行政院國家科學委員會專題研究計畫 成果報告

相依資料的條件獨立檢定

研究成果報告(精簡版)

計畫類別: 個別型 計畫編號: NSC 99-2118-M-004-006- 執 行 期 間 : 99 年 08 月 01 日至 100 年 07 月 31 日 執 行 單 位 : 國立政治大學統計學系

計畫主持人: 黃子銘

計畫參與人員: 碩士班研究生-兼任助理人員:程毓婷 博士班研究生-兼任助理人員:鄭宇翔

處理方式:本計畫可公開查詢

中 華 民 國 100 年 07 月 29 日

A conditional independence test for dependent data based on maximal conditional correlation

Yu-Hsiang Cheng Department of Statistics National Chengchi University Taipei, Taiwan, ROC 96354501@nccu.edu.tw

Tzee-Ming Huang Department of Statistics National Chengchi University Taipei, Taiwan, ROC tmhuang@nccu.edu.tw

June 16, 2011

Abstract

In Huang [7], a test of conditional independence based on maximal nonlinear conditional correlation is proposed and the asymptotic distribution for the test statistic under conditional independence is established for IID data. In this paper, we derive the asymptotic distribution for the test statistic under conditional independence for α -mixing data. The results of simulation show that the test performs reasonably well for dependent data. We also apply the test to stock index data to test Granger noncausality between returns and trading volume.

Keywords: conditional independence test, α -mixing, maximal conditional nonlinear correlation

2010 Mathematics Subject Classification: 62G10, 62H20

1 Introduction

The testing of conditional independence is important in statistics; one interesting application of such testing is variable selection. For instance, consider the following regression problem:

$$
Y = f(Z, X) + \epsilon,\tag{1}
$$

where ϵ is independent of (Z, X) and f is a real-valued function. If Y and X are conditionally independent given Z , the variable X can be excluded from the model in (1).

Suppose that X, Y and Z are continuous random vectors of dimensions d_1, d_2 and d respectively. For testing whether X and Y are conditionally independent given Z , most tests in the literature deal with the case where the observations for (X, Y, Z) are IID. See, for example, Linton and Gozalo [10], Delgado and Manteiga [2], Li, Cook and Nachtsheim [8], Huang [7], etc.

When the observations for (X, Y, Z) are weakly dependent, fewer tests are available in the literature. Su and White [12, 13] developed nonparametric tests based on a weighted Hellinger distance between conditional densities or the difference between conditional characteristic functions. Bouezmarni, Rombouts and Taamouti [1] also proposed a nonparametric test based on the Hellinger distance of copula densities.

In [12], [13] and [1], one motivation for constructing conditional independence tests for dependent data is to test Granger noncausality, which, according to Florens and Mouchart [4] and Florens and Fougere [3], is a form of conditional independence. Specifically, a series $\{U_t\}$ does not Granger cause series ${V_t}$ if

$$
V_t \perp (U_{t-1}, U_{t-2}, \dots, U_{t-p}) | (V_{t-1}, V_{t-2}, \dots, V_{t-p})
$$
 for every $p \ge 1$,

where \perp denotes an independent relationship.

In this paper, we consider Huang's test statistic and derive its asymptotic distribution for α -mixing data. In order to measure the conditional association between X and Y given Z , Huang [7] uses a measure called the maximal nonlinear conditional correlation, which is defined as

$$
\sup_{f,g\in S_0^*}Corr(f(X,Z),g(Y,Z)|Z),\tag{2}
$$

where S_0^* is the collection of (f, g) 's such that $E(f^2(X, Z)) < \infty$ and $E(g^2(Y, Z)) <$ ∞. Huang's test statistic is an estimator for a weighted average of estimators of maximal nonlinear conditional correlation at different evaluation points for the given variable Z. The test statistic also involves certain basis functions used to approximate the f and g in (2). We show that the asymptotic distribution of Huang's test statistic for α -mixing data is the same as that for IID data if the number of evaluation points and the number of basis functions are held constant.

This paper is organized as follows. In Section 2, we review the definition of maximal nonlinear conditional correlation and certain approximation results given in [7], and state the asymptotic properties of the test statistic that we derive under α -mixing condition. Some simulation results and an application are in Section 3. Proofs are given in Section 4.

2 Review and main results

In this section, we review the definition of the maximal nonlinear conditional correlation $\rho_1(X, Y|Z)$, the approximation of $\rho_1(X, Y|Z)$ and the proposed estimator for $\rho_1(X, Y | Z = z)$ in [7]. Then, we consider Huang's test statistic for testing $H_0: \rho_1(X, Y|Z) = 0$ and present its asymptotic properties that we derive under α -mixing condition.

2.1 Definition, approximation, and estimation for maximal nonlinear conditional correlation

The maximal nonlinear conditional correlation $\rho_1(X, Y|Z)$ is essentially the maximum of $E(f(X, Z)g(Y, Z)|Z)$ over S_0 , where S_0 is the collection of (f, g) 's that satisfy the following conditions:

$$
E(f^{2}(X,Z)|Z)I_{(0,\infty)}(E(f^{2}(X,Z)|Z)) = I_{(0,\infty)}(E(f^{2}(X,Z)|Z))
$$

\n
$$
E(g^{2}(Y,Z)|Z)I_{(0,\infty)}(E(g^{2}(Y,Z)|Z)) = I_{(0,\infty)}(E(g^{2}(Y,Z)|Z))
$$
\n(3)

and

$$
E(f(X, Z)|Z) = E(g(Y, Z)|Z) = 0.
$$
\n(4)

To avoid dealing with the existence of the maximum and the measurability of $\rho_1(X, Y|Z)$, in [7], $\rho_1(X, Y|Z)$ is defined as

$$
\sup_{(f,g)\in S_0} E(f(X,Z)g(Y,Z)|Z),
$$

where the supremum is defined as

$$
\lim_{n \to \infty} E(\alpha_n(X, Z)\beta_n(Y, Z)|Z),
$$

where $\{(\alpha_n, \beta_n)\}\$ is a sequence in S_0 that satisfies the following conditions:

- (i) The sequence $\{E(\alpha_n(X,Z)\beta_n(Y,Z)|Z)\}\)$ is non-decreasing.
- (ii) For every $(f, g) \in S_0$,

$$
E(f(X,Z)g(Y,Z)|Z) \le \lim_{n \to \infty} E(\alpha_n(X,Z)\beta_n(Y,Z)|Z).
$$

To approximate

$$
\rho_1(X, Y|Z) = \sup_{(f,g) \in S_0} E(f(X, Z)g(Y, Z)|Z),
$$

we consider $S_{0,p,q}$: the collection of all (f,g) 's in S_0 such that f and g are in the spans of $\{\phi_{p,j} : 1 \leq j \leq p\}$ and $\{\psi_{q,k} : 1 \leq k \leq q\}$ respectively, when Z is given. That is,

$$
f(X, Z) = \sum_{j=1}^{p} a_{p,j}(Z) \phi_{p,j}(X)
$$
 for some $a_{p,j}(Z)$'s

and

$$
g(Y, Z) = \sum_{k=1}^{q} b_{q,k}(Z) \psi_{q,k}(Y)
$$
 for some $b_{q,k}(Z)$'s.

Suppose that the basis functions $\phi_{p,i}$'s and $\psi_{q,j}$'s are selected so that there exists basis functions $\theta_{r,k}$'s such that

$$
\lim_{p,r \to \infty} \inf_{a(i,k)} E\left(\alpha(X,Z) - \sum_{1 \le i \le p, 1 \le k \le r} a(i,k)\phi_{p,i}(X)\theta_{r,k}(Z)\right)^2 = 0 \quad (5)
$$

$$
\lim_{q,r \to \infty} \inf_{b(j,k)} E\left(\beta(Y,Z) - \sum_{1 \le j \le q, 1 \le k \le r} b(j,k)\psi_{q,j}(Y)\theta_{r,k}(Z)\right)^2 = 0.
$$
 (6)

for every α and β such that $E(\alpha^2(X, Z))$ and $E(\beta^2(Y, Z))$ are finite. Let X, Y and $\mathcal Z$ be the ranges of X, Y and Z respectively. Suppose that for each (p, q) , there exist coefficients $a_{p,0,i}$'s and $b_{q,0,j}$'s such that

$$
\sum_{1 \le i \le p} a_{p,0,i} \phi_{p,i}(x) = 1 = \sum_{1 \le j \le q} b_{q,0,j} \psi_{q,j}(y) \tag{7}
$$

for every x in $\mathcal X$ and every y in $\mathcal Y$. Let

$$
\rho_{p,q}(Z) = \max_{(f,g) \in S_{0,p,q}} E(f(X,Z)g(Y,Z)|Z).
$$

Then, by Fact 2 in [7], $\rho_1(X, Y|Z)$ can be reasonably approximated by $\rho_{p,q}(Z)$ if p and q are large. The statement of the fact is given below.

FACT 1. (Fact 2 in [7]) Suppose that (5), (6) and (7) hold and $\{p_n\}$ and $\{q_n\}$ are sequences of positive integers that tend to ∞ as $n \to \infty$. Then

$$
\lim_{n \to \infty} E(|\rho_1(X, Y|Z) - \rho_{p_n, q_n}(Z)|) = 0.
$$

A remark.

• It is not difficult to find basis functions that satisfy (5) , (6) and (7) . If X, Y and Z are bounded regions in R^{d_1} , R^{d_2} and R^d respectively and the Lebesgue densities for (X, Z) and (Y, Z) are bounded, then $\phi_{p,i}$'s and $\psi_{q,j}$'s can be taken as B-spline basis functions on multidimensional intervals containing X and Y respectively, where the $\theta_{r,k}$'s can be can be taken as B-spline basis functions on a multidimensional interval containing Z.

 $\rho_{p,q}(Z)$ can be found as follows. First, we look for vectors $a_1 = (a_{1,1}(Z), \ldots, a_{1,p}(Z))^T$ and $b_1 = (b_{1,1}(Z), \ldots, b_{1,q}(Z))^T$ such that (a_1, b_1) is the pair (a, b) that maximizes $a^T \Sigma_{\phi, \psi, p,q}(Z) b$ subject to

$$
a^T \Sigma_{\phi, p}(Z) a = 1 = b^T \Sigma_{\psi, p}(Z) b,
$$

where

$$
\Sigma_{\phi,p}(Z) = (E(\phi_{p,i}(X)\phi_{p,j}(X)|Z) - E(\phi_{p,i}(X)|Z)E(\phi_{p,j}(X)|Z))_{p \times p},
$$

$$
\Sigma_{\psi,q}(Z) = (E(\psi_{q,i}(Y)\psi_{q,j}(Y)|Z) - E(\psi_{q,i}(Y)|Z)E(\psi_{q,j}(Y)|Z))_{q \times q},
$$

and

$$
\Sigma_{\phi,\psi,p,q}(Z)=(E(\phi_{p,i}(X)\psi_{q,j}(Y)|Z)-E(\phi_{p,i}(X)|Z)E(\psi_{q,j}(Y)|Z))_{p\times q}.
$$

and

Take

$$
f_1(X, Z) = \sum_{j=1}^{p} a_{1,j}(Z) (\phi_{p,j}(X) - E(\phi_{p,j}(X)|Z))
$$

and

$$
g_1(Y, Z) = \sum_{k=1}^q b_{1,k}(Z)(\psi_{q,j}(X) - E(\psi_{q,j}(Y)|Z)).
$$

Then, $E(f_1(X, Z)g_1(Y, Z)|Z) = \rho_{p,q}(Z)$.

