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中文摘要 
 

本研究的第一部份是利用有效存續期間與有效凸性來衡量人壽保險人的

利率風險。我們發現 Tsai (2009)指出的壽險保單準備金之有效存續期間結構並非

一般化的結果。當長期利率水準高於保單預定利率及保單解約率敏感於利差時，

準備金之有效存續期間會呈現與 Tsai (2009)相反的結構。我們進一步發現準備金

之有效凸性會亦有可能呈現負值，且不易依照保單到期期限歸納出一般化的結

構。負值的有效凸性起因於準備金並非利率的單調函數，且準備金與利率的函數

關係隨保單到期期限而不同。我們的研究結果可以幫助人壽保險人執行更為精確

的資產負債管理。 
 
本研究的第二部分是利用模擬最佳化的方法，幫助銷售傳統壽險保單的保

險人求解出適切的業務槓桿與資產配置策略。我們假設保險人在考量破產機率與

報酬率的波動之下，將資本與淨保費收入投資於資本市場中，以追求較高的業主

權益報酬率。以業務槓桿與資產配置相互影響為前提，我們求解出適切的業務槓

桿與多期資產配置策略，並分析在不同的業務槓桿之下，保險人多期資產配置的

差異。 
 
關鍵字：有效存續期間、有效凸性、保單準備金、資產配置、業務槓桿、模擬最

佳化、人壽保險人 
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ABSTRACT 
 
In the first part of this doctoral dissertation, we focus on a proper measurement 

on interest rate risk of life insurer’s liabilities, policy reserves, by incorporating the 
general effective duration and effective convexity measures.  Tsai (2009) identified a 
term structure of the effective durations of life insurance reserves.  We find that his 
results are not general.  When the long-run mean of interest rates is higher than the 
policy crediting rate and the surrender rate is sensitive to the spread, the term structure 
would exhibit an opposite pattern to the one in Tsai (2009).  We further find that the 
effective convexities might be negative and the term structure of the effective 
convexities exhibits no general pattern.  The irregularities originate from negative 
effective convexities result from the relationship between mean reserves and initial 
short rate for different years to maturity.  Our results can help life insurers to 
implement more accurate asset-liability management. 

 
In the second part, we analyze asset allocation and leverage strategies for a life 

insurer selling traditional insurance products by using a simulation optimization 
method.  We assume that an insurer invests equity capital (from its shareholders) and 
premiums it receives from policyholders by choosing a portfolio intended to 
maximize the annual return of equity minus the penalty of insolvencies and risks.  
We regard the leverage as an internal factor in asset allocation.  Based on these 
assumptions, we get a promising multiple-periods asset allocation and leverage, 
besides analyzing how leverage affects asset allocation strategies. 
 
Keywords: effective duration, effective convexity, policy reserve, asset allocation, 
leverage, simulation optimization, life insurer 
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Part One: Characteristics of the Effective Durations and Effective 
Convexities of Life Insurance Reserves 
 
 
INTRODUCTION 
 

Life insurance reserves are significantly exposed to interest rate risk because 
the policies usually last for long time and have minimal crediting rates.  The high 
leverage ratios of life insurers aggravate the impact of interest rate variations on 
solvency.  Life insurers therefore should manage the interest rate risk associated with 
policy reserves in a prudent way, and this starts with measuring the risk correctly. 

 
One way to evaluate the interest rate risk of a life insurer’s policy reserves is 

to calculate the effective duration.  Unlike Macaulay duration and the modified 
duration,1 the effective duration considers the interest sensitivity of cash flows as 
well as the term structure of interest rates.  The dynamics of interest rates being 
complex stochastic process are well documented in the literatures (e.g., Chan et al., 
1992; Chen, 1996; Dahlquist, 1996; Norman, 1997; Ahlgrim, D’Arcy and Gorvett, 
1999).  Tsai, Kuo, and Chen ( 2002) and Kuo, Tsai, and Chen (2003) further showed 
that interest rates are a significant determining factor of surrender rates and the cash 
flows of life insurance policies are sensitive to interest rates as a result.  Using 
Macaulay duration or the modified duration rather than the effective duration would 
thus result in erroneous measurement on the interest rate risk of policy reserves (Li 
and Panjer, 1994; Babble, 1995; Santomero and Babbel, 1997; Briys and Varenne, 
1997; 2001). 

 
Tsai (2009) recently identified a term structure of the effective durations of 

policy reserves.  Using a cointegrated vector auto-regression (VAR) model for the 
relation between the surrender rate and the interest rate, he calculated the effective 
durations of reserves for policies with different maturities.  The calculations brought 
out some negative and/or extreme values.  He then plotted the duration values 
against the policy maturities and identified a term structure consisting of a pair of 
curves separated by the so-called zero-reserve line.  One curve is in the positive 
domain and the duration increases with the maturity to infinity; the other is in the 
negative domain and the duration increases from negative infinity with the maturity.  
The rationale behind such a term structure is that policy reserves are an increasing 
function of policy year but start from negative values for non-single-premium policies 
that have positive net present values (NPVs) to life insurers.  The effective durations 
will be negative when policy reserves are negative and be huge when policy reserves 
are close to zero. 

 
The findings of Tsai (2009), albeit insightful and reasonable, may not be 

general.  The VAR model specifies the one-year interest rate as an AR(2) 
(auto-regression of order two) process with little mean reversion.  It also specifies a 
particular interest sensitivity of surrender rates.  The difference between the policy 

                                                 
1 Macaulay duration and the modified duration assume that the yield curve is flat, the curve moves in a 
parallel fashion, and the cash flows of assets or liabilities are independent of interest rates (discount 
factors).  Unless specified, the durations in this paper are effective durations. 
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crediting rate and the long-run mean of interest rates assumed in the interest rate 
model is, apparently, a determining factor to policy reserves and thus the effective 
durations.  So is the interest sensitivity of surrender rates.  Tsai (2009) however was 
not able to conduct the sensitivity analysis on the parameters of the interest rate model 
and robustness tests across alternative interest rate – surrender rate relations due to the 
use of an empirical VAR model. 

