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1 Introduction

Many online updating algorithms for paired comparison are useful when the numbers

of teams/games are very large. For ranking sport teams, possibly the most prominent

ranking system in use today is [1]. It has been used successfully by leagues organized

around two-player games, such as world football league, the US Chess Federation

(USCF), and a variety of others. [2] proposed the Glicko system, which incorporates

the variability in parameter estimates. To begin, prior to a rating period, a player’s

skill (θ) is assumed to follow a Gaussian distribution which can be characterized by

two numbers: the average skill of the player (µ) and the degree of uncertainty in

the player’s skill (σ). However, in video games a game often involves more than two

players or teams. Recently Microsoft Research developed TrueSkill [3], a ranking

system for Xbox Live. Similar to Glicko, TrueSkill is also a Bayesian ranking system

using a Gaussian belief over a player’s skill. In a two-team game the TrueSkill update

rules are fairly simple, but for games with multiple teams and multiple players, the

update rules are not possible to write down as they require an iterative procedure.

In this project, we describe a Bayesian approximation method to derive simple

analytic update rules for online ranking of players from games with multiple teams

and multiple players.

2 Approximation Techniques for Bayesian Infer-

ence

For Bayesians, both the observed data and the model parameters are considered

random. Let D denote the observed data, and θ the unknown quantities of interest.

The joint distribution of D and θ is

P (D, θ) = P (D|θ)P (θ),

where P (θ) is the prior distribution and P (D|θ) the likelihood. The posterior distri-

bution of θ given D is

P (θ|D) =
P (θ,D)

P (D)
=

P (θ,D)∫
P (θ,D)dθ

,
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which is useful for estimation. The probability P (D), called evidence or marginal

likelihood of the data, is useful for model selection. Both P (θ|D) and P (D) are major

objects of Bayesian inference.

The integrations involved in Bayesian inference are usually intractable and ap-

proximations are often needed. The approximation techniques are divided into de-

terministic and nondeterministic methods. The nondeterministic method refers to

the Monte Carlo integration such as Markov Chain Monte Carlo (MCMC) methods.

However, when it comes to sequential updating with new data, the MCMC methods

may not be computationally feasible, the reason being that it does not make use of

the analytic from the previous data.

Popular deterministic approaches include Laplace method, variational Bayes, ex-

pectation propagation, among others. The Laplace method is a technique for approx-

imating integrals: ∫
enf(x)dx ≈

(
2π

n

) k
2

| − ∇2f(x0)|−
1
2 enf(x0),

where x is k-dimensional, n is a large number, f : Rk → R is twice differentiable with

a unique global maximum at x0, and | · | is the determinant of a matrix. By writing

P (θ,D) = exp(logP (θ,D)), one can approximate the integral
∫
P (θ,D)dθ.

The variational Bayes method is a family of techniques for approximating these

intractable integrals. The idea is to construct a lower bound on the marginal likeli-

hood and then try to optimize this bound. The Expectation Propagation algorithm

[5] is an iterative approach to approximate posterior distributions. It tries to mini-

mize Kullback-Leibler divergence between the true posterior and the approximated

distribution. The TrueSkill system [3] is based on this algorithm.

Now we review an identity for integrals in Lemma 2.1 below, which forms the basis

of our approximation method. Some definitions are needed. A function f : Rk → R

is called almost differentiable if there exists a function ∇f : Rk → Rk such that

f(z + y)− f(z) =

∫ 1

0

yT∇f(z + ty)dt (1)

for z,y ∈ Rk. Of course, a continuously differentiable function f is almost differ-

entiable with ∇f equal to the gradient, and (1) is the indefinite integral in multi-

dimensional case.
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Given h : Rk → R, let h0 =
∫
h(z)dΦk(z) be a constant, hk(z) = h(z),

hj(z1, . . . , zj) =

∫
Rk−j

h(z1, . . . , zj,w)dΦk−j(w), and (2)

gj(z1, . . . , zk) = ez
2
j /2

∫ ∞
zj

[hj(z1, . . . , zj−1, w)− hj−1(z1, . . . , zj−1)]e−w
2/2dw, (3)

for −∞ < z1, . . . , zk <∞ and j = 1, . . . , k. Then let

Uh = [g1, . . . , gk]T and V h =
U2h+ (U2h)T

2
, (4)

where U2h is the k × k matrix whose jth column is Ugj and gj is as in (3).

