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1 Introduction

Because of the recent advances in information technology, literally thousands of time series data
are available and this progress motivates people to take advantage of the richer bulk of information
in forecasting. In the literature, one of the most popular approaches recently is the factor approach
framework of Stock and Watson (1998, 2002). In this framework, these unknown factors are estimated
by using the principal component analysis (PCA). then the linear model for the target variable is
estimated by the ordinary least squares (OLS) when these estimated factors are plugged in. Since
the number of factors is unknown in practice, the information criteria is suggested to introduce in
either estimation stage or forecasting stage, when these “natural ranked” principal components are
considered in sequence, see e.g., Stock and Watson (1998, 2002) and Bai and Ng (2002).

The factor approach is easy to implement and better performance of this approach relative to the
conventional AR model is also investigated in the literature. However, since the prediction accuracy
measured by the mean-squared error (MSE) for the target variable is our major concern, there are
some remarks in either stages in this framework. First, no matter what the target variable is, the factor
estimates and their “natural rankings” are determined by PCA in the estimation stage only. Some
empirical studies showed that however, these resulting dominant principal components may not have
the forecasting power for some specific target variable. The “natural ranking” property of principal
components should be carefully re-investigated in the forecasting stage and the prediction accuracy
may be improved if the “targeted ranking” is provided instead. On the other hand, the prediction
accuracy may also be improved if the construction of factors is connected to the target variable. The
hard thresholding and soft thresholding methods of Bai and Ng (2008a) and combining forecast and
then principal component (CF-PC) method of Huang and Lee (2009) are thus proposed to supervise
or to weight variables based on the predictive powers to the target variable before implementing
PCA in the estimation stage. Second, either in the original factor models or the above supervised
methods, the linear model in forecasting stage is estimated by using OLS. It is well known that the
OLS estimates often have low bias but large variance. The prediction accuracy can sometimes be
improved by shrinking or setting to zero some coefficients. There have been lots of subset selections
and shrinkage methods proposed in the literature, such as forward- and backward-stepwise selection,
forward-stagewise regression, ridge regression, the least absolute shrinkage and selection operator
(LASSO), least angle regression (LARS), and so on, see e.g., Tibshirani (1996), Efron et al. (2004),
De Mol et al. (2008) and Hastie et al. (2009). The prediction accuracy could be further improved if
these shrinkage and subset selections methods are introduced in the forecasting stage in place of the
OLS.

In what follows, we present the forecasting model in which we are interested, the proposed two-
step approach including PCA and LASSO, the properties of the proposed, simulation results and an
empirical study. Then we conclude this project briefly.
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2 The forecasting models

Let yt denote the target variable of interest and XXX t = (x1t , x2t , . . . , xNt)
′ consists of N observed vari-

ables (predictors)at time t , for t = 1, . . . , T . In this project, because our focus is on the selection or
aggregation of XXX t in the forecasting model, we simply consider the following model of yt+h without
other variables involved:

yt+h = βββ ′XXX t + et+h, t = 1, 2, . . . , T − h. (1)

If N � T , then the consistent estimator of βββ, denoted β̂ββ, respectively, are obtained by the OLS
estimation method. When N is quite large, it is well known that the estimates may not so much
reliable, and consistently estimating the model is even not possible when N is larger than the sample
size T . Therefore, we may try to aggregate or to extract information of XXX t by some transformations.
Let T be a transformation of XXX t such that T (XXX t) is a r × 1 vector of functions of XXX t for some r .
If r � N , then we may also consider a smaller but effective regression model based on these new r
regressors:

yt+h = βββ ′T (XXX t) + et+h, t = 1, 2, . . . , T − h. (2)

In the literature, there are many methods for constructing T (XXX t) in the forecasting model (2). In
particular, factor approach of Stock and Watson (1998, 2002) is the popular one recently. In this
approach, it relies on an additional assumption that XXX t is driven by only a few underlying unknown
factors, T (XXX t) can be formed as the estimates of these factors, and then the estimates of βββ is obtained
by OLS.