 
In this paper we choose common and flexible interest rate and surrender rate 

models to scrutinize the generality of the findings in Tsai (2009).  We employ the 
Cox, Ingersoll, and Ross (1985; CIR) model as the interest rate model and follow 
Babbel et al. (2002) and Kim (2005) in using arctangent functions to model how the 
surrender rate reacts to the spreads between market interest rates and the policy 
crediting rate.2  The use of the CIR model enables us to investigate how the long-run 
mean, volatility, and mean reversion of interest rates may affect the term structure of 
reserve durations.3  Employing the arctangent function grants us the flexibility in 
assigning the sensitivity of surrender rates to the spreads and allows us to investigate 
the impact of thw sensitivity on the reserve duration. 

 
Another contribution of this paper to the literature is analyzing the effective 

convexities of policy reserves.  The importance of convexity in managing the 
interest rate risk is well known in the finance literature (see Choudhry (2005) and the 
references therein).  In the insurance literature, Babbel and Stricker (1987) were the 
first to point out how the mismatch of asset convexity and liability convexity could 
adversely affect a life insurer’s surplus.  Santomero and Babbel (1997) reported the 
effective convexities of the reserves for some products.  They however disclosed 
only the final results without the policy specification, interest rate model, surrender 
behavior, or any other assumptions.  The only paper documenting the calculation of 
the effective convexities for insurance products was Ahlgrim, D’Arcy, and Gorvett 
(2004), but that was about the property-casualty insurance.  The characteristics of the 
effective convexities of life insurance reserves, despite of their importance in risk 
management, remain obscure in the present literature. 

 
We find that the results of Tsai (2009) about reserve durations are not general.  

His results are valid only for the cases in which the long-run mean of interest rates is 
lower than or equal to the policy crediting rate.  When the long-run mean is higher 
than the policy crediting rate, the term structure of the effective durations may exhibit 
a different pattern to the one in Tsai (2009).   A reverse pattern would even emerge 
when surrenders are sensitive to the spread and the long-run mean is higher than the 
policy crediting rate.  Contrary to Tsai (2009), we find that the effective duration can 
be positive even for the policies with negative reserves (i.e., positive NPVs) and can 
be negative for positive reserves.  The rationale behind our findings is that the 
interest-sensitive surrender behaviors coupled with persisting positive spreads will 
make policy reserves become increasing functions of interest rate shocks. 

 
Tsai’s results are therefore more suitable under the expectation of no 

                                                 
2 Kim (2005) stated that insurers often fitted surrender rates with an arctangent function of the spreads.  
Doll et al. (1998) also argued for the arctangent function to depict the interest sensitivities of surrender 
behaviors. 
3 We also tried other popular interest rate models such as Vasicek and Hull-White models.  Our 
findings are robust across these models. 
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significant and persisting interest rate rises, and our findings are more applicable 
when insurers expect significant long-run rises of interest rates.  Our findings are 
particularly relevant to the conventional savings-oriented products including annuities 
and endowment that have low policy crediting rates and interest-sensitive surrender 
rates.  The results of this paper have significant implications to the asset-liability 
management of life insurers, especially to the insurers that issued policies with low 
policy crediting rates during the past low-interest-rate era. 

 
With regard to convexity, we find that the effective convexities of life 

insurance reserves may be negative.  The effective convexities and effective 
durations may have opposite signs, and the effective convexities are more volatile 
than the effective durations.  Furthermore, we cannot identify any general pattern for 
the term structure of effective convexities.  The effective convexities exhibit 
irregular patterns because the relation between the initial short rate and reserves 
changes with policy maturity considerably.  The changes in the relation originate 
from the interest sensitivity of surrender rates.  The relation is also affected by 
long-run mean level of interest rates.  Life insurers should pay attention to the 
irregularities of effective convexities for accurate asset-liability management and the 
management should be conducted dynamically as a result. 

 
The remainder of this article is organized as follows.  Section 2 describes the 

specifications of the analyzed policies.  It also explains how we measure the interest 
risk of policy reserves by calculating the effective durations and effective convexities.   
Section 3 describes the term structure model of interest rates and the arctangent 
function used to model the relation between the surrender rate and the spread between 
the market interest rate and policy crediting rate.  It also specifies the model 
parameters.  Section 4 and Section 5 present the results about the effective durations 
and effective convexities, respectively.  Section 6 summaries our findings and 
concludes the paper. 
 
POLICY SPECIFICATIONS AND MEASURES OF THE INTEREST RATE 
RISK 
 
Cash Flows of a Twenty-Year Endowment Policy 
 

We analyze the same twenty-year endowment policies as in Tsai (2009) to 
facilitate comparisons between his and our results.  The policies were issued to 
30-year-old males in different years.  Death benefits and surrender values are 
assumed to be paid at the end of the year while premiums and expenses are received 
and paid at the beginning of the year.  The expected net cash flow at time  ( )t t N∈  
for the policy that is at the beginning of policy year k (i.e., sold k-1 years ago; 
1 20k≤ <  and 1 20 1t k≤ < − + ) but after the k-th net premium being collected can 
then be represented as:4 

 

                                                 
4 Note that the insured is at age 30+k-1 when the policy is at the beginning of policy year k. 
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( ) ( ) ( ) ( )
1 30 1 30 1 1 1 30 1 1
( )
30 1 1 1