Let Γ be a measure of the form:

dΓ(z) = f(z)φk(z)dz, (5)

where f is a real-valued function (not necessarily non-negative) defined on Rk.

Lemma 2.1 (W-Stein’s Identity) Suppose that dΓ is defined as in (5), where f is

almost differentiable. Let h be a real-valued function defined on Rk. Then,∫
h(z)dΓ(z) =

∫
f(z)dΦk(z) ·

∫
h(z)dΦk(z) +

∫
(Uh(z))T∇f(z)dΦk(z), (6)

provided all the integrals are finite.

Lemma 2.1 was given by [8]. The idea of this identity originated from Stein’s

lemma [6], but the latter considers the expectation with respect to a normal distri-

bution (i.e. the integral
∫
h(z)dΦk(z)), while the former studies the integration with

respect to a “nearly normal distribution” Γ in the sense of (5). Stein’s lemma is

famous and of interest because of its applications to James-Stein estimator [4] and

empirical Bayes methods.

Essentially the proof is based on exchanging the order of integration (Fibini theo-

rem), and it is the very idea for proving Stein’s lemma. Due to this reason, Woodroofe

termed (6) a version of Stein’s identity. However, to distinguish it from Stein’s lemma,

here we refer to it as W-Stein’s identity.

Now we assume that ∂f/∂zj, j = 1, . . . , k are almost differentiable. Then, by

writing

(Uh(z))T∇f(z) =
k∑

i=1

gi(z)
∂f(z)

∂zi
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and applying (6) with h and f replacing by gi and ∂f/∂zi, we obtain∫
gi
∂f

∂zi
dΦk(z) = Φk(gi)

∫
∂f

∂zi
dΦk(z) +

∫
(U(gi))

T∇
(
∂f

∂zi

)
dΦk(z), (7)

provided all the integrals are finite. Note that Φk(gi) in the above equation is a

constant defined as

Φk(gi) =

∫
gi(z)φk(z)dz.

By summing up both sides of (7) over i = 1, . . . , k, we can rewrite (6) as∫
h(z)f(z)dΦk(z) =

∫
f(z)dΦk(z) ·

∫
h(z)dΦk(z) + (ΦkUh)T

∫
∇f(z)dΦk(z)

+

∫
tr
[
(V h(z))∇2f(z)

]
dΦk(z); (8)

see Proposition 2 of [9] and Lemma 1 of [7]. Here ΦkUh = (Φk(g1), ...,Φk(gk))T , “tr”

denotes the trace of a matrix, and ∇2f the Hessian matrix of f .

Let Z = [Z1, . . . , Zk]T be a k-dimensional random vector with the probability

density

Cφk(z)f(z), (9)

where

C =

(∫
φk(z)f(z)dz

)−1
is the normalizing constant. Lemma 2.1 can be applied to obtain expectations of

functions of Z in the following corollary.

Corollary 2.1 Suppose that Z has probability density (9). Then,∫
fdΦk = C−1 and Eh(Z) =

∫
h(z)dΦk(z) + E

[
(Uh(Z))T

∇f(Z)

f(Z)

]
. (10)

Further, (8) and (10) imply

Eh(Z) =

∫
h(z)dΦk(z) + (ΦkUh)TE

[
∇f(Z)

f(Z)

]
+ E

[
tr

(
V h(Z)

∇2f(Z)

f(Z)

)]
. (11)

In particular, if h(z) = zi, then by (4) it follows Uh(z) = ei (a function from Rk to

Rk); and if h(z) = zizj and i < j, then Uh(z) = ziej, where {e1, · · · , ek} denote the

standard basis for Rk.
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With these special h functions, (10) and (11) become

E[Z] = E

[
∇f(Z)

f(Z)

]
, (12)

E[ZiZq] = δiq + E

[
∇2f(Z)

f(Z)

]
iq

, i, q = 1, . . . , k, (13)

where δiq = 1 if i = q and 0 otherwise, and [·]iq indicates the (i, q) component of a

matrix.

