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This study has amodel that generates aricher set of predictions
about cartel pricing dynamics. In line with Harrington and Chen
(2006), the ssimulated price paths suggest that the up-rising of the
cartel priceis comprised of two phases. Starting from a transitional
phase, the priceis generally rising and relatively unresponsive to
cost shocks. Then the price moves to a stationary phase where price
responds to cost. The price change vs. cost change regressions
suggest that a cartel is more responsive to cost increases than to cost
decreases. In the transitional phase, the cartel raises price more than
predicted when cost shocks are positive and lower price less than
predicted when cost shocks are negative. Asto the stationary phase,
the cartel responds to positive and negative cost shocks equally.
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Abstract

This study has a model that generates a richer set of predictions about cartel
pricing dynamics. In line with Harrington and Chen (2006), the simulated price paths
suggest that the up-rising of the cartel price is comprised of two phases. Starting
from a transitional phase, the price is generally rising and relatively unresponsive
to cost shocks. Then the price moves to a stationary phase where price responds
to cost. The price change vs. cost change regressions suggest that a cartel is more
responsive to cost increases than to cost decreases. In the transitional phase, the
cartel raises price more than predicted when cost shocks are positive and lower price
less than predicted when cost shocks are negative. As to the stationary phase, the
cartel responds to positive and negative cost shocks equally. [Keywords: Cartel

Pricing Dynamics, Endogenous Probability of Detection]



1 Aim of Research

The major challenge to stopping cartels is that they are shrouded in secrecy. From an an-
titrust perspective, the essential tasks for a theory of price-fixing are identifying conditions
that facilitate collusion, characterizing the properties of collusive pricing, and towards dis-
cerning the presence of a cartel. Although there is a large theoretical literature addressing
these issues, work has generally failed to take account of an important dimension to this
problem. Due to the illegality of collusion, firms not only want to achieve internally stable
prices to raise profit but also want to avoid creating suspicions that a cartel is in action.
Given that such suspicions can initiate investigation from the antitrust authority that can
ultimately lead to the collapse of the cartel and levying of substantial financial penalties,
avoiding detection is as crucial as deterring deviations by cartel members.

Arguably, modern theory of collusive pricing originates from models of tacit (implicit)
collusion with the idea of deterring deviations among rival firms in an oligopolistic setting
(Porter, 1993; Green and Porter, 1984; Rotemberg and Saloner, 1986). Feuerstein (2005)
surveys a rich collection of articles in this literature; Athey et al. (2004) have a brief intro-
duction to the development of this literature with a particular interest in the information
structure. Nonetheless, in terms of antitrust pursuit of hardcore cartels, the contribution
of the tacit collusion literature is limited in that, first, works generally do not explain
how does a hardcore cartel actually function under the constraint of possible detection;
second, tacit collusion is not illegal, at least in the U.S. and European Union.! Martin
(2006) expresses this concern stating that: “there is a fundamental disconnect between

treating collusion as the outcome of a noncooperative game and the antitrust concept of

Hmplicitly, the Horizontal Merger Guidelines (Section 2.1) of the Department of Justice Federal Trade
Commission gives authority to assess if a merger increases the possibility of coordinated interaction which
includes both tacit and express collusion. For more discussions on the legal status of tacit collusion see

Martin (2006) and Harrington (2005b).



collusion,” and “models of tacit collusion are fundamentally unsuited for the analysis of
collusion.” In light of these critics, this research proposal suggests a computational model
of hardcore cartel behavior in the presence of antitrust authority.

A recent strand of the collusive pricing literature explores the impact of antitrust
enforcement on collusive pricing by modifying the classical repeated-game setting so as to
allow the detection of a cartel to be sensitive to the price path (endogenous detection).
This changes the traditional framework of antitrust analyses where penalty and probability
of detection are exogenous to cartel behavior (for the origin of this new strand of literature
see Harrington, 2004 & 2005a). In particular, Harrington and Chen (2006) characterize
collusive pricing patterns when buyers may detect presence of a cartel. Buyers are modeled
to become suspicious when observed prices are anomalous.? The model is successful in
that it generates cartel price paths that look more like actual cartel price paths than any
previous work in the theoretical literature on collusive pricing.

