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Abstract
In two-level fractional factorial designs, homogeneous variance is a commonly made
assumption in analysis of variance. When the variance of the response variable
changes when a factor changes from one level to another, we call that factor the
dispersion factor. The problem of finding optimal designs when dispersion factors
present is relatively unexplored, however. In this article, we focus on finding optimal
designs for the estimation of all location main effects when there are one or two
dispersion factors, in the class of regular unreplicated two-level fractional factorial
designs of resolution Ill and higher. We show that by an appropriate choice of the
defining contrasts, A-optimal and D-optimal designs can be identified. Efficiencies of

an arbitrary design are also investigated.
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1. Introduction

Two-level fractional factorial design is one of the most commonly and widely
used designs to identify important location factors in industrial, agricultural and
business experiments. The assumption of constant variance is a standard one when
performing the analysis. In practice, however, situations when variance of the
response variable differs from one treatment combination to another do happen.
Factors that are responsible for such differences are called dispersion factors.

Identification of the dispersion factors has been extensively studied recently. Box
and Meyer (1986) studied the logarithm of the ratio of the residual variance and
proposed an informal method to identify dispersion factors. Montgomery (1990)
achieved the same goal by plotting these statistics on a normal probability plot. Wang
(1989) developed a large sample test statistic to identify dispersion factors. More
recently, Bergman and Hynén (1997), Liao (2000), and McGrath and Lin (2001a)
developed test procedures to identify dispersion factors in unreplicated regular 2"°
fractional factorial designs. Pan (1999) and McGrath and Lin (2001b) stressed the
importance of identifying the location effects before studying dispersion effects.

All of the aforementioned papers focused on identifying dispersion effects, not
until Liao and lyer (2000), the optimality property for the estimation of dispersion
effects has been studied. Even though there is a growing interest in studying the
optimality property for dispersion effects, the optimality property for location effects
when dispersion factors present is relatively unexplored. Lin (2005) formed D-optimal
designs for estimating a specific set of location effects with one dispersion factor. In
this article, our interest is focused on finding A-optimal and D-optimal designs for

estimating all location main effects when one or two dispersion factors present in the

class of unreplicated regular 2"" fractional factorial designs of resolution Il or



higher.

In the next section, the notation used throughout this article and the information
matrix for the estimation of all location main effects are stated. Section 3 gives the
A-optimal and D-optimal designs for the estimation of all location main effects with
one dispersion factors. A-efficiency and D-efficiency for an arbitrary design are also
given. In section 4, A-optimal and D-optimal designs for estimating all location main

effects with two dispersion factors are given. Catalogues of 16-run and 32-run

D-efficient 2},” designs are provided.

2. Preliminaries

Let F1, Fy, ..., Fy denote the n two-level factors and the main effects of the
corresponding factors as well. Let F,%F,%...F ® denote the general effect with e; =

1 if F; appears in the effect, and e; = 0, otherwise. Without loss of generality, we use
F1, F2, ..., and F; to denote the a factors that are responsible for the dispersion effects.

Running a full factorial design may not be desirable, especially when n is large.
Instead, running a fraction of the full factorial design, which is called a fractional
factorial design, is sufficed when our interest is to estimate main effects and few
low-order interactions of the design. A2" " fractional factorial design withN =2"""
runs can be determined by appropriately selecting p independent generators, and the
design can uniquely be determined by its defining relation. For example, the treatment
combinations of a 2°*design are determined when the following three generators Fy4
= F1F,, Fs = F1F3, and Fg = F,F3 are selected. It’s corresponding defining relation is

| =FF,F, =FFRF =FFF =FFKF =F,FFFK =FFFF =FF,FF,

where | denotes the general mean and is the identity column. In this design, all of the



main effects, and some of the low-order interactions can be estimated.

The resolution of a design depends on the alias structure. In the defining relation,
an effect that is aliased with the general mean, is called a word, and the number of
letters in a word is called the word length. The minimum length of all the words in the

defining relation is called the resolution of the design for two-level factional factorial
designs. The example above is a design of resolution 111, and is denoted as 2% °.

In a regular 2"° fractional factorial design setting, let Y denote the response

vector, and the model we employ here is

Y=XB+¢,
where S is the (n+1)x1 vector of the overall mean and all location main
effects; X =[%,, %,,---, %] is the Nx(n+1) model matrix, X,=(1---,1)', and
X; = (Xyjs %55, Xy )" With x; =+1 or -1 depends on whether factor j appears at
its high level or low level in the i™ response; and & is the N x 1 vector of
uncorrelated random error with E(£)=0 and

Var(g) =y, +y,D,+y,D, +---+y,D,,
where jis the dispersion mean, y is the dispersion main effect of factor F; by Liao

and lyer (2000), and D;j is the N x N diagonal matrix whose diagonal elements are

Xijr Xop, ooy and Xy
Under the assumption of constant variance, that is, 0 = o and 71 = ... = 53 = 0

then Var(Y)=oc’l . The best linear unbiased estimator B of B and the

corresponding covariance matrix are
£ =(X'X)*X"'Y, and

Var(,b:’) =(X'X) " o?, respectively.



In here X'X =NI_, since the designs we consider here are of resolution Il or

n+l

higher, and I, is the n x n identity matrix.

Example 2.1. A 2}, fractional factorial design with generators F, = F1F,, and Fs =
F1Fs3, then the defining relation is
| =FF,F, =FFF =F,FFF.

The design matrix X is thus determined, and is

1 -1 -1 -1 1 1
1 1 -1 -1 -1 -1
1 -1 -1 -1 1
X - 1 1 -1 1 -1
1 -1 -1 1 1 -1}
1 1 -1 1 -1 1
1 -1 1 -1 -1
1 1 1 1 1

Onecanseethat X'X =8, B=(/8)X'Y,and Var(8)=(c2/8)l,.
For more general cases, that is, Var(Y)=y,l+y,D,+---+y,D, =V, say, the
best linear unbiased estimator ,é of £, and the corresponding covariance matrix are
B=(XVIX)IXVY, and
Var(,é) =(X'V™X)™, respectively.

Let M be the information matrix for the estimation of £, then M = X'V X .

3. Regular 2"" fractional factorial design with one dispersion factor

In this section, we focus on regular unreplicated 2" fractional factorial

designs with one dispersion factor. Without loss of generality, we assume F; is



responsible for the dispersion effect, that is, » > 1 # 0, » = ... = % = 0, and
Var(Y)=V =yl +7D,. Then

_ 1
\Y l:—(%IN -7,D,),and

2 2
-

7o

M =(m;),i,j=0,---,n, can be partitioned as

M M m, m
M=[ 1 12}, where Mn:[ 0 l}
MlZ M22 ml mO

is a 2 x 2 matrix with my =y,N/(72—-7%) and m =—y,N/(yZ—y2); My is a 2 x
(n+1) matrix of zeroes; My, is a (n—1)x(n—1) matrix, with m;j = mg, i =2, ... , n,
andforalli=j=2,...,n,

m,, if FFRF; is a word in the defining relation,

0, otherwise.

For the derivation of M, see Appendix.

Example 3.1. The same 2> fractional factorial design as in Example 2.1. Then Dy

and M, respectively, are

-10 0 0 0 0 00

01000 00O m m 0 0 0 0
0 0-100 000 m m O 0 0 O
5.0 0010000 |0 0m 0 m O
170 0 0 0-10 0 0 0 0 0 m 0 m
000 0O0 100 0 0 m 0 m O
000 0O0O0-10 0 0 0 m 0 m
000 0O OO0 1

Since F1F;F4 and F;F3Fs are words in the defining relation, mys = M4 = Mgs = Ms3 =

ms, and all the other off-diagonal entries in My, are zeroes.