( | ) = 

[( ) ( ) ]

- [ (1 ) ],

t
d d s s

t k k t t k t k t
cm vcost

t k k t k t

E NCF k

p q B p q B

p L L

τ τ

τ π λ
− + − + − + − − + − − +

+ − − + − +

× × + × ×

× × − − −

         (1) 

where ( )
30 1t kp τ
+ −  is the probability that the policy for an insured with the age of 

30 1k+ −  remains valid for t years,5 ( )
30 1 1

d
k tq + − + −  is the probability of the insured with 

the age of 30 1 1k t+ − + −  dying within one year, dB  denotes the death benefit paid 
at the end of the year in which the insured dies, ( )s

tq  is the probability that the policy 
is surrendered in year t ,6 1

s
k tB − +  denotes the cash surrender value paid at the end of 

policy year 1k t− + ,7 π  denotes the level premium received at the beginning of 
each surviving year, 1

cm
k tL − +  represents the commission rate for the commissions paid 

at the beginning of policy year 1k t− + , vcostL  stands for the variable cost rate, and 
1k tλ − + represents the fixed cost paid at the beginning of policy year 1k t− + .8 

 
At the policy due date (i.e., 20 1t k= − +  and 201 ≤≤ k ), no premiums are 

paid by the insured.  We further assume that neither commissions nor variable and 
fixed costs are incurred at maturity.  Thus, the second term of Equation (1) vanishes 
and is replaced by the term denoting the expected surviving benefit: 

( ) ( )
20 1 20 30 1 49

( ) ( ) ( )
20 30 1 20 1 20 20 30 1

( | ) = ( )

     ( ) .

d d
k k k

s s suvr
k k k k k

E NCF k p q B

p q B p B

τ

τ τ

− + − + −

− + − − + − + −

× ×

+ × × + ×
      (2) 

 
The actuarial assumptions about some of the above variables are shown in 

Table A1. 
 

Policy Reserves 
 

The present value of the expected net cash flows associated with the policy 
right after the k-th net premium is received, kR , can then be expressed as: 

20 1

1
[ ( | ) ]k

k t tt
R E NCF k v− +

=
= ×∑ ,                       (3) 

where vt denotes the discount factor for the expected net cash flow at time t .  kR  
represents the present value of the expected liability associated with the policy that 
just collected the k-th net premiums, given an interest rate path and the corresponding 
surrender rate path.9  Since interest rates are random and cause surrender rates to be 
random as well, we follow the framework of Wilmott (1998) to simulate the random 
                                                 
5 Note that ( )

0 30 1kp τ
+ − =1.  The upper script (τ) indicate a function referring to all causes or total force 

of decrement.  Two causes of decrement, death and surrender, are considered in this paper and are 
denoted by the upper scripts (d) and (s) respectively. 
6 Note that 1 - ( )

30 1 1
d

k tq + − + −  - ( )s
tq  = ( )

1 30 1 1k tp τ
+ − + − .  A policy not terminated in a year by death or 

surrender means that the policy remains valid for a year.  Furthermore, 
( ) ( ) ( )

1 30 1 1 30 1 1 30 1t k k t t kp p pτ τ τ
− + − + − + − + −× = , i.e., the probability of a policy with an insured age 30+k-1 being valid 

for t years equals the probability of the policy being valid for t-1 years times the probability of the 
policy with the insured age 30+k-1+t-1 remaining valid for one more year. 
7 This is equivalent to saying that the cash surrender value is paid at the end of year t. 
8 The time line regarding the above cash flows is plotted in Figure A1 for further clarification. 
9 The expectation is taken over the probabilities of decrement. 
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variable kR . 
 
Measures of Interest Rate Sensitivity 
 

We follow Fabozzi (1998) and Hayre and Chang (1997) in calculating the 
effective duration (ED) and effective convexity (EC) of a financial product.  The ED 
and EC of the policy reserve are thus defined as follows: 10 

0 0 0 0

0 0

( ) ( )
2 ( )

k k

k

E R r r E R r r
ED

r E R r
−∆ − + ∆

=
∆ ⋅

, and                  (4) 

0 0 0 0 0
2

0 0

( ) ( ) 2 ( )
(2 ) ( )

k k k

k

E R r r E R r r E R r
EC

r E R r
−∆ + + ∆ − ×

=
∆ × ⋅

,           (5) 

where 0r  denotes the initial short rate of interest and 0r∆  denotes the change of the 
initial short rate which is specified as 25 basis points in later calculations.  
 
SURRENDER RATE AND INTEREST RATE MODELS 
 
Interest Rate Model 
 

We choose the famous CIR model to simulate interest rates.  The CIR model 
is a mean-reverting process in which the volatility of the short rate is proportional to 
the square root of the short rate.  The discrete-time version of the model is:  

[ ]s s s s s s sr r r s r Z sκ µ σ+∆ − = ⋅ − ∆ + ∆ ,                   (6) 
where sr  is the short rate at time s (s ≥ 0), κ  reflects the speed of the mean 
reversion, µ  represents the long-term mean to which sr  tends to revert to over time, 

s∆  denotes the time interval, sσ  indicates the volatility of sr , and sZ  denotes a 
random number generated from the standard normal distribution. 
 

Although the continuous-time version of the CIR model guarantees positive 
short rate, the discrete-time version may generate some negative values due to 
discretization errors.  We resort to Euler discretization (Glasserman, 2003) for the 
exact transition of the short rate so that our simulated s sr +∆  are all positive.  More 
specifically, if s sr +∆  follows the CIR process, then s sr +∆  is distributed as 

2{1 exp( )}/ 4s sσ κ κ− − ∆  times a non-central chi-square random variable with degrees 
of freedom 24 / sd µκ σ=  and a non-centrality parameter [4 exp( )sλ κ κ= − ∆  

2/ {1 exp( )}]s ss rσ κ− − ∆ .  This transition allows us to simulate the values of sr  
directly from their exact distribution and maintain one the of major appealing feature 
of the CIR model. 