This study picks up this latest strand to develop a better theory of cartel pricing. A
key in Harrington and Chen’s work is the buyers’ beliefs in whether the price changes are
“regular”. However, due to computational constraints, they assume the variance of buyers’
beliefs over price changes to be fixed at the variance of price changes for the non-collusive
environment. This rules out the realistic scenario that the variance of price changes may
adjust to firms’ prices, and the sensitivity of the likelihood of price changes would evolve
over time. In other words, despite a rather general dynamic framework, buyers’ beliefs

over price changes are “static” in the sense that the second moment of likelihood is fixed.

2 As Harrington and Chen (2006) point out, as a matter of practice, the antitrust authorities, given
the constraint in resources, do not actively engage in detection. But instead, it is often the buyers—
industrial buyers in particular—who are on the first line of detection in many cartel cases. For example, see
Levenstein and Suslow (2001) for the case of the graphite electrode cartel, Levenstein, Suslow, and Oswald
(2004) for the case the stainless steel cartel, and Ashenfelter and Graddy (2004) for some discussions on

the Sotheby’s/Christie’s price-fixing scandal.



This concern casts a doubt on how does a more general and realistic setup changes the
results, and whether will there be new aspects come out of a fully-fledged dynamic setting?

This study designs to tackle this problem by modeling the buyer belief formation
process explicitly. The idea is to allow buyers’ beliefs over price changes to depend on noisy
cost signals. In many markets, buyers receive noisy signals of the underlying cost shocks.
For example, consider the vitamins cartel. As vitamins are manufactured in Europe and
sold in the U.S., exchange rate fluctuations are publicly observable cost shocks. One can
then imagine buyers assessing whether the price change is “reasonable” in light of the
information received about the change in costs. The innovative element of this approach
is that it modifies the standard (repeated game) model of collusion to allow a cartel to
actively avoid detection by choosing its prices optimally in an environment with cost

variability and endogenous buyer belief formation.

2 Model Setup

2.1 Cartel Pricing Dynamics with Endogenous Probability of De-

tection

The main modeling challenge, as alluded above, is to formulate the buyers’ belief formation
process. I propose to allow buyers’ beliefs over price changes to depend on noisy cost
signals. In particular, one can assume a recursive identification algorithm (Ljung and
Soderstrom, 1983) so that there is an equation of motion on buyer’s “model” of price
changes which depends on the previous period’s model of price changes and the current
period’s price change and cost shock signal. Once specifying a distribution on those
prediction errors, we can then define the relative likelihood of a series of prediction errors

to characterize anomalous price changes.



2.2 Buyers’ Side

Consider a time series of “data”, comprised of price changes AP? and noisy signals v?, and
buyers would like to make judgement on whether firms behave competitively. Not actively
engaging in collusion detection, buyers do not know how a cartel prices. Nonetheless, they
do have a model of competitive (non-collusive) pricing that specifies period ¢ price change
AP? as a linear function of the corresponding period ¢ cost change Act.

However, in each period, instead of observing Act directly, buyers receive a noisy signal
vt of Act. Based on their model of competitive pricing and the signal, buyers calculate the
predicted price change. When the competitive pricing model cannot explain the actual
price change well (e.g., the signal is rather noisy or a cartel is in action to raise the price
significantly, or both), an active cartel is more likely to be exposed. Hence, the detection
of the cartel is more likely to occur when there is a “large” prediction error. Each period,
the actual price change AP? and the received signal v! are new data used by buyers to
update parameters of the competitive pricing model. This updating is performed by a
recursive algorithm in an on-line fashion.

