
行政院國家科學委員會專題研究計畫 成果報告 

 

吃角子老虎問題之最佳貝氏策略 

研究成果報告(精簡版) 

 
 
 
計 畫 類 別 ：個別型 

計 畫 編 號 ： NSC 99-2118-M-004-004- 

執 行 期 間 ： 99 年 08 月 01 日至 100 年 07 月 31 日 

執 行 單 位 ：國立政治大學統計學系 

  

計 畫 主 持 人 ：洪英超 

  

計畫參與人員：碩士班研究生-兼任助理人員：謝至芬 

碩士班研究生-兼任助理人員：劉世璿 

 

  

  

  

  

處 理 方 式 ：本計畫可公開查詢 

 
 
 

中 華 民 國   100 年 10 月 20 日 
 



	   1	  

行政院國家科學委員會補助專題研究計畫 

 █成果報告   □期中進度

報告 
 

（計畫名稱） 
                 吃角子老虎問題之最佳貝氏策略 

 

計畫類別：■個別型計畫   □整合型計畫 

計畫編號：NSC  99－2118－M－004－004－ 

執行期間：  99年 8 月 1 日至 100年 7月 31日 

 

執行機構及系所：政治大學統計系 

 

計畫主持人： 洪英超 

共同主持人： 

計畫參與人員：謝至芬  劉世璿 

 

 

成果報告類型(依經費核定清單規定繳交)：■精簡報告  □完整報告 

 

本計畫除繳交成果報告外，另須繳交以下出國心得報告： 

□赴國外出差或研習心得報告 

□赴大陸地區出差或研習心得報告 

□出席國際學術會議心得報告 

□國際合作研究計畫國外研究報告 

 

 

處理方式：除列管計畫及下列情形者外，得立即公開查詢 

            □涉及專利或其他智慧財產權，■一年□二年後可公開查詢 

 

中   華   民   國  100 年 10 月 20 日 



	   2	  

 

中、英文摘要及關鍵詞 

 
多拉桿吃角子老虎問題(multi-‐armed	  bandit	  problem)可以應用在許多領域如臨床試驗,
線上工業實驗(on-‐line	   industrial	   experimentations),可調性網路路由（ adaptive	  
network	  routing)等. 本計畫將以貝氏的角度探討“無窮多拉桿之吃角子老虎問題“.我
們假設未知的白努利參數為相互獨立且來自同一個機率分配F,而我們的目的是找出一
如何選擇拉桿的策略使得長時間操作下的失敗率為最低. 在本計畫的第一部份,我們假
設F為一	  任意但已知的機率分配.接著介紹1996年由Berry等人提出的三種策略,並証明
當試驗次數趨近無窮大時,此三種策略皆可以使長時間操作下的失敗率為最低.此外,我
們也利用電腦模擬來比較此三種策略的實際表現. 在本計畫的第二部份,我們假設F為一
未知的機率分配.在此假設下,我們提出一個新的策略叫做”	   empirical	   non-‐recalling	   m-‐
run策略 ”,並証明此策略亦為一近似最佳策略. 此外 ,我們也將利用電腦模擬與
Herschkorn等人於1995年提出的二個策略進行比較. 
 
闢鍵字: 多拉桿吃角子老虎問題; 貝氏策略. 
 
	  	  	  	  	  	  Multi-armed bandit problems have a wide area of applications such as clinical trials, on-

line industrial experimentations, adaptive network routing, etc. In this study, we examine the 
bandit problem with infinitely many arms from a Bayesian perspective. We assume the 
unknown Bernoulli parameters are independent observations from a common distribution F, 
and the objective is to provide strategies for selecting arms at each decision epoch so that the 
expected long run failure rate is minimized. In the first part of this study, we assume the 
common distribution F is arbitrary but known. We introduce three strategies proposed by 
Berry et al. (1996) and show that they asymptotically minimize the expected long run failure 
rate. Numerical results from computer simulations are also provided to evaluate the 
performance of the three strategies. In the second part of this study, we assume the common 
distribution F is unknown. For this setting, we propose a strategy called the “empirical non-
recalling m-run strategy” and prove that this strategy is asymptotically optimal. Numerical 
results from computer simulations will also be provided to evaluate the proposed strategy 
and two other strategies by Herschkorn et al. (1995). 
 