3.1. Optimal 2"" fractional factorial design with one dispersion factor
Let & be the number of length three words in the defining relation involving F;.
That is, @is the number of words in the defining relation of form FiFiF;j, for2<i<j <

n. Then through some row and column operations, M can be transformed into Mr,

where

M. — l,,®Q 0 o m, m
! O mOIn—29—1 ' ml mO ,

and “®” is the Kronecker product. The eigenvalues of M can thus easily be obtained,

and they are m; —m, with multiplicities 8+1, m, +m, with multiplicities #+1, and

m, with multiplicitiesn-26- 1.

Example 3.1. (Continued) For this 2,> design, one can see that n =5, =2, and Mt
is given below. The eigenvalues of M are m, —m, with multiplicities 3, and m, +m,

with multiplicities 3.

m m O O 0 O
m m 0 O O O
0O 0 mym O O
M; =
0O 0 m m 0 O
0O 0 0 0 m m
0 0 0 0 m m,

D-optimal design is the design that minimizes the determinant of M, or
equivalently maximizes the determinant of M. A-optimal design is the design that
minimizes the trace of M. For most of the eigenvalues based optimality criteria, for
example, D-optimality and A-optimality, one can see that the smaller the value of 4is,
the “better” the corresponding design is. The smallest possible value of @is 0, and the

D-optimal and A-optimal designs are those having the following information matrix



M*{Q X }
O mOIn—l

It is thus appropriate to define the D-efficiency, De, and A-efficiency, A, for an

arbitrary design as

_det(M) (M)
°det(M”)’ tr(M)™* "’
Through some calculation, one has
20

D, =1-(r./7,)%)’, and A =1- :
- =0=tnl7)) A D00 ) v 20+1-n

One can observe that both D, and A. are decreasing in &, that is, when there are more
length three words involving F; in the defining relation, the less efficient the
corresponding design is. Also, both D, and A, are decreasing in i, that is, the larger

the dispersion effect is, the less efficient the corresponding design is.

Example 3.2. A 2%7 factional factorial design with generators Fs = F,F3, and Fg =
F1F2F4. The defining relation is

| =F,F,F, = F,F,F,F, = F,F,F,FF,.
Since there is no length three word of form F1FiF; in the defining relation, hence =0,

and the corresponding information matrix M is of the optimal form, that is

Mzm*{‘? ° }

0 myl,
The 2%7 fractional factorial design above is thus both D-optimal and A-optimal in

estimating all location main effects when F; is responsible for the dispersion effect in

the model.

Example 3.3. A 2% factional factorial design with generators Fs = F1F, and Fg =



F3sF4. The defining relation and the corresponding information matrix M are

| = F,F,F, = F,F,F, = F,F,F,F,F,F,,

m m O O O 0 O
m m 0 0O O O O
o 0m O O m O
M=0 0 0 my, 0 O 0| respectively.
o 0 0 0 m O O
O 00m O O m O
0O 0 0 O O 0 m,

One can see that there is one length three word of form F1FiF; in the defining relation,
hence ¢=1, and

2

D, =1-(y,/7,)%, and A =1-—
Be T(ryl7,)* -3

Example 3.4. A 27 factional factorial design with generators Fs = F1F, and Fg =

F1F3. The defining relation and the corresponding information matrix M are

| = F,F,F, = F,F,F, = F,F,RF,,

m m O O O 0 O
m m O O O O O
O 0m O O m O
M=0 0 0 m O O m | respectively.
o 0 0 0 m O O
O 0m O O m O
0 0 00 m O 0 m,

Since there are two length three words of form F1FiF; in the defining relation, hence
=2,and

4

D, =(- (/7)) and A =1-——— .
s (o /7,)" -1

One can observed that for fixed values of » and 1, w > s, the design in

Example 3.3 is more efficient than the design in Example 3.4 since both of its A, and

10



D, are larger. We say that the design in Example 3.3 is D-better and A-better than the
design in Example 3.4
Remark : For designs of resolution 1V or higher, the shortest word in the defining

relation is of length at least four, hence all their information matrices are of form M".
Thus, resolution 1V or higher designs are “robust” against single dispersion factor

when our interest is to estimate all location main effects.

4. Regular 2"" fractional factorial design with two dispersion factors

In this section, we focus on regular unreplicated 2" fractional factorial
designs with two dispersion factors. Without loss of generality, we assume that F; and

F, are responsible for the dispersion effects, thatis, 1n#0, »#0, s=... =% =0, and
Var(Y)=V =y, +7,D, +y,D,. Then 5> 5 + j, and

NV * =m,l +m,D, +m,D, + m,D,D,,
where

2 2 2
_ Yoo =7 =7, N
702(7/02_712_722)+712(712_722_702)+722(722_702_712)

My

2 2 2
_ 71(71 —72 — 7o )N
702(702_7/12_722)+712(7’12_722_702)+722(722_702_712)

m

2 2 2
_ 72(7/2 —Yo N )N
O (O A 20 B 2 (2 PR Tl B Al (P32

m,

_ 270117 N _
702(702_712 _722)+712(712_722_702)"'722(722_702 _712)

M,

The information matrix M =(m;), i,j=0,---,n, for the estimation of Y;;

again can be partitioned as

11



_ Mll M12 . .
M= " , Where M, =|m; m, m,]|;
M12 M22

M is a3 x (n=2) matrix and fori=0,1,2,j=3, ...,n, my; =m;, m; =m,, and
m,; =m, if F1F;Fj is a word in the defining relation, otherwise m;; =0; My, is a
(n—=2)x(n—2) matrix whose diagonal elements are mg and off-diagonal elements mj;,
iI#]=3,...,Nn,is

,, if FRF; is a word in the defining relation,

. If FF,FF; is a word in the defining relation,

m
m,, if F,FF; is a word in the defining relation,
m
0, otherwise.

Some characteristics concerning M are listed below.

1. There is at most one j in My, such that m;; = 0. That is, My, is either a matrix of

zeroes, or a matrix with exactly one column of form [m,,m,,m,]" and all the

other entries are zeroes.

2. In My, the number of appearances of m;, i = 1, 2, 3, is at most one in each row and
each column. That is, it is not possible to have two m;’s, two m;’s, or two m3’s in
any row or column.

3. In Mgy, if mjj = m; (or mp), my = m;y (or my), then my=ms, 3<i<j<k<n.
The derivation of M and its characteristics are given in the Appendix .

Example 4.1. A 2%7 design with generators Fs = F1F3 and Fg = F,F4. The defining
relation and the corresponding information matrix M are

| = F,F,F, = F,F,F, = F,F,F,F,FF,,

12



m m m, 0 0 O O
m my, mi 0 O O O
m, my m 0O O O O
M={0 0 0 my 0 m 0 |,respectively.
0 0 0 0 m O m,
0O 0 00m O m O
0 0 0 0 m 0 my

There is no length three word of form F;FF;, hence, M1 is a zero matrix. As for My,
since F1F3Fs is in the defining relation, m3s = ms3 = my, and since FoF4F¢ is in the

defining relation, mss = mgq = mo.
Example 4.2. A 2% design with generators Fs = F;F3 and Fs = F,F3, the defining

relation and the corresponding information matrix M are

| = F,F,F, = F,F,F, = F,F,FF,, and

m m m, 0 0 O O
m m m 0 O 0 O
m, m m 0 O O O
M={0 0 O m, 0 m m,]|,respectively.
o 0 0 0 m O O
0O 0 00 m O m m
0 0 0 m 0O my m]|

There is no length three word of form F;FF;, hence, M1 is a zero matrix. As for My,
since F1FsFs is in the defining relation, m3s = ms3 = my, and since F,F3F¢ is in the
defining relation, mzs = mgz = m,. Now since both FiF3Fs and F,F3Fs are in the
defining relation, F1F,FsFg is automatically in the defining relation, and hence msg =

Mes = Ma3.