 
We adopt the parameter values and simulation set up used in Ahlgrim et al. 

(2004) to simulate paths of annual interest rates and discount factors.  They set 

                                                 
10 The expectation here is taken over random interest rates and surrender rates.  0( | )kE R r

 
can be 

regarded as the policy reserve marked to the market using the current term structure.
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0.25κ = , 0.08sσ = , and the time interval as a quarter.11  To see how the long-term 
mean of interest rates may affect policy reserves and the effective durations, we 
experiment with different values of µ  within the range of 2% to 9%.12  The initial 
short rate is assumed to be the same as the policy crediting rate, 4%.13  Since cash 
flows are incurred annually, we follow Ahlgrim et al. (2004) to compound the 
quarterly rates into annual rates of interest, denoted as rt

a.  The discount factor is 
then calculated as: 1

1 2[(1 )(1 ) (1 )]a a a
t tv r r r −= + + +L . 

 
Surrender Rate Model 
 

For a policy with saving property, Doll et al. (1995), Babbel et al. (2002) and 
Kim (2005) proposed to model the surrender rate as an arctangent function of the 
spread between a market interest rate and the policy crediting rate.14  They argued 
that two characteristics of surrender behaviors should be captured by the model.15  
Firstly, policyholders have higher incentives to surrender their policies when the 
spread gets larger.  Secondly, the surrender rate should have a lower bound and an 
upper bound as implied by the historical data.  For instance, Tsai, Kuo, and Chen 
(2002) and Kuo, Tsai, and Chen (2003) observed the possible existence of a “natural” 
surrender rate similar to the existence of the natural unemployment rate.  They also 
observed that the surrender rate in the US never exceed 21.1%.  We therefore model 
the surrender rate as a monotonically increasing function of the spread with a lower 
bound as the following arctangent function:16 

( ) 1
1 2 3 4max{ , tan ( ( ) )}s a

t t pq lb p p p r r p−= + × ⋅ − − ,            (7) 

where ( )s
tq  denotes surrender rate at time t, p1, p2, p3, and p4 are model parameters, 

and pr  is the policy crediting rate.17 
 

As a benchmark, the parameters (p1, p2, p3, p4) are set as (0.07, 0.05, 50, 1) 
with the lower bound of 3%.  The arctangent function specified by these parameters 
has the saddle point at 2%t pr r− = , ( ) 7%s

tq = , and the resulted probability of 
receiving surviving benefits is about 17% when µ  is set at 6%.  The parameters are 
chosen so that the probability of receiving surviving benefits is close to that implied 
by the historical surrender rates from 1969 to 1988 (American Council of Life 

                                                 
11 Their values are indeed taken from Chen et al. (1992). 
12 We also experimented with different values of κ  and sσ  but found that they do not affect the 
findings about the characteristics of the term structures of ED and EC. 
13 We also tried other values for the initial short rate.  The impacts of such changes are immaterial in 
almost all cases and leave the term structures of ED and EC intact.  
14 Be compared with the econometric model, complementary log-log model, in Kim (2005), surrender 
rates are also fit in with an arctangent model soundly. 
15 Doll et al. also proposed that surrender should be tempered by a surrender charge.  We regard the 
surrender charge as nil to simplify the arctangent function.  Also, the results of effective duration and 
effective convexities are indifferent from the presence of a surrender charge. 
16 Although we do not have an explicit upper bound in the formula, the surrender rate is capped as 
Figure 3 will show later.  
17 By the first-order and second-order differentiation of ( )s

tq  at a
t pr r−  on the differentiable interval, 

we get the saddle point of the arctangent surrender function which is at ( )
4 3 1/ ,  s

t p tr r p p q p− = = .  At 
the saddle point, the marginal surrender rate is 2 3p p . 
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Insurers, 1999) and the 1980 CSO male mortality table.18 
 
TERM STRUCTURE OF EFFECTIVE DURATION 
 

The effective durations of mean reserves calculated under different levels of 
µ  are reported in Table 1.19  We see that some EDs are negative, and this is 
consistent with Tsai (2009).  He argued that EDs are negative because the 
corresponding mean reserves are negative.  Policies with negative mean reserves are 
indeed assets to the insurance company, and designating these “assets” as liabilities on 
the balance sheet results in these “negative liabilities” having negative durations.  
The property that mean reserves decrease with a rise/shock in the interest rate holds 
whether these policies with negative mean reserves are treated as assets or liabilities.   

 
[Insert Table 1 Here] 

 
We however found counter examples to the above Tsai’s argument.  The 

effective durations can be positive while the corresponding mean reserves are 
negative, and positive mean reserves may have negative EDs.  The mean reserves 
corresponding to the EDs in Table 1 are shown in Table 2.  We can see that the mean 
reserves maturing twenty years later are -$39,225, -$48,419, and -$52,458 when µ  
= 5%, 6%, and 7% respectively.  This sold policy is an asset to the insurer because 
the long-run mean of the short rate is higher than the policy crediting rate.  Its mean 
reserves however have positive EDs of 3.21, 4.65, and 5.30.  On the other hand, the 
mean reserves maturing eighteen years later are $6,246 and $229 when µ  = 6% and 
7%, but their EDs are -10.55 and -420.71.  Similar cases can be found for the 
reserves maturing seventeen years later when µ  = 7% and 8%.   

