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1 Introduction

Because of the recent advances in information technology, literally thousands of time series data
are available and this progress motivates people to take advantage of the richer bulk of information
in forecasting. In the literature, one of the most popular approaches recently is the factor approach
framework of Stock and Watson (1998, 2002). In this framework, these unknown factors are estimated
by using the principal component analysis (PCA). then the linear model for the target variable is
estimated by the ordinary least squares (OLS) when these estimated factors are plugged in. Since
the number of factors is unknown in practice, the information criteria is suggested to introduce in
either estimation stage or forecasting stage, when these “natural ranked” principal components are
considered in sequence, see e.g., Stock and Watson (1998, 2002) and Bai and Ng (2002).

The factor approach is easy to implement and better performance of this approach relative to the
conventional AR model is also investigated in the literature. However, since the prediction accuracy
measured by the mean-squared error (MSE) for the target variable is our major concern, there are
some remarks in either stages in this framework. First, no matter what the target variable is, the factor
estimates and their “natural rankings” are determined by PCA in the estimation stage only. Some
empirical studies showed that however, these resulting dominant principal components may not have
the forecasting power for some specific target variable. The “natural ranking” property of principal
components should be carefully re-investigated in the forecasting stage and the prediction accuracy
may be improved if the “targeted ranking” is provided instead. On the other hand, the prediction
accuracy may also be improved if the construction of factors is connected to the target variable. The
hard thresholding and soft thresholding methods of Bai and Ng (2008a) and combining forecast and
then principal component (CF-PC) method of Huang and Lee (2009) are thus proposed to supervise
or to weight variables based on the predictive powers to the target variable before implementing
PCA in the estimation stage. Second, either in the original factor models or the above supervised
methods, the linear model in forecasting stage is estimated by using OLS. It is well known that the
OLS estimates often have low bias but large variance. The prediction accuracy can sometimes be
improved by shrinking or setting to zero some coefficients. There have been lots of subset selections
and shrinkage methods proposed in the literature, such as forward- and backward-stepwise selection,
forward-stagewise regression, ridge regression, the least absolute shrinkage and selection operator
(LASSO), least angle regression (LARS), and so on, see e.g., Tibshirani (1996), Efron et al. (2004),
De Mol et al. (2008) and Hastie et al. (2009). The prediction accuracy could be further improved if
these shrinkage and subset selections methods are introduced in the forecasting stage in place of the
OLS.

In what follows, we present the forecasting model in which we are interested, the proposed two-
step approach including PCA and LASSO, the properties of the proposed, simulation results and an
empirical study. Then we conclude this project briefly.



2 The forecasting models

Let y; denote the target variable of interest and X; = (xi;, X2, ..., Xn;)’ consists of N observed vari-
ables (predictors)at time ¢, fort = 1, ..., T. In this project, because our focus is on the selection or
aggregation of X, in the forecasting model, we simply consider the following model of y;; without

other variables involved:
yt+h:ﬁ/Xt+et+h: t:132:,T_h (1)

If N <« T, then the consistent estimator of f#, denoted B, respectively, are obtained by the OLS
estimation method. When N is quite large, it is well known that the estimates may not so much
reliable, and consistently estimating the model is even not possible when N is larger than the sample
size T. Therefore, we may try to aggregate or to extract information of X; by some transformations.
Let 7 be a transformation of X, such that 7 (X,) is a r x 1 vector of functions of X, for some r.
If r < N, then we may also consider a smaller but effective regression model based on these new r

regressors:
Vien =BT X)) +eqn, t=1,2,...,T —h. ()

In the literature, there are many methods for constructing 7 (X;) in the forecasting model (2). In
particular, factor approach of Stock and Watson (1998, 2002) is the popular one recently. In this
approach, it relies on an additional assumption that X, is driven by only a few underlying unknown
factors, 7 (X,) can be formed as the estimates of these factors, and then the estimates of £ is obtained
by OLS.