3 The proposed approach

In this project, I propose a promising approach to forecast yt+h based on extracting useful information
from large dimensional XXX t . In the first step, I search for orthogonally linear combinations of XXX t

by principal component analysis. In the second step, I determine the T (XXX t) from these N linear
combinations of XXX t and the estimates of βββ simultaneously by implementing the LASSO.

3.1 Principal component analysis (PCA)

Assume N × 1 vector XXX t has the covariance matrix 6x , then the PCA searches for the N mutually
orthogonally normalized linear combinations of XXX t , say h′

1 XXX t , h′

2 XXX t , . . . , h′

N XXX t , such that for m =

1, . . . , N ,

hm = arg max
h

h′6x h, s.t. h′h = 1, h′6zhi = 0, i = 1, 2, . . . , m − 1.
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As a consequence, h′

1 XXX t , known as the first principal component of XXX t , is the linear combination
with largest variance; h′

2 XXX t , the second principal component of XXX t , is with second largest variance,
and so on. In practice, we often rescale XXX t by standardizing it to have mean zero and unit variance.
The sample version of PCA is then carried out by replacing 6x with the sample covariance matrix
6̂x = T −1∑T

t=1 XXX t XXX ′

t . Denote ĥ1, . . . , ĥN as the sample version of h1, . . . , hN , then we further
define the mapping

PC(XXX t ; κ) = [ĥ1, . . . , ĥκ ]′XXX t , κ = 1, . . . , N . (3)

3.2 LASSO

Consider a general linear model yt = xxx ′
tβββo + ut , t = 1, . . . , T , where y is the regressand, xxx t is the

k × 1 vector of standardized regressors and βββo is the corresponding unknown coefficients. Denote
RSS(y, xxx; βββ) the residual sum of squares from this linear model given some βββ = {β1, β2, . . . , βk}

′,
then we represent the LASSO estimates as

β̂ββ
lasso

(y, xxx) = arg min
βββ

RSS(y, xxx; βββ) subject to
k∑

i=1

|βi | ≤ c, (4)

where c ≥ 0 controls the amount of shrinkage applied to the estimates, and it shrinks some coefficients
and sets others to zero. Besides, the LASSO also provides a ranking of xxx according to the absolute
value of β̂ββ

lasso
(y, xxx) since xxx is standardized. This ranking is targeted because it reveals the predictive

power of each elements of xxx in the model. When the regressors xxx are orthogonal, the LASSO estimate
gives an analytic form:

β̂lasso
i (y, xxx) = sign

(
β̂ols

i (y, xxx)
) (∣∣∣β̂ols

i (y, xxx)
∣∣∣− µ/2

)
+

, (5)

where sign(·) denotes the sign of its argument (±1), and z+ = z if z > 0 and 0 otherwise. It indicates
that under the LASSO, only the variables with absolute value of OLS estimates larger than µ/2 will be
retained in the model, and the LASSO estimate of these retained variables are the corresponding OLS
estimates shrunk by the amount µ/2.1 In what follows, we sometimes call µ/2 as the “threshold” of
the LASSO estimates.

3.3 The proposed

In this project, I take both the advantages of the PCA and the LASSO by a two-step approach. In the
first step, I re-organize the information containing in the original regressors XXX t by using PCA. KN T

1As noted by Tibsirani (1996), the parameter µ in the LASSO could be determined by three methods, they are the
cross-validation, generalized cross-validation and an analytical unbiased estimate of risk.
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orthogonally linear combinations of XXX t constructed by PC(XXX t ; KN T ) will be introduced in forecasting
yt+h . Note that KN T could be a (increasing) large number depending on N and T . In the second step,
the T (XXX t) and the estimates of βββ in forecasting model (2) will be simultaneously determined by
implementing the LASSO, that is, the estimate of βββ would be β̂ββ

lasso
(yt+h, PC(XXX t ; KN T )), and non-

zero elements of β̂ββ
lasso

(yt+h, PC(XXX t ; KN T )) indicates which principal components are helpful to
predict yt+h .