For what stated above, let buyers believe the competitive price changes follow this
process:®

AP' = a+bAct + €,

3When a # 0, there is a trend in buyers’ model of competitive pricing. It is quite reasonable for buyers
to believe there is a trend in price. In some industries (such as computers and electronic products),
the real price falls—perhaps due to innovation or the learning curves. In other industries, the real price
rises. Even if the average price change in the economy is zero, there is dispersion in price trends among
industries which means some must have the real price rising and some have it falling. In the context of
the setting here, there is no reason for buyers to expect price to remain constant in light of a changing
environment; they do not know that the average cost shock is zero for all they get to observe are noisy

cost signals and the price change.



where Act ~ N(0,02) and &' ~ N(0,02) and is i.i.d.* Buyers receive a noisy signal of the
cost shock:
vh= A+ ¢,

where &' ~ N(0, 07) and is i.i.d. Buyers’ model for period ¢ price change can then be
written as:

N

AP =a"+ b1,
where @t and bt are buyers period ¢ estimation of the true parameters, a and b, of the

competitive pricing process.

2.3 The Cartel’s Problem

At the beginning of period t, the state variables are (Ptfl,ctfl,iit,?)\t). After seeing
period t cost shock, Act, the cartel chooses price change, AP?. The cartel’s value function

V (+) is defined recursively by:

\% (Act; pt=1 ctfl,at,gt)

max m (Pt*1 + APy (c“1 + Act))

APt

+5// {¢ (APt, Act + g,at,Bt) (W (v (¢ + Act)) — F] + [1 — 6 (APt, Act + g,at,ﬁt)}
<V <g; PLE AP (¢ 4 A) Gt + % [APt — (at + 0 (Act + 5))] ,

~ Act + ¢
b+ —k (Ug N Jg)

= max7w (Ptfl + APy (c“1 + Act))
APt

[APt _ (at +0t (Ac +§))] £(¢;0,02) £ (£0,02) dcde

+5/¢(APt7Act+§7at7gt)f(f;o’o'g) de - [W (v (¢ + Ac)) — F]
+5//{[1—¢(Aptvgct+g,at’gt)}V(C;Pt71+APtvv(ct,1+Act)7

Act + ¢

] O ) R ey
Oc T O0¢

(APt = (@ + 3 (A +€) )]

X f(¢;0,07) f(£0,07) dCde,

is not relevant for the ensuing analysis and is simply to motivate the buyers’ beliefs.

4.t
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where 7(+) is the current period industry profit function, ¢ (-) is the probability of detec-
tion, W (-) is the non-collusive profit stream, and f(-; u, 0%) is the normal density function.

The specifications of v(-), 7(-), ¢ (+), and W (-) are:

v (¢) = max {¢, min {c,c}};

m(P,c) = (P —c)(a—pP);

& (Apt, A + g,af,Bf) =

:0,me ) — t_gt_pt ct :0,m oz ~ -~
ag + o |:f(0,0, 2) f(AIfD(o‘o mzb) (A )0, 2):| if APt — Gt — bt (Act+€) >0

. _ t_~t_ 7t t . ajg R )
o+ af {f IR G *5)’0”"2)} it AP! — Gt — Bt (Act 4 €) < 0

~

W(c) = (P(c) - c) (a - ﬂﬁ(c)) +5/W(v(c+§))f (¢;0,02) d¢,

with competitive price P(c) = wq + wc.

The parameters in the definition include (F, k,a, 3,0, ap, o, o, af, a3, wo, w,c, T, 02, O'g, m2> .
F > 0 is the penalty when detected (and convicted); k > 0 is the number of periods in
buyers’ memory, «, 8 > 0 are demand parameters; 6 € (0,1) is the discount factor;
(v, of, al, a5, a9) are detection function parameters; (wo,w1) € [0,/ (26)) x (1/2,1]
characterizes the competitive price; ¢ and ¢ are bounds on the unit cost of production;
o2 is the variance of cost shocks; O’? characterizes the degree of noisiness in the buyer’s
signal; mo is the second moment of prediction errors.

The main objective of this exercise is to explore the relationship between cost changes,
Ac, and cartel’s price changes, AP. The setup of the sequence of events is one such that
the cartel gets to see the cost shock Act before choosing price AP? but does not get to see

the noisy signal, £, that the buyers observe. In other words, cartel chooses price change

conditional on the cost change given the state variables.



