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1 Introduction

In this paper, the problem of interest is testing the conditional independence
between two random vectors X and Y given a third random vector Z. The study
of the problem of testing conditional independence has a long history. However,
there are relatively few results on nonparametric tests when the vectors X, Y
and Z are continuous. Some examples of such tests can be found in Su and
White (2007, 2008), where they also proposed conditional independence tests
based on a weighted Hellinger distance between the conditional densities or the
difference between the conditional characteristic functions.

As mentioned in Daudin (1980), X and Y are conditionally independent
given Z means that for every f(X,Z) and g(Y,Z) such that Ef2(X,Z) and
Eg2(Y,Z) are finite,

E(f(X,Z)g(Y,Z)∣Z) = E(f(X,Z)∣Z)E(g(Y, Z)∣Z).

Thus the problem of testing conditional independence, as the problem of test-
ing unconditional independence, is invariant when one-to-one transforms are
applied to the marginals X and Y respectively. Various authors have taken this
invariant property into consideration when constructing conditional or uncon-
ditional independence tests. For example, Su and White (2008) used Hellinger
distance in their test statistic for testing conditional independence, so that the
test statistic is invariant. Dauxois and Nkiet (1998) used measures of association
to construct independence tests, and the measures are invariant under the above
transforms. In this paper, to take invariance into account, the proposed test is
based on the maximal nonlinear conditional correlation, which can be viewed as
a measure of conditional association and satisfies the above invariance property.

To choose a reasonable measure of conditional association between X and
Y , the following properties are considered.

(P1) The measure can be defined for all types of random vectors, including
both discrete and continuous ones.

(P2) The measure is symmetric, i.e., it remains the same when (X,Y ) is re-
placed by (Y,X).

(P3) The measure is invariant when one-to-one transforms are applied to X
and Y respectively.

(P4) The measure is between 0 and 1.

(P5) The measure is 0 if and only if conditional independence holds.

The above properties are adapted from some of the conditions for a good mea-
sure of association proposed by Rényi (1959). In Rényi (1959), the conditional
independence in (P5) is replaced by the unconditional independence. Note that
the symmetric property (P2) is not always required. For instance, Hsing, Liu,
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Brun, and Dougherty (2005) proposed to use the coefficient of intrinsic depen-
dence as a measure of dependence, which does not satisfies (P2). Here (P2) is
considered.

Many measures of conditional association satisfying (P1) – (P5) can be con-
structed. Dauxois and Nkiet (2002) showed that a class of measures of associa-
tion between two Hilbertian subspaces can be obtained by properly combining
the canonical coefficients of the canonical analysis (CA) between the spaces.
In particular, take the two subspaces to be H̃1 = {f(X,Z) − E(f(X,Z)∣Z) :
Ef2(X,Z) <∞} and H̃2 = {g(Y,Z)− E(g(Y,Z)∣Z) : Eg2(Y,Z) <∞}, then a
class of measures of conditional association between X and Y given Z satisfying
Properties (P1) – (P5) can be obtained using the canonical coefficients. Denote
the canonical coefficients (arranged in descending order) by �̃i(X,Y ∣Z): i = 1,
2, . . .. When X and Y are not functions of Z, the largest canonical coefficient
�̃1(X,Y ∣Z) is the maximal partial correlation defined by Romanovič (1975),
which is

sup
f,g

corr (f(X,Z)− E(f(X,Z)∣Z), g(Y, Z)− E(g(Y, Z)∣Z)) ,

according to a review by Mirzahmedov in MathSciNet (MR number: 0420757).
Another approach to construct measures of conditional association is to mod-

ify the CA between the spaces H1 = {f(X) − Ef(X) : Ef2(X) < ∞} and
H2 = {g(Y )−Eg(Y ) : Eg2(Y ) <∞} to obtain a conditional version of it. That
is, to find pairs of functions (fi, gi): i = 0, 1, . . ., such that for each i, (fi, gi)
maximizes E (f(X,Z)g(Y,Z)∣Z) subject to

E(f2(X,Z)∣Z)I(0,∞)(E(f2(X,Z)∣Z)) = I(0,∞)(E(f2(X,Z)∣Z)), (1)

E(g2(Y,Z)∣Z)I(0,∞)(E(g2(Y, Z)∣Z)) = I(0,∞)(E(g2(Y,Z)∣Z)), (2)

and

E(f(X,Z)fj(X,Z)∣Z) = 0 = E(g(Y,Z)gj(Y,Z)∣Z) for 0 ≤ j < i.

Here IA denotes the indicator function on a set A, i.e., IA(x) = 1 if x ∈ A
and IA(x) = 0 otherwise. If the above (fi, gi)’s exist, then one can define
�i(X,Y ∣Z) = E (fi(X,Z)gi(Y,Z)∣Z) for each i and the �i(X,Y ∣Z)’s can serve
as a conditional version of canonical coefficients. A measure of conditional asso-
ciation satisfying (P1) – (P5) can be obtained by taking a proper combination of
the �i(X,Y ∣Z)’s, following the approach in Dauxois and Nkiet (2002). Examples
of such combinations include �1(X,Y ∣Z) and 1 − exp(−

∑
i �

2
i (X,Y ∣Z)). The

measure of conditional association used in this paper is �1(X,Y ∣Z), which will
be called the maximal nonlinear conditional correlation of two random vectors
X and Y given Z from now on.

In the above definition of �i(X,Y ∣Z)’s, it is assumed that the (fi, gi)’s ex-
ist. However, it is not clear what conditions can guarantee the existence of
the (fi, gi)’s. To avoid the problem of finding such conditions, a more general
definition for �1(X,Y ∣Z) is given in Section 2. To construct a test based on

2



�1(X,Y ∣Z), it is assumed that Z has a Lebesgue probability density function
fZ . An estimator of

∑
k fZ(zk)�21(X,Y ∣Z = zk) is then used as the test statistic,

where the zk’s are some points in the range of Z. To study the asymptotic be-
havior of the test statistic under the hypothesis that X and Y are conditionally
independent given Z, we follow the approach in Dauxois and Nkiet (1998) for
finding the asymptotic distribution of a statistic for testing the independence
between X and Y , which is based on estimators of the canonical coefficients from
the CA of H1 and H2. To make their approach work for the conditional case,
some strong approximation results for kernel estimators of certain conditional
expectations are also established.

This paper is organized as follows. The new definition of �1(X,Y ∣Z) is given
in Section 2. Section 3 deals with the estimation of �1(X,Y ∣Z = z) and test
construction. An example is in Section 4 and proofs are given in Section 7.

2 Maximal nonlinear conditional correlation

In this section, a more general definition of the maximal nonlinear conditional
correlation �1(X,Y ∣Z) will be given. Note that in the defintion of �i(X,Y ∣Z)’s
in Section 1, one can take f0(X,Z) = 1 = g0(Y,Z), which gives that �0(X,Y ∣Z) =
1, and then �1(X,Y ∣Z) can be defined as E(f1(X,Z)g1(Y, Z)∣Z) if there exists
(f1, g1) ∈ S0 such that

E(f(X,Z)g(Y,Z)∣Z) ≤ E(f1(X,Z)g1(Y, Z)∣Z) for every (f, g) ∈ S0,

where S0 is the collection of pairs of functions (f, g)’s that satisfy (1), (2) and
E(f(X,Z)∣Z) = 0 = E(g(Y,Z)∣Z). Without assuming the existence of (f1, g1),
it is reasonable to define �1(X,Y ∣Z) as

sup
(f,g)∈S0

E(f(X,Z)g(Y, Z)∣Z), (3)

if the supremum can be defined.
The above approach can be considered as a “pointwise” approach. Indeed,

when Z takes values in a countable set Z, for each z ∈ Z, one may define
�1(X,Y ∣Z = z) as

sup
(f,g)∈S0

E(f(X, z)g(Y, z)∣Z = z), (4)

then the �1(X,Y ∣Z) defined using (4) is a measurable function and can serve as
the supremum in (3). However, if Z is uncountable, then it is not clear whether
the �1(X,Y ∣Z) defined using (4) is measurable. Therefore, we use the following
fact to define the supremum in (3) so that it is well-defined and is a measure
function.

Fact 1 There exists a sequence {(�n, �n)} in S0 such that

(i) The sequence {E(�n(X,Z)�n(Y, Z)∣Z)} is non-decreasing, and
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(ii) for every (f, g) ∈ S0,

E(f(X,Z)g(Y,Z)∣Z) ≤ lim
n→∞

E(�n(X,Z)�n(Y,Z)∣Z).

Furthermore, if (i) and (ii) hold for {(�n, �n)} = {(�n,1, �n,1)} or {(�n,2, �n,2)},
where {(�n,1, �n,1)} and {(�n,2, �n,2)} are sequences in S0, then

lim
n→∞

E(�n,1(X,Z)�n,1(Y,Z)∣Z) = lim
n→∞

E(�n,2(X,Z)�n,2(Y, Z)∣Z). (5)

For the sake of brevity, from now on, some functions of (X,Z) or (Y,Z) may be
expressed without the arguments (X,Z) or (Y,Z). For distinguishing purpose,
functions of (X,Z) may have names starting with only � or f , and functions of
(Y, Z) may have names starting with only � or g.

Proof for Fact 1. We will first establish (5) if (i) and (ii) hold for {(�n, �n)} =
{(�n,1, �n,1)} or {(�n,2, �n,2)}. Note that for each n, from (ii), we have that

E(�n,2�n,2∣Z) ≤ lim
n→∞

E(�n,1�n,1∣Z)

and
E(�n,1�n,1∣Z) ≤ lim

n→∞
E(�n,2�n,2∣Z).

Take the limits in these two inequalities as n→∞, and we have (5).
It remains to find a sequence {(�n, �n)} in S0 that satisfies (i) and (ii). Let

{(�n,0, �n,0)} be a sequence in S0 so that the sequence {E(�n,0�n,0)} is non-
decreasing and converges to sup(f,g)∈S0

E(fg). We will construct {(�n, �n)}
using {(�n,0, �n,0)} as follows. For n = 1, define (�1, �1) = (�1,0, �1,0). For
n ≥ 2, define

(�n(X,Z), �n(Y, Z))

=

{
(�n,0(X,Z), �n,0(Y, Z)) if E(�n,0�n,0∣Z) > E(�n−1�n−1∣Z);
(�n−1(X,Z), �n−1(Y, Z)) otherwise.

Then {(�n, �n)} is a sequence in S0 that satisfies (i), and the sequence {E�n�n}
converges to sup(f,g)∈S0

E(fg) since E(�n�n∣Z) ≥ E(�n,0�n,0∣Z). To see that
{(�n, �n)} also satisfies (ii), for (�, �) in S0, define

(�∗n, �
∗
n) =

{
(�, �) if E(��∣Z) > limn→∞E(�n�n∣Z);
(�n, �n) otherwise.

Then {(�∗n, �∗n)} is a sequence in S0 such that

lim
n→∞

E(�∗n�
∗
n∣Z) = max

{
E(��∣Z), lim

n→∞
E(�n�n∣Z)

}
. (6)

From the monotone convergence theorem, we have

E lim
n→∞

E(�∗n�
∗
n∣Z) = lim

n→∞
E(�∗n�

∗
n) (7)
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and
E lim
n→∞

E(�n�n∣Z) = lim
n→∞

E(�n�n), (8)

so (6) implies that

sup
(f,g)∈S0

E(fg) ≥ lim
n→∞

E(�∗n�
∗
n) ≥ lim

n→∞
E(�n�n) = sup

(f,g)∈S0

E(fg),

which gives
lim
n→∞

E(�∗n�
∗
n) = lim

n→∞
E(�n�n). (9)

If E(��∣Z) > limn→∞E(�n�n∣Z) with positive probability, then (6), (7) and
(8) together implies that limn→∞E(�∗n�

∗
n) > limn→∞E(�n�n), which contra-

dicts (9). Thus (ii) holds. The proof of Fact 1 is complete.

With Fact 1, the maximal nonlinear conditional correlation �1(X,Y ∣Z) can
be re-defined as follows:

Definition 1. �1(X,Y ∣Z) = sup(f,g)∈S0
E(f(X,Z)g(Y,Z)∣Z), which is de-

fined as limn→∞E(�n(X,Z)�n(Y, Z)∣Z), where {(�n, �n)} is a sequence in S0

that satisfies (i) and (ii) in Fact 1.

Below are some remarks for the �1(X,Y ∣Z).

1. If there exists (f1, g1) in S0 such that E(f1g1∣Z) ≥ E(fg∣Z) for all (f, g) ∈
S0, then �1(X,Y ∣Z) = E(f1g1∣Z) using Definition 1. To see this, let
{(�n, �n)} be a sequence in S0 that satisfies (i) and (ii) in Fact 1. Then
�1(X,Y ∣Z) = limn→∞E(�n�n∣Z), so E(f1g1∣Z) ≤ �1(X,Y ∣Z) by (ii).
Also, E(f1g1∣Z) ≥ E(�n�n∣Z) for every n, so E(f1g1∣Z) ≥ �1(X,Y ∣Z).
Therefore, �1(X,Y ∣Z) = E(f1g1∣Z) and Definition 1 can be viewed as a
generalized version of the definition of �1(X,Y ∣Z) given in Section 1.

2. �1(X,Y ∣Z) satisfies Properties (P1)–(P5).

3. When X is a function of Y and Z or Y is a function of X and Z, it is
not necessary that �1(X,Y ∣Z) = 1. For instance, suppose that X and Z
are independent standard normal random variables and Y = XI(0,∞)(Z),
then �1(X,Y ∣Z) = I(0,∞)(Z).

4. Let �1(X,Y ) be the largest canonical coefficient from the CA between
H1 = {f(X) − Ef(X) : Ef2(X) < ∞} and H2 = {g(Y ) − Eg(Y ) :
Eg2(Y ) < ∞}. Then �1(X,Y ∣Z) = �1(X,Y ) if (X,Y ) and Z are inde-
pendent.