  Key words: Multi-armed bandit problem; Bayesian strategy. 
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Optimal Bayesian Strategies for the Infinite-armed
Bernoulli Bandit

Ying-Chao Hung
Department of Statistics, National Chengchi University, Taipei 11605, Taiwan

Abstract

We consider the bandit problem with an infinite number of Bernoulli arms, of
which the unknown parameters are assumed to be i.i.d. random variables with a
common distribution F . Our goal is to construct optimal strategies of choosing
“arms” so that the expected long-run failure rate is minimized. We first review
a class of strategies and establish their asymptotic properties when F is known.
Based on the results, we propose a new strategy and prove that it is asymptotically
optimal when F is unknown. Finally, we show that the proposed strategy performs
well for a number of simulation scenarios.
Keywords: Bandit problem, Bernoulli arms, Bayesian strategy, prior distribution

1. Introduction

We consider the following settings for the bandit problem: Suppose there are
an infinite number of Bernoulli arms, of which the unknown parameters pi (suc-
cess probabilities) are i.i.d. random variables with a non-degenerate common dis-
tribution F defined on [0,1]. At each decision stage, the decision maker chooses
an arm for observation. Our goal here is to select arms at each decision stage so
that the expected long-run failure rate (failure proportion) over n choices (with
n → ∞) is minimized.

A strategy of selecting arms that minimizes the long-run failure rate is called
the optimal strategy. It is obvious that under the current settings the optimal strate-
gies depends greatly on the prior distribution F and the number of trials n. Intu-
itively, when n is large, the decision maker is more inclined to sacrifice immediate

Email address: hungy@nccu.edu.tw (Ying-Chao Hung)
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gain and select new arms in hoping to find one that has a larger Bernoulli param-
eter (thus producing a substantial low failure rate). However, when n is small,
new information has less value and it might be prudent to use an arm that has a
small failure rate. Therefore, during the course of an experiment and as the hori-
zon nears, arms with a low failure rate are more appealing even though they have
less potential for providing information. The same reasoning reveals that, when
F has a perceivable weight near 1, the decision maker will be more optimistic and
aggressive in searching for a new arm with a very low failure rate. On the other
hand when F has a negligible weight near 1, one becomes more conservative and
reluctant in searching for a new arm, and has the propensity to use an arm which
has the best performance so far.

Bandit problems have a wide area of applications in clinical trials, on-line in-
dustrial experimentation, machine learning, inter-temporal allocation in an eco-
nomics environment, etc (for real examples, see Banks and Sundaram, 1992;
Berry and Fristedt, 1985; Gittins, 1989; Lai and Robbins, 1984; Wang et al., 2005;
and the references there in). For the problem under current settings, we introduce
its one important application to the control of data routing networks. Consider a
typical computer network (such as Internet) or telecommunications network that
is determined by connections (or links) between nodes (or stations). The network
routes digital data in small pieces (called packets) and each of which is transmitted
independently through the links between nodes to the correct destination. At each
intermediate node, there could be a large number of downlinks from which the
router can select one to transmit a particular packet (called unicast transmission).
However, the transmission of packets between nodes may not succeed due to fac-
tors such as channel congestion, corrupted packets rejected in-transit, faulty net-
working hardware, faulty network drivers, etc. These “unreliable” links may result
in packet loss, thus affecting the quality of service (QoS) performance of network.
Therefore, a good routing strategy must be able to select, at any point in time,
the best downlink to transmit the packet so as to possibly minimize the packet
loss rate. Note that such a routing scheme can be simply modeled as the bandit
problem, where each possible downlink of a particular node can be viewed as an
“arm”, and the corresponding probability of successfully transmitting a packet is
denoted by pi (or the probability of losing a packet is 1−pi). Figure 1 illustrates a
basic component of the described network topology with one router and n parallel
downlinks. However, when information about the reliability of downlinks is not
available (this is often the real situation), constructing an optimal routing strategy
becomes a challenging task.