3 Numerical Implementation

The existence of symmetric subgame perfect equilibrium can be established along the same
line of reasoning as given in Harrington (2004). Nonetheless, given the complexity of the
models and the lack of analytical solutions in many dynamic programming problems,
the cartel’s problem is solved numerically through the collocation method (Judd, 1998;
Miranda and Fackler, 2002) which replaces the difficult infinite-dimensional functional
equation with a simpler finite-dimensional problem. The essence of this algorithm is,
conceptually, a straightforward application of the value function iteration method. Just
as examples of how the collocation method works in these types of models, please refer
to Chen and Harrington (2007), and the appendix sections in Harrington (2004) and

Harrington and Chen (2006).

3.1 Benchmark Parameters
e Demand function: o« — SP. Set (o, 5) = (100, 1).
e Cost parameters; (¢, ) = (20,40).

e Cost shock distribution: f(; u,.,02) = f(Ac; p,.,02). This distribution is approxi-



mated by a 5-point Gaussian quadrature with (u,,0?) = (0,2):°

quadrature nodes quadrature weights

-4.0404 0113
-1.9171 2221

0 5333
1.9171 2221
4.0404 .0113

The non-collusive payoff function W (c) is solved numerically by the functional iter-
ation method. The discretized cost space for W(c) is 51 evenly distributed points

from the interval [c,¢]. The result suggests W(-) is a monotonic decreasing function.
Discount factor: § = .75.
Non-collusive price parameters: (wg,w;) = (25,.75).

Damages: F' = 490. Denote the average cost as ¢ = (¢ +¢)/2. Let P™(¢) be the
monopoly price at average cost: P™(¢) = (a + f¢)/28. The fixed fine F' is set

according to:

po Lo mPm@) 1 (P —¢la—pPM(Q))
10 1-6 10 1-6 '

Probability of detection parameters: (ao, af af, oy, o) = (.05,.45,.2,2,2).

Buyers’ parameters: the number of periods in buyers’ memory k = 10; the variance

of the noise in the signal 0? =1.

The distribution of buyers’ prediction error is f(0;0,mz2). Set mg = 3.

5The number of the quadrature nodes is the same as the number of nodes of Ac in the value function

V(-). This means that the choice of a large number of quadrature nodes would cause a burden in solving

the value function—the so-called curse-of-dimensionality problem.

6Originally, the model is set up in a way that msz is endogenous, and mg is defined by:

t—1

gk(eT)Q_(@ > (ar- (@)

T=t— T=t—k

mp



e Noise distribution: f(&; Hes ag). This distribution is also approximated by a 5-point

Gaussian quadrature with (p¢, %) = (0, 1):7

quadrature nodes quadrature weights

-2.8570 0113
-1.3556 2221

0 5333
1.3556 2221
2.8570 .0113

e The value function V(+) is a function of Act, Pt=1, ¢!~ @t and bt. The space of the
value function is assigned in the first row of the following table. Given the assigned

ranges, the 5 x 5 Chebychev nodes are:

Act € [=7,7 Pt=1€[20,80] ct~!€[20,40] @t €[-5,.5] bt €[0,2]

—6.6574 21.468 20.489 —.4755 0.0489
—4.1145 32.366 24.122 —.2939 0.4122
.0000 50 30 .0000 1
4.1145 67.634 35.878 .2939 1.5878
6.6574 78.532 39.511 4755 1.9511

To get a more concentrated range P!, the price nodes are changed to {30, 40, 50, 60, 70}.

e The choice set is a 39-point discretized space of price changes, AP, from —3 to 3.

and ef is an estimate of w! = &t —b&® ~ N (0, o2 + bzag)‘ Since bt € [b,b], the appropriate range for the
state variable m{ is:
mb € [o? +Q20§,a§ +5202].
When (b,b,02,07) = (0,2,1,1), m} € [1,5].
"Note that unlike the choice of quadrature nodes of the cost shocks, one may increase the nodes of
f(&; p{,ag) to a 10-point (or higher) Gaussian quadrature without causing the cure-of-dimensionality

problem.