For $z \in \mathcal{Z}$, let $\hat{\Sigma}_{\phi,\psi,p,q}(z)$, $\hat{\Sigma}_{\phi,p}(z)$ and $\hat{\Sigma}_{\psi,q}(z)$ be the kernel estimators of $\Sigma_{\phi,\psi,p,q}(z)$, $\Sigma_{\phi,p}(z)$ and $\Sigma_{\psi,q}(z)$ respectively; in other words, every element $E(g(X, Y)|Z = z)$ in $\Sigma_{\phi, \psi, p,q}(z), \Sigma_{\phi, p}(z)$ and $\Sigma_{\psi, q}(z)$ is estimated by

$$
\hat{E}(g(X,Y)|Z=z) = \frac{\sum_{t=1}^{n} g(X_t, Y_t) k_0((Z_t - z)/h)}{\sum_{t=1}^{n} k_0((Z_t - z)/h)}
$$
(8)

in $\hat{\Sigma}_{\phi,\psi,p,q}(z)$, $\hat{\Sigma}_{\phi,p}(z)$ and $\hat{\Sigma}_{\psi,q}(z)$, where k_0 is a kernel function defined on R^d and $h > 0$. Then, we use $\hat{\rho}_{p,q}(z) = \max_{a,b} a^T \hat{\Sigma}_{\phi,\psi,p,q}(z) b$ for estimating $\rho_{p,q}(z)$, where all pairs (a, b) satisfy

$$
a^T \hat{\Sigma}_{\phi, p}(z) a = 1 = b^T \hat{\Sigma}_{\psi, q}(z) b.
$$

Henceforth, the estimator $\hat{\rho}_{p,q}(z)$ will be abbreviated as $\hat{\rho}(z)$ for each z in Z.

2.2 A test for conditional independence and relative asymptotic properties

The conditional independence test that we use in this paper is based on $\hat{\rho}^2(z)$ at different z's. Since each $\hat{\rho}(z)$ is determined by the kernel estimators of certain conditional expectations, we first derive their joint asymptotic distribution. Then, we use $\sum_{i=1}^{k} \hat{f}_Z(z_i) \hat{\rho}^2(z_i)$'s as our test statistic and establish its consistency and asymptotic distribution. Here the z_i 's are selected points in $\mathcal Z$ and

$$
\hat{f}_Z(\cdot) = \frac{\sum_{t=1}^n k_0((Z_t - \cdot)/h)}{nh^d}
$$

is the kernel density estimator of f_Z : the Lebesgue pdf of Z. In order to avoid dealing with the boundary bias problem in kernel estimation, we consider a set \mathcal{Z}^0 that is contained in the interior of $\mathcal Z$ so that points in \mathcal{Z}^0 are away from the boundary of Z, and choose the z_i 's from \mathcal{Z}^0 .

Our first result is with regard to the joint asymptotic distribution of kernel estimators of some conditional expectations. In order to describe the assumptions, we first review the definition for α -mixing coefficients. For a strictly stationary process $\{U_t\}$, let \mathcal{F}_a^b denote the σ -algebra generated by (U_a, \ldots, U_b) . Then, the α -mixing coefficient at lag s for $\{U_t\}$ is

$$
\sup\left\{|P(A\cap B)-P(A)P(B)|:-\infty
$$

 ${U_t}$ is considered to be α -mixing if its α -mixing coefficient at lag s tends to 0 as s tends to ∞ . Let $\alpha(s)$ denote the α -mixing coefficient at lag s for the process $\{(X_t, Y_t, Z_t)\}\$. Our assumptions are provided below.

- (S0) The basis functions $\phi_{p,1}, \ldots, \phi_{p,p}$ and $\psi_{q,1}, \ldots, \psi_{q,q}$ are bounded and (5), (6) and (7) hold. For the sake of brevity, $\phi_{p,1}, \ldots, \phi_{p,p}$ and $\psi_{q,1}, \ldots, \psi_{q,q}$ will be abbreviated as ϕ_1, \ldots, ϕ_p and ψ_1, \ldots, ψ_q respectively hereafter.
- (S1) $\{(X_t, Y_t, Z_t) \in R^{d_1+d_2+d}, t \geq 0\}$ is a strictly stationary α -mixing process that satisfies $\alpha(\tau) = O(\tau^{-(1+\epsilon)})$, where $\epsilon > \max(1, d/2)$, d_1 , d_2 and d denote the dimensions of X_t , Y_t and Z_t respectively.
- (S2) Suppose that there exist \mathcal{Z}^0 : an open subset of the interior of $\mathcal Z$ and μ : σ -finite measure such that for every $z \in \mathcal{Z}^0$, the conditional distribution of (X, Y) given $Z = z$ has a pdf $f(\cdot|z)$ with respect to μ . Further, $f(x, y|z)$ and $f_Z(z)$ are twice differentiable with respect to z on \mathcal{Z}^0 .
- (S3) There exists a function h on $\mathcal{X} \times \mathcal{Y}$ such that

$$
\sup_{z \in \mathcal{Z}^0} \max \left(|f(x, y|z)|, \max_{1 \le i \le d} \left| \frac{\partial}{\partial z_i} f(x, y|z) \right|, \max_{1 \le i, j \le d} \left| \frac{\partial^2}{\partial z_i \partial z_j} f(x, y|z) \right| \right) \le h(x, y)
$$

and $\int h(x, y)d\mu(x, y) < \infty$.

(S4) There exist constants c_0 and c_1 such that

$$
\sup_{z \in \mathcal{Z}^0} \max \left(|f_Z(z)|, \max_{1 \le i \le d} \left| \frac{\partial}{\partial z_i} f_Z(z) \right|, \max_{1 \le i, j \le d} \left| \frac{\partial^2}{\partial z_i \partial z_j} f_Z(z) \right| \right) \le c_0
$$

and $1/f_Z(z) \leq c_1$ for $z \in \mathcal{Z}^0$.

(S5) k^* is a kernel function defined on R^1 , and k_0 is a product kernel on R^d that satisfies

$$
k_0(v_1, v_2, \dots, v_d) = k^*(v_1)k^*(v_2) \cdots k^*(v_d),
$$

 $k^* \geq 0$, $\sup_v k^*(v) < \infty$, $\int k^*(v)dv = 1$, $\int v k^*(v)dv = 0$, $\int v (k^*(v))^2 dv =$ 0 and $\kappa_2 = \int v^2 k^*(v) dv < \infty$.

(S6) As $n \to \infty$, the bandwidth $h \to 0$, $nh^d \to \infty$ and $nh^{d+4} \to 0$.

Under the above conditions, the joint asymptotic distribution of kernel estimators of conditional expectations can be established, as stated in Lemma 1. The proof for Lemma 1 is provided in Section 4.1.

LEMMA 1. Suppose that Conditions (S1)–(S6) hold. Suppose that g_1, g_2, \ldots , g_m are bounded functions defined on $\mathcal{X} \times \mathcal{Y}$. Suppose z_1, \ldots, z_k are distinct points in \mathcal{Z}^0 . For $i = 1, \ldots, k$, let

$$
\hat{g}_j(z_i) = \frac{\sum_{t=1}^n g_j(X_t, Y_t) k_0((Z_t - z_i)/h)}{\sum_{t=1}^n k_0((Z_t - z_i)/h)}
$$

be the kernel estimator of $g_j^*(z_i) \equiv E(g_j(X, Y)|Z = z_i)$. Further, let

$$
B_{s,j}(z_i) = \frac{\kappa_2}{2} (f_Z(z_i) g_{j,ss}^*(z_i) + 2f_s(z_i) g_{j,s}^*(z_i))
$$
\n(9)

and

$$
\mathbf{W}_{j,n}(z_i) = \sqrt{nh^d} \left(\hat{g}_j(z_i) - g_j^*(z_i) - h^2 \sum_{s=1}^d B_{s,j}(z_i) / f_Z(z_i) \right)
$$

 $for 1 \leq i \leq k$ and $1 \leq j \leq m$, where $g_{j,s}^{*}$ and $g_{j,ss}^{*}$ denote the first and the second partial derivatives of g_j^* with respect to the s-th component respectively and f_s denotes the first partial derivative of f_Z with respect to the s-th component. Let

$$
u_{j,t} = g_j(X_t, Y_t) - g_j^*(Z_t),
$$

\n
$$
c_{jj^*}(z_i) = E(u_{j,1}u_{j^*,1}|Z_1 = z_i),
$$

\n
$$
\sigma_j^2(z_i) = E(u_{j,1}^2|Z_1 = z_i),
$$

and

$$
\mathbf{W}_n = (\mathbf{W}_{1,n}(z_1),\ldots,\mathbf{W}_{1,n}(z_k),\ldots,\mathbf{W}_{m,n}(z_1),\ldots,\mathbf{W}_{m,n}(z_k))^T.
$$

Then, \mathbf{W}_n converges in distribution to a random vector

$$
(Z_{1,1}^*,\ldots,Z_{k,1}^*,\ldots,Z_{1,m}^*,\ldots,Z_{k,m}^*)^T\equiv Z^*,
$$

where Z^* is multivariate normal with mean 0 and for $1 \le i, i^* \le k$ and $1 \le k$ $j, j^* \leq m$,

$$
Cov(Z_{i,j}^*, Z_{i^*,j^*}^*) = \begin{cases} \kappa^d \sigma_j^2(z_i) / f_Z(z_i) & \text{if } i = i^* \text{ and } j = j^*; \\ \kappa^d c_{jj^*}(z_i) / f_Z(z_i) & \text{if } i = i^* \text{ and } j \neq j^*; \\ 0 & \text{if } i \neq i^*, \end{cases}
$$

where $\kappa = \int (k^*(v))^2 dv$.

