P(l)) — W(nap(l—H)) )

[CCDP(TL’ PO))]p - [CCDP(na P(2+1))] npN1+me

The result then follows since by Fact 2 we know that W (n, P®)) — W (n, PU+1)) >
1 when PO+ £ PO,

Theorem 1 For any positive integer p, the computation time of CC D,(n, P") in
the switching algorithm is at most O(N?*1?).

Proof. Note that to finish the update of each design P(*), the required computation
time of CC'D,(n, P) is n(N —n) (since there are n switchings needed to be checked
and each switching requires N —n computations of CC'D,,(n, P)).In addition, from
Fact 1-Fact 3 we know that CC'D,(n, P") is a non-increasing function of i and
CCD,(n,P©) can be reduced at most n? N +Pm X times. These together imply the
total computation time of CC'D,(n, P) is bounded above by n? N1 PmX .n(N —n),
which can be represented as O(N?*7).

The result of Theorem 1 is quite essential from the perspective of computational
efficiency. To see this, note that the computation time of C'C'D,(n, P) for finding
the optimal design (based on exhuastive search) is clearly (JX ) = O(N™). How-
ever, since p is often chosen to be 1 or 2, the computation time can be dramatically
reduced to O(N?"?) by using the switching algorithm. To investigate how the re-
sulting NUD approximates the true optimal design P*, we consider the unit-square
input domain on which 30 grids are superimposed (i.e., N = 30). The switching al-



gorithm is then carried out for 100 times (with each initial design chosen by simple
random sampling) and the “average” central composite discrepancy (with p = 2) of
all resulting NUDs is computed. The results for different sizes of experiment (say
n =1,...,15) are shown in Figure 3.

CCDs(n, P¥)

T T T T T T T T T T T T

0.1 — © — Switching Algorithm i

—+— Optimal Design

0.075

0.05

0.025

Fig. 3. The comparison of the optimal design and the NUD based on the switching algo-
rithm for the input domain of unit square.

From Figure 3, we see that the NUDs obtained from the switching algorithm ap-
proximate very well (in average sense) the optimal design for various sizes of ex-
periment. In addition, the numerical results show that the switching algorithm is
quite stable since the standard deviation of the resulting CC Dy (n, P(*)) (based on
100 NUDs) is less than 2 x 1073 for all n. For practical purposes, the CPU time
for finding the optimal design (based on exhaustive search) and the average CPU
time for finding the NUDs (based on 100 iterations of the switching algorithm) are
attached in Table 1. As can be seen from Table 1, as n becomes larger, the CPU
time for finding the NUD based on the switching algorithm becomes significantly
smaller than that of finding the optimal design.

Table 1

The CPU time (in seconds) for finding the optimal design (based on exhaustive search) and
the average CPU time (in seconds) for finding the NUD.

Ot oo | o G o | S o
1 <0.001 -- 6 34 0.289 11 4525 0.816
2 0.015 0.047 7 128 0.377 12 7592 0.878
3 0.172  0.100 8 384 0.446 13 11183 1.112
4 1.235 0.145 9 1048 0.586 | 14 14286 1.207
5 7 0230 | 10 2342 0.686 | 15 19627 1.356

Discussion

Low-dimensional Uniformity. It is noted that the proposed measure of uniformity
can be modified so that uniformity over low-dimensional spaces is also taken into
account. Let ¢) be a non-empty subset of {1,..., K'} and |¢| be the number of el-
ements in 1. For any given weight function f(z), define f, = [ f(z)dx_,, where
dx_y = licqa,...,k\p d2i- Thus, a more general measure of uniformity, called pro-
Jjected central composite discrepancy, can be defined as
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PCCDy ;,(n,P) = mZ[WC(Jwa,p(n,m)]P , (7)
Pew

where U is the collection of all non-empty subsets of {1, ..., K}, and P, is the pro-
jection of P to the subspace 1. It is noted that similar ideas are used to construct
the so-called “centered L,-discrepancy” (Hickernell 1998). However, the consid-

eration of projections to low-dimensional spaces will require a large amount of
computation, as can be seen from (7). Therefore, here we restrict our attention on

the uniformity in the K-dimensional space, i.e., we choose ¥ = {{1,..., K'}}.

Choice of N. It is noted that if /V is too small (i.e., the number of candidate grids is
too small), then the resulting NUD may not be good enough. On the other hand, if
N is large, then the switching algorithm may not be efficient. Therefore, to choose
the value of NV, one must take into account the tradeoff between design optimality
and computational cost. Here we provide a guideline for choosing /NV: if K is small,
then choose N = n’<; if K is large, then choose N = n/ . Based on the guideline,
an n’ factorial design is used for choosing the candidate grids in a small space,
while the number of candidate grids is chosen to be proportional to the size of
design in a large space.

When K is Large. Another computational issue is how to evaluate the summations
in (4) and (6) when K is large. In practice, this can be done by considering the sum-
mation over a random subset of all decomposed subregions. For example, equation
(4) can be replaced by

1/p

1 1 < |N(Dg (), P)  v(Dy, () [
D)/DZZ N !

( v(D) v ’

where {ki, ...,k } is a random subset of {1,...,m®}, and similarly for equation
(6).
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AFERR B
This research is mainly divided into two parts. In the first part, we propose a new
UD method that is better suited to any convex types of design areas than the ex-
isting UD methods. The proposed UD method has an important feature that the

optimal design is invariant under coordinate rotations. In order to reduce the com-
putational cost of finding the optimal UD, we propose an efficient algorithm to

construct a so-called nearly uniform design (NUD). The numerical results show
that the constructed NUDs approximate very well the true optimal UD solution.
In the second part, we develop an efficient methodology for estimating the target
region of computer experiments. The methodology is sequential and comprised of
two main components: (1) design; and (ii) fitting response surfaces. For component
(1), the proposed UD method with sequentially updated weight functions is utilized;
while for component (ii), a technique called on-line support vector regression (i.e.,
a sequentially updated SVR model) is employed to model the response surfaces of
interest. It is noted that the proposed methodology can be viewed as an extension of
the work done by Ranjan et al. (2008). However, it has a more general scope from
the following viewpoints: (1) it is easy to implement; (ii) it is completely data-driven
and does not require any model assumptions (such as the GASP model); (iii) it can
easily handle the experiments with a large number of input factors; (iv) it can han-
dle the target region comprised of multiple output measures (remember the work
done by Ranjan et al. (2008) can handle merely one output measure). The numeri-
cal results also show that our proposed methodology outperforms other approaches
in estimating the target region of various computer experiments. We are currently
investigating the computational issues that arise with high dimensional input spaces
and also how to best compare the performance of different approaches.

The result of this research has been published in:

Computational Statistics and Data Analysis 54 (2010) 219-232.
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