In the current context of online ranking, since the skill θ is assumed to follow a

Gaussian distribution, the update procedure is mainly for the mean and the variance.

Therefore, (12) and (13) will be useful. The detailed approximation procedure is in

the next section.

3 Expectation Approximation

Let θi be the strength parameter of team i whose ability is to be estimated. The

Bayesian framework starts by assuming that θi has a prior distribution N(µi, σ
2
i )

with µi and σ2
i known. next models the game outcome by some probability models,

and then updates the skill (the posterior mean and variance of θi) at the end of the

game. These revised mean and variance are considered as prior information for the

next game.

To see how Eqs. (12) and (13) can be applied to online skill updates, first suppose

that team i has a strength parameter θi and assume that the prior distribution of

θi is N(µi, σ
2
i ). Upon the completion of a game, their skills are characterized by the

posterior mean and variance of θ = [θ1, . . . , θk]T . Let D denote the result of a game

and Z = [Z1, . . . , Zk]T with

Zi =
θi − µi

σi
, i = 1, . . . , k, (14)

where k is the number of teams. The posterior density of Z given the game outcome

D is

P (z|D) = Cφk(z)f(z), (15)

where f(z) is the probability of game outcome P (D|z). Thus, P (z|D) is of the form

(9). Subsequently we omit D in all derivations.
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Next, Eqs. (12), (13) and the relation between Zi and θi in (14) give that

µnew
i =E[θi] = µi + σiE[Zi]

=µi + σiE

[
∂f(Z)/∂Zi

f(Z)

]
(16)

and

(σnew
i )2 =Var[θi] = σ2

i Var[Zi]

=σ2
i

(
E[Z2

i ]− E[Zi]
2
)

=σ2
i

(
1 + E

[
∇2f(Z)

f(Z)

]
ii

− E
[
∂f(Z)/∂Zi

f(Z)

]2)
. (17)

Similarly, we can write the last two terms on the right side of (17) as

σ2
i

(
E

[
∇2f(Z)

f(Z)

]
ii

− E
[
∂f(Z)/∂Zi

f(Z)

]2)
= E

[
∂2 log f(Z)

∂θ2i

]
,

which is the average of the rate of change of ∂(log f)/∂θi with respect to θi.

We propose approximating expectations in (16) and (17):

µi ← µi + Ωi, (18)

σ2
i ← σ2

i max(1−∆i, κ), (19)

where

Ωi = σi
∂f(z)/∂zi
f(z)

∣∣∣∣
z=0

(20)

and

∆i =− ∂2f(z)/∂2zi
f(z)

∣∣∣∣
z=0

+

(
∂f(z)/∂zi
f(z)

∣∣∣∣
z=0

)2

=− ∂

∂zi

(
∂f(z)/∂zi
f(z)

)∣∣∣∣
z=0

. (21)

We set z = 0 so that θ is replaced by µ. Such a substitution is reasonable as the

posterior density of θ is likely to be concentrated on µ. Then the right-hand sides of

(18)-(19) are functions of µ and σ, so we can use the current values to obtain new

estimates. Due to the approximation (21), 1−∆i may be negative. Hence in (19) we

set a small positive lower bound κ to avoid a negative σ2
i .
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4 Remarks

We derive analytic update rules. Unlike the TrueSkill system, our rules do not need

numerical integrations and are very easy to interpret and implement. Further ex-

periments on game data show that our accuracy is competitive with state of the art

systems such as TrueSkill, but the running time is much shorter.
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