Now, suppose that the basis functions ϕ_l 's and ψ_{m^*} 's are linearly independent. For the sake of convenience, for $z \in \{z_1, \ldots, z_k\}$, we apply certain linear transformations to ϕ_l 's and ψ_{m^*} 's to obtain new basis functions ϕ_l^* 's and $\psi_{m^*}^*$'s (the $\hat{\rho}(z)$ remains unchanged under such transformations). Take $g_1(X, Y), \ldots$, $g_m(X,Y)$ to be the functions $\phi_l^*(X)\phi_{l'}^*(X)$, $\phi_l^*(X)\psi_{m^*}^*(Y)$ and $\psi_{m^*}^*(Y)\psi_{m'}^*(Y)$, where $1 \leq l \leq l' \leq p$ and $1 \leq m^* \leq m' \leq q$. Then, the consistency of $\hat{\rho}(z)$ can be established and we have Theorem 1. The proof for Theorem 1 is provided in Section 4.2.

THEOREM 1. Suppose that conditions $(S0)$ – $(S6)$ hold and the basis functions ϕ_l 's and ψ_{m^*} 's are linearly independent. Suppose z_1, \ldots, z_k are distinct points in \mathcal{Z}^0 . Then,

$$
\sum_{i=1}^{k} (\hat{\rho}^{2}(z_{i}) - \rho_{p,q}^{2}(z_{i}))^{2} = O_{p} \left(\frac{1}{nh^{d}} + h^{4} \right)
$$

 $\left(\frac{k}{\sum_{i=1}^{k}}\right)$ $i=1$ $\hat{f}_Z(z_i)\hat{\rho}^2(z_i)-\sum_{}^k$ $i=1$ $f_Z(z_i)\rho_{p,q}^2(z_i)$ \setminus^2 $= O_p\left(\frac{1}{\pi h}\right)$ $\frac{1}{nh^d} + h^4$

 \sum The following theorem states the approximate distribution of the statistic $\int_{i=1}^{k} \hat{f}_Z(z_i) \hat{\rho}^2(z_i)$ when X and Y are conditionally independent given Z.

THEOREM 2. Suppose that the conditions in Theorem 1 hold and X and Y are conditionally independent given Z. Then,

$$
\frac{nh^d}{\kappa^d} \sum_{i=1}^k \hat{f}_Z(z_i) \hat{\rho}^2(z_i) \text{ converges in distribution to } \sum_{i=1}^k \lambda_i
$$

as n tends to ∞ , where the λ_i 's are IID and have the same distribution as the largest eigenvalue of a matrix CC^T , where C is a $(p-1) \times (q-1)$ matrix whose elements are IID $N(0, 1)$.

The proof of Theorem 2 is provided in Section 4.3. Theorem 2 is similar to Theorem 3.2 given in [7]. The main difference between the two is that Theorem 2 can be applied to α -mixing data. In addition, p and q are held fixed in Theorem 2, while they are allowed to depend on n and tend to ∞ as n tends to ∞ in Theorem 3.2 in [7].

According to Theorem 2, a test that rejects H_0 if

$$
\frac{nh^d}{\kappa^d} \sum_{i=1}^k \hat{f}(z_i) \hat{\rho}^2(z_i) \ge F_{1-\alpha}^* \tag{10}
$$

is of approximate level α , where F^* is the distribution function of $\sum_{i=1}^k \lambda_i$ and $F_{1-\alpha}^*$ is the $1-\alpha$ quantile of F^* . Theorem 3 states that the test with rejection region in (10) is consistent if p and q are sufficiently large and one of the $\rho(z_i)$'s is positive. The proof for this theorem is provided in Section 4.4.

THEOREM 3. Suppose that $\rho(z_i) > 0$ for some z_i and p and q are sufficiently large so that $\rho_{p,q}(z_i) > 0$. Then, for $0 < \alpha < 1$, the probability that (10) holds tends to 1 as $n \to \infty$.

3 Simulation studies and application to S&P500 index data

3.1 Simulation studies

In this section, we conduct several simulation studies for illustrating the performance of our test. The data generating processes, labeled Data1 – Data13, are described below. In order to make our simulation results comparable with those of the test proposed by Su and White [13], some of our data generating processes (Data1–Data10) are the same as theirs. Throughout the description for Data1–Data10, $(\epsilon_{1,t}, \epsilon_{2,t}, \epsilon_{3,t})$ are IID $N(0, I_3)$.

and

Data1: $(X_t, Y_t, Z_t) = (\epsilon_{1,t}, \epsilon_{2,t}, \epsilon_{3,t}).$ Data2: $X_t = 0.5X_{t-1} + \epsilon_{1,t}$, $Y_t = 0.5Y_{t-1} + \epsilon_{2,t}$ and $Z_t = X_{t-1}$. Date3: $X_t = \epsilon_{1,t}\sqrt{0.01 + 0.5X_{t-1}^2}$, $Y_t = 0.5Y_{t-1} + \epsilon_{2,t}$ and $Z_t = X_{t-1}$. Data4: $X_t = \epsilon_{1,t} \sqrt{h_{1,t}}, Y_t = \epsilon_{2,t} \sqrt{h_{2,t}}, Z_t = X_{t-1}, h_{1,t} = 0.01 +$ $0.9h_{1,t-1} + 0.05X_{t-1}^2$ and $h_{2,t} = 0.01 + 0.9h_{2,t-1} + 0.05Y_{t-1}^2$. Data5: $X_t = 0.5X_{t-1} + 0.5Y_t + \epsilon_{1,t}$, $Y_t = 0.5Y_{t-1} + \epsilon_{2,t}$ and $Z_t = X_{t-1}$. Data6: $X_t = 0.5X_{t-1} + 0.5Y_t^2 + \epsilon_{1,t}$, $Y_t = 0.5Y_{t-1} + \epsilon_{2,t}$ and $Z_t = X_{t-1}$. Data7: $X_t = 0.5X_{t-1}Y_t + \epsilon_{1,t}$, $Y_t = 0.5Y_{t-1} + \epsilon_{2,t}$ and $Z_t = X_{t-1}$. Data8: $X_t = 0.5X_{t-1} + 0.5Y_t\epsilon_{1,t}$, $Y_t = 0.5Y_{t-1} + \epsilon_{2,t}$ and $Z_t = X_{t-1}$. Data9: $X_t = \epsilon_{1,t}\sqrt{0.01 + 0.5X_{t-1}^2 + 0.25Y_t^2}$, $Y_t = 0.5Y_{t-1} + \epsilon_{2,t}$ and $Z_t =$ X_{t-1} . Data10: $X_t = \epsilon_{1,t} \sqrt{h_{1,t}}, Y_t = \epsilon_{2,t} \sqrt{h_{2,t}}, Z_t = X_{t-1}, h_{1,t} = 0.01 +$ $0.1h_{1,t-1} + 0.4X_{t-1}^2 + 0.5Y_t^2$ and $h_{2,t} = 0.01 + 0.9h_{2,t-1} + 0.5Y_t^2$. Data11: $(X_t, Y_t, Z_t) = (\epsilon_{1,t}, \epsilon_{2,t}, \epsilon_{3,t}),$ where $(\epsilon_{1,t}, \epsilon_{2,t}, \epsilon_{3,t})$ are IID $LN(0, I_3)$. Data12: $X_t = \epsilon_{1,t}\epsilon_{1,t-1}$, $Y_t = \epsilon_{2,t}\epsilon_{2,t-1}$ and $Z_t = X_{t-1}$, where $(\epsilon_{1,t}, \epsilon_{2,t})$ are IID $LN(0, I_2)$. Data13: $X_t = \epsilon_{1,t} \epsilon_{2,t-1}$, $Y_t = \epsilon_{1,t}^2 \epsilon_{2,t-1}$ and $Z_t = \epsilon_{2,t-1}$, where $(\epsilon_{1,t}, \epsilon_{2,t})$ are IID $LN(0, I_2)$.

Here, Data1 – Data4, Data11 and Data12 are used for examining the level of the test, and Data5 – Data10 and Data13 are used for checking the power.

3.1.1 Simulation studies based on asymptotic distribution of the test statistic

We first apply our test using the asymptotic distribution of the test statistic.

Parameter set-up: In order to apply our test, certain parameters need to be specified, including the kernel function k^* , the kernel bandwidth h and the basis functions. For the sake of simplicity, in all the simulation experiments, we take the kernel bandwidth h to be $cn^{-0.25}$, where n is the sample size and $c \in \{0.5, 1, 1.5, 2\}$; we use the following kernel function:

$$
k^*(x) = \begin{cases} 1-x & \text{if } 0 \le x \le 1; \\ x+1 & \text{if } -1 \le x < 0. \end{cases}
$$

In addition, the basis functions $\phi_1^*, \ldots, \phi_p^*$ and $\psi_1^*, \ldots, \psi_q^*$ are selected in the following manner. For $i = 1, \ldots, p$ and $j = 1, \ldots, q$, let

$$
\phi_i(x) = \begin{cases} 1 & \text{if } \frac{i-1}{p} \le x < \frac{i}{p}; \\ 0 & \text{otherwise} \end{cases} \tag{11}
$$

$$
\psi_j(y) = \begin{cases} 1 & \text{if } \frac{j-1}{q} \le y < \frac{j}{q}; \\ 0 & \text{otherwise,} \end{cases} \tag{12}
$$

where $p = q = 4$. Since the basis functions are defined on [0, 1], we transform the data $(X_t, Y_t, Z_t)_{t=1}^n$ into $(F_1(X_t), F_2(Y_t), F_3(Z_t))_{t=1}^n$ before using the test, where F_1 , F_2 and F_3 denote the empirical CDF's of $\{X_t\}_{t=1}^n$, $\{Y_t\}_{t=1}^n$ and $\{Z_t\}_{t=1}^n$ respectively. For the choice of the evaluation points, we take $z_1 = 0.78n^{-0.25} \equiv$ h_0 and $z_i = z_{i-1} + 2h_0$ if $i \geq 2$ and $z_i \leq 1 - h_0$.

Table 1 shows that the levels of the test are less than 0.05 for $c = 0.5$ and $c = 1$ and the powers of the test are larger for larger c's. It seems that when $c = 1$, the levels of the test are close to 0.05 and the power performance is fine.

