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Abstract

Economic and econometric models are usually defined by conditional moment restrictions. Hence,
checking the validity of models through these conditional moment restrictions is a central issue in the
literature. One of the popular consistent tests is the Integrated Conditional Moment (ICM) test pro-
posed by Bierens (1982, Journal of Econometrics). This ICM-type test, however, suffers from some
drawbacks: it needs a preliminary consistent estimate of model parameters under the null, the nu-
merical method of integrations, and it is not pivotal. These features make the implementation of this
ICM-type test cumbersome. This project proposes two approaches to improve the ICM test. The first
proposed test statistic is an easy-to-implement version of ICM test by extending the ICM test and
the Fourier analysis. It is asymptotic equivalent to the ICM test statistic, but it has an analytic form
instead. Moreover, no preliminary consistent estimate is needed because this unified approach relates
estimation and diagnostic testing in a rather natural way. Besides, I extend the idea behind the first
approach by deriving a new set of infinite many unconditional moment restrictions, and employ gen-
eralized empirical likelihood (GEL) method to construct the Likelihood-Ratio type test statistic. After
suitable normalization, the asymptotic distribution of the proposed empirical LR test statistic should
be standard normal, which is pivotal. For these two proposed tests, we establish the corresponding
asymptotics and provide some Monte Carlo simulation results.

Keywords: consistent test, conditional moment restrictions, integrated conditional moment test,
Fourier analysis, generalized empirical likelihood method, pivotal



1 Introduction

Economic and econometric models are usually defined by conditional moment restrictions, for exam-
ple, the Euler equations in various rational expectation models. How to consistently (and efficiently)
estimate parameters of models through these moment restrictions is thus an important issue and has
been considered by Chamberlain (1987), Donald et al. (2003), Dominguez and Lobato (2004) and
Hsu and Kuan (2010) to mention just a few. On the other hand, because a correct model specifi-
cation implies the certain zero conditional moments, checking the validity of models through these
conditional moment restrictions is thus another central issue in the literature. A good test should
have power approaching one asymptotically for any deviations from the null. Accordingly, the tests
should be constructed to against general alternatives, and they are said to be “consistent”. To provide
consistent model specification tests is the main purpose of this work.

Based on the idea that unconditional moment restrictions can be induced from conditional mo-
ment restrictions, many researchers propose the conditional moment tests by testing whether some
(finitely) induced unconditional moment are zeros or not, see Newey (1985), Tauchen (1985), among
others. It is well known that these tests are in general not consistent because they are “directional”.
Other than the specified alternatives, they may not be able to detect all deviations from the null. A way
to deliver a consistent model specification test is taking all induced unconditional moment restrictions
into account, then any deviations from the null will be revealed by some of these unconditional mo-
ments. In this framework, we test the conditional moment restrictions “indirectly” by testing induced
unconditional ones. On the other hand, some consistent model specification tests are proposed by
using nonparametric methods to measure the “distance” between conditional moment restrictions and
zero “directly”, Hong and White (1995), Zheng (1996) and Fan and Li (2000) are a few examples.

In order to achieve consistency, Bierens (1982, 1990) consider infinite many induced uncondi-
tional moment restrictions by employing a class of weighting functions indexed by a continuous
nuisance parameter. Stinchcombe and White (1998) provide and characterize the features of these
weighting functions. A test statistic by integrating these nuisance parameters out is first proposed by
Bierens (1982), and Bierens and Ploberger (1997) provide the general asymptotics for this test and
name it by the Integrated Conditional Moment (ICM) test. Theoretically, the ICM test has nontrivial
local power, and is asymptotically admissible under the normal errors assumption. Boning and Sow-
ell (1999) also show that the ICM test proposed by Bierens (1982) and Bierens and Ploberger (1997)
is the best ICM test according to the weighted average power criterion considered by Andrews and
Ploberger (1994).

This ICM-type test, however, suffers from three drawbacks. First, the preliminary consistent
estimate of model parameters under the null is necessary in forming the statistics. A inconsistent



estimate will give the wrong type I error. This point is well known and some examples are provided
by Dominguez and Lobato (2006). It means that we may need another estimation method which can
deliver a consistent estimate given the conditional moment restrictions under the null before testing.
Second, the numerical method of integrations is always needed in computing these test statistics be-
cause there are no analytic forms in general. These two features make the implementation of this ICM-
type tests cumbersome. Third, this type of test is not pivotal while the asymptotic distribution and
critical values depend on the underlying data generating process. Stinchcombe and White (1998) and
Bierens and Ploberger (1997) provide data-independent bounds of the critical values; Whang (2001),
Dominguez and Lobato (2006) and Hsu and Kuan (2008) infer based on Bootstrap methods instead.