5. Let �1(X,Y ) be as defined in 4. It is stated in Dauxois and Nkiet (1998)
that when the joint distribution of X and Y is bivariate normal

N

((
0
0

)
,

(
1 �
� 1

))
,
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�1(X,Y ) = ∣�∣. This result implies that, when the joint distribution for
X, Y and Z is multivariate normal and X and Y are both univariate,

�1(X,Y ∣Z) =

∣∣∣∣∣ E((X − E(X∣Z))(Y − E(Y ∣Z))∣Z)

(E(X − E(X∣Z))2∣Z))
1/2

(E(Y − E(Y ∣Z))2∣Z))
1/2

∣∣∣∣∣
=

∣∣∣∣∣ E(X − E(X∣Z))(Y − E(Y ∣Z)))

(E(X − E(X∣Z))2)
1/2

(E(Y − E(Y ∣Z))2)
1/2

∣∣∣∣∣ ,
which also equals the absolute value of the usual partial correlation coef-
ficient.

3 A test of conditional independence

Testing conditional independence is equivalent to testing H0 : �1(X,Y ∣Z) = 0,
which involves testing H0,z : �1(X,Y ∣Z = z) = 0 for different z’s in the range of
Z. Let Z be the range of Z. In this section, an estimator �̂(z) is proposed for
estimating �1(X,Y ∣Z = z) for each z ∈ Z, and for distinct points z1, . . ., znZ
in Z, the asymptotic joint distribution of �̂(z1), . . ., �̂(znZ ) under H0 is derived
to construct a test for testing H0.

3.1 Estimation of �1(X, Y ∣Z = z)

To estimate
�1(X,Y ∣Z) = sup

(f,g)∈S0

E(fg∣Z),

for (f, g) ∈ S0, f and g are approximated using basis functions. Suppose that
there exist Λ1, Λ2 and Λ3: subsets of the set of all positive integers and three
sets of functions {�p,i : 1 ≤ i ≤ p, p ∈ Λ1}, { q,j : 1 ≤ j ≤ q, q ∈ Λ2} and
{�r,k : 1 ≤ k ≤ r, k ∈ Λ3} such that for �(X,Z) and �(Y,Z) with finite second
moments,

lim
p,r→∞

inf
a(i,k)

E

⎛⎝�(X,Z)−
∑

1≤i≤p,1≤k≤r

a(i, k)�p,i(X)�r,k(Z)

⎞⎠2

= 0 (10)

and

lim
q,r→∞

inf
b(j,k)

E

⎛⎝�(Y, Z)−
∑

1≤j≤q,1≤k≤r

b(j, k) q,j(Y )�r,k(Z)

⎞⎠2

= 0. (11)

Also, suppose that for each (p, q), there exist coefficients ap,0,i’s and bq,0,j ’s such
that ∑

1≤i≤p

ap,0,i�p,i(x) = 1 =
∑

1≤j≤q

bq,0,j q,j(y) (12)
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for every x in the range of X and every y in the range of Y .
Let S1 be the collection of all (f, g)’s with finite second momenets and let

S1,p,q be the collection of all (f, g)’s in S1 such that f(X,Z) =
∑p
i=1 ap,i(Z)�p,i(X)

for some ap,i(Z)’s, and g(Y,Z) =
∑q
j=1 bq,j(Z) q,j(Y ) for some bq,j(Z)’s. Then

(10) and (11) together implies that S1 can be approximated by S1,p,q for large
p and q. Since S0 ⊂ S1, S0 can be approximated by S1,p,q as well. With the
additional the condition (12), S0 can be easily approximated using the sub-
space S0,p,q = S0 ∩ S1,p,q. Note that (10), (11) and (12) hold for certain basis
functions, for example, the tensor product splines in Schumaker (1981).

Assuming (10), (11) and (12), it is reasonable to define

sup
(f,g)∈S0,p,q

E(fg∣Z)

and use it to approximate �1(X,Y ∣Z). To define sup(f,g)∈S0,p,q
E(fg∣Z), one

may follow the same approach for defining sup(f,g)∈S0
E(fg∣Z), or simply note

that there exists (f1, g1) ∈ S0,p,q such that

E(f1g1∣Z) ≥ E(fg∣Z) for all (f, g) ∈ S0,p,q (13)

and define sup(f,g)∈S0,p,q
E(fg∣Z) = E(f1g1∣Z). The pair (f1, g1) can be ob-

tained as follows. Let

Σ�,p(Z) = (E(�p,i(X)�p,j(X)∣Z)− E(�p,i(X)∣Z)E(�p,j(X)∣Z))p×p ,

Σ ,q(Z) = (E( q,i(Y ) q,j(Y )∣Z)− E( q,i(Y )∣Z)E( q,j(Y )∣Z))q×q ,

and

Σ�, ,p,q(Z) = (E(�p,i(X) q,j(Y )∣Z)− E(�p,i(X)∣Z)E( q,j(Y )∣Z))p×q .

Consider the following two cases:

(i) Σ�,p(Z) and Σ ,q(Z) are not zero matrices, and

(ii) At least one of Σ�,p(Z) and Σ ,q(Z) is a zero matrix.

In Case (i), let a1 = (a1,1(Z), . . . , a1,p(Z))T and b1 = (b1,1(Z), . . . , b1,q(Z))T be
such that (a1, b1) is the pair of (a, b) that maximizes

aTΣ�, ,p,q(Z)b

subject to
aTΣ�,p(Z)a = 1 = bTΣ ,q(Z)b,

and then take

f1(X,Z) =

p∑
i=1

a1,i(Z)(�p,i(X)− E(�p,i(X)∣Z))

7



and

g1(Y,Z) =

q∑
j=1

b1,j(Z)( q,j(Y )− E( q,j(Y )∣Z)).

In Case (ii), take f1(X,Z) = 0 = g1(Y,Z). Then (f1, g1) ∈ S0,p,q and (13)
holds. Denote sup(f,g)∈S0,p,q

E(fg∣Z) by �p,q(Z).
The following fact states that �1(X,Y ∣Z) can be reasonably approximated

by �p,q(Z) if p and q are large:

Fact 2 Suppose that (10), (11) and (12) hold and {pn} and {qn} are sequences
of positive integers that tend to ∞ as n→∞. Then

lim
n→∞

E(∣�1(X,Y ∣Z)− �pn,qn(Z)∣) = 0.

Proof of Fact 2. Since �1(X,Y ∣Z) ≥ �pn,qn(Z) for every n, Fact 2 holds if for
every " > 0, there exists N0 such that for n ≥ N0,

�1(X,Y ∣Z) ≤ �pn,qn(Z) + Δ1 (14)

for some Δ1 such that E∣Δ1∣ < ". To find such a Δ1, we will first look for a pair
(fm, gm) ∈ S0 such that E(fmgm∣Z) ≈ �1(X,Y ∣Z), and then find (f∗n, g

∗
n) ∈

S0,pn,qn such that (f∗n, g
∗
n) ≈ (fm, gm). Take

Δ1 = E(fmgm∣Z)− E(f∗ng
∗
n∣Z) + �1(X,Y ∣Z)− E(fmgm∣Z), (15)

then (14) holds and E∣Δ1∣ can be made small if m and n are large enough.
To find (fm, gm) ∈ S0 such that E(fmgm∣Z) ≈ �1(X,Y ∣Z), let {(fn, gn)}∞n=1

be a sequence in S0 such that {E(fngn∣Z)} is an increasing sequence and
limn→∞E(fngn∣Z) = �1(X,Y ∣Z). Let Δ2,n = �1(X,Y ∣Z) − E(fngn∣Z), then
limn→∞E∣Δ2,n∣ = 0, which implies that for every � > 0, there exists m such
that

E∣Δ2,m∣ < �. (16)

To find (f∗n, g
∗
n) ∈ S0,pn,qn such that (f∗n, g

∗
n) ≈ (fm, gm), note that it follows

from (10) and (11) that for n ≥ N0, there exists some (fn,1, gn,1) ∈ S1,pn,qn such
that √

E(fm − fn,1)2 < � and
√
E(gm − gn,1)2 < �. (17)

Let fn,2(X,Z) = fn,1(X,Z)− E(fn,1∣Z), gn,2(Y,Z) = gn,1(Y,Z)− E(gn,1∣Z),

f∗n(X,Z) =
fn,2(X,Z)√
E(f2n,2∣Z)

I(0,∞)(E(f2n,2∣Z),

and

g∗n(Y,Z) =
gn,2(Y,Z)√
E(g2n,2∣Z)

I(0,∞)(E(g2n,2∣Z)),
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then it follows from (12) that (f∗n, g
∗
n) ∈ S0,pn,qn . To see that (f∗n, g

∗
n) ≈

(fm, gm), let Δ3 = fm − f∗n and Δ4 = gm − g∗n, then it can be shown that

EΔ2
3 ≤ 16�2 + 8� (18)

and
EΔ2

4 ≤ 16�2 + 8�. (19)

Below we will verify (18) only since the verification for (19) is similar. Write
Δ3 = fm − fn,2 + fn,2 − f∗n, then by (17),

E(fm − fn,2)2 ≤ 4�2 (20)

since E(fm − fn,2)2 ≤ 2(E(fm − fn,1)2 + E(fn,1 − fn,2)2) and (fn,1 − fn,2)2 =
(E((fm − fn,1)∣Z))2 ≤ E((fm − fn,1)2∣Z). Also,

E
(
(f∗n − fn,2)2∣Z

)
=

(
1−

√
E(f2n,2∣Z)

)2
I(0,∞)(E(f2n,2∣Z))

≤
∣∣1− E(f2n,2∣Z)

∣∣
=

∣∣E ((fm − fn,2)2∣Z
)
− 2E (fm(fm − fn,2)∣Z)

∣∣
≤ E

(
(fm − fn,2)2∣Z

)
+ 2
√
E ((fm − fn,2)2∣Z),

so

E(fn,2 − f∗n)2 ≤ E(fm − fn,2)2 + 2
√
E(fm − fn,2)2

(20)

≤ 4�2 + 4�. (21)

Therefore, (18) follows from (20), (21) and the inequality EΔ2
3 ≤ 2(E(fm −

fn,2)2 + E(fn,2 − f∗n)2).
Finally, the Δ1 in (15) is E(f∗nΔ4∣Z) +E(g∗nΔ3∣Z) +E(Δ3Δ4∣Z) + Δ2,m, so

it follows from (18), (19), (16) and the Cauchy inequality that

E∣Δ1∣ ≤ 3
√

16�2 + 8� + �.

For " > 0, one can choose � so that 3
√

16�2 + 8� + � < ", then E∣Δ1∣ < " as
required. The proof of Fact 2 is complete.

Based on Fact 2, it is reasonable to estimate �1(X,Y ∣Z) using an estimator
for �p,q(Z), where p and q are large. To estimate �p,q(Z), some assumptions are
made:

(A1) There exists a version of the conditional distribution of (X,Y ) given Z
such that for every bounded function g(X,Y ), E(g(X,Y )∣Z) calculated
using that version is a continuous function of Z.

∙ For each (p, q), 1 ≤ i ≤ p, 1 ≤ j ≤ q, ∣�p,i∣ ≤ 1 and ∣ q,j ∣ ≤ 1.

From now on, we will use the version of conditional distribution in (A1) to
obtain E(g(X,Y )∣Z = z) for every bounded g and every z in the range of Z.
As a result, each element in Σ�,p(z), Σ ,q(z) and Σ�, ,p,q(z) is a continuous
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function of z, and �p,q(z) is maxa,b a
TΣ�, ,p,q(z)b, where the maximum is taken

over all vectors a and b such that

aTΣ�,p(z)a = 1 = bTΣ ,q(z)b.

To estimate �p,q(z), we consider the estimator �̂p,q(z) = maxa,b a
T Σ̂�, ,p,q(z)b,

where the maximum is taken over all vectors a and b such that

aT Σ̂�,p(z)a = 1 = bT Σ̂ ,q(z)b,

and Σ̂�,p(z), Σ̂�, ,p,q(z) and Σ̂ ,q(z) are obtained by replacing the conditional
expectations in Σ�,p(z), Σ�, ,p,q(z) and Σ ,q(z) by their kernel estimators.
Specifically, each element in Σ�,p(z), Σ�, ,p,q(z) and Σ ,q(z) is of the form
E(UV ∣Z = z) − (E(U ∣Z = z))(E(V ∣Z = z)), where U and V are functions of
X or Y , so each of E(UV ∣Z = z), E(U ∣Z = z) and E(V ∣Z = z) is of the form
E(g(X,Y )∣Z = z), which is estimated by

Ê(g(X,Y )∣Z = z)
def
=

∑n
i=1 g(Xi, Yi)kℎ(z − Zi)∑n

i=1 kℎ(z − Zi)
, (22)

where kℎ(z) = ℎ−dk0(z/ℎ) and k0 is a kernel function on Rd satisfying certain
conditions which will be specified later. For each z ∈ Z, to make �̂p,q(z) a
reasonable estimator for �1(X,Y ∣Z = z), we will take p = pn, q = qn and
ℎ = ℎn, where pn → ∞, qn → ∞ and ℎn → 0 as n → ∞. The estimator
�̂pn,qn(z) will be abbreviated as �̂(z) for each z ∈ Z.

The estimator �̂(z) can be expressed in a different form that is easier to
analyze. Let X∗ and Y∗ be random vectors of length pn and qn respectively
such that given the data (X1, Y1, Z1), . . ., (Xn, Yn, Zn),

(XT
∗ , Y

T
∗ ) = (�pn,1(Xℓ), . . . , �pn,pn(Xℓ),  qn,1(Yℓ), . . . ,  qn,qn(Yℓ))

with probability kℎ(z−Zℓ)/
∑n
i=1 kℎ(z−Zi) for 1 ≤ ℓ ≤ n. Then Σ̂�, ,p,q(z) =

EX∗Y
T
∗ −EX∗EY T∗ , Σ̂�,p(z) = EX∗X

T
∗ −EX∗EXT

∗ and Σ̂ ,q(z) = EY∗Y
T
∗ −

EY∗EY
T
∗ , where the expectations are conditional expectations given the data.