The primary study of bandit problems can be traced back to the work by Mal-
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Figure 1: An illustration of data network with one router and n parallel downlinks.

lows and Robbins (1964), Robbins (1952), and Thompson (1933). Afterwards,
there exists a fairly rich literature discussing one-armed bandit problems with var-
ious settings (Clayton, 1989; Sarkar, 1991; Woodroofe, 1979; Zoubeidi, 1994).
Berry and Fristedt (1985) described the general setting of multi-armed bandit
problems and provided extensive treatment to them. Narendra and Thathachar
(1989) treated bandit problems from the engineering perspective, providing a good
discussion of the various theoretical traditions that have focused on them, Pandey
et al. (2007) provided a framework to exploit dependencies among arms. Other
pertinent references include the work by Auer and Cesa-Bianchi (2002), Gittins
(1979, 1989), Guha et al. (2010), Lai (1987), Lai and Robbins (1984), Powell
(2007), and Whittle (1982, 1983), just to name a few. A remarkable study of ban-
dit problems from the Bayesian perspective is the work by Berry et al. (1997),
wherein three appealing strategies (called the m-run strategy, the non-recalling
m-run strategy, and the N -learning strategy) were shown to, as the number of tri-
als goes to infinity, achieve the best lower bound of the expected failure rate when
F is the uniform(0, 1) distribution (i.e., they are asymptotically optimal). Later
on, Lin and Shiau (2000) conducted a simulation study to evaluate the numerical
performance of these three strategies when F is the beta distribution. On the other
hand, the study of bandit problems regardless of the common distribution F is
rather limited. Herschkorn et al. (1995) proposed a strategy that pulls the ith arm
until i failures in a row are observed (called the “i − i strategy” in later analysis)
and showed that this strategy minimizes the expected long-run failure rate without
requiring knowledge of F . However, numerical evidence shows that this particu-
lar strategy does not perform well due to its slow convergence rate (see Berry et
al. (1997) and Section 4 for examples).

It is worth noting that for any distribution F rather than uniform(0, 1), the
optimality property of the three strategies given by Berry et al. (1997) has not
yet been established (although the asymptotic upper bounds of the expected fail-
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ure rate were provided). To fill up this theoretical gap, in Section 2 we provide
detailed proofs that these three appealing strategies can minimize the expected
long-run failure rate for any given distribution F defined on [0,1]. Based on the
result, in Section 3 we propose a new strategy (called the “empirical non-recalling
m-run strategy”) and prove that it minimizes the expected long-run failure rate
when the distribution F is unknown. The idea is to construct an empirical dis-
tribution for the Bernoulli parameters based on an appropriately chosen number
of observations and then implement the “non-recalling m-run strategy” for the
remaining trials. In Section 4, the proposed new strategy is evaluated via a sim-
ulation study. Numerical results show that it performs well when F is generated
from a class of beta distributions. Some concluding remarks are drawn in Section
5.

2. Optimal Strategies for Arbitrarily Known Priors

2.1. Preliminaries
Assume that the prior distribution F is an arbitrary known distribution defined

on the interval [0, 1] such that F (0) = 0. Before we proceed with the studies in
this section, it is helpful to introduce some notations and results obtained by Berry
et al. (1997). Suppose that the number of arms used in the process of n trials is C
(C is in general a random variable). Thus, given C = c, any possible strategy will
result in at least

G(c) = c

� 1

0

(1− α)dF (α) + (n− c)

� 1

0

(1− α)dF c(α). (1)

expected failures (imagine that each arm is used only once, then an oracle tells us
which of these c arms is the best arm and we use this best arm for the remaining
n− c trials). Since F (0) = 0 and F (1) = 1, G(c) can be written as

G(c) = c

� 1

0

F (α)dα + (n− c)

� 1

0

F c(α)dα. (2)

Some algebra shows that G��(c) > 0 for all c < n, which implies G(c) is a convex
function. Therefore, by Jensen’s inequality we have that

E(G(C)) ≥ G(E(C)) = E(C)

� 1

0

F (α)dα+(n−E(C))

� 1

0

FE(C)(α)dα. (3)
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Since we also know that G(1) = G(n) = n
� 1

0 F (α)dα and G�(1) < 0, these

imply there exists a positive integer cn such that G(c) is non-increasing for 1 ≤
c ≤ cn and non-decreasing for cn ≤ c ≤ n, 1 < cn < n. Thus, a lower bound for

the expected failure rate over all strategies is given by (Theorem 11, Berry et al.