3 The proposed approach

In this project, I propose a promising approach to forecast y;j based on extracting useful information
from large dimensional X,. In the first step, I search for orthogonally linear combinations of X,
by principal component analysis. In the second step, I determine the 7 (X;) from these N linear

combinations of X, and the estimates of B simultaneously by implementing the LASSO.

3.1 Principal component analysis (PCA)

Assume N x 1 vector X; has the covariance matrix X, then the PCA searches for the N mutually
orthogonally normalized linear combinations of X;, say 1 X;, h,X;, ..., h’y X;, such that for m =
I,..., N,

hy = argm}?xh/th, st. "h=1, WX h; =0,i=12,....,m—1.



As a consequence, /)X, known as the first principal component of X, is the linear combination
with largest variance; i} X, the second principal component of X, is with second largest variance,
and so on. In practice, we often rescale X; by standardizing it to have mean zero and unit variance.

The sample version of PCA is then carried out by replacing £, with the sample covariance matrix

fx = 7! Zthl X,X;. Denote ﬁl, e, ﬁN as the sample version of Ay, ..., hy, then we further
define the mapping

PC(X;; k) = [h1,...,he] X, k=1,...,N. (3)
3.2 LASSO
Consider a general linear model y, = x;8, +u;, t = 1,..., T, where y is the regressand, x; is the

k x 1 vector of standardized regressors and B, is the corresponding unknown coefficients. Denote
RSS(y, x; B) the residual sum of squares from this linear model given some B8 = {81, f2, ..., B},
then we represent the LASSO estimates as

~Jasso

k
B (%) = argmin RSS(y,x: ) subjectio > Ifil <c, @)
i=1

where ¢ > 0 controls the amount of shrinkage applied to the estimates, and it shrinks some coefficients
and sets others to zero. Besides, the LASSO also provides a ranking of x according to the absolute
value of ﬁlasso (y, x) since x is standardized. This ranking is targeted because it reveals the predictive
power of each elements of x in the model. When the regressors x are orthogonal, the LASSO estimate

gives an analytic form:

Bl (y, x) = sign (B8 (v x) (

Blo.x| - n2) 5)

where sign(-) denotes the sign of its argument (1), and z4+ = z if z > 0 and O otherwise. It indicates
that under the LASSO, only the variables with absolute value of OLS estimates larger than x /2 will be
retained in the model, and the LASSO estimate of these retained variables are the corresponding OLS
estimates shrunk by the amount x/2.! In what follows, we sometimes call 4 /2 as the “threshold” of
the LASSO estimates.

3.3 The proposed

In this project, I take both the advantages of the PCA and the LASSO by a two-step approach. In the
first step, I re-organize the information containing in the original regressors X; by using PCA. Kyr

!'As noted by Tibsirani (1996), the parameter x in the LASSO could be determined by three methods, they are the
cross-validation, generalized cross-validation and an analytical unbiased estimate of risk.



orthogonally linear combinations of X, constructed by PC(X;; K y7) will be introduced in forecasting
Vi+h- Note that K y7 could be a (increasing) large number depending on N and 7'. In the second step,

the 7 (X;) and the estimates of B in forecasting model (2) willl be simultaneously determined by
~-51asso

implementing the LASSO, that is, the estimate of f would be g (y¢4n, PC(X;; KnT)), and non-
zero elements of Flasso(y,%, PC(X;; Kyr)) indicates which principal components are helpful to

predict y;4p.

There are some remarks. In the first step of the proposed, as what emphasized above, I consider
all principal components of X, instead of only some of them in practice. It differs greatly from the
factor approach of Stock and Watson(1998, 2002) and other related. In the second step, I imple-
ment the LASSO to decide which principal components of X; would helpful to predict y;;,, the
helpless principal components would receive zero LASSO coefficients. Unlike the “natural ranking”
of PC(X;; N), it gives the “targeted ranking” instead. Moreover, because the principal components
are orthogonal, the LASSO gives the analytic form of /p;lasso (Y141, PC(X;; N)), it is more easily to
implement than the estimate ﬁlasso (¥t+r»> X) proposed by De Mol et al. (2008), and good proper-
ties of the LASSO, comparing to other shrinkage methods, are kept especially when X; are highly

correlated.