Therefore, the estimator �̂(z) is the largest canonical coefficient from the cen-
tered canonical analysis between X∗ and Y∗. Note that it follows from (12)
that

aTn,∗X∗ = 1 = bTn,∗Y∗, (23)

where

an,∗ = (apn,0,1, . . . , apn,0,pn)T and bn,∗ = (bqn,0,1, . . . , bqn,0,qn)T ,

so �̂(z) can also be obtained from the non-centered canonical analysis between
X∗ and Y∗. Let

V1,1(z) = (E(�pn,i(X)�pn,j(X)∣Z = z))pn×pn ,

V1,2(z) = (E(�pn,i(X) qn,j(Y )∣Z = z))pn×qn
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V2,2(z) = (E( qn,i(Y ) qn,j(Y )∣Z = z))qn×qn and V2,1(z) = V1,2(z)T ,

for 1 ≤ i, j ≤ 2, let V̂i,j(z) be the estimator of Vi,j(z) obtained by replacing the
conditional expectations in Vi,j(z) by their kernel estimators as in (22). Then

V̂1,1(z) = EX∗X
T
∗ , V̂1,2(z) = EX∗Y

T
∗ , V̂2,2(z) = EY∗Y

T
∗ , so �̂(z) is the square

root of the largest eigenvalue of the matrix

V̂1,2(z)V̂ −12,2 (z)V̂2,1(z)V̂1,1(z)−1 − V̂1,1(z)an,∗a
T
n,∗.

Also, �pn,qn(z) is the square root of the largest eigenvalue of the matrix

V1,2(z)V −12,2 (z)V2,1(z)V1,1(z)−1 − V1,1(z)an,∗a
T
n,∗.

To simplify the above matrix expressions, some notations are introduced as
follows. For a (pn + qn)× (pn + qn) matrix U , express U as(

U1,1 U1,2

U2,1 U2,2

)
,

where the dimension of U1,1 is pn× pn. For 1 ≤ i, j ≤ 2, let gi,j be the mapping
that maps U to Ui,j . For a pn × 1 vector a and a (pn + qn)× (pn + qn) matrix
U , define

g(U, a) = g1,2(U)g2,2(U)−1g2,1(U)g1,1(U)−1 − g1,1(U)aaT

if g2,2(U) and g1,1(U) are invertible. Let

V (z) =

(
V1,1(z) V1,2(z)
V2,1(z) V2,2(z)

)
and

V̂ (z) =

(
V̂1,1(z) V̂1,2(z)

V̂2,1(z) V̂2,2(z)

)
,

then �̂(z) is the square root of the largest eigenvalue of g(V̂ (z), an,∗) and �pn,qn(z)
is the square root of the largest eigenvalue of g(V (z), an,∗).

The matrix g(V̂ (z), an,∗) can be replaced by a different matrix if basis change
is performed. That is, suppose that

� = (�pn,1, . . . , �pn,pn)T and  = ( qn,1, . . . ,  qn,qn)T

are replaced by �∗ = P1� and  ∗ = Q1 respectively, and V̂ (z) becomes V̂ ∗(z)
after such a change is made. Then �̂(z) is also the square root of the largest
eigenvalue of the matrix g(V̂ ∗(z), �∗), where �∗ = (P−11 )Tan,∗ is a vector such
that (�∗)T�∗ = 1. To make the expression for g(V ∗(z), �∗) simple, the matrices
P1 and Q1 are chosen so that

�∗1 = 1 =  ∗1 , (24)
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g1,1(V ∗(z)) and g2,2(V ∗(z)) are identity matrices, and for 1 ≤ i ≤ pn and
1 ≤ j ≤ qn,

E(�∗i (X) ∗j (Y )∣Z = z) = �i,j
√
�i, (25)

where �∗i and  ∗j denote the i-th element in �∗ and the j-th element in  ∗

respectively, �i,j denotes the Kronecker symbol and the �i’s are the eigenvalues
of g(V ∗(z), �∗). Note that (�∗)T = (1, 0, . . . , 0) with the above choice of P1 and
Q1.

3.2 Asymptotic properties and a test of conditional inde-
pendence

In this section, we will give asymptotic properties of the estimators �̂(zk):
1 ≤ k ≤ nZ , where the zk’s are distinct points in Z. First, we will estab-
lish the consistency of the estimators, which relies on the fact that for each
k, the two matrices g(V̂ ∗(zk), �∗) and g(V ∗(zk), �∗) are close, and their largest
eigenvalues are �̂2(zk) and �2pn,qn(zk). The difference between g(V̂ ∗(zk), �∗) and

g(V ∗(zk), �∗) depends on the difference of V̂ ∗(zk) and V ∗(zk), and the differ-
ence between some conditional expectation E(g(X,Y, Z)∣Z = z) and its kernel
estimator Ê(g(X,Y, Z)∣Z = z) =

∑n
i=1 w0,i(z)g(Xi, Yi, z)/

∑n
i=1 w0,i(z), where

w0,i(z) = k0(ℎ−1n (z − Zi)). To make it easier to derive the asymptotic proper-

ties of Ê(g(X,Y, Z)∣Z = z), some regularity conditions on the distribution of
(X,Y, Z) are imposed as follows.

(R1) There exists a �-finite measure � such that for every z ∈ Z, the conditional
distribution of (X,Y ) given Z = z has a pdf f(⋅∣z) with respect to �. Also,
Z has a Lebesgue pdf fZ , and f(x, y∣z) and fZ(z) are twice differentiable
with respect to z.

(R2) There exists a function ℎ on X × Y such that

sup
z∈Z

max

(
∣f(x, y∣z)∣ , max

1≤i≤d

∣∣∣∣ ∂∂zi f(x, y∣z)
∣∣∣∣ , max

1≤i,j≤d

∣∣∣∣ ∂2

∂zi∂zj
f(x, y∣z)

∣∣∣∣)
≤ ℎ(x, y)

and
∫
ℎ(x, y)d�(x, y) <∞.

(R3) There exist constants c0 and c1 such that

sup
z∈Z

max

(
∣fZ(z)∣, max

1≤i≤d

∣∣∣∣ ∂∂zi fZ(z)

∣∣∣∣ , max
1≤i,j≤d

∣∣∣∣ ∂2

∂zi∂zj
fZ(z)

∣∣∣∣) ≤ c0
and 1/fZ(z) ≤ c1 for z ∈ Z.

Note that (R2) implies Condition (A1) in Section 3.1 . For the kernel function
k0, Conditions (K1) and (K2) are assumed. The notation ∥ ⋅ ∥ denotes the
Euclidean norm for a vector or the Frobenius norm for a matrix.
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(K1) k0 ≥ 0, supu k0(u) <∞,
∫
k0(u)du = 1,

∫
uk0(u)du = 0, �2

0 =
∫
∥u∥2k0(u)du <

∞ and
∫
∥u∥k20(u)du <∞.

(K2) There exists positive constants 2 and 3 that does not depend on d such
that

k0(a) ≤ (2)de−3∥a∥
2

for every a ∈ Rd.

Remark. If k0 is a product kernel of the form k0(z1, . . . , zd) = k00(z1) ⋅ ⋅ ⋅ k00(zd),
and

k00(x) ≤ 2e−3x
2

for every x ∈ R,

then Condition (K2) holds.
Assume the above conditions, then it is possible to control the difference

between V̂ ∗(zk) and V ∗(zk) using the following result.

Lemma 1 Suppose that Conditions (R1)-(R3) and (K1)-(K2) hold. Suppose
that fn,1, . . ., fn,kn are functions defined on X × Y × Z, where X , Y and Z
are the ranges of X, Y and Z respectively. Let fZ be the pdf of Z, f̂Z(z) =
(nℎdn)−1

∑n
i=1 k0(ℎ−1n (z−Zi)) for z ∈ Z and cK = 1/

∫
k20(s)ds. For z ∈ Z, let

wi(z) = n−1ℎ−dn w0,i(z)/f̂Z(z) for 1 ≤ i ≤ n and

Wn,j(z) =
√
nℎdncKfZ(z)

((
n∑
i=1

wi(z)fn,j(Xi, Yi, z)

)
− E(fn,j(X,Y, z)∣Z = z)

)
for 1 ≤ j ≤ kn. Suppose that {ℎn}∞n=1 and {"n}∞n=1 are sequences of positive
numbers such that

c3,1n
−� ≤ ℎn ≤ c3,2n−�

for some positive constants c3,1 and c3,2 and 1/(d+ 4) < � < 1/d, and ℎn/"n =
O(n−�) for some � > 0. Let

Z("n) =
{
z ∈ Z : {z′ ∈ Rd : ∥z′ − z∥ < "n} ⊂ Z

}
(26)

and suppose that z1, . . ., znZ are points in Z("n) such that

∥zk − zk∗∥ ≥ ℎn for 1 ≤ k, k∗ ≤ nZ and k ∕= k∗ (27)

for large n and

max
1≤k≤nZ

sup
(x,y)∈X×Y

∣fn,j(x, y, zk)∣ ≤ Cn for some Cn ≥ 1. (28)

Suppose that knnZCn = O((lnn)1/16). Then there exist Wn,1,j,k and Wn,2,j,k:
1 ≤ j ≤ kn, 1 ≤ k ≤ nZ such that the joint distribution of Wn,1,j,k+Wn,2,j,k’s is

the same as the joint distribution of Wn,j(zk)’s,
∑kn
j=1

∑nZ
k=1W

2
n,2,j,k = OP (exp(−(lnn)1/9)),

and Wn,1,j,k’s are jointly normal with EWn,1,j,k = 0 and for 1 ≤ j, ℓ ≤ kn and
1 ≤ k, k∗ ≤ nZ ,

Cov(Wn,1,j,k,Wn,1,ℓ,k∗)

=

{
Cov(fn,j(X,Y, zk), fn,ℓ(X,Y, zk)∣Z = zk) if k = k∗;
0 otherwise.
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The Proof of Lemma 1 is given in Section 7.1.
The differences between V̂ ∗(zk)’s and V ∗(zk)’s can be controlled by apply-

ing Lemma 1 and taking the fn,j(X,Y, z)’s to be the functions �∗ℓ (X)�∗ℓ′(X),
�∗ℓ (X) ∗m(Y ) and  ∗m(Y ) ∗m′(Y ), where 1 ≤ ℓ ≤ ℓ′ ≤ pn and 1 ≤ m ≤ m′ ≤ qn.
In such case, (28) holds under the following conditions.

(B1) For each (p, q), ∣�p,k∣ ≤ 1 and ∣ q,ℓ∣ ≤ 1 for 1 ≤ k ≤ p and 1 ≤ ℓ ≤ q.

(B2) There exists {�n}: a sequence of positive numbers such that for 1 ≤
k ≤ nZ , the smallest eigenvalues of the matrices V1,1(zk) and V2,2(zk) are
greater than or equal to �n.

Under the above conditions, the �̂(zk)’s are consistent, as stated in Theorem
3.1.

Theorem 3.1 Suppose that (10), (11), (12), Conditions (R1)-(R3), (K1)-(K2)
and (B1)-(B2) hold. Suppose that {ℎn}∞n=1 and {"n}∞n=1 are sequences of posi-
tive numbers such that

c3,1n
−� ≤ ℎn ≤ c3,2n−�

for some positive constants c3,1 and c3,2 and 1/(d+ 4) < � < 1/d, and ℎn/"n =
O(n−�) for some � > 0. Suppose that z1, . . ., znZ are points in Z("n) (defined
in (26)) such that (27) holds and

nZ(pn + qn)2 max{1, �−1n (pn + qn)} = O((lnn)1/16). (29)

Then
nZ∑
k=1

(
�̂2(zk)− �2pn,qn(zk)

)2
= OP ((nℎdn)−1(lnn)1/4) (30)

and (
nZ∑
k=1

f̂Z(zk)�̂2(zk)−
nZ∑
k=1

fZ(zk)�2pn,qn(zk)

)2

= OP

(
(lnn)5/16

nℎdn

)
. (31)

The proof of Theorem 3.1 is given in Section 7.2.
The next result deals with the asymptotic distribution of

∑nZ
k=1 f̂Z(zk)�̂2(zk)

when X and Y are conditionally independent given Z:

Theorem 3.2 Suppose that the conditions in Theorem 3.1 hold and X and Y
are conditionally independent given Z. Then there exist random variables f̃k,
�̃2(zk) and �k: 1 ≤ k ≤ nZ such that

∑nZ
k=1 f̃k�̃

2(zk) has the same distribution

as
∑nZ
k=1 f̂Z(zk)�̂2(zk) and

nℎdncK

nZ∑
k=1

f̃k�̃
2(zk)−

nZ∑
k=1

�k = OP (exp(−0.5(lnn)1/9)(lnn)3/32),

where the �k’s are independent and each �k has the same distribution as the
largest eigenvalue of a matrix CCT , where C is a (pn − 1) × (qn − 1) matrix
whose elements are IID N(0, 1).
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The proof of Theorem 3.2 is given in Section 7.3. The result in Theorem 3.2
is similar to that in Lemma 7.2 in Dauxois and Nkiet (1998). The difference is
that the asymptotic result here is derived as the sample size n, pn and qn all
tend to ∞, while in Dauxois and Nkiet (1998), the result is derived as n tends
to ∞, but pn and qn are held fixed.

Theorem 3.2 suggests the test that rejects the conditional independence hy-
pothesis at approximate level a if

nℎdncK

nZ∑
k=1

f̂Z(zk)�̂2(zk) > F−1nZ ,p,q(1− a), (32)

where FnZ ,p,q is the cumulative distribution function of
∑nZ
k=1 �k.

One can estimate F−1nZ ,p,q(1− a) in (32) using simulated data, but it is also
possible to use a normal approximation. Since the �k’s are IID, the central limit
theorem suggesets the asymptotic normality of

∑nZ
k=1 �k and

∑nZ
k=1 f̂Z(zk)�̂2(zk).

The following corollary gives the conditions that guarantee the asymptotic nor-
mality of

∑nZ
k=1 f̂Z(zk)�̂2(zk).

Corollary 1 Suppose that the conditions in Theorem 3.1 hold,

lim
n→∞

p3nq
3
n√

nZ(max(pn, qn))1/3
= 0, (33)

and (i) or (ii) holds:

(i) qn = ℎ(pn), where ℎ is an increasing function such that limp→∞ ℎ(p)/p
exists and is greater than or equal to 1.

(ii) pn = ℎ(qn), where ℎ is an increasing function such that limq→∞ ℎ(q)/q
exists and is greater than or equal to 1.