In order to improve the ICM test, this project proposes two approaches. The first proposed test
statistic is to present a global methodology for performing consistent statistical inference on model
specification by extending the ICM test and the results in Hsu and Kuan (2010). This proposed test
statistic is asymptotic equivalent to the ICM test statistic, but it has an analytic form instead. More-
over, because this unified approach relates estimation and diagnostic testing in a rather natural way,
we need no preliminary consistent estimate for the parameters of the model under the null. Roughly
speaking, I provide an easy-to-implement version of ICM test in this approach. However, because this
test is asymptotic equivalent to the ICM test, it is not pivotal, either. Bootstrap methods are employed
for inference. Note that the consistent linearity test statistic proposed in Hsu and Kuan (2008) is just
a special case of this test.

On the other hand, in order to get a pivotal test, I extend the idea behind the first approach. I de-
rive a new set of infinite many unconditional moment restrictions and employ generalized empirical
likelihood (GEL) method to construct the Likelihood-Ratio (LR) type test statistic. In the literature,
GEL method has been well established and applied to estimation and diagnostic checking for models,
see Imbens (2002), Kitamura et al. (2004), and Donald et al. (2003) among others. After suitable nor-
malization, the asymptotic distribution of the proposed empirical LR test statistic should be standard
normal, which is pivotal. Note that this approach also needs no preliminary consistent estimate for
the parameters of the model under the null. To my best knowledge, this is the first attempt to link the
GEL method to ICM test for model specification testing.

The remainder of this paper is organized as follows. The preliminaries about this issue is given in
in Section 2. Section 3 describes two proposed test statistics and their asymptotics. In Section 4, we
show some Monte Carlos simulations. Finally, Section 5 concludes.



2 Preliminaries

Assume all random variables are defined on a complete probability space (Q, F, P), and denote
o(X) C ¥ the minimal o-algebra such that X : Q — RR¥ measurable. In what follows, I consider a
class of models M := {f(-, 0): R" — ]R}G € ®}, where ® C R”, then we say the model is cor-
rectly specified if there exists some 6, such that f(X, 6,) is a version of the conditional expectation of
Y relative to ¥ . As aresult, the null and alternative of this model specification test can be represented

as
Hy: P(E[Y|X]= f(X,0,) =1 forsome b, € ® C R?, (D
against
H :P(E[Y|X]=f(X,0)) <1foralld € ©. 2)

Obviously, this test is portmanteau since no particular models are specified in the alternative.

Let Z = (Y, X) and z; = (y;, x;) is observable data for t = 1,...,T.! Denote €(Z,0) =
Y — f(X, 0) the residual function of the model, then the null hypothesis (1) suggests to test the
conditional moment restriction

E[e(Z,6,)|X] =0, with probability one (w.p.1 henceforth). 3)

As well known, this conditional moment restriction (3) implies E [e(Z, 0,)w(X)] = 0, for any
measurable function w(X). Since there are infinite many implied unconditional moment restrictions,
intuition suggests that any tests based on an arbitrary finite set of them can not detect all deviations
from the null. That’s why the CM tests in Newey (1985) test and Tauchen (1985) are not consistent.

In order to obtain a consistent CM test, one may systematically consider all these unconditional
moment restrictions, by using some indexed functions. Let w(X, &) be that function with index
¢ € E, where E is the nonempty set depended on w(-). A consistent test can then be constructed by
testing

Hy: E[e(Z,0,)w(X,£)]=0,Vt € E, forsome §, € ©®, w.p.l.

Given this null hypothesis which involves infinite many unconditional moment restrictions, we
may form the tests based on the L, norm:

i

INote that x; may contain a finite number of lagged y;.

1/q
E[e(Z,0,)w(X, )] ‘qdﬂ(g)] — 0, forsome 8, € ®, wp.l, @)




where 1 < g < oo, and u is a given probability measure on E which is absolutely continuous with
respect to Lebesgue measure on =E; see Stute (1997), Koul and Stute (1999), Bierens (1982), and
Bierens and Ploberger (1997). On the other hand, one may also test the null based on the supremum
norm:

Hy :sup |E[e(Z,0,)w(X,&)]| =0, for some 8, € ®, w.p.l. ®)]

(43}

Bierens (1990) and some Kolmogorov-Smirnov-type tests are based on this null.