 
[Insert Table 2 Here] 

 
When we plot the results of Table 1 as in Figure 1, we spot the patterns 

opposite to that of Tsai (2009).  In the cases of µ  = 6%, 7%, and 8%, the EDs 
increase from zero first but then decrease until becoming negative as the policy’s 
maturity increases from one year to eighteen or nineteen years.  The EDs jump to the 
positive domain for longer maturities and then start decreasing.  We speculate the 
general pattern of the term structure of the EDs for these cases are as the red curves in 
Figure 2.  

 
[Insert Figure 1 and Figure 2 Here] 

                                                 
18 This twenty-year period is chosen to be within the sampling period used in estimating the 
parameters of the interest rate model. 
19 The values of many EDs in Table 1 are rather small mainly due to the mean-reverting property of the 
CIR model.  A shock to the initial interest rate fades away as (simulation) time goes by and leaves 
mid-run and long-run interest rate levels almost intact.  Mean reserves hence do not change much and 
have small EDs.  Experimenting with alternative mean-reverting speeds, we confirmed that the values 
of most EDs decreased with the speeds.  The interest sensitivity of surrenders also contributes to the 
small values of the EDs.  When we remove the mean-reverting property of the interest rate model as 
well as the interest sensitivity of surrenders and calculate the modified durations, the values become 
close the years to maturity.  For instance, the modified durations of the policy reserves maturing 1 
year and 5 years later are 0.96 and 4.86 respectively when the interest rate and surrender rate are set at 
4%.   
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The three key conditions resulting in the above pattern are: the long-run mean 
of interest rates being higher than the policy crediting rate, the surrender rate being 
sensitive to the spread between the market interest rate and policy crediting rate, and 
the policy being issued few years ago with small mean reserves.  When the first two 
conditions emerge, a positive interest rate shock will induce more policyholders to 
surrender their policies.  Furthermore, the pre-determined cash values paid to these 
policyholders are larger than the “fair” mean reserves since the cash values are 
determined under the assumption that µ  = 4% while the mean reserves are 
marked-to-market by a higher µ .  These surrenders therefore will increase the 
reserves.  Since these policies have small mean reserves (the third condition), the 
impact of these surrenders may outweigh the effect of the present value decreasing 
with the increased initial short rate and thus cause mean reserves to increase. 

 
We illustrate the above reasoning using some examples.  At µ  = 6%, the 

mean reserves maturating twenty, nineteen, and eighteen years later are -$48,419, 
-$22,703, and $6,246 respectively as shown in Table 2.  The corresponding surrender 
values are $0, $8,160.77, and $39,789.39 from Table A1.  A 0.25% interest rate 
shock will increase the surrender probability and causes the mean reserves to increase 
by $641, $508, and $393 respectively if we hold a

tr  unchanged.  On the other hand, 
a 0.25% interest rate shock will cause the present values of the mean reserves to 
decline by $70, $174, and $228 when we assume that the surrender probability does 
not increase.  The net changes are $571, $334, and $165 and thus results in the 
effective durations of 4.72, 5.88, and -10.55 in Table 1, respectively.20 

 
Our findings and the above reasoning demonstrate the importance of the 

long-run mean of interest rates, the interest sensitivity of the surrender rate, and the 
policy’s time to maturity in determining the effective durations of mean reserves.21   
Comparing the EDs across the columns in Table 1 and/or examining the graphs in 
Figure 1, we see clearly the importance of µ  in determining the EDs.  This implies 
that life insurers should pay special attention to their estimates on the long-run interest 
rate level when implementing asset-liability management strategies.  The importance 
of the long-run mean is obscure in Tsai (2009).22   

 
The importance of the interest-sensitive surrender rate in determining the 

effective durations of mean reserves was not explored in Tsai (2009) either.  We 
illustrate the importance by setting alternative parameter sets of the arctangent 
function and examining the resulting term structures of the EDs.  The parameters (p1, 
p2, p3, p4) are set as (0.1, 0.05, 50, 0.5) to indicate the more sensitive behavior and are 
chosen to be (0.05, 0.05, 50, 2) to represent the less sensitive surrender behavior.23  
                                                 
20 The duration figures are slightly different from those in Table 2 because we use only the positive 
interest rate shock to calculate EDs here but Table 2 employs Equation (4) that takes into account of 
both positive and negative shocks. 
21 The importance of time to maturity in determining Macaulay and modified durations is well known 
and self-evident.  Tsai (2009) documented its importance in determining the effective durations of 
mean reserves.  We confirm this importance again in this paper but decide not to elaborate it further 
for the sake of paper length.   
22 An interesting characteristic of the VAR model in Tsai (2009) is that changes in the initial interest 
rate cause similar changes in the mean of the simulated interest rates.  Their effects on the EDs 
therefore mingle together and are difficult to distinguish from each other. 
23 The lower bound of the surrender rate is kept as 3% for these two types of surrender behaviors. 
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The arctangent functions associated with these two parameter sets along with the 
benchmark set are plotted in Figure 3, and the resultant term structures of the EDs are 
shown in Figure 4 and Figure 5.24   

 
[Insert Figures 3, 4, and 5 Here] 

 
The patterns of the term structures in Figure 4 are consistent with Figure 1 and 

conform to the general pattern depicted by the red curves in Figure 2.  Figure 5 
contains patterns similar to those in Tsai (2009) with a distinction: some recently 
issued policies have negative mean reserves but positive effective durations.  This 
phenomenon emerges when the long-run mean µ is significantly larger than the policy 
crediting rate (e.g., µ = 8% or 9%).  The large spread induce the surrenders that have 
cash values much larger than the “fair” policy values and cause mean reserves to 
increase, even when the surrender rate is sensitive to the spread with a minor degree 
only.  We plot this modified pattern of Tsai (2009) as the blue curves in Figure 2.   