Example 4.3. A 2%° design with generators F4 = F1F,, Fs = F1F3, and Fe = FoF3.
the defining relation and the corresponding information matrix M are
| = FF,F, =FFF =F,FF =F,FF =F,FFF =FFFF =FFFF, and

13



m m m 0O mg 0O O
m m, mi 0 m O O
m, m mq 0 m O O
M={0 0 O my, O m m,]|,respectively.
m, m, m O m, 0O O
0O 0 0 m O m m
0 0 0 m 0 m m]|

There is one length three word F;1F,F, of form F;F,F; in the defining relation, hence

there is one column of [m,, m,, m,]" in M. The structure of My, in here is the same

as in the previous example.

4.1. Optimal 2"" fractional factorial designs with two dispersion factors
Same as in section 3, for most of the eigenvalues based optimality criteria, the

“optimal” information matrix, M, if exists, is of the following form

o)
0 ml,,

that is, the defining relation of the corresponding optimal design does not contain any
length three word involving F; and F,, and length four word involving both F; and F».
Let 41, A, and A3 be the eigenvalues of My;. Then

detM™)=2,-2,- A, -m,"*

n+1 n-1 2 2 2 n-2
=m, -my, (M +m;+m;)+2m, “‘mm,m,, and

tr(M) =41+ 4+ A4+ (n-2)m;*
3m —m? —mZ —m} n-2

=3 2 2 2 2 + :
my — (M, +m; +m;)m, +2mm,m,  m,

=p+(n-2)m;', say.

14



4.2. Efficient resolution 1V designs
For resolution IV designs, there is no length three word in the defining relation,

and the transformed information matrix My is thus of the following simpler form

M 0 1. ®T 0 m, m
M, = 011 " , where M22(|v):{ d } T=[ ° 3},and
22(1V) 0 m, I n-26-2 m; m,

o'is the number of length four words in the defining relation involving both F; and F,.
The eigenvalues of M are A1, Ay, A3, and m, —m, with multiplicities 5, m, +m,
with multiplicities 6, and m, with multiplicities n — 26 - 2. Then D, and A, for an

arbitrary design are thus determined,

2 5

det(M) 2\s 27,7,

D == 1—(m,/m ={1-| —2= , and
" det(M ") (= (m, /mo)") ( (%—ﬁ—ﬁ

_ tr(M*)‘l_l_ 26
(M) T (emy +n—=2)((m,/m,)? -1)+ 25

A

Both D, and A are decreasing in ¢, that is, when there are more length four words
involving both F; and F, in the defining relation, the less efficient the corresponding
design is. Also, De is decreasing in » and , that is, the larger the dispersion effects

are, the less efficient the corresponding design is.

Example 4.4. A 2%7 design with generators Fs = F1F,F3, and Fs = F1F3F4. The

defining relation and the corresponding information matrix M are

| = F,F,F,F, = F,F,F,F, = F,F,F.F,, and

15



m m m O O 0 O
m mg m O O O O
m, mp my 0O O 0 O
M=0 0 0 my, 0O m, O [,respectively.
o 0 0 0 m O O
o 0 0m O m O
0 0 0 0 0 0 myj|

There is one word F1F;FsFs of form F1F,F;F; in the defining relation, hence, mss =

Ms3 = M3, and =1, then

2
D(;3 :1—(%j y and
Yo=V1 =72

2
(pm, +4)(m, /m,)2 1)+ 2

A=1

Example 45. A 2%7 design with generators Fs = F1F,F3, and Fe = F1FF4. The

defining relation and the corresponding information matrix M are

| = F,F,F,F, = F,F,F,F, =F,F,FF,, and

m m m 0O O 0 O
m m m O O O O
m, mi m 0 O O O
M=0 0 0 m, 0O m, O |,respectively.
0 0 0 0 m 0 m
0O 0 0m O m O
0 0 0 0 m 0 my]|

There are two length four words, F,F,F3sFs and F1F,F4Fs, involving both F; and F,

hence mss = Ms3 = Myg = Mea = M3, and &= 2, then

2 2
(—] - and
Yo V1 —72

16



4
(oM, +4)(My /m,)2 ~1) +4°

A =1

This design has more length four words of form F1F,FiF;, it is thus less efficient than
the design in Example 4.3. As one can also see from the values of D, and A of the

design in Example 4.4, both of them are smaller than those in Example 4.3.

Remark : Resolution V or higher designs are robust against two dispersion effects, if

our interest is focused on estimating location main effects.

4.3. Efficient resolution 111 designs

Efficiencies of resolution Il designs depend not only on the values of », 1 and
7, but also on the number of length three words of forms FiF;F;, F1FiF;, F2FiF;, and
the number of length four words of form F;1F;FiF; in the defining relation. Due to the
complexity in calculating the efficiencies of an arbitrary design, we focus on

investigating the D-efficiency of designs when 1 = » = » say. Then m, =m, =m,

say, and
m, m m
m, m, m, m
T= , Q= , M=/ m m, m,|. Now, let
m, m, m m,
m m; m,
m m m m,
U~ m m, m, m
m m, m, m
m, m m m,

apply some row and column operations on M, M can be transformed into My, where

17



1, ®U 0 0 0 0
0 lyew, O 0 0
M, =l 0 0 I1,®T 0 0 |,
0 0 0 1,8Q 0
0 0 0 0 myl,

o1 is the number of U matrices in My, &, is the number of My; matrices in My, and so
on. 41, &, &, and o, are functions of the number of words of forms FiF,F;, F1FiF;j,
F.FiFj, and FiF.FiF; in the defining relation, where 6 + & > 1 and

46, +30, +20,+25,+5, =n+1.Then

det(M) = (det(U))* (det(M,,)) (det(T)) (det(Q))* m
— (det(M )" (M, —m,)** (m, +m,)® (m? —m?)*mg,

where  det(T)=m? -mZ, det(Q)=m;—m?,
det(M,,) = m,(mZ —2m? —m?2) + 2m*m,,
det(U) =(m, —m,)det(M,,), and

D, can thus be determined

_ detM _ (det(M,;))™"* ™ (my —my)*"™ (m, +m;)™ (mg —m?)*
° detM” my %2 '

Example 4.1. (Continued) For this 20> design, %, =0, %=1, & =0, & =2, and &

=0. Then det(M) = (det(M,,))(m; —m?)?,and D, = (1—(m/m,)*)>.

Example 4.2. (Continued) For this 2> design, 6, =0, =2, =& =0,and & = 1.
Then

2 _ 2 12 2
det(M) = (det(Mll))2m0 ,and D, = My (M, —2m m3m3 )+2m°m, '
0

Example 4.6. A 2%? design with generators Fs = F;F3, and Fg = F,F3F,. The
defining relation and the corresponding information matrix M are

18



| =F,F,F, = F,F,F,F, = F,F,F,F.F,, and

m m m 0 0 0 O
m my, mp 0 O 0 O
m mam, O O O O
M={0 0 0 my, O m O [,respectively.
o 0 0 0 m O O
0O 0 0m O m O
0 0 0 0 0 0 my|

For thisdesign 61=0, %=1, 53=0, & =1, and & = 2. Then
det(M) = (det(M,,))(mZ —m?*)m?, and D, =1—(m/m,)?.