	$n=500$				$n = 1000$			
	$c=0.5$	$c=1$	$c=1.5$	$c=2$	$c=0.5$	$c=1$	$c=1.5$	$c=2$
Data1	0.030	0.039	0.053	0.071	0.043	0.048	0.057	0.074
Data2	0.030	0.041	0.058	0.074	0.033	0.048	0.060	0.069
Data3	0.032	0.042	0.055	0.080	0.038	0.049	0.055	0.070
Data4	0.038	0.044	0.057	0.075	0.042	0.048	0.057	0.066
Data5	0.951							
Data6	0.898	1			0.997			
Data7	0.918				0.985			
Data8	0.995	1						
Data9	0.725	0.991	1		0.993			
Data10	0.374	0.817	0.959	0.986	0.819	0.996	1	
Data11	0.036	0.050	0.062	0.079	0.035	0.042	0.049	0.059
Data12	0.036	0.051	0.055	0.072	0.041	0.041	0.053	0.065
Data13								

Table 1: Power results for different c's when $n = 500$ and $n = 1000$

3.1.2 Simulation studies based on local bootstrap

The test based on asymptotic distribution of the test statistic does not work well for small sample sizes. Figure 1 shows that the distribution of the test statistic and the asymptotic distribution are quite different for Data11 when $n = 100$. For Data1 – Data4 and Data12, we find similar patterns. When $n = 200$, the difference between the distribution of the test statistic and the asymptotic distribution become smaller but is still visible.

To apply our test for small sample sizes, we consider the local bootstrap procedure proposed by Paparoditis and Politis [11]. The local bootstrap procedure is described below. For a given sample $\{(X_t, Y_t, Z_t)\}_{t=1}^n$, a local bootstrap sample $\{(X_t^*, Y_t^*, Z_t^*)\}_{t=1}^n$ is generated according to the following steps.

(a) Draw a random sample $(Z_1^*, Z_2^*, \ldots, Z_n^*)$ from the empirical cumulative

and

Figure 1: Exact distribution (solid line) versus asymptotic distribution (dashed line) of the test statistic with different bandwidth choices $(h = cn^{-1/4})$

distribution function \hat{F}_Z , where

$$
\hat{F}_Z(z) = \frac{1}{n} \sum_{t=1}^n I_{(-\infty, Z_t]}(z).
$$

(b) For $1 \le t \le n$, we draw X_t^* and Y_t^* independently from the empirical cumulative distribution functions $\hat{F}_{X|Z=Z_t^*}$ and $\hat{F}_{Y|Z=Z_t^*}$ respectively, where

$$
\hat{F}_{X|Z=Z_t^*}(x) = \frac{\sum_{t=1}^n k^*((Z_t^*-Z_t)/b)I_{(-\infty, X_t]}(x)}{\sum_{t=1}^n k^*((Z_t^*-Z_t)/b)}
$$

and

$$
\hat{F}_{Y|Z=Z_t^*}(y) = \frac{\sum_{t=1}^n k^*((Z_t^*-Z_t)/b)I_{(-\infty,Y_t]}(y)}{\sum_{t=1}^n k^*((Z_t^*-Z_t)/b)}.
$$

Here, the bandwidth *b* is taken to be $n^{-0.2}$ and the kernel function k^* is the probability density function for $N(0, 1)$.

In order to determine the rejection region for a given sample, we repeat the above procedure to obtain bootstrap resamples and compute the test statistic $nh^d\kappa^{-d}\sum_{i=1}^k \hat{f}(z_i)\hat{\rho}^2(z_i)$ for the original sample and each local bootstrap resample. For a given level α , if the test statistic based on the given sample is larger than the $(1 - \alpha)$ quantile of the test statistics that are computed based on the local bootstrap resamples, we reject the conditional independence hypothesis at level α . The purpose of using the local bootstrap procedure is to generate a resample $\{(X_t^*, Y_t^*, Z_t^*)\}_{t=1}^n$ such that the distribution of Z^* , the conditional distributions of X^* given $Z^* = z$ and Y^* given $Z^* = z$ are close to the distribution of Z, the conditional distributions of X given $Z = z$ and Y given $Z = z$ respectively. In addition, since X_t^* and Y_t^* are generated independently given $Z_t^* = z$, they are conditionally independent given $Z_t^* = z$, irrespective of whether or not X and Y are conditionally independent given Z .

In these simulation studies, we choose the basis functions in (11) and (12) with $p = q = 5$. The evaluation points are $\{0.2, 0.4, 0.6, 0.8\}$, and the kernel bandwidth h to be $cn^{-0.25}$, where n is the sample size and $c \in \{0.5, 1, 1.5, 2\}$.

Finally, we present a few experimental results of our test (Test 1) and Su and White's test (Test 2). For Test 2, we run the simulations for Data11 – Data13 with the bandwidth $h_n = c^* n^{-1/8.5}$, where $c^* = 1$ or 2. Each power estimate is based on 3000 repetitions, where 1000 local bootstrap resamples are used in each repetition. For the sake of comparison, we also list some power estimates for Test 2 for Data1 – Data10, which are taken directly from [13]. They use 250 repetitions with 200 local bootstrap resamples for each repetition.

Tables 2 and 3 indicate the level and power estimates for Test 1 and Test 2 at significance level 5% when the sample sizes are 100 and 200 respectively.

	Data1	Data2	Data3	Data4	Data ₅	Data6	Data7
Test $2.c^* = 1$	0.096	0.060	0.048	0.072	0.668	0.756	0.388
Test $2.c^* = 2$	0.072	0.036	0.072	0.048	0.952	0.944	0.576
Test $1, c = 0.5$	0.045	0.061	0.046	0.062	0.525	0.479	0.265
Test $1,c=1$	0.046	0.050	0.050	0.047	0.746	0.717	0.400
Test $1, c = 1.5$	0.040	0.052	0.056	0.055	0.814	0.779	0.329
Test $1,c=2$	0.041	0.050	0.053	0.062	0.852	0.793	0.218
	Data8	Data9	Data10	Data11	Data12	Data13	
Test $2,c^* = 1$	0.860	0.828	0.680	0.034	0.043	0.589	
Test $2.c^* = 2$	0.940	0.988	0.912	0.022	0.022	0.859	
Test $1.c = 0.5$	0.692	0.357	0.195	0.058	0.050	1	
Test $1,c=1$	0.873	0.566	0.320	0.049	0.048	1	
Test $1, c = 1.5$	0.889	0.618	0.341	0.049	0.041	1	
Test $1,c=2$	0.860	0.631	0.348	0.046	0.045	1	

Table 2: Power comparison between Tests 1 and 2 when $n = 100$

Table 3: Power comparison between Tests 1 and 2 when $n = 200$

3.2 Application to S&P500 index data

In this section, we apply the linear Granger causality test (hereafter denoted by Test LIN) and our conditional independence test (Test 1) in order to check the interaction between returns and volume for S&P500 index data at one day lag. There are 2514 observations for daily index returns and trading volume from January 2000 to December 2009, taken from Yahoo Finance. Here, the return for day t is defined as

$$
R_t = 100 \log \left(\frac{P_t}{P_{t-1}} \right),\,
$$

where P_t is the index value for day t. Moreover, the trading volume for day t (in dollars), denoted by V_t , is transformed into

$$
V_t^* = \log\left(\frac{V_t}{V_{t-1}}\right).
$$

The above transformations are commonly used in the analysis for financial data; for example, see Hiemstra and Jones [6] and [1]. The augmented Dickey-Fuller test reveals that the series $\{R_t\}$ and $\{V_t^*\}$ are stationary.

In order to examine whether ${R_t}$ is useful for predicting ${V_t^*}$, we consider the effects up to lag 1. Specifically, we test

$$
H_0: V_t^* \perp R_{t-1} | V_{t-1}^* \tag{13}
$$

using Test 1. For Test LIN, it is assumed that

$$
E(V_t^* | R_{t-1}, V_{t-1}^*) = a_1 R_{t-1} + b_1 V_{t-1}^*
$$

and the null hypothesis is

$$
H_0: a_1 = 0. \t\t(14)
$$

We use the notation $R_{t-1} \npreceq V_t^*$ to denote the relation expressed in (13) or (14). The notation $V_{t-1}^* \nightharpoonup R_t$ is defined analogously.

The p-values for Test LIN and Test 1 are provided in Table 4. For Test 1, we use the same parameter set-up as in Section 3.1.1 and find both the return-to-volume and volume-to-return relationships are significant at the 5% level. However, for Test LIN, the volume-to-return relationship is not significant. These findings are consistent with the results obtained in [6] and [1].

	V^*_\ast $R_{t-1} \not\Rightarrow$	$\not\Rightarrow R_t$	
Test LIN	0.000	0.804	
Test 1	0.001	0.032	

Table 4: p-values for Test LIN and Test 1 for testing the relationship between returns and volume changes

To illustrate the implementation of our test for the $d > 1$ case, we also apply the test to test

$$
H_0: V_t^* \perp (R_{t-1}, R_{t-2}) | (V_{t-1}^*, V_{t-2}^*)
$$
\n
$$
(15)
$$

and

$$
H_0: R_t \perp (V_{t-1}^*, V_{t-2}^*) | (R_{t-1}, R_{t-2}).
$$
\n
$$
(16)
$$

The empirical CDF transforms are applied component-wisely. For instance, we transform $(V_{t-1}^*, V_{t-2}^*,)_{{t=4}}^n$ into $(F_1(V_{t-1}^*), F_2(V_{t-2}^*))_{t=4}^n$, where $n = 2512$ and F_i is the empirical CDF of V_{t-i}^* for $i = 1, 2$. For the basis functions, we use 4 basis functions on [0, 1]: ϕ_1, \ldots, ϕ_4 and 4 basis functions ψ_1, \ldots, ψ_4 on [0, 1]², where ϕ_1, \ldots, ϕ_4 are given in (11) with $p = 4$, $\psi_1(y_1, y_2) = I_{[0,0.5)}(y_1)I_{[0,0.5)}(y_2)$, $\psi_2(y_1, y_2) = I_{[0,0.5)}(y_1)I_{[0.5,1)}(y_2), \ \psi_3(y_1, y_2) = I_{[0.5,1)}(y_1)I_{[0,0.5)}(y_2)$ and ψ_4 $1-\psi_1-\psi_2-\psi_3$. Here $I_A(\cdot)$ denotes the indicator function on A. In addition, the kernel bandwidth is $cn^{-1/(d+\delta)}$ with $c = 1.4$ and $\delta = 2.4$. The evaluation points are all the points in $S_{h_0}^2$, where $S_{h_0} = \{(2k-1)h_0 : k \text{ is an integer }\} \cap [h_0, 1-h_0]$ and $h_0 = 0.78n^{-1/(d+\delta)}$. Here c and δ are selected from certain candidate values so that the levels of the test are close to 0.05 when the data are IID $U(0, 1)$. The p-values for (15) and (16) are 0.017 and 0.370 respectively.

Some remarks on the implementation of the test.