3 The Proposed Approaches

Two approaches to testing model specification consistently are proposed and their asymptotics are
established in this section. In order to illustrate the idea more easily, we consider the univariate X
(and hence a scalar ¢) in what follows. Extensions to multivariate X is rather straightforward.

3.1 The proposed approach (I)

Given the preliminary consistent estimate Or of 6, under the null, the original ICM test statistic of
Bierens and Ploberger (1997) takes the form

ﬂT(éT) = /5

the integration here could be cumbersome. Since z(¢, éT) is a function of ¢ given 97, it has its

2

1 < R
ﬁZe(z,,er)w(xt,s) du(), ©6)
i=1

2600| du© = |

=

own Fourier series representation. To be more precise, denote {,,(-)} the Fourier series which is
orthonormal and complete in the space C(Z) of continuous real functions on = as well as on the
space L,(u), then

2(&,0r) =D Ch@r)ym(©),
m=1

where C, (éT) is the corresponding Fourier coefficient

R R 1 < R
Cutiy) = | 2€.00u@an@ = [ 2= bt Hua@du(@
= = =1

1 < .
= = > e [ 0l Oun () =
r=1 =

1 <& .
772 —;dz,,enwm(xt),
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with @, (1) = [z w(, &)y (E)dpu(&). It shows that each w,, () can be viewed as a “weighted av-
erage” of all w(-,¢) for & € E. Any deviations from the null detected by some w(-, ¢) can also be
revealed by each w,,(-). Besides, the integration in @, (x;) is much easy to compute, and it may
have closed form if we select matched weighting function w and Fourier series, for example, w is

exponential function and v, is exponential Fourier series.

After invoking Paserval’s Theorem, the ICM test statistic #r (éT), which is the L, norm of z (&, 9T),
can then be expressed as the summation of the magnitudes of the corresponding Fourier coefficients:

nr(ér)=/_\z(f,éT>(2du<¢)=§j\em(e})\2.
= m=1

In this step, we simply the construction of 77 (r) from integration to summation. In accordance with
Bessel’s inequality, |G| is close to zero when m is large enough and hence is not helpful to detect
the deviations form the null. Therefore, given 97, we can consider

mr 2

1y Or, mr) =D |CuBr)

m=1

where my is some positive integer and needs to grow with the sample size T to ensure this test to
be consistent. Compared with the original ICM test statistic #r (éT) in (6), the computation of this
statistic is rather easy in practice. Besides, Paserval’s Theorem ensures that 77, (br, o) =17 (9}). It
means that 57 (@r, m7) shares the same asymptotics with the ICM statistic #7 (éT) theoretically, if mp
is allowed to increase to infinity. Notice that the consistent linearity test statistic proposed in Hsu and
Kuan (2008) is just a special case of #7. Or, mr).

Recall that a preliminary consistent estimate Oy is crucial in above analysis. In this part of this
project, I propose a new test statistic for model specification without any preliminary consistent pa-
rameter estimates instead. That is

mr
1 s * s 2
Jp(my) = min (@, mr) = min 2—1 1Cn(@)]”. @)

The asymptotics of this J} (mr) test statistic can be easily established based on the results of
Bierens(1982, 1990), Bierens and Ploberger (1997), Stinchcombe and White (1998) and Hsu and
Kuan (2010). To see this, we impose the following conditions.

[A1] The observed data z, = (y;, x;)’,t = 1, ..., T, are independent realizations of Z = (¥, X)'.

[A2] For each § € O, €(-, ) is measurable, and for each z, €(Z, -) is continuous on ®, where O is
a compact subset in R?. Also, 6, in ® is the unique solution to E[e(Z, 8)|X] = 0 under Hy.



[A3] E[supy.e l€(Z, 0)|*1X] < oo; €(Z, ) is twice continuously differentiable in a neighborhood
of 6,, the corresponding first and second derivatives are bounded, and the second moment of

the first derivative is nonsingular.

[A4] The function w(-) is generically comprehensive revealing.

Given the local alternative of the form

X
HE:E[Y|X]= f(X,0,)+ gX) for some 0, € ®, w.p.1, (8)

JT

where function g is measurable with respect to . Notice that when g is a zero function, the local
alternative degenerates to the null of interest. Define

¢ (&) = w(x,, &) — B0, &) AO,) ' Vo f(x:,6,)

with A(eo) — plimT—mo% Z,T:1 [vﬁ/f(xt, 90)] [Ve’f(xr, 00)]/ and B(eo, f) - plimT—mo% ZtT=l V@’f(xta eo)w(xt; 5)
Under Hl in (8), a Taylor expansion of z (¢, 0r) around 6, and laws of large numbers yield

R 1 < 1 —
2.0 = = 2 €(Z,0)4@) + 7 28 (x)$,(&) +op(])
t=1 t=1

= Zr(§) + Z7(§) + op (D).

