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Using non-parametric cause-selecting charts to monitor dependent process steps
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This project was planning to simulate data sets of different features of function f ,
describing the relationship between the in-coming and outgoing characteristics, to
observe the behavior of the average run length of the proposed non-parametric
cause-selecting charts under different approaches in estimating f. However, because
of the time shortness, this part is not complete. Besides, the main nonparametric
methods we adopted to estimate the function f for real data set were changed to
B-spline and kernel regression, not including wavelet.
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Most part of an article based on this project is complete. We plan to submit this

article to Journal of Process Control.
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7 ~ Abstract

Nowadays, most of the products are produced from several process stages and usually the quality
characteristic at a current stage affects the quality characteristics at the next one or some subsequent stages.
Therefore, it is not suitable to plot control charts in each stage respectively. To deal with this situation, Zhang
proposed the so called cause-selecting control chart in 1984. Consider the simplest case of a two-stage process.
The cause-selecting chart is based on the outgoing quality in the second stage that has been adjusted for the
in-coming quality in the first stage. A linear or generalized linear model with normally distributed error terms
is assumed to relate the two quality characteristics. In practice, however, it is often difficult to obtain
substantial knowledge about the relationship function or the error terms. In this project, we use two
non-parametric smoothing techniques including B-spline and kernel regression to describe the in-coming and
outgoing quality characteristics in a two-dependent-stage process. Then block bootstrap and curve depth are
used to construct simultaneous confidence band, especially for the data set which is time-related with error
terms that are distribution free. Finally, a real data regarding wireless sensor is used to evaluate the efficiency
of the proposed method. Although the number of experiments is not particularly large, the result strongly
suggests that our proposed guide is powerful in detecting the out of control profiles.
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Traditional profile monitoring methods may have some unrealistic assumptions. They include (i) linear
parametric relationship or generalized linear relationship is assumed between the response variable and the
explanatory variable(s); (ii) the error terms are normally distributed or follow some specific distribution; (iii)
the within-profile data are independent. This project tries to propose a more flexible and computationally
efficient method so that these unrealistic assumptions are not required. Based on the observed in-control
profiles we wish to establish an adequate confidence band for the underlying functional relationship. Then this
confidence band can serve as a control chart for phase Il process monitoring. The proposed guide is mainly
divided into six steps. Step 1: the two-sided median method, an automated approach, is used to clean each
profile data set; step 2: an adequate B-spline or kernel regression is fitted to each profile data; step 3: the
moving block bootstrap method is applied to generate several correlated samples for each profile data; step 4:
again the B-spline or kernel regression is fitted to each of the bootstrap samples; step 5: the corresponding
curve depths of fitted curves in step 4 are calculated and those fitted bootstrap curves with smaller curve
depths are removed for each profile data respectively; step 6: The resulting confidence bands of all profiles
are pooled so to obtain a simultaneous confidence band for the underlying functional relationship.

To simplify the formulation, we discuss the simple case of a two-stage process with only one covariate in the
first stage. Suppose there are M independent profiles from a typical design of an in-control process and the ith
profile has n_{i} observations which are in a time-order. Let y {ij} be the measurement of jth observation of
the ith profile in the second stage and x_{ij} be the corresponding explanatory variable in the first stage. More
precisely, y_{ij}=f(x_{ij})+\epsilon_{ij} for i=1,...,M and j=1,...,n_{i}, where f is a smooth function and
\epsilon_{ij}s’, the associated error terms, can be dependent within profiles from some unknown distribution.
Since unusual observations (outliers) for time series data can lead to intervention of analysis for the
underlying process, we first take off those observations y {ij} which are far from the median of its
neighborhood. This automated data cleaning approach, called two-sided median method, is proposed by Basu
and Meckesheimer (2007).

In order to simplify the notation, we now denote the cleaned data of a particular profile by {x_{j}.y_{j}}.
j=1,...,n. and x_1<...<x_n. We then fit the data a smooth function f by B-spline or kernel regression. The
B-spline involves the choices of number and position for the knots. Since B-spline at any given point depends
only on the observations falling in a fixed length of window. If we wish to re-compute the entire spline curve
after one control point is changed, then only those terms whose window contains that point need to be
recomputed. This important feature allows us employ the leave-one-out cross-validation strategy for choosing
the optimal number of knots, if we consider equal knot spacing. The leave-one-out cross-validation score is
defined as the mean square error of prediction (MSEP) as MSPE(k)= [1/(n+1)]
[(y_1-f (-1)(x_1)"2+...+(y_n-f_(-n)(x_n))"2], where f (-j) is the obtained B-spline with k knots by
removing the jth observation. Then the optimal number of knots is the k minimizes MSEP(K). Similarly, the
kernel regress involves the choice of optimal bandwidth h, which is a tradeoff between model fidelity and
roughness. We again try to minimize the mean squared error of prediction to obtain the optimal h.