- It is recommended to choose evaluation points so that two evaluation points, z_i and z_j , are at least 2h away (for each component) when a compact kernel supported on $[-1, 1]^d$ is used. In such case, the $\hat{\rho}(z_i)$ and $\hat{\rho}(z_i)$ are independent for IID data, which makes the distribution of the test statistic close to the derived asymptotic distribution. Since $nh^d \to \infty$, h cannot be too small, which implies that the number of evaluation points cannot be too large.
- We apply empirical CDF transforms to our data so that the distribution of each component of X, Y and Z is supported on $[0, 1]$. The transforms are data dependent and it is not clear whether the transformed data can

be treated as if they were transformed by the true underlying CDF. The simulation results are fine, but further investigation is needed.

4 Proofs

In this section, we give proofs for Theorems $1 - 3$ and Lemma 1. Before giving the proofs, we first define and recall some notations. Recall that k^* is a kernel on R^1 and k_0 is a product kernel on R^d defined by

$$
k_0(v_1, v_2, \dots, v_d) = k^*(v_1)k^*(v_2)\cdots k^*(v_d),
$$

$$
\kappa = \int (k^*(v))^2 dv
$$

and $\kappa_2 = \int v^2 k^*(v) dv$.

For a $(p+q) \times (p+q)$ matrix V_0 , let $g_{1,1}(V_0)$, $g_{1,2}(V_0)$, $g_{2,1}(V_0)$ and $g_{2,2}(V_0)$ denote the matrices of dimensions $p \times p$, $p \times q$, $q \times p$, $q \times q$ respectively such that

$$
V_0 = \begin{pmatrix} g_{1,1}(V_0) & g_{1,2}(V_0) \\ g_{2,1}(V_0) & g_{2,2}(V_0) \end{pmatrix}.
$$

4.1 Proof of Lemma 1

For simplicity, we prove the lemma only for the case where $m = 2$ and $k = 2$. For $t = 1, 2, \ldots, n$, $i = 1, 2$ and $j = 1, 2$, let

$$
\hat{\eta}_{j,1}(z_i) = (nh^d)^{-1} \sum_{t=1}^n (g_j^*(Z_t) - g_j^*(z_i)) k_0 \left(\frac{Z_t - z_i}{h}\right),
$$

$$
\hat{\eta}_{j,2}(z_i) = (nh^d)^{-1} \sum_{t=1}^n u_{j,t} k_0 \left(\frac{Z_t - z_i}{h}\right)
$$

and $\hat{\eta}_j(z_i) = \hat{\eta}_{j,1}(z_i) + \hat{\eta}_{j,2}(z_i)$. Then, $\hat{g}_j(z_i) - g_j^*(z_i) = \hat{\eta}_j(z_i) / \hat{f}_Z(z_i)$, where $\hat{f}_Z(z_i) = (1/(nh^d)) \sum_{t=1}^n k_0((Z_t - z_i)/h)$. We can complete the proof using the following results $(A1)-(A3)$:

(A1) Suppose that the conditions in Lemma 1 hold. Then, for $1 \le i, j \le 2$,

$$
\hat{\eta}_{j,1}(z_i) = h^2 \sum_{s=1}^d B_{s,j}(z_i) + o_p\left(h^3 + (nh^d)^{-1/2}\right).
$$

(A2) Suppose that the conditions in Lemma 1 hold. Then,

$$
Z_n^* \equiv \sqrt{nh^d} \begin{pmatrix} \hat{\eta}_{1,2}(z_1) \\ \hat{\eta}_{2,2}(z_1) \\ \hat{\eta}_{1,2}(z_2) \\ \hat{\eta}_{2,2}(z_2) \end{pmatrix} \stackrel{D}{\rightarrow} Z,
$$

where the distribution of Z is $N(0, \Sigma)$ and Σ is

$$
\begin{pmatrix}\n\kappa^d \sigma_1^2(z_1) f_Z(z_1) & \kappa^d c_{12}(z_1) f_Z(z_1) & 0 & 0 \\
\kappa^d c_{12}(z_1) f_Z(z_1) & \kappa^d \sigma_2^2(z_1) f_Z(z_1) & 0 & 0 \\
0 & 0 & \kappa^d \sigma_1^2(z_2) f_Z(z_2) & \kappa^d c_{12}(z_2) f_Z(z_2) \\
0 & 0 & \kappa^d c_{12}(z_2) f_Z(z_2) & \kappa^d \sigma_2^2(z_2) f_Z(z_2)\n\end{pmatrix}.
$$

(A3) Suppose that $(X_{n1}, X_{n2},..., X_{nk})^T \stackrel{D}{\to} (Y_1, Y_2,..., Y_k)^T$ and $(Z_{n1}, Z_{n2},..., Z_{nk})^T$ $\stackrel{D}{\rightarrow}$ $(c_1, c_2, \ldots, c_k)^T$, where c_1, c_2, \ldots, c_k are constants. Then,

$$
(X_{n1}Z_{n1}, X_{n2}Z_{n2},..., X_{nk}Z_{nk})^T \stackrel{D}{\to} (c_1Y_1, c_2Y_2,..., c_kY_k)^T.
$$

From (A1),(A2) and the assumption that $nh^{d+4} \to 0$, we have

$$
\sqrt{nh^d} \begin{pmatrix} \hat{\eta}_1(z_1) - h^2 \sum_{s=1}^d B_{s,1}(z_1) \\ \hat{\eta}_2(z_1) - h^2 \sum_{s=1}^d B_{s,2}(z_1) \\ \hat{\eta}_1(z_2) - h^2 \sum_{s=1}^d B_{s,1}(z_2) \\ \hat{\eta}_2(z_2) - h^2 \sum_{s=1}^d B_{s,2}(z_2) \end{pmatrix} \sim Z + (nh^d)^{1/2} o_p \left(h^3 + \frac{1}{\sqrt{nh^d}} \right) \stackrel{D}{\to} Z,
$$

where $A \sim B$ means that the distributions of A and B are the same. Apply (A3) and we have Lemma 1.

The proofs of (A1)-(A3) are given below.

• Proof of (A1). Note that

$$
E(\hat{\eta}_{j,1}(z_i)) = \frac{1}{h^d} \int (g_j^*(z_t) - g_j^*(z_i)) k_0 \left(\frac{z_t - z_i}{h}\right) f_Z(z_t) dz_t
$$

\n
$$
= \int \left(g_j^*(z_i + h\nu) - g_j^*(z_i)\right) k_0(\nu) f_Z(z_i + h\nu) d\nu
$$

\n
$$
\nu = (\nu_{1, \dots, \nu_d}) \int h \sum_{s=1}^d g_{j,s}^*(z_i) \nu_s f_Z(z_i) k_0(\nu) d\nu
$$

\n
$$
+ \int h^2 \left(\sum_{s=1}^d g_{j,s}^*(z_i) \nu_s\right) \left(\sum_{s=1}^d f_s(z_i) \nu_s\right) k_0(\nu) d\nu
$$

\n
$$
+ \frac{1}{2} \int h^2 f_Z(z_i) \sum_{s=1}^d \sum_{s'=1}^d g_{j,ss'}^*(z_i) \nu_s \nu_{s'} k_0(\nu) d\nu + O(h^3)
$$

\n
$$
= h^2 \sum_{s=1}^{\kappa_2} \sum_{s'=1}^d (f_Z(z_i) g_{j,ss}^*(z_i) + 2f_s(z_i) g_{j,s}^*(z_i)) + O(h^3)
$$

\n
$$
= h^2 \sum_{s=1}^d B_{s,j}(z_i) + O(h^3).
$$

Let $K_{i,j,t} = h^{-d} (g_j^*(Z_t) - g_j^*(z_i)) k_0((Z_t - z_i)/h)$. Then, we have

$$
Var\left(\hat{\eta}_{j,1}(z_i)\right) = \frac{1}{n^2} \left(\sum_{t=1}^n Var(K_{i,j,t}) + \sum_{t=1}^n \sum_{s=1, s \neq t}^n Cov(K_{i,j,t}, K_{i,j,s}) \right).
$$

Since

$$
Var(K_{i,j,t}) = E\left(K_{i,j,t}^2\right) - \left(E(K_{i,j,t})\right)^2
$$

\n
$$
= \frac{1}{h^d} \int \left(g_j^*(z_i + h\nu) - g_j^*(z_i)\right)^2 \left(k_0(\nu)\right)^2 f_Z(z_i + h\nu) d\nu
$$

\n
$$
- \left(f_Z(z_i)h \int \sum_{s=1}^d g_{j,s}^*(z_i) \nu_s k_0(\nu) d\nu + O(h^2)\right)^2
$$

\n
$$
= \frac{1}{h^d} O(h^2) - O(h^4),
$$

 $\sum_{t=1}^{n} Var(K_{i,j,t}) = O(nh^{2-d}).$ Note that from Corollary A.2 in Hall and Heyde [5] and the fact that for $2 < \beta < 2(2+d)/d$, $E(\left|K_{i,j,t}^{\beta}\right|) =$ $O(h^{2+d-\beta d})$, we have

$$
\left| \sum_{s \neq t} Cov(K_{i,j,t}, K_{i,j,s}) \right| = \left| 2 \sum_{t=1}^{n} \sum_{s>t}^{n} Cov(K_{i,j,t}, K_{i,j,s}) \right|
$$

$$
\leq 2n \sum_{s=1}^{\infty} |Cov(K_{i,j,1}, K_{i,j,1+s})|
$$

$$
\leq 16nO(h^{2(2+d-\beta d)/\beta}) \sum_{s=1}^{\infty} \alpha^{(\beta-2)/\beta}(s).
$$

Therefore,

$$
Var\left(\hat{\eta}_{j,1}(z_i)\right) = O\left(\frac{h^2}{nh^d}\right) + O\left(\frac{h^{2(2+d-\beta d)/\beta}}{n}\right) = o\left(\frac{1}{nh^d}\right)
$$

From the above results, $\hat{\eta}_{j,1}(z_i) = h^2 \sum_{s=1}^d B_{s,j}(z_i) + o_p(h^3 + (nh^d)^{(-1/2)})$.