Example 4.7. A 2%7 design with generators Fs = FiF,, and Fs = F,F3F,;. The
defining relation and the corresponding information matrix M are

| = F,F,F, = F,F,F,F, = F,F,F,F.F,, and

m m m 0 0 m O
m my, mp 0O O m O
m mmy, 0O 0 m O
M=0 0 0 m, O O O [,respectively.
o 0 0 0 m 0 O
m m m 0 O m, O
10 0 0 0 0 0 my|

Forthisdesign o1=1, % =0 =0,=0,and & = 3. Then
det(M) = (det(M,,))(m, —m,)m?, and

_ mg(mg —2m* —my) + mg (Mg +2m’ —mg) +4m°mym, —2m*(m, —m,)

x m, (M, (mZ —2m? —m?) + 2m°m,)
0 0 0 3 3

e

Through some straightforward calculations, one can see that the D, of the design in
Example 4.6 is the highest, the design in Example 4.1 is the second highest, and then
the design in Example 4.2. The D, of the design in Example 4.7 is the lowest among

the four designs.

19



The rankings, according to the values of D, of the above four 2,* designs with
different generators are not hard to obtain. In the beginning, we think that values of
o, ..., 05 determine the “structure” of the defining relation, hence the design. If we
can find an ordering of all possible structures, then the corresponding D-better designs
can be determined regardless of the values of y» and y. However, after having been
extensively investigating many designs, we realize that it is generally not true.
Example 4.7 above and Example 4.8 below show how values of j and y affect the

values of D, of two designs with fixed defining relations.

Example 4.8. A 257 design with generators Fs = FiF3, and Fs = FiF,F,. The
defining relation and the corresponding information matrix M are

| = F,F,F, = F,F,F, = F,F,F,F,F,F,, and

m m m O O 0 O
m m, my 0O O O O
m m mg 0O O O O
M={0 0 0 my, O m O [,respectively.
0O 0 0 0 m 0 m
0O 0 0m O m O
00 0 0 m 0 my

For thisdesign =0, %=1, &= =1,and & =0. Then

det(M) = (det(M,,))(mZ —m?)(mZ —m?), and

D, =1-(m/m,)? —(m,/m,)* +(mm, /mZ)?.
When 5 /y > 2.590901, the D, of this design is larger than the D, of the design in
Example 4.7, that is, Example 4.8 is D-better than Example 4.7. Whereas, when j/y <
2.590901, the D, of this design is smaller, that is, Example 4.7 is D-better.

Although the ordering of the D, of 2],* fractional factorial designs varies when

o, ..., 05, )0, and yvary, it seems to the authors that a design tends to have a larger
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value of D¢ if & is small and s is large.

Based on the catalogues of the 16-run and 32-run 2"" fractional factorial
designs in Chen, Sun, and Wu (1993), we provide tables of the factors that we suggest
to be named as the factors that are responsible for the dispersion effects, such that the
D-efficiency of the resulting designs are higher. For example, design 6-2.2 in Table
4.1 with generators Fs = F1F;, and Fg = F1F3F4, if we assign F3 and F4, or F3 and Fe,
or F4 and Fg¢ as the factors that are responsible for the dispersion effects, the D, of the
resulting designs are higher or even the highest depending on the values of » and y.
The designs with bold faced dispersion factors are D-optimal designs, regardless of
the values of j and y.

There are cases when D, depends on the size of the dispersion effects. For
example, design 9-4.7 in Table 4.2, when 7> 5/+/6 , that is, the dispersion effects are
relatively large, the D, of the designs when dispersion factors are named as (F»,F3),
(F2,F4), or (Fe,Fo) are higher; and when y < ;/o/\/g, that is, the dispersion effects are
relatively moderate, the D, of the designs when dispersion factors are named as

(Fs,F4), (F3,Fs), or (Fg,Fo) are higher. These factors with moderate dispersion effects

are shadowed in the table.
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Table 4.1. Suggested dispersion factors for 16-run 2{,* fractional factorial designs.

Design Generators Dispersion Factors
513 Fo=F,F, (FaFa)
6-2.2 Fs=F1F,, Fe=F.FsF, (F3,Fa), (F3,Fe), (Fs,Fe)
6-2.3 Fs=F1F,, Fe=F3F, (Fu.F2), (F1,Fs), (F2,Fs), (Fs,Fa), (Fs,Fe), (FaFe)
6-2.4 Fs=FiF;, Fe=FF3 (F2,Fa), (F3,F4), (Fa,Fs), (FaFs)
7-3.2 F5:F1F2, F6:F1F3, F7:F2F3F4 (F4,F7)
7-3.3 Fs=F1F;, Fe=F1Fs, F7=F:F4 (Fs.Fa), (Fa,F7), (Fa,Fe), (Fe,F7)
7-34 Fs=F1F;, Fe=F1Fs, F7=FiF4 (F2,Fs3), (F2.F4), (FaFe), (F2F7), (FaFa), (Fs,Fs),
(F3.F7), (FaFs), (Fa,Fe), (Fs,Fe), (Fs,F7), (Fe,F7)
7-3.5 Fs=F1F;, Fe=F1F3, Fr=F;F3 (FuFa), (F2.Fa), (Fa,Fa), (FaFs), (FaFe), (FaF7)
8-4.2 Fs=F1F;, Fe=F1F3, F7=F1F,, (F2.Fs), (Fa.Fs), (Fa,Fe), (Fs,Fs), (Fe.Fs), (F7,Fs)
F8:F2F3F4
8-4.3 Fs=F1F;, Fe=F1F3, F7=F;F,, (Fs.Fs), (Fe.F7)
F8:F3F4
8-4.4 F5:F1F2, F6:F1F3, F7:F2F3, (F4,F8)
F8:F1F2F3F4
8-4.5 Fs=F1F;, Fe=F1F3, F7=F;Fs, (FaF7), (Fa,Fg), (F7,Fs)
F8:F1F4
8-4.6 Fs=F1F;, Fe=F1F3, F7=F;Fs, (Fu.Fa), (F2.F4), (FsFa), (FaFs), (FaFe), (FaF7),
Fe=F1F:Fs (Fa.Fs)
9-5.1 Fs=F1F;, Fe=F1F3, F7=F1F,, (F2,Fs3), (F2.F4), (FaFs), (FaFe), (F2.F7), (F2.Fs),
Fe=F2FsF4, Fo=FiFF3F, (F2,Fo), (Fa,F4), (F3,Fs), (Fa,Fe), (Fa,F7), (Fs,Fs),
(Fs,Fo), (Fa,Fs), (Fa,Fe), (FaF7), (FaFs), (FaFo),
(Fs.Fe), (Fs,F7), (Fs,Fa), (Fs,Fo), (Fe.F7), (Fe,Fs),
(Fe.Fo), (F7.Fs), (F7,Fo), (Fs,Fo)
9-5.2 Fs=F1F;, Fe=F1F3, F7=F;F,, (F1.F2), (FuFs), (F1,Fs), (F1uFe), (F2.Fs), (F2.Fs),
Fe=F3Fs, Fo=F1F:FsF, (F2,F2), (Fa,F4), (Fs,Fe), (FaFs), (FaF7), (FaF),
(Fs.Fs), (Fs,Fg), (Fe,F7), (Fe,Fo), (Fs,Fo)
9-5.3 F5:F1F2, F6:F1F3, F7:F2F3, (Fg,Fg)
F8:F1F4, F9:F2F3F4
9-54 Fs=F1F;, Fe=F1F3, F7=F;Fs, (Fs.Fs), (Fa,Fo), (Fa,Fe), (FaF7), (Fe,Fo), (F7,Fe)
F8:F1F4, F9:F2F4
9-55 F5:F1F2, F6:F1F3, F7:F2F3, (F4,F9)
F8:F1F2F3, FQ:F1F4
10-6.1 Fs=F1F;, Fe=F1F3, F7=F;Fs, (F7.F9), (F7,F10), (Fo,F10)
Fe=F1F4, Fo=F2F3F,,
Fio=F1F2FsFs
10-6.2 Fs=F1F;, Fe=F1F3, F7=F;Fs, (Fs,Fa), (F3,F10), (Fa,F10)
Fe=F1F4, Fo=F2F,,
Fio=F1FsFs
10-6.3 Fs=F1F;, Fe=F1F3, F7=F;Fs, (F1.F2), (F1Fo), (F1,F10), (F2.Fe), (F2,Fs), (F2,Fio),
Fe=F1F4, Fo=F2F4, F1o=F3F4 (Fs,Fs), (Fs,Fe), (F3,Fo), (FaFs), (FaFe), (FaF7),
(Fs,F10), (Fe,Fo), (F7,Fs)
10-6.4 Fs=F1F;, Fe=F1F3, F7=F;Fs, (FaFg), (F4,F10), (Fo,F10)
Fe=F1FFs, Fo=F1F4,
Fio=F2F4
11-71 Fs=F1F;, Fe=F1F3, Fr=F;Fs, (F1.F2), (FuFe), (FuFe), (FuFu), (F2,F7), (F2Fo),