10



e The variables in value function V() move according to:

At — ¢
Pt—l - Pt—l +APt = Pt
ATl u(dTt Al =

ot — @ +% [APt — (Et +b (At + 5))} =gt

B e 2T Tapt (@B (A +g))] =0

k (ag + ag)

To ensure that the numerical algorithm converges, one needs to make sure that the
new variables remain in the specified state space. There is no need to worry about
¢ (possible future cost shocks) and v(Act + £) because the nodes of ¢ are inside
the range specified by the the nodes of Act, and because v(-) € [c,¢] by definition.
One can also ensure that P*~! + AP! remains in the specified range as long as
P < P! < P and AP! is small. Nonetheless, there are no guarantees that att!
and b*+! will remain in the respective specified ranges. There are a few things one
can do, such as choosing a larger value for k, or considering a smaller range of

price change AP, but the problem remains. In order to get a converge result, the

updating rules of @ and b are changed to:

@t — @' = max{—.5,min{a’ + % [APt - (at O (A + 5))} .51}
Act+ ¢

o bt = max{O,min{gt +
k (Ug + ag)

(APt — (@ +8 (Aac +9)) ] 21

The concern is on how restrictive that these new updating rules of @ and b are.

81t seems difficult to get a complete picture of this issue. There are 55 = 3,125 states, and for each
possible cost shock (¢), there are five possible signal noises (§). Since the choice space (price change) is a
39-point discretized interval of [—3, 3], at*! and bt+1 are both matrices with dimension 3,125 x 25 x 39.
For our purpose, we simply take the value function computed from the benchmark parameter specification
to price simulations. Later, we can then draw the paths of @ and b to see how they evolve, and the roles

played by the max and min operators in the updating rule.
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3.2 Price Path Simulation

After solving the cartel’s maximization numerically, simulating cartel behavior is straight-
forward. Let the choice set be the 121-point discretized interval [—3,3]. Set the initial
values of the state variables to: (P, co,al,?)\l) = (47.5,30,0,1), where P = wq + wycY,
the non-collusive price at ¢ = (c+7¢)/2. The choices of initial values of P°,a', and b' are
based on the assumption that at period zero, consumers have no reason to believe that
the cartel is active. In each period ¢, the timing of events in the price path simulation is

as follows:

e A random cost shock Act is draw from the distribution f((;0,02);

e The cartel maximizes discounted expected profit choosing AP? from the choice set,
conditional on Act and state variables P!, ¢=! @, and b'. The expectation is

taken with respect to the probability of been detected, ¢(-), future cost shock, ¢,

and the noise in the consumer’s signal, &;
e A signal noise ¢ is drawn from the distribution f(¢;0, Ug);

e Given AP, Act, and ¢, we then update the state variables to (P, ct,at+1,gt+1)

based on the equations of motion of these variables and move on to the next period.

The number of periods is set to 200; Figure 1 presents three—Runs I-ITI—price path
simulation results. For the result of each price simulation, the top-left figure presents
the price path P! and the cost path ¢!, the top-right figure shows the evolutions of @'
and Bt, the bottom-left figure shows the cost shocks Act, and the realized signal noises
&', and the bottom-right figure presents the price change AP* and the prediction errors
APt — [at N gt)].

The simulated price paths suggest that the up-rising of the cartel price is comprised

of two phases. Beginning with a transitional phase, the price is generally rising and

12



relatively unresponsive to cost shocks. Then the price moves to a stationary phase where
price responds to cost. In a richer dynamic environment, this result is in line with that

in Harrington and Chen (2006).

4 Discussion

Notice first that if the price evolves according to non-collusive pricing rule, Pt = wq-+w ct,
this implies AP? = w;Act, and based on the benchmark parameters, (a,b) = (0,.75).
If the price is set to the single period monopoly level, it implies AP = (1/2)Ae, and
(a,b) = (0,.5). If firms practice constant markup pricing, P = nc, this implies AP = n/Ac,
and a = 0 and b > 1. In perfect competition, P = ¢, this implies AP = Ac, and
(a,b) = (0,1).

Given the simulated price paths, we regress the current price change on the change in

cost based on the following equation:

AP! = yAct + €,

where €’ is a white noise. Furthermore, regressions are also done distinguishing between
positive and negative cost shocks. In addition, we also do the regressions using “data”
from the transitional periods only—one set uses the first 20 periods, and the other set
uses the first 30 periods. Finally, we also conduct stationary phase regressions—the first
set uses data from period 21 to period 200, and the other the other uses data from period
31 to period 200. All these results are presented in Table 1.