(1997))

G(cn)

n
=

1

n

�
cn

� 1

0

F (α)dα + (n− cn)

� 1

0

F cn(α)dα

�
. (4)

We highlight some important things from Eq. (4). First, the value of cn can

be written as cn = inf{i : G(i − 1) > G(i) and G(i) ≤ G(i + 1)}. In practice,

for any distribution function F and any positive integer n, we can easily find the

value of cn. Second, if F (α) < 1 for all α < 1, then

0 ≤ lim
n→∞

cn
n

� 1

0

F (α)dα ≤ lim
n→∞

G(cn)

n
≤ lim

n→∞

G(
√
n)

n
= 0. (5)

Clearly, this implies that limn→∞ cn/n = 0 and limn→∞ G(cn)/n = 0. On the

other hand, if F (α∗) = 1 for some 0 < α∗ < 1 and F is not degenerate at α∗
, then

lim
n→∞

G(cn)

n
= lim

n→∞

cn
n

� 1

0

F (α)dα + (1− lim
n→∞

cn
n
)(1 − α∗)

≤ lim
n→∞

G(
√
n)

n
= 1− α∗. (6)

Since
� 1

0 F (α)dα > 1 − α∗
, Eq. (6) implies that limn→∞ cn/n = 0, and thus

limn→∞ G(cn)/n = 1 − α∗
. Finally, if F is degenerate at α∗

, 0 < α∗ < 1, then

G(c) = n(1 − α∗) for all c = 1, 2, ..., n, and thus cn = 1. In summary, we

conclude that limn→∞ cn/n = 0 and limn→∞ G(cn)/n = 1−α∗
, where 0 < α∗ =

inf{α : F (α) = 1} ≤ 1.

2.2. Optimal Strategies

We start with introducing two sets of strategies that are closely related to the

optimal strategies described later. The first strategy is called a “k-failure strategy”,

which calls for using the same arm until that arm produces k failures, and when

this happens, it calls for switching to a new arm. Note that this strategy never

recalls arms that have produced failures. With the possible exception of the arm

being used when the total number of trials n is reached, every arm used yields a

total of k failures. The second strategy is called a “β-rate strategy”, which stays on

5

the same arm until that arm has produced a failure rate greater than β, β ∈ [0, 1],
and when this happens, the arm is discarded and a new arm is used. Analogously,
the discarded arms are never recalled.

Let’s now focus on the 1-failure strategy (or equivalently the 0-rate strategy),
which is simply a modification of Robbins’s (1952) strategy to the current setting
with infinitely many arms. It can be shown that the long-run failure rate of this
strategy in n trials is asymptotically equal to

� 1

0 (1− αn)dF (α)
�n−1

j=0

� 1

0 αjdF (α)
. (7)

To see how Eq. (7) is established, let T be the number of trials up to the first
failure or up to n trials (which are all successes). So we have that

E(T ) =

� 1

0

n�

j=1

jαj−1(1− α)dF (α) +

� 1

0

nαndF (α) =
n−1�

j=0

� 1

0

αjdF (α). (8)

Since the probability of having one failure in these T trials is 1−
� 1

0 αndF (α) =� 1

0 (1− αn)dF (α), the expected number of failures in the total n trials is approxi-
mately

n
� 1

0 (1− αn)dF (α)
�n−1

j=0

� 1

0 αjdF (α)
. (9)

Hence, the expected failure rate in n trials is asymptotically equal to Eq. (7).
One might suspect that the β-rate strategy can do better than the 1-failure

strategy for some particular choices of β. However, as shown by Berry et al.
(1997), if F (α) < 1 for all α < 1, the expected failure rate of the β-rate strategy
is always greater than a positive constant as n → ∞ for any β > 0. On the other
hand, we see that if

�∞
j=0

� 1

0 αjdF (α) = ∞, the expected failure rate of the 1-
failure strategy goes to 0 as n → ∞. This means that if n is large enough, the
1-failure strategy outperforms the β-rate strategy for any choices of β when F has
the property that

�∞
j=0

� 1

0 αjdF (α) = ∞.
It is noted that the 1-failure strategy can perform poorly when

�∞
j=0

� 1

0 αjdF (α) <
∞. A simple example is when F is a beta(a, b) distribution with the shape param-
eter b > 1. Therefore, we seek for other strategies that can possibly achieve the
lower bound given in Eq. (4) when n is large. We next introduce three appealing
strategies proposed by Berry et al. (1997).
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• The m-run strategy: This strategy uses the 1-failure strategy until either the
current arm has produced a success run of length m or m arms are used. If the
former obtained, then the current arm will be used for the all remaining trials. If
the latter obtained, then the arm with lowest failure proportion among the m arms
used so far will be used for the all remaining trials. So an m-run strategy uses at
most m arms. If it does use m arms, then the best performing arm is recalled and
will be used for all remaining trials.
• The non-recalling m-run strategy: This strategy uses the 1-failure strategy until
an arm has produced a success run of length m at which this arm will be used for
the all remaining trials. If no arm has produced a success run of length m, then
the 1-failure strategy is used for all n trials.
• The N -learning strategy (N ≤ n): This strategy follows the 1-failure strategy
for the first N trials (the arm used at the N -th trial will be used until such time that
it yields a failure), and then it calls for using the arm that performed best during
the learning period for all remaining trials.