4 The properties of the proposed approach

In the proposed two-step approach, the forecast performance in the second step heavily depends on

the principal components constructed in the first step. Given the vector form representation of X:
Xi = ANF; + uy,

where F; = (fir, fo, ..., fk:) is a K x 1 vector of unobserved common factors at time #, A is the
N x 1 corresponding matrix of factor loadings, and u; is N x 1 idiosyncratic errors. We consider the
assumptions of X, as follows:

Assumption 4.1
(a) X;isa N x 1 vector of covariance-stationary processes with mean zero.
(b) E[F;] = Elu;] = E[Fu,] = 0, E[F,F/] = Ik, the covariance structure of X, is given by

YXx = AN + Q, where £x and Q are the N x N population covariance matrix of X and u;,

respectively.

(c) Denote Anin(A) and Amax(A) the smallest and the greatest eigenvalues of a matrix A, and
1Al = (max(A’A)'/2,

1 1
0 <lim inf —Apnin(A’A) <lim sup —Amax(A'A) < 00
n—oo N N

n—o0



These assumptions on X; are quite standard in the literature, and these assumptions ensure that the
PCA can provide an consistent estimators of F;, provided the N and T go to infinity; see Bai and
Ng (2008) and De Mol et al. (2008) for example. Let ﬁ, and 1 be the estimators of F; and 4 by PCA,
then the consistency and asymptotic normality of these estimators are directly follows the Result A in
Bai and Ng (2008b):

Theorem 4.2 (Consistency of factor estimators)

Given Assumption 4.1,

(a) If N = o(T?) as N, T — oo, then for each t, \/N(ﬁ, — F}) is asymptotic normal distributed

with zero mean.

(b) If T = o(N?) as N,T — oo, then for each i, VT — Ai) is asymptotic normal distributed

with zero mean.

Assumption 4.3

(a) Yiin = B'F; + e;1n, where B is a K x 1 vector of coefficients and some coefficients are zeros,

and e; 4, is orthogonal to X;.

(b) Assume that all elements of B are shrunk to zero and the prior distributions of which are i.i.d

double-exponential, that is,

oy I —|px]
f(ﬂk) - 20_50 exp( O_/%() )

Assumption 4.3(a) is typically considered in the factor model literature, except that we explicitly

assume that not all of factors in Assumption 4.1 are effective for forecasting y. Assumption 4.3(b)

states the prior distribution of B, which links the Lasso estimators of B to the posterior mean of f.

Theorem 4.4 (The property of Lasso estimators)

Given Assumptions 4.1 and 4.3, fork = 1, ..., K, we have the posterior mean of fy as

1 )
- — ,
20 po ).

where B\kOls (y, IA?,) is the kth element of OLS estimates when regressing y on F,, and F; is the estimator
obtained form PCA of X;. Moreover, ,B,f shares the same form as the LASSO estimator for fy.

B\kOls(y, ﬁf)

Bl = sign (B (v, F) (

This Theorem implies that some s will exactly be set to zero if their magnitudes are less than the
“threshold” (2%20)_1. It means that the less important principal components induced from X, for
forecasting y would be discarded.