 
The above findings and reasoning are robust across values of κ  and rσ .  

We experimented with κ  = 0.1, κ  = 0.18, and sσ  = 0.03.  All stories remain 
intact.  We thus can conclude that the pattern identified in Tsai (2009) represent the 
cases in which the long-run mean of interest rates is not above the policy crediting 
rate to a certain extent.  If the long-run mean is significantly higher than the policy 
crediting rate, his pattern has to be modified (as the blue curves in Figure 2) even 
when the surrender rate exhibits low sensitivity to the spread.  Higher sensitivities of 
surrender rates will result in a pattern opposite to the pattern of Tsai (2009) as the red 
curves in Figure 2 when the long-run means of interest rates are higher than the policy 
crediting rate.  The newly found pattern reflected by some graphs of Figure 1 and 
Figure 5 results from high sensitivity of surrender rates (and the long-run means of 
interest rates being higher than the policy crediting rate).  In short, the interest 
sensitivity of the surrender rate and the long-run interest rate level are critical in 
determining the term structure of the effective durations. 

 
TERM STRUCTURE OF EFFECTIVE CONVEXITY 
 

In addition to identifying new term structure patterns of reserve durations, we 
further calculating the effective convexities of mean reserves for policies maturing in 
different years.  The results are reported in Table 3 and plotted in Figure 6.  They 
are new to the literature. 

 
[Insert Table 3 and Figure 6 Here] 

 
In Table 3 and Figure 6, we find three features of effective convexities.   

Firstly, many ECs are negative that were not seen in the insurance literatures.  
Secondly, the sign of ECs may not be the same as that of EDs.  It may not be the 
same as that of mean reserves either.  Thirdly, the term structure of ECs does not 
exhibit a general pattern and thus does not have the same pattern as that of EDs. 

 
The negative ECs emerge when mean reserves are concave functions of initial 

short rate.  For different years to maturity, the mean reserves function of initial short 
                                                 
24 The corresponding values of these EDs are displayed in Table A2 and Table A3. 
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rate might be concave upward/downward or even U-shaped.  For example, at µ  = 
2%, the mean reserves function maturing twenty years is concave downward in the 
positive range.  Then we have a negative EC (-2.50) accompanied with a positive ED 
(8.48).  At µ  = 7%, the mean reserves function maturing eighteen years is concave 
downward from negative to positive range.  At this case, we have a negative EC 
(-613.58) as well as a negative ED (-420.71).  At µ  = 4%, the mean reserves 
function maturing twenty years is U-shaped with negative range.  At this case, we 
derive a negative EC (-41.27) as well as a negative ED (-1.17).  The mean reserves 
function in the above three cases are shown in Figure 7. 

 
[Insert Figures 7 Here] 

 
Comparing Table 1 and 3, we find the sign of EDs and ECs are not consistent.  

For example, at µ  = 5%, we have negative ECs (-33.66 and -22.84) accompanied 
with positive EDs (4.12 and 3.21) when policy maturing nineteen and twenty years.  
At µ  = 6%, we have positive ECs (4.75) accompanied with negative EDs (-10.55) 
when policy maturing eighteen years.  At µ  = 7%, 8% and 9%, we have more 
examples that negative ECs are accompanied with positive EDs when policy maturing 
from seven and fifteen years.  The inconsistency of the sign of ECs and EDs results 
from interest-sensitive surrenders and long-run mean of interest rates.  Both factors 
lead the mean reserves function being increasing/decreasing or even not monotonic 
with initial short rate.  Then sign of EDs and of ECs are not consistent. 

 
The negative ECs are new to insurance literatures but not to finance literatures.  

Corporate bonds with callable option are accompanied with negative ECs.  Douglas 
(1990) founded that the callable bonds have both positive and negative ECs.  The 
call features, expected trend in interest rates, and market yield volatility would 
determine whether the EC is positive or negative.  Douglas’ conclusions can be 
evidences for our explanations of negative ECs of mean reserves of endowment 
policies.  Meanwhile, the surrender feature of endowment and the long-run mean of 
interest rates determine the positive or negative ECs of mean reserves of policy. 

 
We are not able to spot a general pattern of ECs across different long-run mean 

of interest rates and years to maturity.  In the cases of µ  = 2% to 5%, the ECs 
increase from zero for early maturities and increase from negative range when mean 
reserves turn to be negative.  In the cases of µ  = 6%, the ECs increase from zero 
for early maturities but jump to negative range.  Meanwhile, when mean reserves 
turn to be negative, the ECs become decreasing.  In the cases of µ  = 7% to 9%, the 
ECs decrease from zero to negative range for early maturities.  When mean reserves 
turn to be negative, the ECs of mean reserves then decrease from positive range.  
Under these cases, the term structure of ECs exhibits an irregularity.  Thus, due to 
the negative ECs and the inconsistency of the sign of ECs and EDs, we are unable to 
generalize the term structure of ECs across different long-run mean of interest rates 
and years to maturity. 

 
The irregularities of the term structures of ECs originate from the interest 

sensitivity of surrender rates as well as the long-run mean of interest rates and the 
former dominates the irregularities.  In the case of more-sensitive surrenders, the 
irregularity of term structures of ECs become more severe.  The term structures of 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

 

 15

ECs for more-sensitive surrenders are shown in Figure 8.  Higher sensitivities of 
surrender rates will result in an irregular pattern.  In the case of less-sensitive 
surrenders, the term structures of ECs turn to be regular and are similar to the term 
structures of convexities of mean reserves.  The term structures of ECs for 
less-sensitive surrenders are shown in Figure 9 and the term structures of convexities 
of mean reserves are shown in Figure 10.25  Under fixed interest rates and surrender 
rates, the term structures of convexities are similar to the term structures of modified 
duration addressed in Tsai (2009).  This is because fixed interest rates and no 
interest-sensitive surrenders lead the mean reserves function to be monotonic and 
simplified. 
 