Let �pn,qn and �2
pn,qn be the mean and variance of the largest eigenvalue of the

matrix CCT in Theorem 3.2 respectively and let the �k’s be as in Theorem 3.2,
then

(max(pn, qn))1/6

�pn,qn
= O(1). (34)

and ∑nZ
k=1 �k − nZ�pn,qn√

nZ�2
pn,qn

D→ N(0, 1) as n→∞. (35)

If X and Y are conditionally independent given Z, then

nℎdncK
∑nZ
k=1 f̂Z(zk)�̂2(zk)− nZ�pn,qn√

nZ�2
pn,qn

D→ N(0, 1) as n→∞. (36)
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The proof of Corollary 1 is given in Section 7.4. Corollary 1 gives the test that
rejects the conditional independence hypothesis if

nℎdncK
∑nZ
k=1 f̂Z(zk)�̂2(zk)− nZ�pn,qn√

nZ�2
pn,qn

≥ Φ−1(1− a), (37)

where Φ is the cumulative distribution function for the standard normal distri-
bution. Here �pn,qn and �2

pn,qn can be approximated by the sample mean and
variance of a random sample from the distribution of the largest eigenvalue of
the matrix CCT .

To distinguish the two tests mentioned above, we will refer the test with
rejection region in (37) as Test 1N and the test with rejection region in (32) as
Test 1. Note that under the conditions in Corollary 1, Test 1 does not differ
from Test 1N much since the rejection region for Test 1 can be written as

nℎdncK
∑nZ
k=1 f̂Z(zk)�̂2(zk)− nZ�pn,qn√

nZ�2
pn,qn

≥ I + Φ−1(1− a),

where

I =
F−1nZ ,p,q(1− a)− nZ�pn,qn√

nZ�2
pn,qn

− Φ−1(1− a) = o(1) (38)

by (35). Therefore, both Test 1 and Test 1N are of asymptotic significance level
a. Below we will discuss the consistency and asymptotic power of Test 1N only
since the same properties of Test 1 can be established similarly using (38).

Suppose all the conditions in Theorem 3.1 hold, then Test 1N is also consis-
tent if the zk’s are chosen in a way such that there exist a constant c3 > 0 and
a sequence {�1,n}∞n=1 such that �1,n > 0 for every n, limn→∞ �1,n = 0 and

1

nZ

nZ∑
k=1

fZ(zk)�2pn,qn(zk)− c3E�2pn,qn(Z) = oP (�1,n). (39)

To see that Test 1N is consistent, note that 0 ≤ �pn,qn ≤ Etr(CCT ) and
�2
pn,qn ≤ E(tr(CCT ))2, where CCT is as in Theorem 3.2. Therefore, �pn,qn =
O(pnqn) and �2

pn,qn = O(p2nq
2
n). Then it follows from (31), (39) and Fact 2 that

n−1Z
∑nZ
k=1 f̂Z(zk)�̂2(zk)−c3E�21(X,Y ∣Z) = OP ((lnn)5/32/nZ

√
nℎdn) +oP (�1,n)+

c3E�
2
pn,qn(Z)− c3E�21(X,Y ∣Z) = oP (1), so

nℎdncK
∑nZ
k=1 f̂Z(zk)�̂2(zk)− nZ�pn,qn√

nZ�2
pn,qn

≥
√
nZ
(
nℎdncK(c3E�

2
1(X,Y ∣Z) + oP (1)) +O(pnqn)

)
c2,1pnqn

,

where c2,1 > 0 is a constant. Thus the left-hand side in (37) tends to ∞ as
n → ∞ when E�21(X,Y ∣Z) > 0, which implies that the probability that (37)
holds tends to 1 if X and Y are not conditionally independent given Z.
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Test 1N can also reject an alternative where E�2pn,qn(Z) is small under the
conditions in Theorem 3.1. Indeed, for {�1,n}∞n=1 such that �1,n > 0 for every
n, limn→∞ �1,n = 0 and (39) holds, if

max

(
�1,n,

(lnn)5/32

nZ
√
nℎdn

)
E�2pn,qn(Z)

= o(1), (40)

then the probability that (37) holds tends to 1 since

nℎdncK
∑nZ
k=1 f̂Z(zk)�̂2(zk)− nZ�pn,qn√

nZ�2
pn,qn

≥

√
nZ

(
nℎdncK

(
c3E�

2
pn,qn(Z) +OP

(
(lnn)5/32

nZ
√
nℎdn

)
+ oP (�1,n)

)
+O(pnqn)

)
c2,1pnqn

,

where pnqn/(nℎ
d
nE�

2
pn,qn(Z)) = O((lnn)1/16/(nZnℎ

d
nE�

2
pn,qn(Z))) = o(1) by

(29) and (40), and pnqn/(
√
nZnℎ

d
nE�

2
pn,qn(Z)) = o(1). In summary, Test 1N

can reject an alternative where E�2pn,qn(Z) tends to zero at a rate that is slower

than max(�1,n, (lnn)5/32/(nZ
√
nℎdn)), where �1,n is determined by (39). An

example that satisfies (39) and the conditions in Corollary 1 will be given in

Section 4. In that example, �1,n = p11n n
−1/d
Z .

4 An example

In this section, an example is given to illustrate the verification of the conditions
in Corollary 1, assuming (R1)-(R3) and the condition that there exists a positive
constant c1,1 such that

fX∣Z(x∣z) ≥ c1,1 and fY ∣Z(y∣z) ≥ c1,1 for all (x, y, z) ∈ X × Y × Z, (41)

where fX∣Z(⋅∣z) and fY ∣Z(⋅∣z) are conditional probability densities of X and Y
respectively given Z = z, with respect to Lebesgue measures.

Example 1. Suppose that X, Y and Z are random vectors that take values in
[0, 1]dx , [0, 1]dy and [0, 1]d respectively. Suppose that (R1)-(R3), and (41) hold.
Choose the basis functions as follows. Let Λ be the set of all positive integers
and Λ(k) = {mk : m ∈ Λ} for k ∈ Λ. For k, i1, . . ., ik ∈ Λ and ℎ0 > 0, let

ℎk,ℎ0,i1,...,ik(x1, . . . , xk) =

k∏
j=1

IAij ,ℎ0 (xj) for (x1, . . . , xk) ∈ [0, 1]k,

where

Aij ,ℎ0
=

{
(ℎ0(ij − 1), ℎ0ij ] if ij > 1;
[ℎ0(ij − 1), ℎ0ij ] if ij = 1.
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For p, q, r ∈ Λ, let

{�p,i : 1 ≤ i ≤ p} = {ℎdx,p−1/dx ,i1,...,idx
: 1 ≤ i1, . . . , idx ≤ p1/dx},

{ q,j : 1 ≤ j ≤ q} = {ℎdy,q−1/dy ,i1,...,idy
: 1 ≤ i1, . . . , idy ≤ q1/dy},

and
{�r,k : 1 ≤ k ≤ r} = {ℎd,r−1/d,i1,...,id : 1 ≤ i1, . . . , id ≤ r1/d}.

Take k0 to be the product kernel function such that

k0(z1, . . . , zd) = k00(z1) ⋅ ⋅ ⋅ k00(zd),

where k00 is the probability density function for the standard normal distribu-
tion. Let ℎn = n−a, where 1/(d + 4) < a < 1/d. Let n∗Z to be the largest
number in Λ(d) such that n∗Z ≤ (lnn)1/32, and let

{zk : 1 ≤ k ≤ nZ} =

{(
i1

(n∗Z)1/d
, . . . ,

id
(n∗Z)1/d

)
: 1 ≤ i1, . . . , id < (n∗Z)1/d

}
,

so nZ = ((n∗Z)1/d − 1)d. Suppose that {pn} is a sequence in Λ(dx)∩Λ(dy) such
that limn→∞ pn =∞ and qn = pn. If

p12n ≤ nZ , (42)

then all the conditions in Corollary 1 hold. If

p12n ≤ n
1/d
Z , (43)

then (39) holds with �1,n = p11n n
−1/d
Z .

Proof. We will first show that all the conditions in Corollary 1 hold assuming
(42). It is clear that Equations (10), (11) and (12), and Conditions (B1), (K1)
and (K2) hold.

To find the �n in Condition (B2), note that for z ∈ Z, the smallest eigenvalue
of V1,1(z) is the minimum of {E(�pn,i(X)∣Z = z) : 1 ≤ i ≤ pn}, which is the

minimum of {E(ℎ
dx,p

−1/dx
n ,i1,...,idx

(X)∣Z = z) : 1 ≤ i1, . . . , idx ≤ p
1/dx
n }. Under

(41), for m ∈ Λ and 1 ≤ i1, . . . , idx ≤ m,

E(ℎdx,1/m,i1,...,idx (X)∣Z = z)

=

∫ i1/m

(i1−1)/m
⋅ ⋅ ⋅
∫ idx/m

(idx−1)/m
fX∣Z(x1, . . . , xdx ∣z)dxdx ⋅ ⋅ ⋅ dx1 ≥

c1,1
mdx

.

Take m = p
1/dx
n , and we have that the smallest eigenvalue of V1,1(z) is at least

c1,1/pn. Similarly, c1,1/pn is also a lower bound for the smallest eigenvalue of
V2,2(z) and (B2) holds with �n = c1,1/pn. Furthermore, (29) holds since

nZ(pn + qn)2 max{1, �−1n (pn + qn)} = O(nZp
4
n) = O(n2Z).
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Finally, the zk’s are in Z("n) with "n = (n∗Z)−1/d and ℎn/"n = O(n−�) for
0 < � < �. For 1 ≤ k, k∗ ≤ nZ , and k ∕= k∗, ∥zk − zk∗∥ ≥ (n∗Z)−1/d ≥ n−a, so
(27) holds. Also, (33) holds since

p3nq
3
n√

nZ(max(pn, qn))1/3
= p−1/3n

√
p12n
nZ

= o(1).

Therefore, all the conditions in Corollary 1 hold for this example.
The verification of (39) is based on the fact that there exist positive constants

c4,1 and �0 such that

∣�2pn,qn(z)− �2pn,qn(z′)∣ ≤ c4,1p11n ∥z − z′∥ if p3n∥z − z′∥ < �0. (44)

Below we will first check (39) assuming that (44) holds and then prove (44).
Suppose that (43) holds. Let gn(z) = fZ(z)�2pn,qn(z). Since fZ is Lipschitz
continuous, (44) implies that there exists a constant c4,2 > 0 such that

∣gn(z)− gn(z′)∣ ≤ c4,2p11n ∥z − z′∥ if p3n∥z − z′∥ < �0.

Let {z1+nZ , . . . zn∗Z} be the set{(
i1

(n∗Z)1/d
, . . . ,

id
(n∗Z)1/d

)
: 1 ≤ i1, . . . , id ≤ (n∗Z)1/d

}
∩ {zk : 1 ≤ k ≤ nZ}c,

then ∣∣∣∣∣∣
n∗Z∑
k=1

gn(zk)

(
1

(n∗Z)1/d

)d
−
∫
Z
gn(z)dz

∣∣∣∣∣∣ ≤ 2c4,2p
11
n

√
d

(
1

n∗Z

)1/d

if p3n(n∗Z)−1/d < �0 Since ∣gn(z)∣ ≤ c0 by (R3) and there exists a postive constant
c4,3 depending on d such that

n∗Z − nZ
{
≤ c4,3(n∗Z)1/d if d ≥ 2;
= 1 if d = 1,

we have∣∣∣∣∣n−1Z
nZ∑
k=1

fZ(zk)�2pn,qn(zk)−
∫
Z fZ(z)�2pn,qn(z)dz∫

Z 1dz

∣∣∣∣∣
=

∣∣∣∣∣∣n
∗
Z

nZ

⎛⎝ 1

n∗Z

n∗Z∑
k=1

gn(zk)−
∫
Z
gn(z)dz

⎞⎠− ∑n∗Z
k=1+nZ

gn(zk)

nZ
+

(
n∗Z
nZ
− 1

)∫
Z
gn(z)dz

∣∣∣∣∣∣
≤ n∗Z

nZ

∣∣∣∣∣∣ 1

n∗Z

n∗Z∑
k=1

gn(zk)−
∫
Z
gn(z)dz

∣∣∣∣∣∣+ c0

(
1 +

∫
Z

1dz

)(
n∗Z − nZ
nZ

)
≤ c4,4p

11
n

n
1/d
Z
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for some constant c4,4 > 0 if p3n(n∗Z)−1/d < �0. Since p12n ≤ n
1/d
Z , p3nn

−1/d
Z =

o(1), so∣∣∣∣∣n−1Z
nZ∑
k=1

fZ(zk)�2pn,qn(zk)−
∫
Z fZ(z)�2pn,qn(z)dz∫

Z 1dz

∣∣∣∣∣ = OP

(
p11n

n
1/d
Z

)

and p11n n
−1/d
Z = o(1). Take �1,n = p11n n

−1/d
Z and c3 = (

∫
Z 1dz)−1 = 1, then (39)

holds.
It remains to prove (44). Recall that for z ∈ Z, �2pn,qn(z) is the largest eigen-

value of g(V (z), an,∗), as mentioned in Section 3.1. Thus ∣�2pn,qn(z)−�2pn,qn(z′)∣
is bounded by ∥g(V (z), an,∗)−g(V (z′), an,∗)∥. Note that ∣�2pn,qn(z)−�2pn,qn(z′)∣
is bounded by For 1 ≤ i, j ≤ 2, let g∗i,j be as defined in (55) and let Δi,j =
g∗i,j(V (z′))−g∗i,j(V (z)) for 1 ≤ i, j ≤ 2, then from the fact that ∥AB∥ ≤ ∥A∥∥B∥
for two matrices A and B, we have

∥g(V (z), an,∗)− g(V (z′), an,∗)∥

≤
2∏
i=1

2∏
j=1

(
∥g∗i,j(V (z))∥+ ∥Δi,j∥

)
−

2∏
i=1

2∏
j=1

∥g∗i,j(V (z))∥

+∥g1,1(V (z′))− g1,1(V (z))∥∥an,∗∥2. (45)

The bounds for the ∥g∗i,j(V (z))∥’s are derived as follows. Since the elements
in V (z) are bounded by 1 and the smallest eigenvalue of gi,i(V (z)) is at least
c1,1/pn for 1 ≤ i ≤ 2, we have

max(∥g∗1,2(V (z))∥, ∥g∗2,1(V (z))∥) ≤ pn,

∥g∗1,1(V (z))∥2 ≤ p2n
(c1,1/pn)2

=
p4n
c21,1

,

and

∥g∗2,2(V (z))∥ ≤ p2n
c1,1

.