There are some remarks. In the first step of the proposed, as what emphasized above, I consider
all principal components of XXX t instead of only some of them in practice. It differs greatly from the
factor approach of Stock and Watson(1998, 2002) and other related. In the second step, I imple-
ment the LASSO to decide which principal components of XXX t would helpful to predict yt+h , the
helpless principal components would receive zero LASSO coefficients. Unlike the “natural ranking”
of PC(XXX t ; N ), it gives the “targeted ranking” instead. Moreover, because the principal components
are orthogonal, the LASSO gives the analytic form of β̂ββ

lasso
(yt+h, PC(XXX t ; N )), it is more easily to

implement than the estimate β̂ββ
lasso

(yt+h, XXX t) proposed by De Mol et al. (2008), and good proper-
ties of the LASSO, comparing to other shrinkage methods, are kept especially when XXX t are highly
correlated.

4 The properties of the proposed approach

In the proposed two-step approach, the forecast performance in the second step heavily depends on
the principal components constructed in the first step. Given the vector form representation of XXX t :

X t = 3Ft + ut ,

where Ft = ( f1t , f2t , . . . , fK t)
′ is a K × 1 vector of unobserved common factors at time t , 3 is the

N × 1 corresponding matrix of factor loadings, and ut is N × 1 idiosyncratic errors. We consider the
assumptions of XXX t as follows:

Assumption 4.1

(a) XXX t is a N × 1 vector of covariance-stationary processes with mean zero.

(b) IE[Ft ] = IE[ut ] = IE[Ftut ] = 0, IE[Ft F ′
t ] = IK , the covariance structure of XXX t is given by

6X = 33′
+ �, where 6X and � are the N × N population covariance matrix of XXX t and ut ,

respectively.

(c) Denote λmin(A) and λmax(A) the smallest and the greatest eigenvalues of a matrix A, and
‖A‖ = (λmax(A′ A))1/2,

0 < lim inf
n→∞

1
N

λmin(3
′3) ≤ lim sup

n→∞

1
N

λmax(3
′3) < ∞
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These assumptions on XXX t are quite standard in the literature, and these assumptions ensure that the
PCA can provide an consistent estimators of Ft , provided the N and T go to infinity; see Bai and
Ng (2008) and De Mol et al. (2008) for example. Let F̂t and λ̂ be the estimators of Ft and λ by PCA,
then the consistency and asymptotic normality of these estimators are directly follows the Result A in
Bai and Ng (2008b):

Theorem 4.2 (Consistency of factor estimators)
Given Assumption 4.1,

(a) If N = o(T 2) as N , T → ∞, then for each t,
√

N (F̂t − Ft) is asymptotic normal distributed
with zero mean.

(b) If T = o(N 2) as N , T → ∞, then for each i ,
√

T (λ̂i − λi ) is asymptotic normal distributed
with zero mean.

Assumption 4.3

(a) yt+h = βββ ′FFF t + et+h , where βββ is a K × 1 vector of coefficients and some coefficients are zeros,
and et+h is orthogonal to XXX t .

(b) Assume that all elements of βββ are shrunk to zero and the prior distributions of which are i.i.d
double-exponential, that is,

f (βo
k ) =

1
2σ 2

βo

exp

(
−|βk |

σ 2
βo

)

Assumption 4.3(a) is typically considered in the factor model literature, except that we explicitly
assume that not all of factors in Assumption 4.1 are effective for forecasting y. Assumption 4.3(b)
states the prior distribution of βββ, which links the Lasso estimators of βββ to the posterior mean of βββ.