CONCLUSIONS 
 

The policy reserves of life insurance are exposed to significant interest rate 
risk due to the long-run protection nature of life insurance.  The insurance literatures 
pinpointed the significance of interest-sensitive cash flows in determining the interest 
rate risk of policy reserves and argued strongly for the usage of effective duration and 
effective convexity rather than the simpler Macaulay and modified measures.  
Recently, Tsai (2009) identified a term structure of the effective duration of policy 
reserves using a specific VAR model of interest rates and surrender rates.   

 
We extend the literature by two ways.  Firstly, we re-examine the term 

structure pattern identified by Tsai (2009) through utilizing more general and flexible 
models.  The use of the popular CIR model enables us to examine how the 
characteristics of interest rates such as the long-run mean, mean-reverting speed, and 
volatility may affect the pattern.  Using the arctangent function to model how the 
surrender rate reacts to the spread between the policy crediting rate and market 
interest rates renders us the flexibility in specifying the interest sensitivity of the 
surrender rate.  Secondly, we illustrate the term structure of the effective convexity 
of policy reserves.  The importance of convexity in managing fixed-income security 
investments is well known, and our illustration is new to the insurance literature. 

 
We found that the term structure pattern of reserve durations identified by Tsai 

(2009) is not universal.  His pattern is valid when the long-run mean of short rates is 
not above the policy crediting rate and/or the surrender rate is not sensitive to the 
interest spread.  The term structure pattern changes radically, as demonstrated in 
Figure 2, when the long-run mean is higher than the policy crediting rate and the 
surrender rate exhibits certain degree of sensitivity to the interest spread.  Tsai’s 
result needs to be revised even when the surrender rate is not sensitive to the spread if 
the long-run mean is significantly higher than the policy crediting rate. 

 
The reason why Tsai (2009) did not detect our newly identified patterns is 

because his VAR model consists of an AR(2) process of the one-year interest rate with 
little mean reverting and a surrender rate process featuring only moderate interest 
sensitivity.  Such an interest rate model obscures the distinction between a short-term 
interest rate shock and the change in the long-run mean.  Being stuck with the 
surrender rate model specified by the vector-autoregression structure, Tsai (2009) was 

                                                 
25 The ECs under more-sensitive surrenders and less-sensitive surrenders are listed in Appendix Table 
4 and 5.  
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not able to explore alternative sensitivities of surrender rates to interest rates.  His 
findings, therefore, do not represent universal cases. 

 
Our findings signify the critical roles played by the long-run mean of interest 

rates and the interest sensitivity of surrender rates in determining the term structure 
pattern of reserve durations.  They have material implications to the life insurers that 
sell savings-oriented products with fixed crediting rates that are popular in annuity 
markets and in Asia life insurance markets during low interest rate eras.  These life 
insurers will suffer severely from the disintermediation happened in high interest 
periods, if they do not have correct estimates on the effective durations of their 
products and implement appropriate asset-liability management.  The damages may 
be brought by the awaiting recoveries from the recent economic downturns that 
accompany interest rate rises.  

 
Our findings about the effective convexities of policy reserves have practical 

implications as well, in addition to the contribution to the literature.  We find that the 
effective convexities of mean reserves might be negative for some years to maturity 
and term structure of effective convexities can not be generalized.  Life insurers 
hence should pay attention to effective convexities when implementing asset-liability 
management.  The irregular term structure patterns of the effective convexities 
further call for a dynamic management.
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TABLES AND FIGURES 
 

Table 1: Effective Durations of Mean Reserves 
  Long-Run Means of the Short Rate µ  

Year(s) to Maturity 2% 3% 4% 5% 6% 7% 8% 9% 
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
5 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 
6 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 
7 0.06 0.06 0.06 0.05 0.04 0.04 0.04 0.04 
8 0.09 0.08 0.08 0.07 0.06 0.05 0.05 0.05 
9 0.12 0.12 0.10 0.09 0.08 0.07 0.07 0.07 

10 0.17 0.16 0.14 0.12 0.10 0.08 0.08 0.08 
11 0.23 0.22 0.19 0.15 0.12 0.10 0.10 0.10 
12 0.32 0.31 0.26 0.20 0.15 0.12 0.12 0.13 
13 0.44 0.43 0.36 0.26 0.18 0.14 0.13 0.15 
14 0.62 0.60 0.50 0.34 0.21 0.14 0.13 0.16 
15 0.87 0.85 0.70 0.44 0.21 0.07 0.06 0.11 
16 1.25 1.23 1.00 0.55 0.09 -0.19 -0.24 -0.14
17 1.82 1.85 1.50 0.60 -0.54 -1.42 -1.70 -1.53
18 2.78 3.00 2.57 0.00 -10.55 -420.71 37.19 20.43
19 4.51 5.82 10.39 4.12 5.85 6.29 6.17 5.71 
20 8.48 31.77 -1.17 3.21 4.65 5.30 5.50 5.43 