Fe=F1F., Fo=F;F,,
Fio=FiFsF4, F1u= FoFsF,

(F2,F10), (Fs,F7), (Fe,Fo), (Fe,F10), (F7,Fs), (F7,Fu1),
(Fs,Fo), (Fs,F10), (Fo,F11), (Fi0,F11)
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Table 4.1. (Continued)

Design Generators Dispersion Factors
11-7.2 Fs=F1F2, Fe=F1F;, F7=FFs, (F4,Fs), (F4,Fo), (Fa,F0), (FaFa1), (Fe,Fo), (Fs,Fao),
Fe=F1FoFs, Fo=FiFs, (Fe,F11), (Fo,F10), (Fo,F11), (Fi0,F11)
Fi0=F:F4, F11= F3F,4
11-7.3 Fs=F1F2, Fe=F1F;, F7=FFs, (Fs,F4), (Fa,Fe), (Fa,F7), (Fa,Fs), (FaFo), (Fs,F10),
Fe=F1F2Fs, Fo=FiF,, (Fs,F11), (Fa,Fe), (FaF7), (FaFe), (FaiFo), (Fa,F1o0),
Fio=F2F4, Fuu= F1FoF, (Fa.Fu1), (Fe,F7), (Fe,Fs), (Fe,Fo), (Fe,F10), (Fe,F1a),
(F2,Fe), (F2,Fo), (F7,F10), (F7,F11), (Fs,Fo), (Fs,F1o),
(Fe,F11), (Fo,F10), (Fo,F11), (F10,F11)
12-8.1 Fs=F1F2, Fe=F1F;, F7=FFs, (Fu.F2), (F1.Fs), (FuF4), (FuFs), (F1.Fe), (FLF7),
Fe=F1F4, Fo=F2F,, (F1.Fe), (F1.Fo), (F1,F10), (F1,Fu), (FuF1), (F2.Fs),
Fio=F1FsFa Fu= FoFsFy, (F2,F4), (F2,Fs), (F2.Fe), (F2.F7), (F2.Fo), (F2.F1),
Fio=FiFF3F, (F2,F1), (F2,F12), (Fs,Fa), (Fs,Fs), (Fs,Fe), (F3,F7),
(Fa,Fe), (Fa,Fg), (Fs,Fi0), (Fa,F11), (Fa,F12), (Fa,Fs),
(Fa,Fe), (Fa,F7), (FaFe), (Fa,Fo), (Fa,F10), (FaFu1),
(Fa,F12), (Fs,Fs), (Fs,F7), (Fs,Fe), (Fs,Fg), (Fs,Fuo),
(Fs,F11), (Fs,F12), (Fe,F7), (Fe,Fo), (Fe,F10), (Fe,F11),
(Fe,F12), (F7,Fs), (F7,F9), (F7,F10), (F7,F11), (F7,F12),
(Fs,Fo), (Fs,F10), (Fs,F11), (Fs,F12), (Fo,F0), (Fo,F11),
(Fo,F12), (Fi0,F11), (Fi0,F12), (F11,F12)
12-8.2 Fs=F1F,, Fe=F1Fs3, Fr=F2F;, (Fa,Fa), (F3,Fg), (Fs,Fo), (Fa,Fu1), (Fa,F12), (Fa,Fs),

Fe=F.F;F3, Fo=F1F4,
Fio=F2F4, Fu=FiF3F,,
Fio=F3F,

(Fa,F7), (FaFs), (Fa,F12), (Fe,Fo), (Fe,F10), (Fe,Fi1),
(Fe,F12), (F7,F9), (F7,F10), (F7,F11), (F7,F12), (Fe,Fo),
(Fs,F10), (Fe,F11), (Fs,F12), (Fo,F12), (F10,F12),
(Fu,F1)

Note: Designs with bold face dispersion factors are D-optimal designs.
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Table 4.2. Suggested dispersion factors for 32-run 2|,* fractional factorial designs

Design Generators Dispersion Factors
7-2.4 F6:F1F2, F7=F1F3F4F5 (Fg,F4), (F3,F5), (F3,F7), (F4,F5), (F4,F7), (F5,F7)
7-2.5 Fe=F1F;, Fr=F3sF4Fs (Fs.Fa), (FaFs), (Fa,F), (FaFs), (FaF7), (Fs,F7)
7-2.6 Fe=F1F;, Fr=F1FsF, (F3,Fs), (FaFs), (Fs,F7)
7-2.7 Fe=F1F>, Fr=F3F, (F1.Fs), (F2.Fs), (Fa,Fs), (Fa,Fs), (Fs,Fe), (Fs,F7)
7-2.8 F6:F1F2, F7:F1F3 (F4,F5)
8-3.5 Fe=F1F>, Fr=F1FsF, (Fa,Fs), (F4,Fs), (Fs,F7), (F7.Fe)
F8:F2F3F5
8-3.6 Fe=F1F>, F7=F1Fs, (Fa,Fs), (Fa,Fg), (Fs,Fe)
F8:F2F3F4F5
8-3.7 Fe=F1F>, Fr=F1FsF, (Fs,F4), (Fa,Fs), (Fs,F7), (FaFs), (FaFs), (FaF),
Fe=F1FsFs (Fs.F7), (F7.Fs)
8-3.8 F6:F1F2, F7:F3F4, FB:F1F3F5 (F5,F8)
8-3.9 Fe=F1F>, Fr=F1Fs, Fe=F;F4Fs (F4,Fs), (Fa,Fs), (Fs,Fs)
8-3.10 Fe=F1F>, Fr=F1Fs, Fe=F1F4Fs (F4,Fs), (Fa,Fs), (Fs,Fs)
9-4.6 F6:F1F2, F7:F1F3F4, (Fg,Fg)
Fe=F1F:Fs, Fo=FoF4Fs
9-4.7 F6:F1F2, F7:F1F3F4, (Fz,F3), (Fz,F4), (Fz,Fs), (Fz,F7), (Fz,Fg), (Fz,Fg),
Fe=F1F3Fs, Fo=FiF4Fs (F3,Fe), (F4,Fe), (Fs,Fe), (Fe,F7), (Fe.Fs), (Fe,Fo)
(Fs,F4), (Fs,Fs), (Fs,F7), (Fa,Fs), (FsFo), (FaFs),
(Fa,F7), (Fa.Fs), (FaFo), (Fs,F7), (Fs,Fe), (Fs,Fo),
(F7.Fs), (F7,Fg), (Fe,Fo)
9-4.8 Fe=F1F>, Fr=FsF4, Fe=F1FsFs, (Fs,Fe), (Fs,Fg), (Fs,Fo)
F9:F2F4F5
9-4.9 F6:F1F2, F7:F1F3, F8:F1F4, (Fs,Fg)
F9:F2F3F4F5
9-4.10 F6:F1F2, F7:F1F3, F8:F2F4, (F5,F9)
Fo=F3F4Fs
10-5.5 F6:F1F2, F7:F1F3F4, (Fl,Fz), (Fl,Fe), (Fz,F3), (Fz,F4), (Fz,Fs), (Fz,FG),
Fe=F1F3Fs, Fo=F1F4Fs, (F2.F7), (F2.Fs), (Fa.Fe), (F2,F10), (Fs,Fa), (FsFs),
Fi=FsF4Fs (Fs.Fe), (Fa,F7), (Fa,Fe), (F3,Fo), (Fs,F10), (Fa,Fs),
(Fa.Fe), (FaF7), (Fa,Fe), (FaFo), (Fa,F10), (Fs,Fe),
(Fs.F7), (Fs,Fs), (Fs,Fo), (Fs,F10), (Fe,F7), (Fe.Fs),
(Fe.Fo), (Fe,F10), (F7.Fs), (F7.Fo), (F7,F10), (Fa,Fo),
(F&,F10), (Fo,F10)
10-5.6 Fe=F1F>, Fr=F1FsF, (Fs,F10), (F4,F10), (Fs,Fo0), (F7,F10), (Fe,F1o),
Fe=F1F3Fs, Fo=F1FsFs, (Fo,F10)
Fio=F2F3F4Fs
10-5.7 Fe=F1F>, Fr=F1FsF, (F1.F2), (FuFe), (FaFe), (FaFa), (FsFs), (Fs.F7),
Fe=F1F3Fs, Fo=FoFsFs, (FaF7)
Fio=FiF2FsF4Fs (Fs,Fe), (Fs,Fo), (Fs,F10), (FeFo), (Fs,F10), (Fo,Fio0)
10-5.8 Fe=F1F>, Fr=FsFs, Fe=F:FsF,, (Fa.Fo), (FaiF10), (Fs,Fe), (Fs,F10), (Fe,F10), (Fo,F10)
Fo=F2F3Fs, Fio=FiF4Fs
10-5.9 Fe=F1F>, Fr=F1F3, Fe=F:FsF,, (F4.Fs), (FaFo), (Fs,Fe), (Fs,Fo)
Fo=F2F3F4Fs, Fio=F2F4Fs
10-5.10 Fe=F1F>, Fr=F1Fs, Fe=F1F4, (Fs,Fa), (Fs,F10), (Fo,F10)
Fo=F2F3F4, Fio=FiFoFsFaFs
11-6.3 Fe=F1F>, Fr=F1F3, Fe=F:FsF,, (Fa.Fs), (FaFo), (Fa,F10), (Fa,F11), (Fs,Fe), (Fs,F10),