• Proof of $(A2)$. By the Cramér-Wold Theorem, it is sufficient to prove that $c^T Z_n^*$ converges in distribution to $c^T Z$ for any $c = (c_1, c_2, c_3, c_4)^T$ in R^4 . We use "big-small block" arguments to complete the proof. Assume that there exist positive integers $p = p(n)$, $q = q(n)$ and $k = k(n) = [n/(p+q)]$ (the integer part of $n/(p+q)$) such that as $n \to \infty$,

$$
p \to \infty, q \to \infty, p = o(n), q = o(p), p = o\left((nh^d)^{1/2}\right),
$$

\n
$$
np^{-1}\alpha(q) = o(1), ph^d = o(1), p^{\epsilon}h^d \to \infty.
$$

Let

$$
Z_{n,t} = \frac{1}{\sqrt{h^d}} \left(c_1 u_{1,t} k_0 \left(\frac{Z_t - z_1}{h} \right) + c_2 u_{2,t} k_0 \left(\frac{Z_t - z_1}{h} \right) + c_3 u_{1,t} k_0 \left(\frac{Z_t - z_2}{h} \right) + c_4 u_{2,t} k_0 \left(\frac{Z_t - z_2}{h} \right) \right).
$$

Then, we have $c^T Z_n^* = \frac{1}{\sqrt{n}} \sum_{t=1}^n Z_{n,t} \equiv \frac{1}{\sqrt{n}} W_n$. Let $\xi_j = \sum_{t=j(p+q)+1}^{(j+1)p+jq} Z_{n,t}$ and $\zeta_j = \sum_{t=(j+1)p+jq+1}^{(j+1)(p+q)} Z_{n,t}$ for $j=0,1,\ldots,k-1$, and $\zeta_k = \sum_{t=k(p+q)+1}^{n} Z_{n,t}$. Then, $W_n =$ \sum^{k-1} $j=0$ ξ_j $\overline{W_{n1}}$ $+$ \sum^{k-1} $j=0$ ζ_j $\overline{W_{n2}}$ $+\zeta_k$. In order to prove this lemma, it suffices

to show that as $n \to \infty$,

(1) $\left| E(\exp(itW_{n1})) - \prod_{j=0}^{k-1} E(\exp(it\xi_j)) \right| \to 0,$ (2) $\frac{1}{\sqrt{n}}W_{n2} \stackrel{p}{\rightarrow} 0$ and $\frac{1}{\sqrt{n}}\zeta_k \stackrel{p}{\rightarrow} 0$, (3) $\sigma_n^2 \equiv \sum_{j=0}^{k-1} E(\xi_j^2) = n(\sigma^2 + o(1)),$ (4) $\frac{1}{\sigma_n^2} \sum_{j=0}^{k-1} E(\xi_j^2 I(|\xi_j| > \varepsilon \sqrt{\sigma_n^2})) \to 0$ for any $\varepsilon > 0$,

where

$$
\sigma^{2} = c_{1}^{2} \kappa^{d} f_{Z}(z_{1}) \sigma_{1}^{2}(z_{1}) + c_{2}^{2} \kappa^{d} f_{Z}(z_{1}) \sigma_{2}^{2}(z_{1}) \n+ c_{3}^{2} \kappa^{d} f_{Z}(z_{2}) \sigma_{1}^{2}(z_{2}) + c_{4}^{2} \kappa^{d} f_{Z}(z_{2}) \sigma_{2}^{2}(z_{2}) \n+ 2c_{1}c_{2} \kappa^{d} f_{Z}(z_{1}) c_{12}(z_{1}) + 2c_{3}c_{4} \kappa^{d} f_{Z}(z_{2}) c_{12}(z_{2}).
$$

The verification of the above expression for σ_n^2 is given in Section 4.5.

We now prove these results respectively. From Lemma 18.2 in Li and Racine [9], which is due to Volkonskii and Rozanov [14],

$$
\left| E(\exp(itW_{n1})) - \prod_{j=0}^{k-1} E(\exp(it\xi_j)) \right| \le 16k\alpha(q) = O\left(\frac{n}{p}\alpha(q)\right) = o(1),
$$

we obtain (1). In order to prove (2), we first consider W_{n2} . Note that

$$
E(W_{n2}^2) = Var(\sum_{j=0}^{k-1} \zeta_j) = \underbrace{kVar(\zeta_0)}_{(P1)} + \underbrace{\sum_{i=0}^{k-1} \sum_{j=0, j \neq i}^{k-1} Cov(\zeta_i, \zeta_j)}_{(P2)}.
$$

Computation of (P1). Note that from

$$
Var(\zeta_0) = \sum_{i=1}^{q} Var(Z_{n,i}) + 2 \sum_{i=1}^{q} \sum_{j>i}^{q} Cov(Z_{n,i}, Z_{n,j}),
$$

$$
\sum_{i=1}^{q} Var(Z_{n,i}) = q\sigma^2 + O(qh^2),
$$

and the fact that

$$
2\sum_{i=1}^{q} \sum_{j>i}^{q} Cov(Z_{n,i}, Z_{n,j}) = 2q \sum_{j=1}^{q} (1 - \frac{j}{q})Cov(Z_{n,1}, Z_{n,1+j}) = O(q^2 h^d),
$$

we have that

$$
Var(\zeta_0) = q\sigma^2 + O(q^2h^d) + O(qh^2) = q\sigma^2(1 + o(1)).
$$

Therefore,

$$
(P1) = kq\sigma^{2}(1 + o(1)) = O(kq) = o(n).
$$

Computation of (P2). Note that from Theorem A.5 in [5],

$$
|(P2)| = \left| 2 \sum_{i=0}^{k-1} \sum_{j>i}^{k-1} Cov(\zeta_i, \zeta_j) \right|
$$

\n
$$
\leq 2 \sum_{i=1}^{n-p} \sum_{j=i+p}^{n} |Cov(Z_{n,i}, Z_{n,j})| \leq 2n \sum_{j=p}^{\infty} |Cov(Z_{n,1}, Z_{n,1+j})|
$$

\n
$$
\leq 2n \sum_{j=p}^{\infty} 4C_{1n} C_{2n} \alpha(j) \leq C^* \frac{n}{h^d} \sum_{j=p}^{\infty} \alpha(j) = o(n),
$$

where $C_{in} = 4 \max |c_k| \sup |u_{s,1}| \sup |k_0|/$ h^d for $i = 1, 2$. Then, we have $E(W_{n2}^2)/n = o(1)$. Similarly, $Var(\zeta_k) = O(p+q) = o(n)$, so (2) holds. By stationarity and the same arguments in (1), we have $Var(\xi_0) = p\sigma^2(1 +$ $o(1)$). Thus $\sum_{j=0}^{k-1} E(\xi_j^2)/n = k p \sigma^2 (1 + o(1))/n \rightarrow \sigma^2$. Finally, since $|Z_{n,t}| \le C/\sqrt{h^d}$, for every $\epsilon > 0$, the set $\{|\xi_j| \ge \epsilon \sqrt{\sigma_n^2}\}$ is an empty set when n is large. Therefore, (4) holds. This complete the proof.

• Proof of (A3). It is sufficient to prove that $(X_{n1},...,X_{nk},Z_{n1},...,Z_{nk})^T \stackrel{D}{\rightarrow}$ $(Y_1, \ldots, Y_k, c_1, \ldots, c_k)$. Let $X_n = (X_{n1}, \ldots, X_{nk})^T$, $Z_n = (Z_{n1}, \ldots, Z_{nk})^T$, $Y = (Y_1, ..., Y_k)^T$ and $c = (c_1, ..., c_k)^T$. Then,

$$
E(e^{i(t^T X_n + s^T Z_n)}) = E(e^{i(t^T X_n + s^T c)} e^{i(s^T (Z_n - c))})
$$

=
$$
E(e^{i(t^T X_n + s^T c)} (e^{i(s^T (Z_n - c))} - 1)) + E(e^{i(t^T X_n + s^T c)})
$$

I

Note that $II \to E(e^{i(t^T Y + s^T c)})$ and $I \to 0$ by Lebesgue's dominated convergence theorem. Apply the continuous mapping Theorem and we have $(A3)$.

4.2 Proof of Theorem 1

We adopt the proof in [7]. For $z \in \{z_1, \ldots, z_k\}$, let ϕ_i^* : $1 \leq l \leq p$ and $\psi_{m^*}^*$: $1 \leq$ $m^* \leq q$ be the new basis functions obtained by making linear transformations of

 ϕ_l 's and ψ_{m^*} 's such that $\phi_1^* = 1 = \psi_1^*, \ (E(\phi_l^*(X)\phi_{l'}^*(X)|Z = z) : 1 \leq l, l' \leq p)$ and $(E(\psi_{m^*}^*(Y)\psi_{m'}^*(Y)|Z=z): 1 \leq m^*, m' \leq q)$ are identity matrices, and $E(\phi_l^*(X)\psi_{m^*}^*(Y)|Z=z) = 0$ for $l \neq m^*$. Take $g_1(X,Y), \ldots, g_m(X,Y)$ to be the functions $\phi_l^*(X)\phi_{l'}^*(X)$, $\phi_l^*(X)\psi_{m^*}^*(Y)$ and $\psi_{m^*}^*(Y)\psi_{m'}^*(Y)$, where $1 \leq l \leq l' \leq p$ and $1 \leq m^* \leq m' \leq q$. Apply Lemma 1 and we have

$$
\sqrt{nh^d} \begin{pmatrix}\n\hat{g}_1(z_1) - g_1^*(z_1) \\
\vdots \\
\hat{g}_1(z_k) - g_1^*(z_k) \\
\vdots \\
\hat{g}_m(z_1) - g_m^*(z_1) \\
\vdots \\
\hat{g}_m(z_k) - g_m^*(z_k)\n\end{pmatrix} - \sqrt{nh^d} \begin{pmatrix}\nh^2 \sum_{s=1}^d B_{s,1}(z_1) / f_Z(z_1) \\
\vdots \\
h^2 \sum_{s=1}^d B_{s,1}(z_k) / f_Z(z_k) \\
\vdots \\
h^2 \sum_{s=1}^d B_{s,m}(z_1) / f_Z(z_1) \\
\vdots \\
h^2 \sum_{s=1}^d B_{s,m}(z_k) / f_Z(z_k)\n\end{pmatrix} \xrightarrow{\underline{D}} Z^*.
$$
\n(17)

Let

$$
V^*(z) = \begin{pmatrix} V_{11}(z) & V_{12}(z) \\ V_{21}(z) & V_{22}(z) \end{pmatrix},
$$

where the (l, l') -th element of $V_{11}(z)$ is $E(\phi_l^*(X)\phi_{l'}^*(X)|Z=z)$ for $1 \leq l, l' \leq p$, the (l, m^*) -th element of $V_{12}(z)$ is $E(\phi_l^*(X)\psi_{m^*}^*(Y)|Z = z)$ for $1 \leq l \leq p$, $1 \leq m^* \leq q$, the (m^*, m') -th element of $V_{22}(z)$ is $E(\psi^*_{m^*}(Y)\psi^*_{m'}(Y)|Z=z)$ for $1 \leq m^*$, $m' \leq q$, and $V_{21}(z) = (V_{12}(z))^T$. Let $\hat{V}^*(z)$ be the estimator of $V^*(z)$ obtained by replacing each conditional expectation in $V^*(z)$ with its kernel estimator defined in (8). Then, (17) gives

$$
\sum_{i=1}^k \parallel \hat{V}^*(z_i) - V^*(z_i) \parallel^2 = O_p\left(\frac{1}{nh^d}\right) + O_p(h^4) = O_p\left(\frac{1}{nh^d} + h^4\right).
$$