Let us start with examining the non-recalling m-run strategy. Let Bm denote
the number of arms that have been tried until a success run of length m is pro-
duced. For the particular arm that has produced a success run of length m, then,
simply by the Bayes theorem, the expected number of failures produced by this
arm will be

Rm(1−
� 1

0 αm+1dF (α)
� 1

0 αmdF (α)
), (10)

where Rm is the number of remaining trials. Since there are Bm − 1 failures
before finding this particular arm, the expected number of failures produced by
the non-recalling m-run strategy will be equal to

E{Bm − 1 +Rm(1−
� 1

0 αm+1dF (α)
� 1

0 αmdF (α)
)}. (11)

First, we have that

E(Bm) =
n�

j=1

jP (Bm = j) =
n�

j=1

P (Bm ≥ j) = 1 +
n�

j=1

P (Bm > j). (12)

Since P (Bm > j) is the probability that none of the first j arms has produced
a success run of length m, which is the jth power of the probability that any

7

Theorem 4. If x∗ = inf{t : F (t) = 1}, then limn→∞ L(n,mn)/n = 1−x∗. That
is, the N -learning strategy is asymptotically optimal.

Proof. Note that
� 1

0 Fm(α)dα → 1−x∗
as m → ∞ and it is clear that limn→∞ mn/n =

0. This then implies limn→∞ L(n,mn)/n = 1− x∗
.

Remark 2: In summary, if the distribution F has a heavy tail near one (e.g., the

distribution shown in Example 1), then the 1-failure strategy may perform (asymp-

totically) as well as the three strategies introduced above.

Remark 3: Finding analytical solutions (or boundaries) of un, kn and mn is a

hard task for any arbitrary distribution F and choice of n. In practice, this is done

by numerical investigations. However, solutions are available for some particular

distributions such as Uniform(0, 1) and beta(a, b). For examples the readers can

refer to the work by Berry et al. (1997) and Lin and Shiau (2000).

3. An Optimal Strategy for Unknown Priors

Motivated by the optimality of the “non-recalling m-run strategy” from Sec-

tion 2 and its nice numeric performance given by Lin and Shiau (2000), we next

introduce a new strategy called the “empirical non-recalling m-run strategy” when

the prior distribution F is unknown.

• The empirical non-recalling m-run strategy: For each positive integer n, let k
be the smallest integer such that k ≥

�
2
√
n. Choose k independent arms and

perform k trials for each arm (thus k2
trials in total). Record the observed pro-

portion of success p̂i for each arm i and construct an empirical distribution Fk

for p̂1, p̂2, . . . , p̂k. Implement the non-recalling m-run strategy for the remaining

n− k2
trials based on the empirical distribution Fk.

Note that this new strategy is comprised of two stages – learning and imple-

mentation. In the learning stage, the k2
trials are used to construct the empirical

distribution of the observed Bernoulli parameters p̂i so as to obtain a good esti-

mate for the underlying unknown distribution F . In the implementation stage, the

non-recalling m-run strategy is used for the remaining n − k2
trials. The follow-

ing theorem shows the asymptotic optimality of the empirical non-recalling m-run

strategy.
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Since 0 < A < B < x∗
, 1 − F (B) > 0 and Am/Bm → 0 as m → ∞, we then

have that limm→∞ rm = 0. Consider next

sm =

� 1

0 αm+1dF (α)
� 1

0 αmdF (α)
=

� A

0 αm+1dF (α) +
� x∗

A αm+1dF (α)
� A

0 αmdF (α) +
� x∗

A αmdF (α)

=
rm + (

� x∗

A αm+1dF (α)/
� x∗

A αmdF (α))

(
� A

0 αmdF (α)/
� x∗

A αmdF (α)) + 1
, (20)

where the last equation is obtained by dividing both the numerator and denomina-

tor by
� x∗

A αmdF (α). Note that limm→∞(
� A

0 αmdF (α)/
� x∗

A αmdF (α)) = 0 and

limm→∞ rm = 0, so we have that limm→∞ sm = limm→∞ tm ≥ A, where

tm =

� x∗

A αm+1dF (α)
� x∗

A αmdF (α)
. (21)

Since A can be chosen to be arbitrarily close to x∗
, Eq. (17) then establishes.