Fo=F,F3Fs, F1o=FiF4Fs,
Fu=F;FsFsF4Fs

(Fs,F11), (Fs,Fo), (Fs,F10), (Fs,F11), (Fo,F10),
(Fo,F11)
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Table 4.2. (Continued)

Design Generators Dispersion Factors
11-6.4 Fe=F1F2, F7=F1Fs, (F4.F10), (FaFu), (Fs,F10), (Fs,F1a), (Fs,Fao),
Fe=F2FsF4, Fo=F;FsFs, (Fa,F11), (Fo,F10), (Fo,F11), (F10,F11)
Fio=F:F4Fs, Fii=FiFsF4Fs
11-6.5 Fe=F1F2, F7=F1F;, (Fa.Fe), (Fa.F7), (Fs.Fe), (Fs.F7), (Fe.Fs), (FeFo),
Fe=F2F3F4, Fo=FFsFs, (Fe,F10), (Fe,Fu1), (F7,Fe), (F7,Fo), (F7,F10), (F7,Fu1)
Fio=FsFsFs, F1i=F3FiFs (F4,Fs), (F4,Fg), (F4,F10), (F4,F11), (Fs,Fs), (Fs,Fao),
(Fs,F11), (Fs,Fo), (Fs,F10), (Fs,F11), (Fo,F0), (Fo,F11)
11-6.6 Fe=F1F>, F7=F1F3, Fe=F3F,, (Fs,F11), (Fo,F11)
Fo=F,F3Fs, Fio=F1F>F4Fs,
Fu=FsF4Fs
11-6.7 Fe=F1F,, Fr=FiF3, Fg=FF,, (Fs,Fo), (Fs,F10), (Fs,F11), (Fe,F10), (Fo,F11),
Fo=F,F3Fs, F1o=F>F4Fs, (F10,F11)
Fu=FiF3F4Fs
11-6.8 Fe=F1F,, Fr=FiF3, Fg=FF,, (F2,F2), (F2,Fs), (F3,Fe), (Fs,Fe), (Fa,Fe), (Fa,F7)
Fo=F,F3Fs, F1o=F>F4Fs, (Fs,Fo), (Fs,F10), (Fs,F11), (Fe,F10), (Fo,F11),
Fu=FsF4Fs (F10,F11)
11-6.9 Fe=F1F>, F7=F1F3;, Fe=F1F,, (Fs,Fo), (Fo,F10), (Fo,F11)
Fo=F,F3F4, F1o=F>F3Fs,
Fu=FF4Fs
11-6.10 F6:F1F2, F7:F1F3, F8:F1F4, (Fg,Fll)
Fo=F,F3F4, F1o=F3Fs,
Fu=FiF3F4Fs
12-7.3 Fe=F1F,, F7=FiF3, Fg=F1F,, (Fs,Fo), (Fs,F10), (Fs,F11), (Fs,F12), (Fo,Fi0),
Fo=F3F3F4, Fio=F;FsFs, (Fo,F11), (Fo,F12), (F10,F11), (F10,F12), (F11,F12)
Fu=FFiFs, Fio=F1F3F4Fs
12-74 Fe=F1F,, Fr=F1F3, Fg=FF,, (Fs,Fo), (Fo,F10), (Fo,F11), (Fo,F12)
Fo=F,F3F4, F1o=F>F3Fs,
Fu=FFsFs, Fio=FsF4Fs
12-75 Fe=F1F, Fr=FiF3, Fg=F;F,, (Fs,F11), (Fs,F12), (Fi0,F11), (F10,F12)
Fo=F,F3F4, F1o=F>F3Fs,
Fu=FiF:F4Fs, F1o=F1F3F4Fs
12-7.6 Fe=F1F>, F7=F1F3, Fe=F3F,, (Fs,F12), (F10,F11)
Fo=F,F3F4, F1o=F>F3Fs,
Fu=FiFiFs, Fio=F1FFsF4Fs
12-7.7 Fe=F1F,, Fr=F1F3, Fg=F;F;, (Fa,Fs), (FaF10), (Fa,F11), (Fa,F12), (Fs,Fo), (Fs,F1a),
Fo=F1F;FsF4, F1o=F;F,F3Fs, (Fs,F12), (Fo,F10), (Fo,F11), (Fe,F12), (F10,F11),
Fu=FiFiFs, Fio=F>F3F4Fs (F10,F12)
12-7.8 Fe=F1F>, F7=F1F3, Fe=F1F,, (Fo,F11), (Fo,F12), (F11,F12)
Fo=F,F3F4, F1o=F1Fs,
Fu=FF3Fs, Fio=FF4Fs
12-7.9 Fe=F1F,, Fr=FiF3, Fg=FF,, (F2,Fs), (F2,Fu), (Fa,F12), (F3,Fs), (Fs,Fu), (F3,F1),
Fo=F:F3F4, F1o=F1F;F3F,, (Fa,Fs), (FaF11), (Fa,F12), (Fs.Fe), (Fs,F7), (Fs,Fs),
Fu=FFsFs, Fio=FF4Fs (Fs.Fo), (Fs,F10), (Fe.F11), (Fe,F12), (F7.F1a),
(F7,F12), (Fo,Fu1), (Fo,Fi12), (F10,F11), (F1o,F12)
(Fs,F11), (Fs,F12), (F11,F12)
12-7.10 F6:F1F2, F7:F1F3, F8:F1F4, (Fg,Flz)
Fo=F;F3F4, Fio=F;Fs,
F11=FsFs, Fio=F1F;F3F4Fs
13-8.2 Fe=F1F2, F7=F1F;, Fe=FiFy, (Fo,F11), (Fo,F12) (Fo,F13), (Fi1,Fi2), (F1,Fas),