For $1 \leq i \leq k$, for a $p \times 1$ vector a and a $(p+q) \times (p+q)$ matrix

$$
U = \left(\begin{array}{cc} U_{11} & U_{12} \\ U_{21} & U_{22} \end{array} \right),
$$

where the dimensions of U_{11} , U_{12} , U_{21} and U_{22} are $p \times p$, $p \times q$, $q \times p$ and $q \times q$ respectively, define

$$
g_{r,s}(U) = U_{rs} \tag{18}
$$

for $1 \leq r, s \leq 2$,

$$
g_{r,s}^*(U) = \begin{cases} g_{r,s}(U) & \text{if } (r,s) = (1,2) \text{ or } (2,1); \\ (g_{r,s}(U))^{-1} & \text{if } (r,s) = (1,1) \text{ or } (2,2), \end{cases}
$$

and

$$
g(U, a) = U_{1,2} U_{2,2}^{-1} U_{2,1} U_{1,1}^{-1} - U_{1,1} a a^T.
$$
\n(19)

Let α^* be the $p \times 1$ vector whose first element is 1 and the rest elements are 0's. Then, $\hat{\rho}(z)$ and $\rho_{p,q}(z)$ are the square roots of the largest eigenvalues of the matrices $g(\hat{V}^*(z), \alpha^*)$ and $g(V^*(z), \alpha^*)$ respectively. Let

$$
\triangle_{r,s,i} = g_{r,s}^*(\hat{V}^*(z_i)) - g_{r,s}^*(V^*(z_i)).
$$

Then, we have

$$
\| g(\hat{V}^*(z_i), \alpha^*) - g(V^*(z_i), \alpha^*) \|
$$

\n
$$
\leq \prod_{r=1}^2 \prod_{s=1}^2 (||g^*_{r,s}(V^*(z_i))|| + ||\Delta_{r,s,i}||) - \prod_{r=1}^2 \prod_{s=1}^2 ||g^*_{r,s}(V^*(z_i))||
$$

\n
$$
+ ||g^*_{1,1}(\hat{V}^*(z_i)) - g^*_{1,1}(z_i)|| ||\alpha^*(\alpha^*)^T||,
$$

which gives that

$$
\sum_{i=1}^{k} ||g(\hat{V}^*(z_i), \alpha^*) - g(V^*(z_i), \alpha^*)||^2 = O_p\left(\frac{1}{nh^d} + h^4\right) = O_p\left(\frac{1}{nh^d}\right)
$$

and

$$
\sum_{i=1}^{k} (\hat{\rho}^2(z_i) - \rho_{p,q}^2(z_i))^2 = O_p\left(\frac{1}{nh^d} + h^4\right)
$$
 (20)

since $|\hat{\rho}^2(z_i) - \rho_{p,q}^2(z_i)| \leq ||g(\hat{V}^*(z_i), \alpha^*) - g(V^*(z_i), \alpha^*)||$ for $1 \leq i \leq k$. From (20) and the fact that

$$
\sum_{i=1}^{k} (\hat{f}_Z(z_i) - f_Z(z_i))^2 = O_p\left(\frac{1}{nh^d} + h^4\right),
$$
\n
$$
\left(\sum_{i=1}^{k} \hat{f}_Z(z_i)\hat{\rho}^2(z_i) - \sum_{i=1}^{k} f_Z(z_i)\rho_{p,q}^2(z_i)\right)^2
$$
\n
$$
= \left(\sum_{i=1}^{k} (\hat{f}_Z(z_i) - f_Z(z_i))\hat{\rho}^2(z_i) + \sum_{i=1}^{k} f_Z(z_i)(\hat{\rho}^2(z_i) - \rho_{p,q}^2(z_i))\right)^2
$$
\n
$$
= O_p\left(\frac{1}{nh^d} + h^4\right).
$$

4.3 Proof of Theorem 2

We adopt the proof in [7]. For $z \in \{z_1, \ldots, z_k\}$, let $\hat{V}^*(z)$, $V^*(z)$ and $B_{s,j}$ be as defined in the proof of Theorem 1. Let \mathbf{B}_i be the $(p+q) \times (p+q)$ matrix whose elements are $h^2 \sum_{s=1}^d B_{s,j}(z_i) / f_Z(z_i)$: $1 \le j \le m = (p+q)^2$. From Lemma 1, we have

$$
\begin{pmatrix}\n\sqrt{nh^d f_Z(z_1)/\kappa^d} (\hat{V}^*(z_1) - V^*(z_1) - \mathbf{B}_1) \\
\vdots \\
\sqrt{nh^d f_Z(z_k)/\kappa^d} (\hat{V}^*(z_k) - V^*(z_k) - \mathbf{B}_k)\n\end{pmatrix} \stackrel{D}{\rightarrow} \begin{pmatrix}\nN_1^* \\
\vdots \\
N_k^*\n\end{pmatrix} \equiv N^*,
$$

where for $1 \leq i \leq k$, N_i^* is a normal matrix of elements with mean 0 and variance 1. Apply the Skorohod's theorem, for $1 \leq i \leq k$, there exist random matrices T_i and $W_{1,i}$ such that $T_i \sim (nh^d f_Z(z_i)/\kappa^d)^{1/2} (\hat{V}^*(z_i) - V^*(z_i) - \mathbf{B}_i),$ $W_{1,i} \sim N_i^*$ and $T_i \to W_{1,i}$ almost surely. Therefore,

$$
\hat{V}^*(z_i) \sim \frac{\sqrt{\kappa^d}T_i}{\sqrt{nh^d}f_Z(z_i)} + V^*(z_i) + \mathbf{B}_i = V^*(z_i) + \frac{\sqrt{\kappa^d}}{\sqrt{nh^d}f_Z(z_i)}(W_{1,i} + W_{2,i}),
$$

where $W_{2,i} = T_i - W_{1,i} + \sqrt{nh^d f_Z(z_i)/\kappa^d} \mathbf{B}_i$. Note that $\mathbf{B}_i = O(h^2)$. From (S6), $\sum_{i=1}^{k} ||W_{2,i}|| = o_p(1)$.

For $1 \leq i \leq k$, let $\tilde{V}_i = V^*(z_i) + (nh^d f_Z(z_i)/\kappa^d)^{-1/2}(W_{1,i} + W_{2,i}), A_1(z_i) =$ $g(\tilde{V}_i, \alpha^*)g_{1,1}(\tilde{V}_i)$ and $\tilde{\rho}_0^2(z_i)$ be the largest eigenvalue of $A_1(z_i)(g_{1,1}(\tilde{V}_i))^{-1}$. Here the functions $g(\cdot, \cdot)$ and $g_{1,1}$ are defined in (19) and (18) respectively. Then, $\tilde{\rho}_0(z_i)$ has the same distribution as $\hat{\rho}(z_i)$. Below we will show that the impact of $W_{2,i}$ is negligible in the derivation of the asymptotic distribution of $\tilde{\rho}_0(z_i)$.

For $1 \leq r, s \leq 2$ and $1 \leq i \leq k$, let $\triangle_{r,s,i} = g_{r,s}(\tilde{V}_i) - g_{r,s}(V^*(z_i))$. Then,

$$
\sum_{i=1}^{k} \sum_{r=1}^{2} \sum_{s=1}^{2} ||\Delta_{r,s,i}||^{2} = O_{p}\left(\frac{1}{nh^{d}} + h^{4}\right) = O_{p}\left(\frac{1}{nh^{d}}\right)
$$

and

$$
A_1(z_i) = g_{1,2}(V^*(z_i))(g_{2,2}(\tilde{V}_i))^{-1}g_{2,1}(V^*(z_i)) - g_{1,1}(\tilde{V}_i)\alpha^*(\alpha^*)^Tg_{1,1}(\tilde{V}_i) + g_{1,2}(V^*(z_i))\triangle_{2,1,i} + \triangle_{1,2,i}g_{2,1}(V^*(z_i)) + \triangle_{1,2,i}\triangle_{2,1,i} - g_{1,2}(V^*(z_i))\triangle_{2,2,i}\triangle_{2,1,i} - \triangle_{1,2,i}\triangle_{2,2,i}g_{2,1}(V^*(z_i)) + R_{1,i},
$$

where

$$
R_{1,i} = \Delta_{1,2,i}((g_{2,2}(\tilde{V}_k))^{-1} - I_q)\Delta_{2,1,i}
$$

+ $g_{1,2}(V^*(z_i))((g_{2,2}(\tilde{V}_i))^{-1} - I_q + \Delta_{2,2,i})\Delta_{2,1,i}$
+ $\Delta_{1,2,i}((g_{2,2}(\tilde{V}_i))^{-1} - I_q + \Delta_{2,2,i})g_{2,1}(V^*(z_i))$

and I_q denotes the $q \times q$ identity matrix. Note that $g_{2,2}(\tilde{V}_i)$ can be expressed as

$$
g_{2,2}(\tilde{V}_i) = \left(\begin{array}{cc} 1 & B_i^T \\ B_i & D_i \end{array}\right)
$$

for some matrices B_i and D_i , so $A_1(z_i)$ becomes

$$
B_i^T((D_i - B_i B_i^T)^{-1} - I_{q-1})B_i J + g_{1,2}(V^*(z_i))(\Delta_{2,2,i} - J)^2 g_{2,1}(V^*(z_i))
$$

$$
-\Delta_{1,1,i}g_{1,2}(V^*(z_i))g_{2,1}(V^*(z_i))\Delta_{1,1,i} + \Delta_{1,2,i}\Delta_{2,1,i}
$$

$$
-g_{1,2}(V^*(z_i))\Delta_{2,2,i}\Delta_{2,1,i} - \Delta_{1,2,i}\Delta_{2,2,i}g_{2,1}(V^*(z_i)) + R_{1,i},
$$

where $J = \alpha^* (\alpha^*)^T$. Let

$$
A_2(z_i) = g_{1,2}(V^*(z_i))(g_{2,2}(W_{1,i}))^2 g_{2,1}(V^*(z_i))
$$

\n
$$
- g_{1,1}(W_{1,i})g_{1,2}(V^*(z_i))g_{2,1}(V^*(z_i))g_{1,1}(W_{1,i}) + g_{1,2}(W_{1,i})g_{2,1}(W_{1,i})
$$