To find bounds for ∥g1,1(V (z′))−g1,1(V (z))∥ and ∥Δi,j∥’s, note that from (R3),

each element in gi,j(V (z′))− gi,j(V (z)) is bounded by
√
d
∫
ℎ(x, y)d�(x, y) ∥z−

z′∥, so

max(∥Δ1,2∥, ∥Δ2,1∥, ∥g1,1(V (z′))− g1,1(V (z))∥)

≤ pn
√
d

∫
ℎ(x, y)d�(x, y)∥z − z′∥.

For 1 ≤ i ≤ 2, by Fact 4,

∥Δi,i∥ ≤
∥g∗i,i(V (z))∥2∥gi,i(V (z′))− gi,i(V (z))∥

1− ∥g∗i,i(V (z))∥∥gi,i(V (z′))− gi,i(V (z))∥
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if ∥g∗i,i(V (z))∥∥gi,i(V (z′))− gi,i(V (z))∥ < 1, so

∥Δi,i∥ ≤
2
√
dp5n
c21,1

∫
ℎ(x, y)d�(x, y)∥z − z′∥

if √
dp3n
c1,1

∫
ℎ(x, y)d�(x, y)∥z − z′∥ < 1

2
. (46)

To give a bound for ∥an,∗∥, note that the smallest eigenvalue of g1,1(V (z)) is at
least c1,1/pn and at most

aTn,∗g1,1(V (z))an,∗

aTn,∗an,∗
=

1

∥an,∗∥2
,

so

∥an,∗∥ ≤
√

pn
c1,1

.

From (45) and the above bounds for ∥an,∗∥, the ∥g∗i,j(V (z))∥’s and ∥Δi,j∥’s, we
have

∥g(V (z), an,∗)− g(V (z′), an,∗)∥ ≤ c4,1p11n ∥z − z′∥
for some constant c4,1 if (46) holds. Therefore, (44) holds and the proof for the
results in Example 1 is complete.

5 Simulation studies

In this section, results of several simulation experiments are presented. Those
experiments are designed to demonstrate the performance of Test 1 introduced
in Section 3.2.

In Section 3.2, Test 1N is also introduced, but no simulation studies are done
for it in this section. The reason is as follows. Test 1N is constructed based on
the normal approximation for

∑nZ
k=1 �k. Using the parameter set-up in Table 2,

the selected nZ is only 4 or 5 and the normal approximation for
∑nZ
k=1 �k is not

expected to work well.
For simplicity, in all the simulation experiments here, X, Y , Z are one

dimensional and only the following distributions for (X,Y, Z) are considered.

(M1) (X,Y ) = (Φ(Z�1),Φ(Z�2)), where �1, �2 and Z are independent, Z fol-
lows the uniform distribution on [0, 1], and �i follows the standard normal
distribution for i = 1, 2.

(M2) Z follows the standard normal distribution, and the conditional distribu-
tion of (X,Y ) given Z = z is bivariate normal with mean � and covariance
matrix Σ, where

� =

(
0
0

)
, Σ =

(
1 �(z)

�(z) 1

)
. (47)

and the �(z) in (47) is taken to be a(∣1− 2Φ(z)∣) with a ∈ {0, 0.1, 0.3}.
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(M3) (X,Y, Z) = (Φ(X0),Φ(Y0),Φ(Z0)), where Z0 follows the t-distribution
with degree of freedom 1, and the conditional distribution of (X0, Y0)
given Z = z is bivariate normal with mean � and covariance matrix Σ,
where � and Σ are as in (47) and the �(z) in (47) is taken to be a(∣1−2z∣)
with a ∈ {0, 0.1, 0.3}.

Here (M1) is used for parameter selection and (M2) and (M3) are used for
checking the performance of Test 1. The details of parameter selection and
experimental results are given in Sections 5.1 and 5.2 respectively.

5.1 Parameter selection

To apply Test 1, certain parameters need to be chosen, including the kernel
function k0, the kernel bandwidth ℎn, the basis functions �pn,i’s and  qn,j ’s
and the evaluation points zk’s, which are chosen as follows.

(S1) k0 and the basis functions �p,i’s and  q,j ’s are chosen as in Example 1 in
Section 4 with pn = qn = 2. Since the basis functions are supported on
[0, 1], if X, Y and Z do not take values in [0, 1] (such as in (M2)), then the
data {(Xi, Yi, Zi)}ni=1 will be transformed to {(Φ(Xi),Φ(Yi),Φ(Zi))}ni=1

before applying Test 1. The bandwidth ℎn is chosen to be the ℎ that
minimizes ∫ 1−0.143ℎ0.121

0.143ℎ0.121

E
(
f̂Z(z)− 1

)2
dz

over (0, 0.5], where f̂Z is the kernel density estimator based on a sample of
size n from the uniform distribution on [0, 1] with kernel k0 and bandwidth
ℎ. Below are the ℎn’s used for different n’s.

n 10000 5000 1000 500
ℎn 0.05935281 0.06525282 0.08533451 0.0983018

Table 1: Selected ℎn’s for different n’s

The zk’s are points in In = [0.143ℎ0.121n , 1 − 0.143ℎ0.121n ] such that zk =
kℎ0,n, where ℎ0,n is a given positive number in In.

With the parameter set-up in (S1), it remains to choose ℎ0,n. The ℎ0,n is
chosen to be the smallest multiple of 0.01 such that the distribution for the Test
1 statistic nℎdncK

∑nZ
k=1 f̂k�̂

2(zk) based on 1000 samples of size n from (M1) is
similar to the distribution of

∑nZ
k=1 �k (�2 with nZ degrees of freedom), as stated

in Theorem 3.2. The one-sample Kolmogorov test is used to determine whether
the two distributions are similar. Below are the ℎ0,n’s used for n = 10000 and
n = 5000.

For the above procedure for selecting ℎ0,n, when n = 500 or n = 1000, it

seems that the distribution of nℎdncK
∑nZ
k=1 f̂k�̂

2(zk) cannot be approximated
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n 10000 5000
ℎ0,n 0.16 0.2

Table 2: ℎ0,n’s for different n’s

well by the distribution of
∑nZ
k=1 �k, regardless what ℎ0,n is used. To overcome

this problem, one may use local bootstrap to determine the rejection region.
The idea of using local bootstrap is to draw samples {(X∗i , Y ∗i , Z∗i )}ni=1 from

the distribtion of (X∗, Y ∗, Z∗), where Z∗’s distribution is close to the distribu-
tion of Z and the conditional distributions of X∗ given Z∗ = z and Y ∗ given
Z∗ = z are close to the conditional distributions of X given Z = z and Y given
Z = z, yet X∗ and Y ∗ are conditionally independent given Z∗. Therefore, if
X and Y are conditionally independent given Z, then the local bootstrap re-
samples {(X∗i , Y ∗i , Z∗i )}ni=1 should behave like a random sample from (X,Y, Z).

One can then compute the Test 1 statistic nℎdncK
∑nZ
k=1 f̂k�̂

2(zk) for the original
sample and for each local bootstrap resample. If the statistic computed based
on the original sample is larger than (1− a)% of the statistics computed based
on the local bootstrap resamples, then the conditional independence hypothesis
is rejected at level a.

The local bootstrap procedure used here is the same as the one proposed
by Paparoditis and Polits (2000) except that here the Zi’s are not lagged
variables. For a given sample {(Xi, Yi, Zi)}ni=1, a local bootstrap resample
{(X∗i , Y ∗i , Z∗i )}ni=1 is generated as follows.

∙ Step 1. Draw a random sample (Z∗1 , . . . , Z
∗
n) from the empirical cumulative

distribution function F̂Z , where

F̂Z(z) =
1

n

n∑
i=1

I(−∞,Zi](z).

∙ Step 2. For 1 ≤ i ≤ n, for each Z∗i from Step 1, draw X∗i and Y ∗i indepen-
dently from the empirical conditional cumulative distribution functions
F̂X∣Z=Z∗

i
and F̂Y ∣Z=Z∗

i
respectively, where

F̂X∣Z=Z∗
i
(x) =

∑n
i=1 k0((Z∗i − Zi)/b)I(−∞,Xi](x)∑n

i=1 k0((Z∗i − Zi)/b)

and

F̂Y ∣Z=Z∗
i
(y) =

∑n
i=1 k0((Z∗i − Zi)/b)I(−∞,Yi](y)∑n

i=1 k0((Z∗i − Zi)/b)
.

The parameters for Test 1 with local bootstrap are chosen as follows. the
bandwidth b is taken to be ℎ0.4n , pn = qn = 2 and ℎ0,n = 0.4, where ℎn is
as in Table 1.
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5.2 Experiments

The objective of the first experiment is to compare the power of Test 1 with that
of the test proposed by Su and White (referred as Test 2 hereafter), which is
based on Hellinger distance between the conditional and unconditional densities.
Both tests are based on 1000 random samples of size n, where the distribution
of (X,Y, Z) is as in (M2) or (M3). Under (M2), Test 1 is applied to transformed
data, as mentioned in Section 5.1. To apply Test 2, the bandwidth parameter
in the kernel estimators in the test statistic is taken to be n−1/8.5, as in Su and
White (2008). The power estimates based on data from (M2) and (M3) with
n = 104 are given in Table 3. The asymptotic significance level is 0.05. It is
shown in Table 3 that power estimates for Test 1 when a = 0 and a = 0.1 are
larger that those for Test 2.

a = 0 a = 0.1 a = 0.3
Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

(M2) 0.049 0.028 0.65 0.076 1 0.95
(M3) 0.041 0.029 0.572 0.119 1 1

Table 3: Power comparison between Test 1 and Test 2

To investigate the performance of Test 1 when the sample size is smaller, in
the second experiment, power estimates for Test 1 are computed based on 1000
random samples of size n = 5000 from (M2) and (M3). The results are given in
Table 4. The results for n = 104 from the first experiment are also included for
comparison. The asymptotic significance level is 0.05 as before. Table 4 shows
that Test 1 is more powerful when n is larger.

a = 0 a = 0.1 a = 0.3
(M2) (M3) (M2) (M3) (M2) (M3)

n = 5000 0.052 0.039 0.373 0.321 0.998 1
n = 104 0.049 0.041 0.65 0.572 1 1

Table 4: Test 1 power estimates for n = 5000 and n = 104

Finally, for smaller sample size such as n = 500 or n = 1000, since the
approximation in Theorem 3.2 does not work well, the local bootstrap version
of Test 1 is considered. Here 1000 samples of size n from (M2) are used, and for
each sample, 1000 local bootstrap resamples are used to determine the rejection
region. The level is 0.05. The power estimates for the test are given in Table 5.
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a = 0 a = 0.1 a = 0.3
n = 500 0.041 0.071 0.309
n = 1000 0.033 0.099 0.531

Table 5: Power estimates for Test 1 with local bootstrap

6 Concluding remarks

A test statistic for testing conditional independence based on maximal nonlin-
ear conditional correlation is proposed. Two tests, Test 1 and Test 1N, are
constructed using the test statistic. Both tests are consistent and have similar
asymptotic properties, as discussed in Section 3.2. Some simulation experiments
are carried out to check the performance of Test 1. It seems that when the sam-
ple size n = 104, the power of Test 1 is comparable with that of Test 2, the test
proposed by Su and White (2008).

Below are a few remarks.

1. (29) requires that pn, qn and nZ grow slowly comparing to n. The pa-
rameter selection result in Table 2 in Section 5 seems to agree with such
a requirement. With n = 104, nZ is only 5 and pn = qn = 2. When
pn = qn = 3, even with ℎ0,n = 0.4 (this corresponds to the smallest nZ
for n = 104), the distribution of the test statistic cannot be approximated
well by the distribution of

∑nZ
k=1 �k.

2. The parameter selection criteria given in Section 5 needs to be studied to
see whether the asymptotic propoerties of Test 1 still hold using such a
criteria.

3. When the distribution of the test statistic cannot be approximated well by
the distribution of

∑nZ
k=1 �k, it is possible to use local bootstrap version of

Test 1. However, it takes a lot of time to obtain the bootstrap resamples,
so this approach is recommended when the sample size n is small.

4. In all theorems proved in this paper, it is assumed that the (Xi, Yi, Zi)’s
are IID. It is also expected that Test 1 works for some stationary weakly
dependent data such as the vector ARMA processes, where the central
limit theorem for the IID case still applies. However, to carry out the
details in the proofs, one needs the strong approximation result in Lemma
2, which is more than the central theorem and requires a version of Lemma
5 that works for dependent data.

5. Test 1 can be modified to work for discrete Z. Modification is necessary
since the rate of convergence for each �̂(zk) is faster in the discrete case.
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7 Proofs

7.1 Proof of Lemma 1

Recall that for 1 ≤ j ≤ kn,

Wn,j(z) =
√
nℎdncKfZ(z)

((
n∑
i=1

wi(z)fn,j(Xi, Yi, z)

)
− E(fn,j(X,Y, z)∣Z = z)

)
.

To prove the asymptotic normality of Wn,j(zk)’s, we will approximate Wn,j(z)
using sums of IID random variables. For 1 ≤ i ≤ n, let w0,i(z) = k0(ℎ−1n (z −
Zi))and let f̂Z(z) = n−1ℎ−dn

∑n
i=1 w0,i(z). Then wi(z) = n−1ℎ−dn w0,i(z)/f̂Z(z).

For 1 ≤ j ≤ kn, let

W̃n,j(z) = (nℎdnfZ(z))−1/2(cK)1/2
n∑
i=1

(w0,i(z)fn,j(Xi, Yi, z)− Ew0,i(z)fn,j(Xi, Yi, z))

and W̃n,kn+1(z) =
√
nℎdncK(fZ(z))−1/2(f̂Z(z)− Ef̂Z(z)), then

Wn,j(z) =
fZ(z)

f̂Z(z)
W̃n,j(z) +

√
nℎdncKfZ(z)E(fn,j(X,Y, z)∣Z = z)

(
fZ(z)

f̂Z(z)
− 1

)

+

√
nℎdncKfZ(z)

f̂Z(z)

(
ℎ−dn E(w0,1(z)fn,j(X1, Y1, z))− E(fn,j(X,Y, z)∣Z = z)fZ(z)

)
= Ŵn,j(z) +

4∑
ℓ=1

Rℓ,n,j(z),

where Ŵn,j(z) = W̃n,j(z)− W̃n,kn+1(z)E(fn,j(X,Y, z)∣Z = z),

R1,n,j(z) =

(
fZ(z)

f̂Z(z)
− 1

)
W̃n,j(z),

R2,n,j(z) =

√
nℎdncKfZ(z)

f̂Z(z)

(
ℎ−dn E(w0,1(z)fn,j(X1, Y1, z))− E(fn,j(X,Y, z)∣Z = z)fZ(z)

)
,

R3,n,j(z) =

√
nℎdncKE(fn,j(X,Y, z)∣Z = z)(fZ(z)− f̂Z(z))2

f̂Z(z)
√
fZ(z)

and

R4,n,j(z) = −
√
nℎdncK√
fZ(z)

E(fn,j(X,Y, z)∣Z = z)
(
Ef̂Z(z)− fZ(z)

)
.