Theorem 4.4 (The property of Lasso estimators)
Given Assumptions 4.1 and 4.3, for k = 1, . . . , K , we have the posterior mean of βk as

β
p
k = sign

(
β̂ols

k (y, F̂t)
)(∣∣∣β̂ols

k (y, F̂t)
∣∣∣− 1

2σ 2
βo

)
+

,

where β̂ols
k (y, F̂t) is the kth element of OLS estimates when regressing y on F̂t , and F̂t is the estimator

obtained form PCA of XXX t . Moreover, β
p
k shares the same form as the LASSO estimator for βk .

This Theorem implies that some βks will exactly be set to zero if their magnitudes are less than the
“threshold” (2σ 2

βo)−1. It means that the less important principal components induced from XXX t for
forecasting y would be discarded.
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5 Simulation

In this section, we report one of the simulation results we did. This simulation called “oversampling”
is introduced in Boivin and Ng (2006). The oversampling means that the data are more informative on
only some most dominant factors. The experiment is designed as follows. First,two serially correlated
factors drive the data:

Fkt = 0.5Fkt−1 + ukt , ukt ∼ N (0, 1), k = 1, 2

Second, there are two target series:

y A
t+1 = β A F1t + εA

t+1, εA
∼ N (0, σ A), yB

t+1 = βB F2t + εB
t+1, εB

∼ N (0, σ B),

where β A
= 1 = βB , σ A

= 1 = σ B . Third, five types of data with sample size Ns, s = 1, 2, 3, 4, 5,
N1 : X i t = 0.8F1t + ei t , ei t ∼ N (0, 1 − 0.82); N2 : X i t = 0.6F2t + ei t , ei t ∼ N (0, 1 − 0.62);
N3 : X i t = 0.4F1t +0.1F2t +ei t , ei t ∼ N (0, 1−0.42

−0.12); N4 : X i t = 0.1F1t +0.4F2t +ei t , ei t ∼

N (0, 1 − 0.12
− 0.42); N5 : X i t = ei t , ei t ∼ N (0, 1). Fourth, 14 cases are considered by various

combinations of Ni . They are divided into three groups. In the first group, factor F1 dominates F2,
the cases are Case 1(N1 = 20), Case 5 (N1 = 20, N3 = 20) and Case 11 (N1 = 20, N3 = 20,
N5 = 40). The second group considers the cases that F2 dominates F1, they are Case 2 (N2 = 20),
Case 4 (N2 = 20, N3 = 20) and Case 6 (N2 = 20, N4 = 40). The others are Case 3 (N1 = 20,
N2 = 20), Case 10 (N1 = 20, N2 = 20, N5 = 40), Case 7 (N1 = 20, N2 = 20, N3 = 20), Case 12
(N1 = 20, N2 = 20, N3 = 20, N5 = 40), Case 8 (N1 = 20, N2 = 20, N4 = 40), Case 13 (N1 = 20,
N2 = 20, N4 = 40, N5 = 40), Case 9 (N1 = 20, N2 = 20, N3 = 20, N4 = 40), and Case 14
(N1 = 20, N2 = 20, N3 = 20, N4 = 40, N5 = 40).

The number of replications of each case is 200, and we consider two measures of estimates in
each case, they are Average of in-sample MSEs (based on 200 in-sample periods) and out-of-sample
MSEs(based on 200 out-of-sample periods). Different prior variance of βββ are chosen such that the
thresholds of the proposed Lasso method equal 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. We then compare the
results of the proposed with the original forecasting model proposed by Stock and Watson (2002)(de-
noted SW), and the hard thresholding model with threshold for t-ratio equals 1.28 (denoted HT1) and
1.65(denoted HT2). Besides, because only two factors drive the data, we consider q = 1 and 2, the
number of factors, in SW, HT1 and HT2 methods. The simulation results, the ratio of the MSE for a
given method to the MSE of SW model, are reported in Table 1 for yA.2

When q = 1 for variable yA, the proposed Lasso method performs best in the cases that F2

dominates F1, for example case 2, 4 and 6, no matter what 1/2σ 2
βo is chosen. Similarly, when q = 1

for variable yB , we get the similar results when in the case 3 and 5. However, when q = 2, the first

2For saving the space of this report, we do not report the results for yB .
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two estimated factors capture all important information about F1 and F2 as well as yA and yB , so the
advantages of Lasso method gradually vanish, but Lasso estimates with some prior variances are also
comparable with HT1 and HT2.