Fo=F3F3F4, F1o=F1Fs,
Fu=FyFsFs, Fio=FF.Fs,
Fis=FsFiFs

(F12,F13)
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Table 4.2. (Continued)

Design Generators Dispersion Factors
13-8.3 Fe=F1F, Fr=F1F3, Fg=F1F,, (Fs,F11), (Fs,F12), (Fs,Fi13), (F11,F12), (F11,F13),
Fo=F2F3F4, Fio=F1F2F3F,, (F12,F13)
Fu=FaF3Fs, Fi=FF4Fs,
Fis=F1F3F4Fs
13-8.4 Fe=F1F,, Fr=FiF3, Fg=FF,, (F2,Fs), (F2,Fu), (Fa,F12), (F2,F13), (F3Fs), (F3,Fu),
Fo=F:F3F4, F1o=F1F;F3F,, (F3,F12), (F3,F13), (F4,Fs), (FaF11), (Fa,F12),
F11=F;F3Fs, F1,=F;F4Fs, (F4,F13), (Fs,Fe), (Fs,F7), (Fs,Fs), (Fs,Fo), (Fs,F0),
Fi13=F3F4Fs (Fe,F11), (Fe,F12), (Fs,F13), (F7.F11), (F7,F12),
(F7,F13), (Fe,F11), (Fs,F12), (Fs,F13), (Fe,F11),
(Fo,F12), (Fo,F13), (F10,F11), (F10,F12), (F10,F13)
(Fs,F11), (Fs,F12), (Fs,F13), (F11,F12), (F11,F13),
(F12,F13)
13-8.5 F6:F1F2, F7:F1F3, F8:F1F4, (Flz,Flg)
Fo=F,F3F4, Fio=F1F>F3F,,
Fu=FiFs, Fio=FF,Fs,
Fis=F3F4Fs
13-8.6 Fe=F1F,, Fr=F1F3, Fg=F;F,, (Fs,F11), (Fs,F12), (Fs,F13), (F11,F12), (F11,F13),
Fo=FsF4, Fio=F1F>F3F,, (F12,F13)
Fu=FF3Fs, Fio=F1FF4Fs,
Fia=F1F3F4Fs
13-8.7 F6:F1F2, F7:F1F3, F8:F1F4, (Fg,Flg)
Fo=F,F3F4, F1o=F3Fs,
Fu=FsFs, F1,=F4Fs,
Fia=F1F>FsF4Fs
13-8.8 Fe=F1F>, F7=F1F3, Fe=F1F,, (Fe,F13), (Fs,F13)
Fo=F1F>F3F4, F1o=FFs, (Fo,F13)
Fu=FsFs, F1,=F4Fs,
Fia=F2F3F4Fs
13-8.9 F6:F1F2, F7:F1F3, F8:F1F4, (Fg,Flg)
Fo=F1F>F3F4, F1o=FFs,
Fu=FsFs, F1,=F4Fs,
Fia=F1F>FsF4Fs
13-8.10 F6:F1F2, F7:F1F3, F8:F2F3, (Flz,Flg)
Fo=F1F4, F1o=F2F3F4,
Fu=FiFs, Fio=FF,Fs,
Fia=F1F3F4Fs
14-9.2 Fe=F1F>, F7=F1F3, Fe=F1F,, (F12,F13), (F12,F14), (F13,F1s)
Fo=F,F3F4, Fio=F1F>F3F,,
Fu=FiFs, Fio=FF3Fs,
Fia=FoF4Fs, F1a=F3F4Fs
14-9.3 Fe=F1F,, Fr=FiF3, Fg=FF,, (F2,F14), (F3,F1s), (F4,F14), (Fs,F14), (Fe,F1a),
Fo=F:F3F4, F1o=F1F;F3F,, (F7,F14), (Fg,F1s), (Fo,F14), (F10,F14), (F11,F1a),
Fu=FiFs, Fio=FF3Fs, (F12,F14), (F13,F14)
Fia=F1F>FsFs, Fis=FF4Fs
14-9.4 Fe=F1F,, Fr=FiF3, Fg=FF,, (Fe,F7), (Fe,Fs), (Fe,Fo), (Fe,F10), (Fe,F11), (Fe,F12),

Fo=F1F;F3F4, F1o=F3Fs,
F11=FsFs, F1.=F4Fs,
F13=F;F3F4Fs,
Fi4=F1F,FsF4Fs

(Fe,F13), (F7,Fs), (F7,Fo), (F7,F10), (F7,F11), (F7,F12),
(F7,F13), (Fg,Fg), (Fs,F10), (Fe,F11), (Fs,F12),
(Fe,F13), (Fo,F10), (Fo,F11), (Fe,F12), (Fo,F13),
(F10,F11), (F10,F12), (F10,F13), (F11,F12), (F11,F13),
(F12,F13)
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Table 4.2. (Continued)

Design

Generators

Dispersion Factors

14-9.5

14-9.6

14-9.7

14-9.8

14-9.9

14-9.10

15-10.2

15-10.3

15-10.4

15-10.5

15-10.6

15-10.7

Fe=F1F2, F7=FiF3, Fs=F1F.,
Fo=F;F3F4, Fio=F1iF;FsF4,
F1=F;Fs, F1.=F3Fs,
Fis=F.Fs, F1.=F1F;F3F.Fs
Fe=F1F, F7=FiF3, Fs=F;F;,
Fo=F1F4, F1o=F;F3F4,
F11=F1Fs, F1,=F;F3Fs,
Fis=F;F.Fs, Fia=F1F3F.Fs
Fe=F1F, F7=FiF3, Fs=F:F.,
Fo=F;F3F4, Fio=F1F,F3F4,
F11=F,Fs, F1.=F3Fs,
F1s=FiFs, F1a.=F,F3F4Fs
Fe=F1F, F7=FiF3, Fs=F;F;,
Fo=F1F4, F1o=F;F3F4,
Fu=F1FFsF4, Fio=F1F;F3Fs,
Fis=F;F.Fs, Fia=F1F3F.Fs
Fe=F1F>, F7=F1F3, Fg=F5Fs3,
Fo=F1F4, F1o=F:F3F4,
Fu=FiFs, Fio=FF3Fs,
Fia=FoF4Fs, F1i=F1FF4Fs
Fe=F1F», F7=F1F3, Fg=F5Fs3,
Fo=F1F4, F1o=F2F3F4,
Fu=FiFoF3Fs, Fio=FsFsFs,
Fia=FoF4Fs, F1u=F1F3F4Fs

Fe=F1F>, F7=F1F3, Fe=F1F,,
Fo=F,F3F4, Fio=F1F>F3F,,
Fu=FiFs, Fio=FF3Fs,
Fia=F1F>FsFs, Fis=FF,Fs,
Fis=F3sF4Fs

Fe=F1F>, F7=F1F3, Fe=F1F,,
Fo=F,F3F4, Fio=F1F>F3F,,
Fu=FiFs, Fi=FF3Fs,
Fia=F1F>FsFs, Fis=FF,Fs,
Fis=F1F>F4Fs

Fe=F1F>, F7=F1F3;, Fe=F;Fs3,
Fo=F1F4, F1o=F2F3F4,
Fu=FiFs, Fio=FF3Fs,
Fis=FoF4Fs, F1=F1FF,Fs,
Fis=F3sF4Fs