5 Simulation

In this section, we report one of the simulation results we did. This simulation called “oversampling”
is introduced in Boivin and Ng (2006). The oversampling means that the data are more informative on
only some most dominant factors. The experiment is designed as follows. First,two serially correlated

factors drive the data:
Fiy = 0.5F—1 + uks, ugr ~ N0, 1), k=1,2
Second, there are two target series:
Y= pAF el et ~N©O, 0, B, =pEF+el,, ef ~ N0, 0P,

where f4 =1 = 8,64 = 1 = ¢ 8. Third, five types of data with sample size Ny, s = 1,2, 3,4, 5,
Ni: Xi; = 0.8F1, +eir, eis ~ N(0,1 —0.8%); N> : X;; = 0.6F> + eir, eiy ~ N(0,1 — 0.6%);
N3 : Xi; = 0.4F;+0.1Fy+ei;, ei; ~ N(,1—0.42—0.1%); Ns : X;; = 0.1F 1, +0.4F> +ei;, ey ~
N(@,1 —0.1> — 0.4%); N5 : X;; = ej;, eir ~ N(0, 1). Fourth, 14 cases are considered by various
combinations of N;. They are divided into three groups. In the first group, factor F; dominates F>,
the cases are Case 1(N; = 20), Case 5 (N7 = 20, N3 = 20) and Case 11 (N; = 20, N3 = 20,
N5 = 40). The second group considers the cases that F, dominates Fi, they are Case 2 (N, = 20),
Case 4 (N, = 20, N3 = 20) and Case 6 (N, = 20, Ny = 40). The others are Case 3 (N; = 20,
N, = 20), Case 10 (N; = 20, N, = 20, N5 = 40), Case 7 (N1 = 20, N, = 20, N3 = 20), Case 12
(N1 = 20, Ny = 20, N3 = 20, N5 = 40), Case 8 (N1 = 20, N, = 20, N4 = 40), Case 13 (N = 20,
Ny = 20, Ny = 40, N5 = 40), Case 9 (N1 = 20, N, = 20, N3 = 20, Ny = 40), and Case 14
(N1 = 20, Ny =20, N3 = 20, Ngs = 40, N5 = 40).

The number of replications of each case is 200, and we consider two measures of estimates in
each case, they are Average of in-sample MSEs (based on 200 in-sample periods) and out-of-sample
MSEs(based on 200 out-of-sample periods). Different prior variance of B are chosen such that the
thresholds of the proposed Lasso method equal 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. We then compare the
results of the proposed with the original forecasting model proposed by Stock and Watson (2002)(de-
noted SW), and the hard thresholding model with threshold for z-ratio equals 1.28 (denoted HT1) and
1.65(denoted HT?2). Besides, because only two factors drive the data, we consider ¢ = 1 and 2, the
number of factors, in SW, HT1 and HT2 methods. The simulation results, the ratio of the MSE for a
given method to the MSE of SW model, are reported in Table 1 for y,.?

When g = 1 for variable y,4, the proposed Lasso method performs best in the cases that F»
dominates Fp, for example case 2, 4 and 6, no matter what 1/ 2%2,, is chosen. Similarly, when ¢ = 1

for variable yp, we get the similar results when in the case 3 and 5. However, when g = 2, the first

ZFor saving the space of this report, we do not report the results for yz.



two estimated factors capture all important information about F; and F; as well as y4 and yp, so the
advantages of Lasso method gradually vanish, but Lasso estimates with some prior variances are also
comparable with HT1 and HT?2.

6 Empirical Study

In the empirical study, we consider the data set which has been analyzed in Stock and Watson (2005),
Bai and Ng(2008a) and Lee and Tu (2009). We briefly summarize the features of this data set and
this study as follows. First, monthly series available from 1960m1 to 2003m12 for a total of T = 528
observations, and N = 132 variables in this data set. Second, the target variable y is the logarithm
of PUNEW (CPI all items, the 115th variable in the data set.), as what in Bai and Ng(2008a), Lee
and Tu(2009). Third, We consider a & step-ahead forecasting Model of y for & = 1, 3, 6, 12, 18,
24, 30 and 36. Fourth, nine values of threshold from 0.3 to 0.9 as well as the one decided by BIC
are considered in the proposed Lasso estimation method. The benchmark model is AR(4) model and
all results the ratio of the MSE for a given method to that AR(4)model. Three out-of-sample periods
(1971m1 to 2003m12, 1971m1 to 1979m12, 1980m1 to 1898m12)are considered, and we summarize
the results in Table 2.