Theorem 1. Suppose that 0 < x∗ = inf{t : F (t) = 1} ≤ 1, then the expected
failure rate of the non-recalling m-run strategy can be arbitrarily close to 1− x∗.

Proof. The results from Section 2.1 indicate that 1 − x∗
is a lower bound of the

expected failure rate for all strategies. By Lemma 1, for any given ε > 0 we

can always choose m to be large enough so that
� 1

0 αm+1dF (α)/
� 1

0 αmdF (α) ≥
x∗ − ε. Hence by Eq. (4), the expected failure rate of the non-recalling m-run

strategy is less than or equal to 1/(n
� 1

0 αmdF (α))+(1−x∗+ε). Since F (0) < 1

and
� 1

0 αmdF (α) > 0, we then have that

lim
n→∞

{ 1

n
� 1

0 αmdF (α)
+ (1−

� 1

0 αm+1dF (α)
� 1

0 αmdF (α)
)} ≤ 1− x∗ + ε. (22)

Since ε can be arbitrarily small, the non-recalling m-run strategy is ε-optimal, i.e.,

the expected failure rate can be arbitrarily close to 1−x∗
by choosing a large value

of m.

Let us now recall the 1-failure strategy. Note that except for the degenerate

case F (x∗) = 1 and F (α) = 0 for all 0 ≤ α < x∗
, if x∗ < 1, we have that� 1

0 αmdF (α) < (x∗)m. Therefore, by Eq. (7), the expected failure rate of the

1-failure strategy will be strictly greater than 1 − x∗
, asymptotically. This means

9

that the 1-failure strategy is not optimal if F is not a degenerate distribution at x∗
.

On the other hand, if x∗ = 1 and F has a lot of its probability mass near one, the

1-failure strategy may perform as well as the non-recalling m-run strategy (i.e.,

asymptotically optimal). An example that illustrates such a case is given next.

Example 1: Consider the probability density function f(x) = ln(2)
(1−x)ln2(1−x) for

1
2 < x < 1, and f(x) = 0 otherwise. It is tedious, but straightforward to check

that the expected failure rate of the 1-failure strategy can be arbitrarily close to

1− x∗ = 0.

Remark 1: Based on the arguments above, we can conclude that the performance

of the 1-failure strategy is not as good as that of the non-recalling m-run strategy

if F is a beta distribution.

For any given number of trials n, we now introduce how to choose further the

optimal value of m for the non-recalling m-run strategy. Note that the expected

number of trials needed for the first Bm (as defined earlier) arms can be written

as m + (Bm − 1)
�n−1

j=0

� 1

0 αjdF (α). Therefore, the expected number of failures

produced by the non-recalling m-run strategy will be asymptotically less than or

equal to

E(Bm−1)+{n−m−E(Bm−1)
n−1�

j=0

� 1

0

αjdF (α)}{1−
� 1

0 αm+1dF (α)
� 1

0 αmdF (α)
}. (23)

Since m is relatively small compared to n and F is not degenerate at 1, we have

that as n → ∞,

(1−
� 1

0

αmdF (α))n+1
n−1�

j=0

� 1

0

αjdF (α) → 0. (24)

Thus, the expected number of failures produced by the non-recalling m-run strat-

egy will be asymptotically less than or equal to

N(n,m) =
1

� 1

0 αmdF (α)
+ {n−

�n−1
j=0

� 1

0 αjdF (α)
� 1

0 αmdF (α)
}{1−

� 1

0 αm+1dF (α)
� 1

0 αmdF (α)
}.

(25)

Let un = argmin1≤m≤n N(n,m) for any given n, the following theorem is the

direct result of Theorem 1.

Theorem 2. The non-recalling un-run strategy is asymptotically optimal.
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Theorem 5. Suppose that 0 < x∗ = inf{t : F (t) = 1} ≤ 1, then the expected
failure rate of the empirical non-recalling m-run strategy can be arbitrarily close
to 1− x∗.