6 Empirical Study

In the empirical study, we consider the data set which has been analyzed in Stock and Watson (2005),
Bai and Ng(2008a) and Lee and Tu (2009). We briefly summarize the features of this data set and
this study as follows. First, monthly series available from 1960m1 to 2003m12 for a total of T = 528
observations, and N = 132 variables in this data set. Second, the target variable y is the logarithm
of PUNEW (CPI all items, the 115th variable in the data set.), as what in Bai and Ng(2008a), Lee
and Tu(2009). Third, We consider a h step-ahead forecasting Model of y for h = 1, 3, 6, 12, 18,
24, 30 and 36. Fourth, nine values of threshold from 0.3 to 0.9 as well as the one decided by BIC
are considered in the proposed Lasso estimation method. The benchmark model is AR(4) model and
all results the ratio of the MSE for a given method to that AR(4)model. Three out-of-sample periods
(1971m1 to 2003m12, 1971m1 to 1979m12, 1980m1 to 1898m12)are considered, and we summarize
the results in Table 2.

There are some remarks in Table 2. First, except the cases with thresholds smaller than 0.2 and
h = 1, the proposed method beats AR(4) model is most cases. Second, as h increases, the advantages
of the proposed is more significant. Third, the performance of the proposed with the BIC-chosen
threshold is good in the third sample period(1980m1 to 1989 m12) but is not in the other two sample
periods. We also observed the similar phenomenon in the unreported results when other data-driven
methods such as AIC and cross-validation are considered. It suggests that it would be interesting to
find a better data-driven threshold method when computing Lasso.

7 Concluding Remarks

In this project, I proposed a promising approach to forecast target variable based on extracting useful
information from large dimensional variables. I take both the advantages of the PCA and the LASSO
by a two-step approach. In the first step, I re-organize the information containing in these many
predictors by using PCA. All these orthogonally principal components are then introduced in fore-
casting target variable. It differs greatly from the factor approach of Stock and Watson(1998, 2002)
and other related, when only the dominant principal components (according to the“natural ranking”)
would be considered in these factor approaches. In the second step, the targeted principal components
and the estimates of the linear forecasting model will be simultaneously determined by implementing
the LASSO. The helpless principal components would receive zero LASSO coefficients. Unlike the
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“natural ranking” of PCA, it gives the “targeted ranking” instead. Moreover, because the principal
components are orthogonal, good properties of the LASSO, comparing to other shrinkage methods,
are kept, and it also gives the analytic form of the estimates. In contrast with the other forecasting
approaches introduced in the literature, the proposed approach in this project is easily to implement.
The properties of the proposed estimates are also given when we equip XXX with the factor structure
as typically introduced in the literature but with many factors, and link the LASSO estimates to the
posterior mean of βββ in Bayesian analysis. The simulation results show that the proposed performs
good in some cases where the “natural ranking” of PCA is helpless for forecasting the target variable.
However, the simulation results also suggest us that there does not exist a best method/approach to
forecasting, it heavily depends on the relationships among the data, the target variable and the under-
lying factors. More effort to clearly investigate the properties of the existing methods/approaches is
needed to make in the future. On the other hand, the results of the empirical study also indicates that
a good data-driven method for threshold in LASSO is worth studying in the future.
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Out-of-Sample MSE Case 10 1.067328 0.983931 0.982206 1.06641 1.012641 1.021389 1.042641 1.067712 1.096299 1.060878 1.002977 1.004536 1.088354 1.028573 1.035046 1.054624 1.078853 1.107036