There are some remarks in Table 2. First, except the cases with thresholds smaller than 0.2 and
h = 1, the proposed method beats AR(4) model is most cases. Second, as & increases, the advantages
of the proposed is more significant. Third, the performance of the proposed with the BIC-chosen
threshold is good in the third sample period(1980m1 to 1989 m12) but is not in the other two sample
periods. We also observed the similar phenomenon in the unreported results when other data-driven
methods such as AIC and cross-validation are considered. It suggests that it would be interesting to

find a better data-driven threshold method when computing Lasso.

7 Concluding Remarks

In this project, I proposed a promising approach to forecast target variable based on extracting useful
information from large dimensional variables. I take both the advantages of the PCA and the LASSO
by a two-step approach. In the first step, I re-organize the information containing in these many
predictors by using PCA. All these orthogonally principal components are then introduced in fore-
casting target variable. It differs greatly from the factor approach of Stock and Watson(1998, 2002)
and other related, when only the dominant principal components (according to the*“natural ranking”)
would be considered in these factor approaches. In the second step, the targeted principal components
and the estimates of the linear forecasting model will be simultaneously determined by implementing
the LASSO. The helpless principal components would receive zero LASSO coefficients. Unlike the



“natural ranking” of PCA, it gives the “targeted ranking” instead. Moreover, because the principal
components are orthogonal, good properties of the LASSO, comparing to other shrinkage methods,
are kept, and it also gives the analytic form of the estimates. In contrast with the other forecasting
approaches introduced in the literature, the proposed approach in this project is easily to implement.
The properties of the proposed estimates are also given when we equip X with the factor structure
as typically introduced in the literature but with many factors, and link the LASSO estimates to the
posterior mean of B in Bayesian analysis. The simulation results show that the proposed performs
good in some cases where the “natural ranking” of PCA is helpless for forecasting the target variable.
However, the simulation results also suggest us that there does not exist a best method/approach to
forecasting, it heavily depends on the relationships among the data, the target variable and the under-
lying factors. More effort to clearly investigate the properties of the existing methods/approaches is
needed to make in the future. On the other hand, the results of the empirical study also indicates that
a good data-driven method for threshold in LASSO is worth studying in the future.
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Table 1: Oversampling simulations for y4.
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035504 1 1 0962111 0997686 1.019758 1.038629 1060699 1087419
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1
1
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049858 0.99999  0.99998 1.038344 1.018082 1.026803 1.044755 1.067973 1.096092
1055978 0995898 0.996819 0.835217 0.960353 1.013138 1.037227 1.059424 1.085647
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1525263 0743799 0.726612 0.86475 0.742609 0.738105 0.760246 0.791039 0.828381
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1059701 1.003524 1004684 1.111762 1.029002 1.031655 1.050173 1073738 1101335
1035638 0996454 0995401 0.841633 0.972222 1.035067 1074792 1117113 1167123

L

L

1

L

1

1

1

105088 1.001687 1.003327 1.094668 1.03645 1.049069 108219 1 24669 1175393
103469 0991138 0990992 0.760518 0.950089 1.031642 1.074547 1.117449 1.168015
1031015 1.001752 1.003438 1173807 1.046216 1.051072 1.083729 112665 1.177874
1031607 1.000142 1 00020 0.799562 0.960943 1.034369 1076779 LI121177 1174347
1.047845 1001994 1.003141 1.121689 1.038165 1.045161 1.076893 1.119977 1.172568
1038282 0996434 0.997658 0.716326 0.936839 1.030137 1075953 1.120427 1.173211
1058136 0999768 1.000831 1.230755 1.05741 L1

051544 1081986 1.125038 1177416




Table 2: Empirical Study for CPI growth rate.

h-step-ahead

36

MSE(AR4)

Threshold Threshold Threshold Threshold Threshold Threshold Threshold Threshold Threshold BIC

0.1

0.2

0.3

0.4

0.5

0.6 0.7 0.8

0.9

7.44933793
4.77968046
3.55952325
3.85573211
4.682771371
5.65276712
6.27362068
6.70593233