We will complete the proof by showing that the following results hold for Tn =
exp(−(lnn)1/9).
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(C1)
∑kn
j=1

∑nZ
k=1

(∑4
ℓ=1Rℓ,n,j(zk)

)2
= Op(Tn).

(C2) There exist random variables N1,j,k and "1,j,k: 1 ≤ j ≤ kn, 1 ≤ k ≤
nZ such that the joint distribution of (N1,j,k + "1,j,k)j,k is the same as

that of (Ŵn,j(zk))j,k, N1,j,k’s are jointly normal with EN1,j,k = 0 and

Cov(N1,j,k, N1,ℓ,k∗) = Cov(Ŵn,j(zk), Ŵn,ℓ(zk∗)), and
∑kn
j=1

∑nZ
k=1 "

2
1,j,k =

Op(Tn).

(C3) There exist random variables N2,j,k and "2,j,k: 1 ≤ j ≤ kn, 1 ≤ k ≤ nZ
such that the joint distribution of (N2,j,k + "2,j,k)j,k is the same as that
of (N1,j,k)j,k, N2,j,k’s are jointly normal with EN2,j,k = 0 and

Cov(N2,j,k, N2,ℓ,k∗)

=

{
Cov(fn,j(X,Y, zk), fn,ℓ(X,Y, zk)∣Z = zk) if k = k∗;
0 otherwise.

and
∑kn
j=1

∑nZ
k=1 "

2
2,j,k = Op(Tn).

Note that Lemma 1 follows from (C1)-(C3) since one can construct random
variables Ñ2,j,k, "̃2,j,k, "̃1,j,k and R5,n,j,k: 1 ≤ j ≤ kn, 1 ≤ k ≤ nZ on the same

probability space such that the joint distribution of (Ñ2,j,k, "̃2,j,k)j,k is the same

as that of (N2,j,k, "2,j,k)j,k, the joint distribution of ("̃1,j,k, Ñ2,j,k+"̃2,j,k)j,k is the

same as that of ("1,j,k, N1,j,k)j,k, and the joint distribution of (R5,n,j,k, Ñ2,j,k +

"̃2,j,k + "̃1,j,k)j,k is the same as that of (
∑4
ℓ=1Rℓ,n,j(zk), Ŵn,j(zk))j,k. Take

Wn,1,j,k = Ñ2,j,k and Wn,2,j,k = "̃2,j,k + "̃1,j,k + R5,n,j,k, then we have Lemma
1.

To establish (C1)-(C3), we need certain expectations and covariances, which
are computed below. Under (R1)-(R3) and the conditions that

∫
uk0(u)du = 0

and �2
0 =

∫
∥u∥2k0(u)du <∞, for z ∈ Z("n), we have

(ℎdn)−1E (w0,1(z)fn,j(X1, Y1, z))

= E(fn,j(X,Y, z)∣Z = z)fZ(z) + rn,j,1(z)Cnℎ
2
n, (48)

where

rn,j,1(z) = c0

∫
ℎ(x, y)d�(x, y)

(
2d�2

0�n,j,1 + �n,j,2ℎ
−2
n (2 + ℎn)d4 exp

(
−5"2nℎ−2n

))
,

∣�n,j,1∣, ∣�n,j,2∣ ≤ 1, and 4 and 5 are positive constants that depend on 2 and
3 only. Also, for k ∕= k∗, zk, z∗k ∈ Z("n), we have

(ℎdn)−2Cov (w0,1(zk)fn,j(X1, Y1, zk), w0,1(zk∗)fn,ℓ(X1, Y1, zk∗))

= �j,ℓ,k,k∗(ℎ
d
n)−2(2)2d exp(−0.53ℎ

−2
n ∥zk − zk∗∥2)C2

n

−fZ(zk)fZ(zk∗)E(fn,j(X,Y, zk)∣Z = zk)E(fn,ℓ(X,Y, zk∗)∣Z = zk∗)

−fZ(zk)E(fn,j(X,Y, zk)∣Z = zk)rn,ℓ,1(zk∗)Cnℎ
2
n

−fZ(zk∗)E(fn,ℓ(X,Y, zk∗)∣Z = zk∗)rn,j,1(zk)Cnℎ
2
n

−rn,j,1(zk)rn,ℓ,1(zk∗)C
2
nℎ

4
n, (49)
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where ∣�j,ℓ,k,k∗ ∣ ≤ 1. Finally, for z ∈ Z("n),

(ℎdn)−1Cov (w0,1(z)fn,j(X1, Y1, z), w0,1(z)fn,ℓ(X1, Y1, z))

= fZ(z)E(fn,j(X,Y, z)fn,ℓ(X,Y, z)∣Z = z)

∫
k20(u)du+ rn,j,ℓ,2(z)C2

nℎn

−ℎdnf2Z(z)E(fn,j(X,Y, z)∣Z = z)E(fn,ℓ(X,Y, z)∣Z = z)

−ℎd+2
n Cnrn,j,1(z)fZ(z)E(fn,ℓ(X,Y, z)∣Z = z)

−ℎd+2
n Cnrn,ℓ,1(z)fZ(z)E(fn,j(X,Y, z)∣Z = z)

−ℎd+4
n C2

nrn,j,1(z)rn,ℓ,1(z) (50)

and

ℎ−dn E (w0,1(z)fn,j(X1, Y1, z))
3 ≤ C3

nc0

∫
k30(u)du, (51)

where

∣rn,j,ℓ,2(z)∣ ≤ 2c0

∫
ℎ(x, y)d�(x, y)

(√
d

∫
∥u∥k20(u)du+ ℎ−1n d6e

−7"2n/ℎ
2
n

)
for some positive constants 6 and 7 that depend on 2 and 3 only. Below we
will prove (C1)-(C3).

∙ Proof of (C1). Let Sn =
∑nz
k=1(f̂Z(zk) − fZ(zk))2 and An = {

√
Sn <

min{1, (2c1)−1}}. From (48) and (50), ESn = O(nZ(ℎ4n + (nℎdn)−1)) =
O(nZ(nℎdn)−1) and 1/fZ(zk) ≤ c1 for all k, P (Acn)→ 0 as n→∞. From
(48), on An,

kn∑
j=1

nZ∑
k=1

(
4∑
ℓ=1

∣Rℓ,n,j(zk)∣

)2

≤ O(1)

⎛⎝Sn
⎛⎝ kn∑
j=1

nZ∑
k=1

W̃ 2
n,j(zk)

⎞⎠+ knnZC
2
n(nℎd+4

n ) + knC
2
nnℎ

d
nS

2
n

⎞⎠ ,

and it follows from (50) that

E

⎛⎝ kn∑
j=1

nZ∑
k=1

W̃ 2
n,j(zk)

⎞⎠ = O(knnZC
2
n).

Take

T1,n =
knn

2
ZC

2
n

nℎdn
+ knnZC

2
nnℎ

d+4
n ,

then (C1) holds with Tn = exp(−(lnn)1/9) since T1,n = O(Tn).

∙ The proof of (C2) is based on the following lemma, which deals with the
normal approximation of sum of IID random vectors.
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Lemma 2 Suppose that X1, . . ., Xn are IID random vectors in Rd1 with
mean 0 and variance Σ. Suppose that there exist positive constants C,
a2 and a3 such that 1 ≤ a2 ≤ a3 ≤ C, ∥X1∥ ≤ C and E∥X1∥k ≤ akk for
k = 2, 3. Then for T ≥ 1, there exist random vectors S and Y on the same
probability space such that S is distributed as (X1 + ⋅ ⋅ ⋅ + Xn)/

√
n, Y is

multivariate normal with mean 0 and variance Σ and for n ≥ (25/(16a22)+
25d1/12)C2T 4 exp(3T 2/16),

P (∥S − Y ∥ ≥ �) ≤ �

if

� ≥ 33.75a33√
n

(12)d1e(d1+3)T 2/8 + (48)d1e−3T
2/(32a22).

The proof of Lemma 2 is given in Section 7.1.1. To prove (C2), note that
W̃n,j(zk) =

∑n
i=1(gn,j,k(Xi, Yi, Zi)− Egn,j,k(Xi, Yi, Zi))/

√
n, where

gn,j,k(Xi, Yi, Zi)

=

√
cK√

fZ(zk)ℎdn
k0

(
zk − Zi
ℎn

)
(fn,j(Xi, Yi, zk)− E(fn,j(X,Y, zk)∣Z = zk)) .

From (48) - (51), we have⎛⎝ kn∑
j=1

nZ∑
k=1

(gn,j,k(Xi, Yi, Zi)− Egn,j,k(Xi, Yi, Zi))
2

⎞⎠1/2

≤ O(1)Cn
√
knnZ√

ℎdn
,

⎛⎝ kn∑
j=1

nZ∑
k=1

E (gn,j,k(Xi, Yi, Zi)− Egn,j,k(Xi, Yi, Zi))
2

⎞⎠1/2

≤ O(1)Cn
√
knnZ

and ⎛⎜⎝E
⎛⎝ kn∑
j=1

nZ∑
k=1

(gn,j,k(Xi, Yi, Zi)− Egn,j,k(Xi, Yi, Zi))
2

⎞⎠3/2
⎞⎟⎠

1/3

≤ Cn
√
knnZℎ

−d/6
n O(1).

Note that for every constant M > 0, the condition

n ≥
(

25

16
+

25knnZ
12

)(
MCn

√
knnZ√
ℎdn

)2

T 4
3,ne

3T 2
3,n/16

holds for large n with T3,n = (lnn)1/8, so Lemma 2 is applicable. From
Lemma 2, (C2) holds with any Tn such that T2,n = O(Tn), where

T2,n =
(Cn
√
knnZ)6122knnZe(knnZ+3)T 2

3,n/4

nℎdn
+(48)2knnZe−T

2
3,n/(Cn

√
knnZ)2 ,
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 > 0 is a constant. Since T2,n = O(exp(−1(lnn)1/8)) for some constant
1 > 0, (C2) holds with Tn = exp(−(lnn)1/9).

∙ The proof of (C3) is based on the following result.

Fact 3 Suppose that A and B are d1 × d1 nonnegative definite matrices.
Then

∥
√
A−
√
B∥ ≤ d3/41

√
∥A−B∥.

The proof of Fact 3 is given at the end of the proof of (C3). Note that Fact
3 implies the following: suppose that X0 and Y0 are two d1 × 1 normal
vectors of mean 0 and covariance matrices A and B respectively. Let Z
be a d1 × 1 normal vector whose elements are IID N(0, 1). Then

√
AZ is

distributed as X0 and
√
BZ is distributed as Y0 and

∥
√
AZ−

√
BZ∥2 ≤ ∥

√
A−
√
B∥2∥Z∥2 ≤ d3/21 ∥A−B∥∥Z∥2 = Op(d

5/2
1 ∥A−B∥).

Therefore, (C3) holds if Cov(Ŵn,j(zk), Ŵn,ℓ(zk∗)) is close to

Cov(fn,j(X,Y, zk), fn,ℓ(X,Y, zk)∣Z = zk)�k,k∗ ,

where �k,k∗ is 1 if k = k∗ and is 0 otherwise. From (48) - (51), we have∑
j,ℓ,k,k∗

(
Cov(Ŵn,j(zk), Ŵn,ℓ(zk∗))− Cov(fn,j(X,Y, zk), fn,ℓ(X,Y, zk)∣Z = zk)�k,k∗

)2
= ℎnC

2
n(knnZ)2O(1),

so (C3) holds with Tn = exp(−(lnn)1/9) since (knnZ)5/2
√
ℎnC2

n(knnZ)2 =
O(exp(−(lnn)1/9)).

Below is the proof of Fact 3. Consider first the case where A is diagonal.
Let D be a diagonal matrix such that B = QTDQ for some Q such
that QQT = I. Let D = diag(�1, . . . , �d1), A = diag(�1, . . . , �d1),
Q = (qi,j) and E = B − A = (ei,j). Let qi be the i-th column of Q, then
qTi Dqj = �i�i,j + ei,j , where �i,j = 1 for i = j and �i,j = 0 otherwise.

Write Dqk =
∑d1
j=1(qTkDqj)qj , then

∥
√
Dqk −

√
�kqk∥2 =

d1∑
j=1

(
√
�jqj,k −

√
�kqj,k)2

=

d1∑
j=1

(√
�j ∣qj,k∣ −

√
�k∣qj,k∣

)2

∣qj,k∣ ≤
d1∑
j=1

∣�j ∣qj,k∣ − �k∣qj,k∣∣ ∣qj,k∣

≤

⎛⎝ d1∑
j=1

(�jqj,k − �kqj,k)2

⎞⎠1/2⎛⎝ d1∑
j=1

q2j,k

⎞⎠1/2

=

⎛⎝ d1∑
j=1

e2k,j

⎞⎠1/2
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and

∥
√
QTDQ−

√
A∥2 =

d1∑
i=1

d1∑
j=1

(
qTi
√
Dqj − qTi

√
�jqj

)2

≤
d1∑
i=1

d1∑
j=1

∥
√
Dqj −

√
�jqj∥2 ≤ d1

d1∑
j=1

(
d1∑
ℓ=1

e2j,ℓ

)1/2

≤ (d1)3/2

⎛⎝ d1∑
j=1

d1∑
ℓ=1

e2j,ℓ

⎞⎠1/2

,

so the result in Fact 3 holds if A (or B) is diagonal. For general A and
B, write A = PTA0P and B = QTDQ, where A0 and D are diagonal and
PTP = QTQ = I. Let B0 = PQTDQPT , then we have

∥
√
A−
√
B∥ = ∥PT

√
A0P −QT

√
DQ∥

= ∥
√
A0 − PQT

√
DQPT ∥ ≤ d3/41

√
∥A0 −B0∥

= d
3/4
1

√
∥PTA0P − PTB0P∥ = d

3/4
1

√
∥A−B∥.