Ave. In-Sample MSE Case 7 1.062233 0.986168 0.9858 0.863983 0.961078 1.007543 1.03368 1.057785 1.084994 1.039819 0.996423 0.997024 0.88186 0.980737 1.028614 1.056578 1.082513 1.110597

Out-of-Sample MSE Case 7 1.065685 0.989185 0.988491 1.044645 1.009055 1.019219 1.038668 1.061972 1.089308 1.047863 1.003079 1.003513 1.0543 1.020675 1.029978 1.050007 1.073804 1.10103

Ave. In-Sample MSE Case 12 1.072619 0.978589 0.978989 0.776662 0.932269 0.999358 1.029956 1.055537 1.083357 1.033713 0.99188 0.992592 0.798704 0.957959 1.024757 1.055082 1.081022 1.109602

Out-of-Sample MSE Case 12 1.068699 0.985533 0.984347 1.106124 1.016701 1.016807 1.035968 1.060199 1.088093 1.059701 1.003524 1.004684 1.111762 1.029002 1.031655 1.050173 1.073738 1.101335

Ave. In-Sample MSE Case 8 1.989246 0.56293 0.542031 0.443201 0.512775 0.546214 0.567361 0.589834 0.616437 1.035638 0.996454 0.995401 0.841633 0.972222 1.035067 1.074792 1.117113 1.167123

Out-of-Sample MSE Case 8 1.990182 0.575688 0.553427 0.578961 0.548499 0.55479 0.571312 0.593035 0.619213 1.05088 1.001687 1.003327 1.094668 1.03645 1.049069 1.08219 1.124669 1.175393

Ave. In-Sample MSE Case 13 1.980986 0.556909 0.53878 0.401443 0.501402 0.544836 0.567477 0.589997 0.616513 1.03469 0.991138 0.990992 0.760518 0.950089 1.031642 1.074547 1.117449 1.168015

Out-of-Sample MSE Case 13 2.024501 0.572741 0.553349 0.624566 0.56019 0.56215 0.579005 0.601374 0.627995 1.031015 1.001752 1.003438 1.173897 1.046216 1.051072 1.083729 1.12665 1.177874

Ave. In-Sample MSE Case 9 1.509624 0.727487 0.711251 0.551279 0.662803 0.714008 0.743447 0.774062 0.81061 1.031607 1.000142 1.000201 0.799562 0.960943 1.034369 1.076779 1.121177 1.174347

Out-of-Sample MSE Case 9 1.534479 0.736108 0.719121 0.777647 0.720305 0.728074 0.75155 0.782357 0.819667 1.047845 1.001994 1.003141 1.121689 1.038165 1.045161 1.076893 1.119977 1.172568

Ave. In-Sample MSE Case 14 1.515154 0.731451 0.71505 0.500982 0.653525 0.717755 0.749379 0.780151 0.816614 1.038282 0.996434 0.997658 0.716326 0.936839 1.030137 1.075953 1.120427 1.173211

Out-of-Sample MSE Case 14 1.525263 0.743799 0.726612 0.86475 0.742609 0.738105 0.760246 0.791039 0.828381 1.058136 0.999768 1.000831 1.230755 1.05741 1.051544 1.081986 1.125038 1.177416
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Table 2: Empirical Study for CPI growth rate.

Threshold Threshold Threshold Threshold Threshold Threshold Threshold Threshold Threshold BIC

h-step-ahead MSE(AR4) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 7.44933793 3.214958 2.210637 1.458799 1.114014 1.056621 1.007355 1.001233 1 1 1.164701

3 4.77968046 2.594722 1.583455 0.967536 0.942586 0.944539 0.968834 0.973249 1.00612 1.003375 1.742428

6 3.55952325 1.553412 0.981737 0.864835 0.831469 0.873659 0.873068 0.872723 0.922865 0.990213 1.071023

12 3.85573211 1.232488 0.908485 0.742233 0.737798 0.764266 0.768346 0.844843 0.844815 0.844395 0.867362