After obtain the fitted curve f, either by B-spline or kernel regression, the residuals can be computed by
e {i}=y_{i}-f(x_{j}). Since we allow a dependent structure between residuals and do not put any assumption
on their distribution, we apply the moving block bootstrap (MBB), for which overlapping blocks of the same
length are draw randomly with replacement. For the MBB block length, we use the diagnostic plot of the
sample autocorrelation function (ACF) to decide this length, after which the values of ACF has a sharp decay.

To construct the simultaneous confidence band for the underlying function f, we first establish the bootstrap
sampling percentile confidence band for each profile and then glue all the bands together. Suppose for ith
profile, we using MBB generate B bootstrap samples. Then we fit the bootstrap samples by B-spline or kernel
regression as described previously and obtain B fitted curves {f {il},...,f {iB}}. The confidence band for
each profile can be constructed based on the curve depth, which was first proposed by Yeh (1996). The
smaller the curve depth is, the further the curve is located from the benchmark curve. Therefore, we can
accordingly exclude 100\alpha% bootstrap curves with the lowest depths to obtain the 100(1-\alpha)%
bootstrap confidence band. Finally collecting all the confidence bands for all profiles together, we obtain the
simultaneous confidence band for f over the entire data space.

We finally evaluate the proposed method by a real data set from wireless sensors. The babyfinder is a wireless
sensor designed to monitor the physical or environmental conditions. When there is “distance” between the
transceiver and the receiver, a wireless signal is generated and its strength measured (in decibels, dBs) by the
Received Signal Strength Indicator (RSSI).With this simple design, one can monitor the occurrence of some
“unexpected event” by observing the change of RSSI values over time. For example, suppose the babyfinder
is designed to monitor the event that a bicycle is stolen. It is natural to assume there exists a functional
relationship between the observed RSSI value and the corresponding point in time under the usual
circumstance that the bicycle is not stolen. Once the bicycle is stolen, the observed RSSI values should reveal
inconsistency with the original functional relationship. We collect 17 in-control data sets (the bicycle is not
stolen) and 18 out-of-control data sets (the bicycle is stolen). Then we apply the proposed method to the 17
in-control data sets and obtain the following two 99% simultaneous confidence bands for f; the left one is
using B-spline and the right panel is using kernel regression. As one can see, both of the simultaneous
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confidence bands are similar and not smooth. This is likely due to that each profile has different observed
length. To evaluate the power of our proposed framework, we plot the fitted curves for in-control and
out-of-control data sets together with the simultaneous confidence bands. If the fitted line falls outside the
band at some point for an experiment, we issue an alarm then. The result is organized in the following tables.
Table above is for B-spline and table below is for kernel regression. There is no false alarm. And out of the 18

In-control 1123|4567 |8]9|10(11|12(13|14 15|16 17
false alarm

Out-of-control| 18 | 19 {20 |21 |22 |23 |24 | 25|26 |27 |28 |29 (3031|3233 |34|35
No true alarm X

In-control 11234 |5|6|7|8|9|10|11|12|13 (1415|1617
false alarm

Out-of-control| 18 | 19 |20 | 21 |22 {23 |24 | 25|26 |27 |28 |29 (30 |31|32(33|34 |35
No true alarm | X X | X

out-of-control experiments, about 83% can be identified when kernel regression is used. When the B-spline is
adopted, the power is even satisfactorily 94%. As to the reason why the two fitted approaches do not give true
alarm to different experiments, it is still not clear yet.

We proposed a practical guide for monitoring nonparametric profiles with mild model assumptions.
Furthermore, the numerical results from a real application show our proposed method is effective in detecting
out-of-control profiles. However, there are still some potential problems. There is no criterion that can
reasonably compare the confidence bands obtained form different modeling techniques. Also, the control chart
we built is not in real time. These are obviously more challenging tasks.
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Most part of an article based on this project is complete. We plan to submit this
article to Journal of Process Control.