The proofs of Fact 3 and Lemma 1 are complete.

7.1.1 Proof of Lemma 2

The proof Lemma 2 is based on several facts, which are taken directly or adapted
from some existing results and are stated/proved below in Lemmas 3 - 5.

In the statements of Lemmas 3 and 4, (S0, d0) is a metric space, ℬ denotes
the collection of Borel sets in (S0, d0), and for two measures �1 and �2 defined
on ℬ, �0(�1, �2) denotes the Prohorov distance of �1 and �2, which is defined
as

�0(�1, �2) = inf{� > 0 : �1(A) < �2(A�) + �, for all A ∈ ℬ},
where A� = {x : d∗(x,A) < �} and d∗(x,A) = inf{d0(x, y) : y ∈ A}. Here are
Lemmas 3 - 5.

Lemma 3 (Lemma 2.1 in Berkes and Philipp (1979)). Suppose that P1 and
P2 are two measures defined on ℬ and �0(P1, P2) < �. Then there exists a
probability measure Q on the Borel sets of S0 × S0 with marginals P1 and P2

such that
Q{(x, y) : d0(x, y) > �} ≤ �.

Lemma 4 (Adapted from Lemma 2.2 in Berkes and Philipp (1979)). Suppose
that F and G are two distributions on Rd1 with characteristic functions f and g
respectively. Then for � ∈ (0, 1] and T > 0, the Prohorov distance �0(F,G) ≤ �,
where

� = �T+3(2d1)e−
3T2

32 +

(
T

�

)d1 ∫
∣f(u)−g(u)∣e−

�2∥u∥2
2 du+F

({
x : ∥x∥ ≥ T

2

})
.
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Proof of Lemma 4. Let H be the N(0, �2I) distribution on Rd1 , where I is the
identity matrix and � > 0. Let F1 be the convolution of F and H and G1 be
the convolution of G and H. Then

�0(F,G) ≤ �0(F1, G1) + 2 max{r,H({x : ∥x∥ ≥ r})} for every r > 0. (52)

Let f1, g1 and ℎ be the characteristic functions of F1, G1 and H respectively
and let F and G be the densities of F1 and G1 respectively. Then

∣F (x)− G(x)∣ = (2�)−d1
∣∣∣∣∫ e−iu

T x(f1(u)− g1(u))du

∣∣∣∣
≤ (2�)−d1

∫
∣f(u)− g(u)∣∣ℎ(u)∣du,

which implies that for every borel set B in Rd1 ,

F1(B)−G1(B)

≤ F1(B ∩ {x : ∥x∥ ≤ T})−G1(B ∩ {x : ∥x∥ ≤ T}) + F1({x : ∥x∥ ≥ T})

≤
∫
{x:∥x∥≤T}

∣F (x)− G(x)∣dx+ F ({x : ∥x∥ ≥ T/2}) +H({x : ∥x∥ ≥ T/2})

≤
(
T

�

)d1 ∫
∣f(u)− g(u)∣∣ℎ(u)∣du+ F ({x : ∥x∥ ≥ T/2}) +H({x : ∥x∥ ≥ T/2})︸ ︷︷ ︸

II

.

Note that II is an upper bound for the Prohorov distance �0(F1, G1), so for
r ≤ T/2, it follows from (52) that

�0(F,G) ≤ II + 2r + 2H({x : ∥x∥ ≥ r})

≤
(
T

�

)d1 ∫
∣f(u)− g(u)∣∣ℎ(u)∣du+ F ({x : ∥x∥ ≥ T/2}) + 2r

+3P (�2(d1) ≥ (r/�)2).

Since ℎ(u) = e−�
2∥u∥2/2 and

P (�2(d1) ≥ A) ≤ e−tAEet�
2(d1)

∣∣∣
t=3/8

= e−3A/8(2d1) for every A > 0, (53)

Lemma 4 holds if r = �T/2 and � ∈ (0, 1].

Lemma 5 (Adapted from Theorem 1(a) in P.204-208 in Gnedenko and Kol-
mogorov (1968)). Suppose that X1, . . ., Xn are IID random vectors with mean
0 and variance Σ. Suppose that C and a are positive constants such that
∥X1∥ ≤ C, a ≤ C and E∥X1∥k ≤ ak for k = 2, 3. Let fn be the charac-
teristic function of (X1 + ⋅ ⋅ ⋅+Xn)/

√
n. Then∣∣∣∣fn(u)− exp

(
−1

2
uTΣu

)∣∣∣∣ ≤ 0.25∥u∥3a3√
n

if ∥u∥ ≤ (0.4
√
n)/C.
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Proof of Lemma 5. Consider first the case where X1 is univariate. Let U =
f1(u/

√
n)− 1, then

U =
�∗1EX

2
1

2

(
u√
n

)2

and

U =
EX2

1

2

(
iu√
n

)2

+
�1E∣X1∣3

3!

(
u√
n

)3

,

where ∣�∗1 ∣ ≤ 1 and ∣�1∣ ≤ 1. Suppose that ∣u∣ ≤ (0.4
√
n)/C, then ∣U ∣ < 0.1 and

log(1 + U) = U + 0.62�2U
2,

where ∣�2∣ ≤ 1. Let V = log fn(u) + E(X2
1 )u2/2 = E(X2

1 )u2/2 + n log(1 + U),
then

V =
n�1E∣X1∣3u3

3!n3/2
+ (0.62)n�2

(
EX2

1

2

(
iu√
n

)2

+
�1E∣X1∣3

3!

(
u√
n

)3
)2

=
�1∣u∣3a3

6
√
n

+ 0.62

(
�2a

4u4

4n
+
�3a

5∣u∣5

6(
√
n)3

+
�4a

6u6

36n2

)
=
∣u∣3a3√

n

(
�1
6

+ 0.62

(
�2a∣u∣
4
√
n

+
�3a

2u2

6n
+
�4a

3∣u∣3

36(
√
n)3

))
,

where ∣�k∣ ≤ 1 for k = 1, 2, 3, 4. Since a∣u∣/
√
n ≤ 0.4,

V =
�3(0.25)∣u∣3a3√

n
,

where ∣�3∣ ≤ 1. Since eV = 1 + �4∣V ∣e∣V ∣, where ∣�4∣ ≤ 1,

fn(u) = exp

(
−E(X2

1 )u2

2

)
(1 + �4∣V ∣e∣V ∣)

= exp

(
−E(X2

1 )u2

2

)
+ �5

(
0.25∣u∣3a3√

n

)
e∣V ∣−E(X2

1 )u
2/2,

where ∣�5∣ ≤ 1. To find an upper bound for ∣V ∣ − E(X2
1 )u2/2, note that∣∣∣∣nU +

E(X2
1 )u2

2

∣∣∣∣ =
∣�1∣E∣X1∣3∣u∣3

6
√
n

≤ CEX2
1 ∣u∣3

6
√
n

≤ (0.4)u2E(X2
1 )

6
,

n∣U ∣ = ∣�∗1 ∣u2E(X2
1 )/2 ≤ u2E(X2

1 )/2 and

∣n(log(1 + U)− U)∣ = 0.62n∣�2U2∣ ≤ 0.62(0.1)

(
E(X2

1 )u2

2

)
since ∣U ∣ < 0.1. Therefore,

∣V ∣ − u2E(X2
1 )

2
=

∣∣∣∣E(X2
1 )u2

2
+ nU + n(log(1 + U)− U)

∣∣∣∣− u2E(X2
1 )

2

≤ (0.4)u2E(X2
1 )

6
+

0.062E(X2
1 )u2

2
− u2E(X2

1 )

2
≤ 0
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and Lemma 5 holds for the univariate case. The result for the general case can
be obtained by applying the univariate result with u and Xi replaced by ∥u∥
and Yi = uTXi/∥u∥.

Now we are ready to prove Lemma 2. Let fn be the characteristic function
of (X1 + ⋅ ⋅ ⋅ + Xn)/

√
n and g be the characteristic function of G, the N(0,Σ)

distribution. From Lemmas 3 - 5, there exist random vectors S and Y on the
same probability space such that S is distributed as (X1 + ⋅ ⋅ ⋅+Xn)/

√
n, Y is

multivariate normal with mean 0 and variance Σ and

P (∥S − Y ∥ ≥ �1) ≤ �1,

where

�1 = �T + 3(2d1)e−3T
2/32 +

0.25a33√
n

(
2

�

)d1/2 T d1

�d1+3
E(�2(d1))3/2

+2

(
2

�

)d1/2 T d1
�d1

P

(
�2(d1) ≥ 0.16n�2

C2

)
+ P (∥N(0,Σ)∥ ≥ T/2).

From the facts that E(�2(d1))3/2 ≤ (E(�2(d1))2)3/4 and P (∥N(0,Σ)∥ ≥ T/2) ≤
P (�2(d1) ≥ T 2/(4a22)), equation (53) and the condition that a2 ≥ 1, we have

�1 ≤ �T + 4(2d1)e−3T
2/(32a22) +

0.25a33√
n

(
2

�

)d1/2 T d1

�d1+3
(2d1 + d21)3/4

+2

(
2

�

)d1/2 T d1
�d1

(2d1)e−0.06n�
2/(C2).

Set � = T−1e−3T
2/32, then 0 < � ≤ 1, T/� < 12eT

2/8 and 1/� < 3eT
2/8, which,

together with the fact that (2/�)d1/2(2d1 + d21)3/4 < 5, gives that

�1 ≤ (1 + 4(2d1))e−3T
2/(32a22) +

33.75a33√
n

(12)d1e(d1+3)T 2/8

+2(19.15)d1ed1T
2/8e−0.06n�

2/(C2)

≤ 33.75a33√
n

(12)d1e(d1+3)T 2/8 + (48)d1e−3T
2/(32a22) ≤ �

if 0.06n�2/(C2) ≥ d1T 2/8+3T 2/(32a22), which corresponds to n ≥ (25/(16a22)+
25d1/12)C2T 4 exp(3T 2/16) and we have Lemma 2.

7.2 Proof of Theorem 3.1

To prove Theorem 3.1, we apply Lemma 1 by taking the fn,j(X,Y, z)’s to be the
functions �∗ℓ (X)�∗ℓ′(X), �∗ℓ (X) ∗m(Y ) and  ∗m(Y ) ∗m′(Y ), where 1 ≤ ℓ ≤ ℓ′ ≤ pn
and 1 ≤ m ≤ m′ ≤ qn. In such case, (28) holds under Conditions (B1) and
(B2). To see this, for each 1 ≤ k ≤ nZ and 1 ≤ j ≤ pn, let �∗n,j,k be the j-th
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component of �∗ when z = zk. Then �∗n,j,k(x) =
∑pn
i=1 an,i,j,k�n,i(x) for some

an,i,j,k’s and

1 = E
(
(�∗n,j,k(X))2∣Z = zk

)
= E

⎛⎝( pn∑
i=1

an,i,j,k�n,i(X)

)2

∣Z = zk

⎞⎠ ≥ �n pn∑
i=1

a2n,i,j,k,

so ∣�∗n,j,k(x)∣ ≤
√∑pn

i=1 a
2
n,i,j,k

√∑pn
i=1 �

2
n,i(x) ≤

√
pn/�n. Similarly, for each

1 ≤ k ≤ nZ and 1 ≤ j ≤ qn, let  ∗n,j,k be the j-th component of  ∗ when z = zk,

then ∣ ∗n,j,k(x)∣ ≤
√
qn/�n. Thus (28) holds with Cn = max{1, (pn + qn)/�n}

and it follows from Lemma 1 that
∑nZ
k=1 ∥V̂ ∗(zk) − V ∗(zk)∥2 has the same

distribution as
∑nZ
k=1(nℎdncKfZ(zk))−1∥Wn,1,k + Wn,2,k∥2, where the Wn,1,k’s

and Wn,2,k’s are random matrices such that each element in Wn,1,k is normal
with mean zero and variance bounded by C2

n = (max{1, (pn + qn)/�n})2, and∑nZ
k=1 ∥Wn,2,k∥2 = OP (exp(−(lnn)1/9)). Therefore,

nZ∑
k=1

∥V̂ ∗(zk)− V ∗(zk)∥2 = OP ((nℎdn)−1(lnn)1/8). (54)

To control the difference between g(V̂ ∗(zk), �∗) and g(V ∗(zk), �∗) for 1 ≤
k ≤ nZ , for a (pn + qn)× (pn + qn) matrix U , let

g∗i,j(U) =

{
gi,j(U) if (i, j) = (1, 2) or (2, 1);
g−1i,j (U) if (i, j) = (1, 1) or (2, 2).

(55)

For 1 ≤ k ≤ nZ , let Δi,j,k = g∗i,j(V̂
∗(zk)) − g∗i,j(V ∗(zk)) for 1 ≤ i, j ≤ 2. Then

from the fact that ∥AB∥ ≤ ∥A∥∥B∥ for two matrices A and B, we have

∥g(V̂ ∗(zk), �∗)− g(V ∗(zk), �∗)∥

≤
2∏
i=1

2∏
j=1

(
∥g∗i,j(V ∗(zk))∥+ ∥Δi,j,k∥

)
−

2∏
i=1

2∏
j=1

∥g∗i,j(V ∗(zk))∥

+∥g1,1(V̂ ∗(zk))− g1,1(V ∗(zk))∥∥�∗(�∗)T ∥. (56)

To control the Δ1,1,k and Δ2,2,k in (56), the following result is needed:

Fact 4 Suppose that A is a p×p matrix and Δ = A−Ip. Then ∥A−1−Ip+Δ∥ ≤
∥A−1 − Ip∥∥Δ∥ and

∥A−1 − Ip∥ ≤
∥Δ∥

1− ∥Δ∥
if ∥Δ∥ < 1.