18 4.68277377 1.288417 0.814997 0.697931 0.707077 0.694798 0.719145 0.740757 0.756269 0.834292 0.771476

24 5.65276712 1.372287 0.914035 0.659706 0.67841 0.695208 0.693266 0.713335 0.727315 0.80949 0.825372

30 6.27362068 1.405901 0.878487 0.677889 0.687993 0.702269 0.698987 0.754162 0.773561 0.780782 0.725426

36 6.70593233 1.302993 0.804089 0.669728 0.675233 0.723606 0.750969 0.785298 0.774824 0.797068 0.800743

(a)Sample Period: 1971m1-2003m12

Threshold Threshold Threshold Threshold Threshold Threshold Threshold Threshold Threshold BIC

h-step-ahead MSE(AR4) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 8.63021973 6.524515 3.832826 1.995896 1.244299 1.133836 1.009041 1 1 1 1.501026

3 4.9947297 5.151742 2.587515 0.953879 0.998404 1.048725 1.057679 1.037843 1 1 3.572843

6 4.12840449 1.903407 0.779259 0.83787 0.865485 1.030239 1.028507 1.027494 1.021918 1 1.501665

12 5.37354376 1.052408 0.838365 0.690966 0.766233 0.793093 0.790746 0.972632 0.972564 0.971538 1.009397

18 7.03283582 0.978252 0.732098 0.653813 0.728387 0.729377 0.763228 0.765244 0.772605 0.955498 0.877289

24 8.0300859 1.128017 0.86551 0.658841 0.726202 0.75616 0.763285 0.806948 0.841166 0.910754 1.057574

30 7.78617708 1.154358 0.828098 0.742234 0.819216 0.837153 0.846924 0.959724 0.992254 0.99506 0.892022

36 7.87843836 1.053357 0.783491 0.802046 0.895199 0.997057 1.015269 0.999771 1.003947 0.999332 1.152659

(b)Sample Period: 1971m1-1979m12

Threshold Threshold Threshold Threshold Threshold Threshold Threshold Threshold Threshold BIC

h-step-ahead MSE(AR4) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 9.53430908 1.54827 1.504408 1.267371 1.077957 1.035635 1.011354 1.003277 1 1 0.990803

3 7.88725786 1.352604 1.094414 0.940778 0.898488 0.874369 0.918756 0.919338 1.00233 1.006953 0.909773

6 5.74212726 1.254716 0.97937 0.829878 0.778447 0.748915 0.748915 0.748915 0.852603 0.959102 0.809958

12 5.72576391 1.115446 0.721649 0.66673 0.644208 0.68791 0.697773 0.70222 0.70222 0.70222 0.711529

18 6.96269477 1.271482 0.654978 0.59268 0.591288 0.586351 0.599037 0.660268 0.688305 0.681983 0.623104

24 9.18811977 1.308011 0.733926 0.553825 0.568212 0.589932 0.587527 0.594559 0.589406 0.700479 0.61031

30 11.6025394 1.213681 0.732582 0.557883 0.574639 0.590995 0.579743 0.607123 0.628192 0.639583 0.605708

36 13.120488 1.173306 0.689655 0.527198 0.518669 0.543315 0.572515 0.634667 0.61816 0.669337 0.595905

(c)Sample Period: 1980m1-1989m12

10



國科會補助計畫衍生研發成果推廣資料表
日期:2011/10/17

國科會補助計畫

計畫名稱: 使用標的對應訊息的新經濟預測方法

計畫主持人: 徐士勛

計畫編號: 99-2410-H-004-058- 學門領域: 數理與數量方法

無研發成果推廣資料



99 年度專題研究計畫研究成果彙整表 

計畫主持人：徐士勛 計畫編號：99-2410-H-004-058- 
計畫名稱：使用標的對應訊息的新經濟預測方法 

量化 

成果項目 實際已達成

數（被接受

或已發表）

預期總達成
數(含實際已
達成數) 