Fe=F1F>, F7=F1F3;, Fg=F;Fs3,
Fo=F1F4, F1o=F2F3F4,
Fu=F1F:F3F4, F1o=F1Fs,
Fia=F2F3Fs, F14.=F>F4Fs,
Fis=F1F3F4Fs

Fe=F1F>, F7=F1F3;, Fg=F;Fs3,
Fo=F1F4, F1o=F:F3F4,
Fu=F1F:F3F4, F1o=F1Fs,
Fia=F2F3Fs, F14.=F>F4Fs,
Fis=F1F>F4Fs

Fe=F1F>, F7=F1F3;, Fe=F1F,,
Fo=F,F3F4, F1o=F3Fs,
Fu=FsFs, F1o=F1FF3Fs,
Fia=F4Fs, Fiu=F1F>F4Fs,
Fis=F1F3F4Fs

(Fe,F12), (Fe,F13), (Fe,F14), (F7,F11), (F7,F13),
(F7,F14), (Fg,F11), (Fs,F12), (Fe,F14), (Fe,F11),
(Fo,F12), (Fo,F13)

(F4,Fo), (Fa,F10), (Fs,F11), (Fs,F12), (F13,F1s)

(Fe,F12), (Fe,F13), (Fe,F14), (F7,F11), (F7,F13),
(F7,F14), (Fg,F11), (Fs,F12), (Fe,F14), (F10,F11),
(F10,F12), (F10,F13)

(F2,F13), (F2,F14), (F7,F13), (F7,F14)
(Fs,F13), (Fs,F1s), (F12,F13), (F12,F14), (F13,F14)

(Fo,F12), (F10,F11), (F10,F13), (F10,F14), (F12,F13),
(F12,F14)

(F13,F14)

(F14,F15)

(F2,F7), (F2,Fs), (F2,Fo), (F7,Fs), (F7,F9), (Fe,Fo)

(Fo,F12), (Fo,F1s), (F10,F11), (F10,F14), (F11,F1s),

(F12,F14)

(F14,F15)

(F13,F14), (F13,F1s)

(F2,F9), (Fs,F9), (FaFo), (Fe,F12), (Fe,F1s), (Fo,F1s)
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Table 4.2. (Continued)

Design Generators Dispersion Factors
15-10.8 Fe=F1F2, F7=F1F3, Fg=FoFs, (Fe:F10), (Fo,F11), (Fo,Fia), (F1o,F11), (F10,F1a)
Fo=F1F4, F1o=F;F3F4, (Fo,F10)
Fu=F;Fs, F1,=F1F;F3Fs,
Fi3=FaFs, F1.=F1F;F4Fs,
Fis=FiF,FsF4Fs
15-10.9 Fe=F1F2, F7=F1F3, Fg=FF4, (F2,Fe), (F2,Fs), (F2.F10), (F2,F11), (F2.Fa), (F2,Fas),
Fo=FaFsFs, Fio=FiFFsFs, (Fa,F7), (Fs.F10). (Fa.F12), (FaF14), (FsFas), (FaF),
Fu=F2Fs, F1,=FsFs, (Fa,F2), (Fa,Fs), (FaiFu), (FaFi2), (FaFa), (Fe,Fo),
Fis=FiFoFsFs, Fu=F4Fs, (Fe.F12), (Fe.F14), (Fe,F1s), (F7.Fo), (F7.Fu1),
Fis=FF3FFs (F7,F14), (F7,Fs), (Fg,F11), (Fs,F12), (Fs,Fus),
(Fo,F10), (Fo,F11), (Fo,F12), (Fo,F1s), (F10,F11),
(F10,F12), (F10,F14)
15-10.10 F5:F1F2, F7:F1F3, F3:F2F3, (F4,F15), (Flo,F15)

Fo=F1F4, F1o=F3F3F4,
Fu=FiF;FsFs, Fio=FFs,
Fi3=FsF3Fs, Fia.=F1F;F4Fs,
Fis=F;F4Fs

Note: 1. Designs with bold face dispersion factors are D-optimal designs.
2. Shadowed dispersion factors are assigned when moderate dispersion occurs.
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Appendix

Derivation of the information matrix with one dispersion factor

Now M =X'V*X=N"X'(ml, +mD,)X =(m;), i,j=0,---,n, where

m; =N (My(X; o X; 0 Xy)+m, (X o X; 0%,)), and “o” denote the general inner product
. N
of vectors, that is, X;oX;oX = > X X X

Fori=j, m,=N"(my(X 0% o%,)+m(X 0% o%))=N"(Nm,)=m,. Fori = j,

I
o
I
o
I
o
I
o
sV}
>
o
I
(e}

ioX;oX =N, if FiFiFj is a word, otherwise X oX; %, =0.

Hence

ij

m,, if FFF,;isaword,
0, otherwise.

Also note that since the designs we consider here are of resolution 111 or higher, there
is at most one nonzero off-diagonal entry in each row and column of M, that is, it is
not possible to have two words of forms F:FiF;, F1F;:Fj, or of forms FiFiF;, FiFiF;,

respectively, in the defining relation.

Derivation of the information matrix with two dispersion factors

Now M =(m;), i,j=0,---,n,

=N7*X'(m,l, +mD, +m,D, +m,D,D,) X

:|:Mll M12j|
MZI(Z M22

where

m; = N~ (m, (% 0 X; 0Xy) +My (X 0 X0 X))+ M, (X 0X; 0X,) +My(X; 0X; 0% 0 X,)).
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Fori=j, X;oXoX,=N, X;oX, oX =X 0X,0X, =X 0X 0% oX, =0, hence mj = m.

Fori=j, X oX;oX,=0.InMy,thatis,0<i<j<2,

Hence mo; = M1g =My, Moz = Myp = My, M1 = My = M3, and

m, m m
Mll =|m. m, Mg
m, m; m,

In My, that is,0<i1 <2 < j<n, if F1F.F; is a word, then
Mo = N_l(ml()—(o °X; °X,)+m, (X, °X; °X,)+ My (X, °X; °X 0 X,)) =M,
m;; = N_l(ml(xlo)—(j 0% )+ M, (X 0X; 0%,) +My(X 0X; 0K 0K, ))=m,,
m,; = N_l(m1(7(2 °X; °X,)+m,(X, °X; °X,)+ My (X, °X; oX 0 X,))=m,.
If F1F2F; is not a word, m;; = 0. Since the designs we consider here are of resolution

[11 or higher, it is not possible to have two length three words of form F;FF; in the

defining relation. Hence there is at most one column of form [m,, m,, m;]" in My..
In Mz, that is, 3<i<j<n , values of X oX;oX , XoX;oX, , and

, depends on whether the respective corresponding effects FiFiFj,

o
x|
o
e
[}
x|

F.FiF;, and F1F.FiF; are words in the defining relation, have four possibilities. We
summarize them into the following table with “I” indicates that the corresponding

effect is a word, and “x” indicates that it is not.
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FlFiFj FzFiFj FleFiFj X; o Xj oX, Xo Xj oX, Xo Xj oX, oX, mij
I X X N 0 0 m;
X I X 0 N 0 m;
X X | 0 0 N ms
X X X 0 0 0 0

Again, since we only consider designs of resolution Il or higher, it is not possible to
have two length three words FiFiFj, FiFiF;, or FiFiF;, FiFiFj (FoFiF;, F.FiFp, or
F.FiFj, FoFi:Fj) in the defining relation, also it is not possible to have two length four
words F1F;FiF;j, FiFFiFj, or FiFFiF;, F1F2FiF;j in the defining relation. Hence, each

of the mo, m1, m,, and ms appears at most once in each row and each column.
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