Proof of Fact 4. Let B = A−1−Ip. ThenB = −Δ−BΔ, so ∥B+Δ∥ = ∥BΔ∥ ≤
∥B∥∥Δ∥. Also,

∥B∥ ≤ ∥Δ∥(1 + ∥B∥). (57)
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Apply (57) recursively and we have

∥B∥ ≤ ∥Δ∥
1− ∥Δ∥

if ∥Δ∥ < 1.

Since ∥�∗∥ = 1 and for 1 ≤ k ≤ nZ , g1,1(V ∗(zk)) = Ipn , g2,2(V ∗(zk)) = Iqn
and ∥g1,2(V ∗(zk))∥2 = ∥g2,1(V ∗(zk))∥2 ≤ (pn + qn), from (56) and Fact 4, we
have

nZ∑
k=1

∥g(V̂ ∗(zk), �∗)− g(V ∗(zk), �∗)∥2

= OP ((nℎdn)−1(lnn)1/8n2Z(pn + qn)3) = OP ((nℎdn)−1(lnn)1/4),

which gives (30) since ∣�̂2(zk)−�2pn,qn(zk)∣ ≤ ∥g(V̂ ∗(zk), �∗)−g(V ∗(zk), �∗)∥ for

1 ≤ k ≤ nZ . (31) follows from (30) and the fact that
∑nZ
k=1(f̂Z(zk) − fZ(zk))2

is OP (nZ(nℎdn)−1).The proof of Theorem 3.1 is complete.

7.3 Proofs of Theorem 3.2

From Lemma 1, the joint distribution of V̂ ∗(zk): 1 ≤ k ≤ nZ is the same as
that of V ∗(zk) + (nℎdncKfZ(zk))−1/2(Wn,1,k +Wn,2,k): 1 ≤ k ≤ nZ , where

nZ∑
k=1

∥Wn,2,k∥2 = OP (exp(−(lnn)1/9)) (58)

and Wn,1,k’s are independent symmetric normal matrices of mean zero. To de-
scribe the covariance structure of each Wn,1,k, let �∗ = (�∗1, . . . , �

∗
pn)T ,  ∗ =

( ∗1 , . . . ,  
∗
qn)T and let V0 be the (pn+qn)×(pn+qn) symmetric matrix such that

g1,1(V0) = �∗(X)�∗(X)T , g1,2(V0) = �∗(X) ∗(Y )T and g2,2(V0) =  ∗(Y ) ∗(Y )T .
For 1 ≤ k ≤ nZ and 1 ≤ m, ℓ ≤ pn + qn, let Uk,m,ℓ and V0,m,ℓ be the (m, ℓ)-th
elements of Wn,1,k and V0 respectively, then

Cov(Uk,m,ℓ, Uk,m′,ℓ′) = Cov(V0,m,ℓ, V0,m′,ℓ′ ∣Z = zk)

for (m, ℓ), (m′, ℓ′) ∈ {(i, j) : 1 ≤ i ≤ j ≤ (pn + qn)}. For 1 ≤ k ≤ nZ , let
Ṽk = V ∗(zk) + (nℎdncKfZ(zk))−1/2(Wn,1,k +Wn,2,k) and

A1(zk) = g(Ṽk, �
∗)g1,1(Ṽk)

= g1,2(Ṽk)(g2,2(Ṽk))−1g2,1(Ṽk)− g1,1(Ṽk)�∗(�∗)T g1,1(Ṽk),

and let �̃20(zk) be the largest eigenvalue of A1(zk)(g1,1(Ṽk))−1, then the joint
distribution of �̂2(zk): 1 ≤ k ≤ nZ is the same as that of �̃20(zk): 1 ≤ k ≤ nZ .
For 1 ≤ i, j ≤ 2 and 1 ≤ k ≤ nZ , let Δi,j,k = gi,j(Ṽk)− gi,j(V ∗(zk)), then from
(54),

nZ∑
k=1

2∑
i=1

2∑
j=1

∥Δi,j,k∥2 = OP ((nℎdn)−1(lnn)1/8) (59)
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and

A1(zk) = g1,2(V ∗(zk))(g2,2(Ṽk))−1g2,1(V ∗(zk))− g1,1(Ṽk)�∗(�∗)T g1,1(Ṽk)

+g1,2(V ∗(zk))Δ2,1,k + Δ1,2,kg2,1(V ∗(zk)) + Δ1,2,kΔ2,1,k

−g1,2(V ∗(zk))Δ2,2,kΔ2,1,k −Δ1,2,kΔ2,2,kg2,1(V ∗(zk)) +R1,n,k, (60)

where

R1,n,k = Δ1,2,k(g2,2(Ṽk)−1 − Iqn)Δ2,1,k

+g1,2(V ∗(zk))(g2,2(Ṽk)−1 − Iqn + Δ2,2,k)Δ2,1,k

+Δ1,2,k(g2,2(Ṽk)−1 − Iqn + Δ2,2,k)g2,1(V ∗(zk)).

To simplify the expression for A1(zk) in (60), we will make use of the following
properties.

(C4) The elements of the matrix g1,2(V ∗(zk)) are zero’s except that the (1, 1)-th
element is 1.

(C5) For (i, j) ∈ {(1, 2), (2, 1)}, gi,j(V ∗(zk))’s first row (or first column) is either
the first row or the first column of gi′,j′(V

∗(zk)) for (i′, j′) ∕= (i, j).

(C6) The (1, 1)-th element in g2,2(V̂ ∗(zk)) is 1.

Here (C4) follows from the conditional independence assumption and (25), and
(C5) and (C6) follow from (24). From (C6), g2,2(Ṽk) can be expressed as

g2,2(Ṽk) =

(
1 BTk
Bk Dk

)
for some matrices Bk and Dk, so the (1, 1)-th element of g2,2(Ṽk)−1 is (1 +
BTk (Dk −BkBTk )−1Bk). Let J = �∗(�∗)T , then by (C4) and (C5), we have

g1,2(V ∗(zk))(g2,2(Ṽk))−1g2,1(V ∗(zk)) = (1 +BTk (Dk −BkBTk )−1Bk)J,

g1,2(V ∗(zk))Δ2,1,k = JΔ1,1,k and BTk BkJ = g1,2(V ∗(zk))(Δ2,2,k)2g2,1(V ∗(zk)),
so the expression for A1(zk) in (60) becomes

BTk ((Dk −BkBTk )−1 − Iqn−1)BkJ + g1,2(V ∗(zk))(Δ2,2,k)2g2,1(V ∗(zk))

−Δ1,1,kg1,2(V ∗(zk))g2,1(V ∗(zk))Δ1,1,k + Δ1,2,kΔ2,1,k

−g1,2(V ∗(zk))Δ2,2,kΔ2,1,k −Δ1,2,kΔ2,2,kg2,1(V ∗(zk)) +R1,n,k.

Let

A2(zk) = g1,2(V ∗(zk))(g2,2(W1,n,k))2g2,1(V ∗(zk))

−g1,1(W1,n,k)g1,2(V ∗(zk))g2,1(V ∗(zk))g1,1(W1,n,k) + g1,2(W1,n,k)g2,1(W1,n,k)

−g1,2(V ∗(zk))g2,2(W1,n,k)g2,1(W1,n,k)− g1,2(W1,n,k)g2,2(W1,n,k)g2,1(V ∗(zk))
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and

R2,n,k = BTk ((Dk −BkBTk )−1 − Iqn−1)BkJ

−(nℎdncKfZ(zk))−1A2(zk) + g1,2(V ∗(zk))(Δ2,2,k)2g2,1(V ∗(zk))

−Δ1,1,kg1,2(V ∗(zk))g2,1(V ∗(zk))Δ1,1,k + Δ1,2,kΔ2,1,k

−g1,2(V ∗(zk))Δ2,2,kΔ2,1,k −Δ2,1,kΔ2,2,kg2,1(V ∗(zk)),

then

A1(zk) =
A2(zk)

nℎdncKfZ(zk)
+R1,n,k +R2,n,k, (61)

where

nZ∑
k=1

(∥R1,n,k∥2 + ∥R2,n,k∥2) = OP

(
exp(−(lnn)1/9)(lnn)1/8

(nℎdn)2

)
(62)

from Fact 4, (58) and (59), and a simple expression for A2(zk) can be obtained
as stated below in (C7), which follows from (C4) and (C5).

(C7) For 1 ≤ k ≤ nZ , A2(zk) = CkC
T
k , where Ck is the pn×qn matrix obtained

by replacing elements in the first row and first column of g1,2(W1,n,k) with
zero’s.

Note that from (C7), we have that

nZ∑
k=1

∥A2(zk)∥2 = OP (nZ(pn − 1)2(qn − 1)2) = OP ((lnn)1/8),

which, together with (61) and (62), implies that

nZ∑
k=1

∥A1(zk)∥2 = OP ((nℎdn)−2(lnn)1/8), (63)

and then it follows from (63), Fact 4 and (59) that

nZ∑
k=1

∥A1(zk)(g1,1(Ṽk))−1 −A1(zk)∥2 = Op((nℎ
d
n)−3(lnn)1/4). (64)

For 1 ≤ k ≤ nZ , let �0,k be the largest eigenvalue of A2(zk) and recall that

�̃20(zk) is the largest eigenvalue of A1(zk)(g1,1(Ṽk))−1. Then by (61), (62) and
(64),

nZ∑
k=1

(nℎdncKfZ(zk)�̃20(zk)− �0,k)2 = OP

(
exp(−(lnn)1/9)(lnn)1/8

)
. (65)

Let f̃k, �̃(zk) and �k: 1 ≤ k ≤ nZ be random variables such that the joint

distribution of (f̃k, �̃(zk)): 1 ≤ k ≤ nZ is the same as that of (f̂Z(zk), �̂(zk)):
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1 ≤ k ≤ nZ , and the joint distribution of (�̃(zk), �k): 1 ≤ k ≤ nZ is the same
as that of (�̃0(zk), �0,k): 1 ≤ k ≤ nZ . Note that from (65) and the fact that

nZ∑
k=1

∥A2(zk)∥2 = OP (nZ(pn − 1)2(qn − 1)2),

we have that

nZ∑
k=1

nℎdncKfZ(zk)�̃2(zk) =
√
OP (n2Z(pn − 1)2(qn − 1)2) = OP ((lnn)1/16),

so nℎdn
∑nZ
k=1(�̂(zk))2 = OP ((lnn)1/16),∣∣∣∣∣nℎdncK

nZ∑
k=1

f̂Z(zk)(�̂(zk))2 − nℎdncK
nZ∑
k=1

fZ(zk)(�̂(zk))2

∣∣∣∣∣
≤ nℎdncK

(
nZ∑
k=1

(
f̂Z(zk)− fZ(zk)

)2)1/2 nZ∑
k=1

(�̂(zk))2

= OP ((lnn)1/16)
(
OP (nZ(nℎdn)−1)

)1/2
= OP ((nℎdn)−1/2(lnn)3/32),

and ∣∣∣∣∣nℎdncK
nZ∑
k=1

f̃k(�̃(zk))2 −
nZ∑
k=1

�k

∣∣∣∣∣
≤ OP ((nℎdn)−1/2(lnn)3/32) +

∣∣∣∣∣nℎdncK
nZ∑
k=1

fZ(zk)(�̃(zk))2 −
nZ∑
k=1

�k

∣∣∣∣∣
( by (65)) ≤ OP ((nℎdn)−1/2(lnn)3/32) +

√
nZ

(
OP

(
exp(−(lnn)1/9)(lnn)1/8

))1/2
= OP

(
exp(−0.5(lnn)1/9)(lnn)3/32

)
.

The proof of Theorem 3.2 is complete.

7.4 Proof of Corollary 1

To prove Corollary 1, it is sufficient to establish (34) and (35). To see this, let
f̃k, �̃2(zk) and �k: 1 ≤ k ≤ nZ be as in Theorem 3.2, then

nℎdncK
∑nZ
k=1 f̂Z(zk)�̂2(zk)− nZ�pn,qn√

nZ�2
pn,qn

has the same distribution as

nℎdncK
∑nZ
k=1 f̃k�̃

2(zk)− nZ�pn,qn√
nZ�2

pn,qn
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=
nℎdncK

∑nZ
k=1 f̃k�̃

2(zk)−
∑nZ
k=1 �k√

nZ�2
pn,qn︸ ︷︷ ︸

I

+

∑nZ
k=1 �k − nZ�pn,qn√

nZ�2
pn,qn︸ ︷︷ ︸

II

.

Suppose that (34) holds, then I → 0 almost surely by (33) and Theorem 3.2.
Also, (35) says that II converges to N(0, 1) in distribution. Therefore, (36)
holds if (34) and (35) hold.

To establish (35), we will verify the Lyapounov’s condition:

lim
n→∞

nZ∑
k=1

E∣�k − �pn,qn ∣3

(nZ�2
pn,qn)3/2

= 0, (66)

and then apply Lindeberg’s central limit theorem. Let � be the largest eigen-
value of CCT . Then � ≤ tr(CCT ), where tr(CCT ) is the trace of CCT , which
follows the �2 distribution with degrees of freedom m1,n = (pn − 1)(qn − 1).
Therefore,

E�3 ≤ E(tr(CCT ))3 = m1,n(m1,n + 2)(m1,n + 4),

which implies that E∣�1 − �pn,qn ∣3 = O(p3nq
3
n), so (66) follows from (34) and

(35) holds.
It remains to prove (34). Consider first the case where (i) holds. By Theorem

1.1 in Johnstone (2001),

�1 − �n
�n

converges in distribution as n→∞, (67)

where
�n = (

√
qn − 2 +

√
pn − 1)2

and

�n = (
√
qn − 2 +

√
pn − 1)

(
1

qn − 2
+

1

pn − 1

)1/3

.

Here the limiting distribution is the Tracy-Widom law of order 1. Let F denote
its cumulative distribution function. Suppose that �, t1 and t2 are real numbers
such that t1 < t1 + � < t2 − �, which implies that F (t2) > F (t2 − �) and
F (t1 + �) > F (t1). From (67),

P (�1 > �n + (t2 − �)�n) ≥ 1− F (t2)

and
P (�1 < �n + (t1 + �)�n) ≥ F (t1)

if n is large enough. For such n, we have

�2
pn,qn ≥

min(F (t1), 1− F (t2))(t2 − t1 − 2�)2�2
n

4
,

which gives (34). The proof of (34) for the case where (ii) holds can be done by
reversing the roles of pn and qn. The proof of Corollary 1 is complete.
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