Under either the null or (local) alternative, the asymptotics of test statistic J; are established based
on the limiting processes of Zr (&) and Z5.(¢).

Theorem 3.1 (Asymptotics of J} test)

Given conditions [Al ]-[A4], and If mp = o(T'/?) as T — oo, we have

(a) Forall0 € O,

Ele(Z,0)w(X, )| du(@).

7 (0, mr) > /

(b) arg mingeg 1y (0, mr) BN 6, under Hy in (1).
(c) under Hy in (1),
d
s L [ 1z,

where Z (&) the limiting function of Zr (&), is a Gaussian process with zero mean and covari-

ance function T' (&, &,) = plimr_, o Zthl €(z1,0,)° (&P (&)



(d) under the alternative H, in (2), Jrl (mr) diverges.

(e) under the local alternative H" in (8),
d
s > [ 2@+ 2@ az.

where Z (&) is defined in (c) and Z#(&) is the limiting function of Z3 (&).

There are some remarks. First, from Theorem 3.1(b), we know that the & which minimizes the
75(0, mr) is the consistent estimate of 6, under the null if my grows with T at the rate o(T'/?).
Second, even though the J; statistic shares the same asymptotics with the original ICM test, the
proposed J; statistic improves the original ICM test in two directions: one is that the construction of
proposed statistic J;- is more easier because no numerical integration is needed; the other is that the J;
statistic does not depend on the preliminary consistent parameter estimates. This is a unified approach
which links the estimation and diagnostic testing in a natural way by extending the ICM test and the
work in Hsu and Kuan (2010). Besides, because the asymptotic properties of J; is equivalent to the
original ICM test, it is not pivotal, the bootstrap or simulation methods should be further imposed to
obtain critical values.?

3.2 The proposed approach (II)

In this part, we propose a pivotal test by extending the proposed approach (I). We rewrite the null
hypothesis in the ICM test approach as

12
Ho : [ / |Ele(Z,0)w(X, &) )zdﬂ(f)} =0, for some 0, € ©, w.p.1.

By having Fourier representation of E [¢(Z, 6,)w (X, £)] with respect to an orthonomal Fourier series
{wn ()}, under the null, we have

~ 12
[ [ [Ee@.opu.on ’261#(5)}1/2=(Z‘E[6(Z,Ho)wm(x)]‘2) —0,
= m=1

where @, (X) is defined above. This result immediately suggests that we can test a set of infinite
many unconditional moment restrictions instead. That is,

Hy: Ele(Z,0)w,,(X)]=0, m=1,2,...,my, myp —> Q. 9

21t the simulations below, wild bootstrap method is used for obtaining the corresponding critical values.



The e(Z,0)w,,(X),m = 1,2, ..., my are stacked into an my x 1 vector p(Z, 8, m). Given this set
of unconditional moment restrictions and the sample counterparts, the second test statistic based on
Donald et al. (2003) is constructed by

T
Ji(mr) =2 [Irgnmgxz (4 p(z:,6,mr)) — T@(O)] , (10)
t=1

where @ is C? in a neighborhood of 0, concave on an open interval of the real line containing 0, and 1
isamy x 1 vector of Lagrange multipliers. J% (m7) in (10) is nothing but objective function of the GEL
estimation method while having m; unconditional moment restrictions. Similar to the conventional
likelihood-ratio test statistic, the asymptotic distribution of JZ(mz) under Hy is approximated by
x*(m7p — p) which has mean (m; — p) and variance 2(m7 — p); more discussions may refer to
Donald et al. (2003) for example. The asymptotics of J72(mr) follows.

Theorem 3.2 (Asymptotics of J% test)
Given conditions [Al ]-[A4], and If mr = 0(T1/3) as T — oo, under the null, we have

J%(mT) —(mr—p) 4
N(O, 1).
SO

There are some remarks. First, the base stone of the proposed test JZ(mr), @,,(+), is quite different
from the some particular basis functions used in Donald et al. (2003). Each @, () can be viewed as
a “weighted average” of all basis functions w(-, ¢) for & € Z. Second, unlike the ICM-type tests
(including JT1 (m7) test), this test is pivotal instead. Last, but not least, as well as JT1 (mr), this test
based on JZ(mr) needs no preliminary consistent estimate of 6,.