Proof. Based on the result of Theorem 1, the expected number of failures pro-

duced by the empirical non-recalling m-run strategy is less than

k2 +
1

� 1

0 αmdFk(α)
+ (n− k2)(1−

� 1

0 αm+1dFk(α)� 1

0 αmdFk(α)
). (29)

Therefore, its expected failure rate is less than

k2

n
+

1

n
� 1

0 αmdFk(α)
+ (1− k2

n
)(1−

� 1

0 αm+1dFk(α)� 1

0 αmdFk(α)
). (30)

Also, by the Glivenko-Cantelli Theorem, we know that as k → ∞ (or n → ∞),

sup
α

|Fk(α)− F (α)| → 0 a.s. (31)

Eq. (17) and Eq. (31) together imply that for any given ε > 0, we can always

choose n and m to be large enough so that

� 1

0 αm+1dFk(α)� 1

0 αmdFk(α)
≥ x∗ − ε. (32)

Hence by Eq. (30), the expected failure rate is less than

k2

n
+

1

n
� 1

0 αmdFk(α)
+ (1− k2

n
)(1− x∗ + ε). (33)

Since Fk(0) < 1 and
� 1

0 αmdFk(α) > 0, we then have that

lim
n→∞

{k
2

n
+

1

n
� 1

0 αmdFk(α)
+(1− k2

n
)(1−

� 1

0 αm+1dFk(α)� 1

0 αmdFk(α)
)} ≤ 1−x∗+ε. (34)

Since 1− x∗
is the lower bound of the expected failure rate for all strategies and ε

can be arbitrarily small, the empirical non-recalling m-run strategy is ε-optimal,

i.e., the expected failure rate of the empirical non-recalling m-run strategy can be

arbitrarily close to 1− x∗
(by choosing a large value of m).
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For any given number of trials n, now we introduce how to choose further
the optimal value of m. Since m is relatively small compared to n and Fk is
not degenerate at 1, the expected number of failures produced by the empirical
non-recalling m-run strategy will be asymptotically less than or equal to

k2 +
1

� 1

0 αmdFk(α)
+ {n− k2 −

�n−k2−1
j=0

� 1

0 αjdFk(α)
� 1

0 αmdFk(α)
}{1−

� 1

0 αm+1dFk(α)� 1

0 αmdFk(α)
}.

(35)
Denote Eq. (35) by k2 + N(n − k2,m) and let un = argmin1≤m≤n−k2 N(n −
k2,m) for any given n and estimated Fk, the following theorem is the direct result
of Theorem 5.

Theorem 6. The empirical non-recalling un-run strategy is asymptotically opti-
mal.

4. Performance Assessment

Now we proceed to evaluate the numerical performance of the proposed em-
pirical non-recalling m-run strategy via computer simulation. Since now we as-
sume the underlying distribution F is unknown, for comparison purpose we also
evaluate the performance of (i) the i − i strategy proposed by Herschkorn et al.
(1995), which pulls the ith arm until i failures in a row are observed; and (ii) the
1-failure strategy, which is a popular strategy and easy to implement. The “sim-
ulated” long-run failure rates for these strategies with different numbers of trials
are given in Table 1, for which F is generated from five different beta distribu-
tions: beta(0.5, 0.5), beta(1, 1), beta(2, 2), beta(1, 2), and beta(2, 1). It should be
noted that, the choices of F in the simulation study represent a fairly wide range
of shapes including possibly symmetrical, right-skewed, and left-skewed distri-
butions over (0, 1). In addition, each failure rate is estimated by the average of
2,000 Monte Carlo simulation trials that were executed on 2.53GHz Intel Core i5
processor with 4GB of cache under the operating system of Mac OS 10.6. The
computer programs were written in R, where the function “rbeta” was used to
generate beta random numbers.

As can be seen from Table 1, our proposed strategy significantly outperforms
the other two strategies for almost all simulation scenarios. On the other hand,
the i − i strategy, although proven optimal, performs poorly due to its slow con-
vergence rate. It is worth noting that the 1-failure strategy reveals to be fairly
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competitive when F is beta(0.5, 0.5) or beta(2, 1). The numerical evidence sup-
ports the fact that the 1-failure strategy, although proven not optimal, performs
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round-robin strategy is far from “optimal” when the number of “arms” is large. In

this case, the performance of our proposed strategy has been shown promising.
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bandit with the parameters from both known and unknown prior distributions.
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the lower bound given in Eq. (4). Based on the optimality results, we propose a

new strategy called the “empirical non-recalling m-run strategy” and prove that

it is asymptotically optimal when the prior distribution F is unknown. Further,
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are useful for real applications that can be formulated as the bandit problem with
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