本計畫實

際貢獻百
分比 

單位 

備 註 （ 質 化 說

明：如數個計畫
共同成果、成果
列 為 該 期 刊 之
封 面 故 事 ...
等） 

期刊論文 0 0 100%  
研究報告/技術報告 1 1 100%  
研討會論文 0 0 100% 

篇 
 

論文著作 

專書 0 0 100%   
申請中件數 0 0 100%  

專利 
已獲得件數 0 0 100% 

件 
 

件數 0 0 100% 件  
技術移轉 

權利金 0 0 100% 千元  

碩士生 1 1 100%  
博士生 4 3 100%  
博士後研究員 0 0 100%  

國內 

參與計畫人力 
（本國籍） 

專任助理 0 0 100% 

人次 

 
期刊論文 0 0 100%  
研究報告/技術報告 0 0 100%  
研討會論文 0 0 100% 

篇 
 

論文著作 

專書 0 0 100% 章/本  
申請中件數 0 0 100%  

專利 
已獲得件數 0 0 100% 

件 
 

件數 0 0 100% 件  
技術移轉 

權利金 0 0 100% 千元  
碩士生 0 0 100%  
博士生 0 0 100%  
博士後研究員 0 0 100%  

國外 

參與計畫人力 
（外國籍） 

專任助理 0 0 100% 

人次 

 



其他成果 
(無法以量化表達之成

果如辦理學術活動、獲
得獎項、重要國際合
作、研究成果國際影響
力及其他協助產業技
術發展之具體效益事
項等，請以文字敘述填
列。) 

無 

 成果項目 量化 名稱或內容性質簡述 
測驗工具(含質性與量性) 0  
課程/模組 0  
電腦及網路系統或工具 0  
教材 0  
舉辦之活動/競賽 0  
研討會/工作坊 0  
電子報、網站 0  

科 
教 
處 
計 
畫 
加 
填 
項 
目 計畫成果推廣之參與（閱聽）人數 0  

 



國科會補助專題研究計畫成果報告自評表 

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）、是否適

合在學術期刊發表或申請專利、主要發現或其他有關價值等，作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估 
■達成目標 
□未達成目標（請說明，以 100 字為限） 

□實驗失敗 

□因故實驗中斷 
□其他原因 

說明： 

2. 研究成果在學術期刊發表或申請專利等情形： 
論文：□已發表 □未發表之文稿 ■撰寫中 □無 

專利：□已獲得 □申請中 ■無 

技轉：□已技轉 □洽談中 ■無 

其他：（以 100 字為限） 
3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500 字為限） 
近來由於大量時間序列資料的建立，文獻上已有許多嘗試從其中萃取有用的訊息並應用於

經濟預測上的研究，這個計畫的研究範疇也聚焦於此。相較於目前文獻上的方法或模型，

我認為此計畫的兩階段預測方法有下列優點。1.容易操作：第一階段中使用的主成分分析

法幾乎是所有套裝軟體能計算的統計方法，而第二階段中的 LASSO 運算法也因為第一階段

主成分都具有正交的特性而具有明確的形式； 2. 性質清楚：主成分分析法和因子模型的

關係與 LASOO 運算法在正交化變數下的結果都相當清楚，同時可以根據不同預測標的變數

而得到對應之訊息(主成分)排序。模擬和實證研究結果也顯示這樣的設計雖然不是最佳的

模型，但是大部份可以和因子相關模型，如 Stock and Watson~(2002, Journal of Business 

and Economic Statistics)，Bai and Ng(2008, Journal of Econometrics) 等相抗衡。

若能進一步的藉由不同的模擬設計更清楚凸顯該方法與其他方法的各自適用時機，相信能

讓研究者對這些方法有更深瞭解，並且研究結果也能發表在較好的國際期刊中。這樣的努

力我現在仍再進行中。 

 