3.214958
2.594722
1.553412
1.232488
1.288417
1.372287
1.405901
1.302993

2.210637
1.583455
0.981737
0.908485
0.814997
0.914035
0.878487
0.804089

1.458799
0.967536
0.864835
0.742233
0.697931
0.659706
0.677889
0.669728

1.114014
0.942586
0.831469
0.737798
0.707077

0.67841
0.687993
0.675233

1.056621
0.944539
0.873659
0.764266
0.694798
0.695208
0.702269
0.723606

1.007355
0.968834
0.873068
0.768346
0.719145
0.693266
0.698987
0.750969

1.001233 1
0.973249  1.00612
0.872723 0.922865
0.844843 (.844815
0.740757 0.756269
0.713335 0.727315
0.754162 0.773561
0.785298 0.774824

1 1.164701
1.003375 1.742428
0.990213 1.071023
0.844395 0.867362
0.834292 0.771476
0.80949 0.825372
0.780782 0.725426
0.797068 0.800743

(a)Sample Period: 1971m1-2003m12

h-step-ahead

36

MSE(AR4)

Threshold Threshold Threshold Threshold Threshold Threshold Threshold Threshold Threshold BIC

0.1

0.2

0.3

0.4

0.5

0.6 0.7 0.8

0.9

8.63021973

4.9947297
4.12840449
5.37354376
7.03283582

8.0300859
7.78617708
7.87843836

6.524515
5.151742
1.903407
1.052408
0.978252
1.128017
1.154358
1.053357

3.832826
2.587515
0.779259
0.838365
0.732098

0.86551
0.828098
0.783491

1.995896
0.953879

0.83787
0.690966
0.653813
0.658841
0.742234
0.802046

1.244299
0.998404
0.865485
0.766233
0.728387
0.726202
0.819216
0.895199

1.133836
1.048725
1.030239
0.793093
0.729377

0.75616
0.837153
0.997057

1.009041 1 1
1.057679 1.037843 1
1.028507 1.027494 1.021918
0.790746 0.972632 0.972564
0.763228 0.765244 0.772605
0.763285 0.806948 0.841166
0.846924 0.959724 0.992254
1.015269 0.999771 1.003947

1 1.501026
1 3.572843
1 1.501665
0.971538 1.009397
0.955498 0.877289
0.910754 1.057574
0.99506 0.892022
0.999332 1.152659

(b)Sample Period: 1971m1-1979m12

h-step-ahead

L —

6
12
18
24
30
36

MSE(AR4)

Threshold Threshold Threshold Threshold Threshold Threshold Threshold Threshold Threshold BIC

0.1

0.2

0.3

0.4

0.5

0.6 0.7 0.8

0.9

9.53430908
7.88725786
574212726
5.72576391
6.96269477
9.18811977
11.6025394

13.120488

1.54827
1.352604
1.254716
1.115446
1.271482
1.308011
1.213681
1.173306

1.504408
1.094414

0.97937
0.721649
0.654978
0.733926
0.732582
0.689655

1.267371
0.940778
0.829878

0.66673

0.59268
0.553825
0.557883
0.527198

1.077957
0.898488
0.778447
0.644208
0.591288
0.568212
0.574639
0.518669

1.035635
0.874369
0.748915

0.68791
0.586351
0.589932
0.590995
0.543315

1.011354
0.918756
0.748915
0.697773
0.599037
0.587527
0.579743
0.572515

1.003277 1
0.919338  1.00233
0.748915 0.852603
0.70222  0.70222
0.660268 0.688305
0.594559 0.589406
0.607123 0.628192
0.634667 0.61816

1 0.990803
1.006953 0.909773
0.959102 0.809958
0.70222 0.711529
0.681983 0.623104
0.700479  0.61031
0.639583 0.605708
0.669337 0.595905

(c)Sample Period: 1980m1-1989m12
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