4 Monte Carlo Simulations

In this section, we consider two experiments to evaluating the performance of the Cramer-von Mises
type test statistic: CM7y in (6), the Kolmogorov-Smirnov type test statistic: K Sz in (5) and the
proposed statistics J; (mr) and J2(mr). The null hypothesis of both experiments is that the model is
linear, and the nominal size is 5% for all cases.

In the first experiment, like what in Hsu and Kuan (2008), we specify the model as

ax

t
- €,
et 1 4+ exp(—x;) te

=

where x, follows a standard normal distribution. Various values of a, a = —1.5, —1, —0.5, 0, 0.5,
1 and 1.5, are considered in this experiments. When a = 0, we evaluate the sizes of the tests;



Table 1: Rejection probabilities.

T =100 T =200
a a
Test 0 0.5 1 1.5 0 0.5 1 1.5
J} (1) 0.052 0201 0.566 0.870 0.063 0362 0.869 0.995
J} (2) 0.050 0.199 0574 0.873 0.059 0365 0.874 0.995
le- (3) 0.051 0203 0577 0.877 0.064 0369 0.874 0.995
J% (1) 0.258 0543 0.889 0.993 0.254 0.694 0.983 1.000
J% (2) 0402 0628 0902 0991 0388 0.736 0.986 1.000
J% 3) 0573 0741 0935 0995 0.535 0.819 0.989 1.000
CMr 0.049 0.134 0409 0.744 0.062 0.250 0.716 0.972
KSr 0049 0.144 0439 0.769 0.060 0.266 0.744 0.976

otherwise, we compare the powers. In this setting, the number of Monte Carlo replications and of
bootstrap replications are 3000 and 3000, respectively. The results are reported in Table 1. Roughly
speaking, the test J; and J7 have better power performances than C My and K Sr. However, the test
J2 suffers serious size-distortion problem when we focus on the case with a = 0. This shortcoming

of test JZ needs further investigation in the future work.

In the second experiment, we consider another nonlinear model as

1+ ¢
i = 0
—1+4+¢

Four sample size are considered, 7 = 50, 100, 200, 500. The results are reported in Table 2. Based
on these results, the power performance of J. ! CM; and K Sy are quite similar in all cases.

if y,_1 > 0;
if y,_1 =0;
if yt—l < 0.

Table 2: Rejection probabilities.

T
Test 50 100 200 500
J}(l) 0.848 0.994 1.000 1.000
JZI- (2) 0.839 0994 1.000 1.000
J% (3) 0.850 0.994 1.000 1.000
J} (4) 0.840 0992 1.000 1.000
JZI- (5) 0.848 0.994 1.000 1.000
CMr 0845 0990 1.000 1.000
KSr 0.876 0.995 1.000 1.000




5 Concluding Remarks

In this project, I construct two consistent model specification tests. The first proposed approach is the
unified approach which links the estimation and diagnostic testing in a natural way by extending the
ICM test of Bierens (1982) and Bierens and Ploberger (1997) and the work in Hsu and Kuan (2010).
This test improves the original ICM test in two directions: it is more easier to implement and it does
not depend on the preliminary consistent parameter estimates. The second proposed approach fur-
ther extend the first proposed approach by using GEL methods. For this test, it needs no preliminary
consistent parameter estimates, its implementation is not hard, and it is pivotal. To my best knowl-
edge, this is the first attempt to link the GEL method to ICM tests for model specifications. The
corresponding asymptotics of these two tests are established, and some interesting Monte Carlo sim-
ulations are considered. Based on limited experiments, the finite sample performance of J; are not
worse than the common used Cramer-von Mises type and Kolmogorov-Smirnov type tests; the J3 test
has good power performance but with serious size-distortion problem. The size-distortion problem of
this pivotal test is interesting and is worth further investigations.
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e S =R

TR, TR T RIE A AR SEER ICM E, FE—EFEBEE T ICM ki E REFZES T, #
TRl T —ERZBRIENKRE. EERERTEN ICM € BEEHENHBESE, HEEEAEMEHIE
TEHETRES . B, BRI B AT AR A B Z R TR 28Uk e EE R E MR G, Rt Mth
NEEEIM—BUE 2B EE T K, Bk E R LB —ERNS% kA FEE, SURLME RS
&, THIAR] DU iaZ SSCIRHAHIHR, Brithiz 4%, TR R T 56— 187 I A RS b 170 B — M (L A B B DL
(generalized empirical likelihood) f&&, #1377 —{ERELILFIEIRE (LikelihoodRatio type) B E st
&, BRI E R, TIRH TIE RN E R R AR M R AR, R, 55 MR/ ME
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