\n
$$
- g_{1,2}(V^*(z_i))g_{2,2}(W_{1,i})g_{2,1}(W_{1,i}) - g_{1,2}(W_{1,i})g_{2,2}(W_{1,i})g_{2,1}(V^*(z_i))
$$

and

$$
R_{2,i} = B_i^T \left((D_i - B_i B_i^T)^{-1} - I_{q-1} \right) B_i J
$$

\n
$$
- \left(nh^d f_Z(z_i) / \kappa^d \right)^{-1} A_2(z_i) + g_{1,2} (V^*(z_i)) (\triangle_{2,2,i} - J)^2 g_{2,1} (V^*(z_i))
$$

\n
$$
- \triangle_{1,1,i} g_{1,2} (V^*(z_i)) g_{2,1} (V^*(z_i)) \triangle_{1,1,i} + \triangle_{1,2,i} \triangle_{2,1,i}
$$

\n
$$
- g_{1,2} (V^*(z_i)) \triangle_{2,2,i} \triangle_{2,1,i} - \triangle_{2,1,i} \triangle_{2,2,i} g_{2,1} (V^*(z_i)).
$$

Then,

$$
A_1(z_i) = \frac{A_2(z_i)\kappa^d}{nh^d f_Z(z_i)} + R_{1,i} + R_{2,i},
$$
\n(21)

where

$$
\sum_{i=1}^{k} (||R_{1,i}||^2 + ||R_{2,i}||^2) = O_p\left(\frac{1}{(nh^d)^2}\right).
$$
 (22)

Note that under conditional independence, for $1 \leq i \leq k$, $A_2(z_i) = C_i C_i^T$, where C_i is the $p \times q$ matrix obtained by replacing elements in the first column and first row of $g_{1,2}(W_{1,i})$ with zero's, and $g_{1,2}(W_{1,i})$ is a random matrix whose elements are IID $N(0, 1)$ expect that the $(1, 1)$ -th element is 1. Therefore, $\sum_{i=1}^{k} ||A_2(z_i)||^2 = O_p(1)$, which, together with (21) and (22), implies that $\sum_{i=1}^{k} ||A_1(z_i)||^2 = O_p(1/((nh^d)^2))$ and

$$
\sum_{i=1}^{k} ||A_1(z_i)(g_{1,1}(\tilde{V}_i))^{-1} - A_1(z_i)||^2 = O_p\left(\frac{1}{(nh^d)^3}\right).
$$
 (23)

For $1 \leq i \leq k$, let $\lambda_{0,i}$ be the largest eigenvalue of $A_2(z_i)$. By (21), (22) and (23),

$$
\sum_{i=1}^{k} (nh^d f_Z(z_i) \tilde{\rho}_0^2(z_i) / \kappa^d - \lambda_{0,i})^2 = o_p(1).
$$

Let \tilde{f}_i , $\tilde{\rho}(z_i)$ and λ_i : $1 \leq i \leq k$ be random variables such that the joint distribution of $(\tilde{f}_i, \tilde{\rho}(z_i)) : 1 \leq i \leq k$ is the same as $(\hat{f}_Z(z_i), \hat{\rho}(z_i)) : 1 \leq i \leq k$, and the joint distribution of $(\tilde{\rho}(z_i), \lambda_i): 1 \leq i \leq k$ is the same as $(\tilde{\rho}_0(z_i), \lambda_{0,i}):$ $1 \leq i \leq k$. Note that $nh^d \sum_{i=1}^k (\hat{\rho}(z_i))^2 = O_p(1)$, so we have that

$$
\left| \frac{nh^d}{\kappa^d} \sum_{i=1}^k \hat{f}_Z(z_i) (\hat{\rho}(z_i))^2 - \frac{nh^d}{\kappa^d} \sum_{i=1}^k f_Z(z_i) (\hat{\rho}(z_i))^2 \right|
$$

$$
\leq \frac{nh^d}{\kappa^d} \left(\sum_{i=1}^k (\hat{f}_Z(z_i) - f_Z(z_i))^2 \right)^{1/2} \sum_{i=1}^k (\hat{\rho}(z_i))^2
$$

$$
= O_p(1) O_p((nh^d)^{-1/2}) = O_p((nh^d)^{-1/2})
$$

and

$$
\left| \frac{nh^d}{\kappa^d} \sum_{i=1}^k \tilde{f}_i(\tilde{\rho}(z_i))^2 - \sum_{i=1}^k \lambda_i \right| \leq O_p((nh^d)^{-1/2}) + o_p(1) = o_p(1).
$$

The proof of Theorem 2 is complete.

4.4 Proof of Theorem 3

Suppose that $\rho(z_i) > 0$ for some z_i . Then, we have $\sum_{i=1}^k f_Z(z_i)\rho^2(z_i) > 0$. Choose ϵ such that $0 < \epsilon < \sum_{i=1}^{k} f_Z(z_i) \rho^2(z_i)$ and we have

$$
\underbrace{P\left(\sum_{i=1}^k \hat{f}_Z(z_i)\hat{\rho}^2(z_i) \ge \sum_{i=1}^k f_Z(z_i)\rho^2(z_i) - \epsilon\right)}_{III} \le P\left(\sum_{i=1}^k \hat{f}_Z(z_i)\hat{\rho}^2(z_i) \ge \frac{\kappa^d F_{1-\alpha}^*}{nh^d}\right)
$$

for large n. From Theorem 1,

so

$$
III \ge P\left(\left|\sum_{i=1}^k \hat{f}_Z(z_i)\hat{\rho}^2(z_i) - \sum_{i=1}^k f_Z(z_i)\rho^2(z_i)\right| \le \epsilon\right) \to 1,
$$

$$
P\left(\sum_{i=1}^k \hat{f}_Z(z_i)\hat{\rho}^2(z_i) \ge \frac{\kappa^d F_{1-\alpha}^*}{nh^d}\right) \to 1.
$$

4.5 The verification of the expression for σ_n^2

The expression for σ_n^2 involves some variance and covariance terms. Under the conditions in Theorem 1, the major parts for those variance and covariance terms can be obtained. The results are as follows. For $1 \leq i, i^* \leq k$ and $1\leq j,j^*\leq m,$ 1 - 4 hold.

1.
$$
Var(u_{j,t}k_0(\frac{Z_t - z_i}{h})) = h^d \kappa^d \sigma_j^2(z_i) f_Z(z_i) + O(h^{d+2}).
$$

\n2. $Cov(u_{j,t}k_0(\frac{Z_t - z_i}{h}), u_{j^*,t}k_0(\frac{Z_t - z_i}{h})) = h^d \kappa^d c_{jj^*}(z_i) f_Z(z_i) + O(h^{d+2}).$
\n3. $Cov(u_{j,t}k_0(\frac{Z_t - z_i}{h}), u_{j,t}k_0(\frac{Z_t - z_{i^*}}{h})) = O(h^{2d}).$
\n4. $Cov(u_{j,t}k_0(\frac{Z_t - z_i}{h}), u_{j^*,t}k_0(\frac{Z_t - z_{i^*}}{h})) = O(h^{2d}).$
\nWe will only give the proof for Case 1 since the proof for other case

We will only give the proof for Case 1 since the proofs for other cases are similar. Since

$$
Var\left(u_{j,t}k_0\left(\frac{Z_t - z_i}{h}\right)\right) = E\left(E\left(u_{j,t}^2\left(k_0\left(\frac{Z_t - z_i}{h}\right)\right)^2 | Z_t\right)\right)
$$

$$
= \int \sigma_j^2(z_t) \left(k_0\left(\frac{z_t - z_i}{h}\right)\right)^2 f_Z(z_t) dz_t
$$

$$
= h^d \int \sigma_j^2(z_i + h\nu)(k_0(\nu))^2 f_Z(z_i + h\nu) d\nu
$$

$$
= h^d \int \sigma_j^2(z_i)(k_0(\nu))^2 \left(f_Z(z_i) + h \sum_{s=1}^d f_s(z_i)\nu_s + O(h^2)\right) d\nu
$$

$$
= h^d \kappa^d \sigma_j^2(z_i) f_Z(z_i) + O(h^{d+2}),
$$

we complete verification of the expression for σ_n^2 .

Acknowledgements

This research is supported by National Science Council in Taiwan under grant NSC 99-2118-M-004 -006 -. The authors would like to thank the reviewers for careful reading and constructive comments.

References

- [1] Taoufik Bouezmarni, Jeroen V. K. Rombouts, and Abderrahim Taamouti. A nonparametric copula based test for conditional independence with applications to granger causality. Working papers, Departamento de Economía Universidad Carlos III de Madrid, 2009.
- [2] Miguel A. Delgado and Wenceslao González Manteiga. Significance testing in nonparametric regression based on the bootstrap. The Annals of Statistics, 29(5):1469–1507, 2001.
- [3] J. P. Florens and Denis Fougere. Noncausality in continuous time. Econometrica, 64(5):1195–1212, 1996.
- [4] J. P. Florens and M. Mouchart. A note on noncausality. *Econometrica*, 50(3):583–591, 1982.
- [5] P. G. Hall and C. C. Heyde. Martingale Limit Theory and Its Applications. Academic Press, 1980.
- [6] Craig Hiemstra and Jonathan D. Jones. Testing for linear and nonlinear granger causality in the stock price-volume relation. The Journal of Finance, 49(5):1639–1664, 1994.
- [7] Tzee Ming Huang. Testing conditional independence using maximal nonlinear conditional correlation. The Annals of Statistics, 38(4):2047–2091, 2010.
- [8] Lexin Li, R. Dennis Cook, and Christopher J. Nachtsheim. Model-free variable selection. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 67(2):285–299, 2005.
- [9] Qi Li and Jeffrey Scott Racine. Nonparametric Econometrics : theory and practice. Princeton University Press, 2007.
- [10] Oliver Bruce Linton and Pedro Gozalo. Conditional independence restrictions: Testing and estimation. Cowles Foundation Discussion Papers 1140, Cowles Foundation, Yale University, 1996.
- [11] Efstathios Paparoditis and Dimitris N. Politis. The local bootstrap for kernel estimators under general dependence conditions. Annals of the Institute of Statistical Mathematics, 52(1):139–159, 2000.
- [12] Liangjun Su and Halbert White. A consistent characteristic function-based test for conditional independence. Journal of Econometrics, 141:807–834, 2007.
- [13] Liangjun Su and Halbert White. A nonparametric hellinger metric test for conditional independence. Econometric Theory, 24(4):829–864, 2008.
- [14] V. A. Volkonskii and Yu. A. Rozanov. Some limit theorems for random functions. i. Theory of Probability and its Applications, 4(2):178–197, 1959.

國科會補助計畫衍生研發成果推廣資料表

99 年度專題研究計畫研究成果彙整表

國科會補助專題研究計畫成果報告自評表

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價 值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性)、是否適 合在學術期刊發表或申請專利、主要發現或其他有關價值等,作一綜合評估。