With data from all 200 periods, the estimated coefficients of cost shocks are .41, .47,
and .43, respectively for Runs I, II, and III. It is interesting to note that these values
are close to .5, the single period monopoly b. If we distinguish positive or negative cost
shocks, the estimated coefficients of cost shocks are .46, .57, and .46, for positive cost

shocks, and .35, .38, and .40 for negative cost shocks. All the estimates are significant.

13



With data from the first 20 periods, the estimated coefficients of cost shocks are .54,
.89, and .91, respectively for runs I, II, and III. If we distinguish positive or negative cost
shocks, the estimated coefficients of cost shocks are 1.06, 1.15, and 1.50, for positive cost
shocks, and -.43, .33, and -0.39 for negative cost shocks. All the estimates of the negative
cost shock regressions are insignificant.

With data from the first 30 periods, the estimated coefficients of cost shocks are .51,
.85, and .67, respectively for runs I, II, and III. If we distinguish positive or negative cost
shocks, the estimated coefficients of cost shocks are .99, 1.14, and .97, for positive cost
shocks, and .21, .36, and .01 for negative cost shocks. Again, all the estimates of the
negative cost shock regressions are insignificant.

Based on these results, this study has a model that generates a richer set of predictions
about cartel pricing dynamics. It is clear from the regressions that the cartel is more
responsive to cost increases than to cost decreases. In particular, in the transitional
phase, the regressions all have coefficient estimates around 1 when the cost shocks are
positive, while at the same time negative cost shocks cannot explain the price changes
at all. Comparing the transitional phase regression results with those of the stationary
phase, it is apparent that in the transitional phase, the cartel raises price more than
predicted when cost shocks are positive and lower price less than predicted when cost
shocks are negative. This allows the cartel to raise price during the transitional phase. As
to the stationary phase, the cartel responds to positive and negative cost shocks equally;
the above asymmetry does not exist.

In summary, the results of this project contribute to the literature of industrial orga-
nization in characterizing the properties of collusive pricing and in identifying conditions
that facilitate collusion. They fill in the hole in the current literature of collusive pricing
which ignores the important incentive of cartel members price to avoid detection. Using

the price simulation results, one can identify important traits in discerning the presence of

14



a cartel, accessing the effectiveness of antitrust practice, and developing screening mech-

anism for the existence of a cartel.
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Table 1. Price Change vs. Cost Change Regressions

RUN I

RUNII

RUN IIT

Coefficient t-statistics R-squared nob

Coefficient t-statistics R-squared nob

Coefficient t-statistics R-squared nob

All 200 periods:
A. Positive shocks 0.455 11.670

B. Negative shocks 0.351 9.180
C. Overall 0405 14.733

Trasnitional Phase I (First 20 periods):
D. Positive shocks 1.059 3.274
E. Negative shocks -0.429  -1.096
F. Overall 0.538 1.857

Transitional Phase II (First 30 periods):
G. Positive shocks 0.986 3.705
H. Negative shocks 0.203 0.996
I. Overall 0.508 2.910

Stationary Phase I (Periods 21 to 200):
J. Positive shocks 0.389  24.603
K. Negative shocks 0.398 21911
L. Overall 0.394 32.821

Stationary Phase II (Periods 31 to 200):
M. Positive shocks 0.391 24.448
N. Negative shocks 0.384  19.947
0. Overall 0.388 31.363
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Figure 1. Price Path Simulation Result (Run I)
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Figure 1. Price Path Simulation Result (Run 1II)
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Figure 1. Price Path Simulation Result (Run III)
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In summary, the results of this project contribute to the literature of industrial
organization 1in characterizing the properties of collusive pricing and in
1dentifying conditions that facilitate collusion. They fill in the hole in the
current literature of collusive pricing which ignores the important incentive of
cartel members price to avoid detection. Using the price simulation results, one
can identify important traits in discerning the presence of a cartel, accessing

the effectiveness of antitrust practice, and developing screening mechanism for
the existence of a cartel.