 
Table 2: Mean Reserves under Different Long-Run Interest Rates 

  Long-Run Means of the Short Rate µ  
Year(s) to Maturity 2% 3% 4% 5% 6% 7% 8% 9% 

1 980,343 970,743 961,246 951,851 942,588 933,427 924,376 915,434
2 920,948 903,010 885,571 868,700 852,516 836,866 821,689 806,901
3 862,527 837,393 813,363 790,619 769,391 749,338 730,263 711,931
4 805,170 773,883 744,460 717,213 692,471 669,653 648,369 628,193
5 748,792 712,297 678,529 647,940 620,930 596,628 574,409 553,623
6 693,508 652,697 615,530 582,598 554,330 529,535 507,325 486,823
7 639,209 594,893 555,164 520,741 492,042 467,528 446,024 426,430
8 585,861 538,795 497,267 462,087 433,614 409,963 389,667 371,412
9 533,521 484,410 441,773 406,468 378,754 356,402 337,666 321,036

10 482,159 431,662 388,520 353,627 327,107 306,389 289,453 274,617
11 431,721 380,447 337,364 303,359 278,377 259,520 244,521 231,562
12 383,366 331,859 289,288 256,479 233,191 216,246 203,173 192,053
13 335,779 284,552 242,902 211,573 190,115 175,115 163,944 154,614
14 289,012 238,555 198,207 168,599 149,072 136,028 126,720 119,126
15 243,090 193,867 155,169 127,489 109,966 98,861 91,360 85,432
16 198,995 151,432 114,661 89,020 73,478 64,223 58,419 54,059
17 156,260 110,735 76,125 52,599 38,985 31,454 27,208 24,285
18 115,004 71,836 39,532 18,091 6,246 229 -2,673 -4,340
19 77,691 37,101 7,129 -12,369 -22,703 -27,519 -29,394 -30,100
20 44,189 6,317 -21,411 -39,225 -48,419 -52,458 -53,748 -53,938
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Table 3: Effective Convexities of Mean Reserves 
  Long-Run Means of the Short Rate µ  

Year to Maturity 2% 3% 4% 5% 6% 7% 8% 9% 
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00
8 0.01 0.00 0.01 0.00 0.00 0.00 -0.00 -0.00
9 0.01 0.01 0.01 0.01 0.00 -0.00 -0.00 -0.00

10 0.01 0.02 0.02 0.01 0.00 -0.00 -0.00 -0.01
11 0.02 0.03 0.04 0.02 0.01 -0.01 -0.01 -0.01
12 0.04 0.05 0.06 0.04 0.01 -0.02 -0.03 -0.03
13 0.05 0.09 0.12 0.07 0.01 -0.05 -0.08 -0.08
14 0.08 0.17 0.23 0.14 0.00 -0.12 -0.18 -0.19
15 0.12 0.31 0.46 0.31 -0.01 -0.31 -0.48 -0.50
16 0.21 0.62 0.98 0.75 -0.01 -0.88 -1.38 -1.50
17 0.36 1.30 2.39 2.18 0.01 -2.98 -5.40 -6.36
18 0.58 3.18 7.57 11.61 4.75 -613.58 91.31 65.40
19 0.62 9.46 70.08 -33.66 -6.83 4.69 11.47 15.46
20 -2.50 82.09 -41.27 -22.84 -12.37 -4.31 1.93 6.74 
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Figure 1: Effective Durations of Mean Reserves 
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Figure 2: The General Pattern(s) of the Term Structure of Effective Durations 
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Figure 3: Arctangent Functions of Surrender Rate to Interest Rate Spread 
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Figure 4: Effective Durations of Mean Reserves for More-Sensitive Surrenders 
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Figure 5: Effective Durations of Mean Reserves for Less-Sensitive Surrenders 
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Figure 6: Effective Convexities of Mean Reserves 
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Figure 7: Mean Reserve Curve  
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Figure 8: Effective Convexities of Mean Reserves for More-Sensitive Surrenders 
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Figure 9: Effective Convexities of Mean Reserves for Less-Sensitive Surrenders 
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Figure 10: Convexities of Mean Reserves 
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APPENDICES 
 

Table A1: Actuarial Assumptions of the Twenty-Year Endowment Policy 
Insured’s 

Age 
Mortality Rate 

of age a 
At the Beginning of 

Policy Year 
Surrender 

Value 
Commission 

Rate 
Fixed 

Expense 
Variable 
Cost Rate

a ( )d
aq  k  s

kB  cm
kL  kλ  cosv tL  

30 0.0009790 1 N/A 62.40% 4,530 0.001 
31 0.0010055 2 8,161 27.00% 1,359 0.001 
32 0.0010481 3 39789 20.60% 1,359 0.001 
33 0.0011075 4 73,767 14.00% 1,359 0.001 
34 0.0011826 5 110,192 13.00% 1,359 0.001 
35 0.0012712 6 149,173 12.00% 1,359 0.001 
36 0.0013711 7 190,831 10.00% 1,359 0.001 
37 0.0014807 8 235,294 10.00% 1,359 0.001 
38 0.0015989 9 282,707 10.00% 1,359 0.001 
39 0.0017291 10 333,223 10.00% 1,359 0.001 
40 0.0018749 11 387,004 7.00% 1,359 0.001 
41 0.0020407 12 437,655 7.00% 1,359 0.001 
42 0.0022297 13 490,342 7.00% 1,359 0.001 
43 0.0024446 14 545,163 7.00% 1,359 0.001 
44 0.0026795 15 602,227 7.00% 1,359 0.001 
45 0.0029268 16 661,664 7.00% 1,359 0.001 
46 0.0031784 17 723,620 7.00% 1,359 0.001 
47 0.0034268 18 788,259 7.00% 1,359 0.001 
48 0.0036671 19 855,760 7.00% 1,359 0.001 
49 0.0039091 20 926,314 7.00% 1,359 0.001 
50 N/A 20* 1,000,000 N/A N/A N/A 

 
1. The death benefit and survival benefit is $1,000,000.  The policy is issued to a 30 year-old male, 

and the annual premium expected to pay at the beginning of each surviving year is $45,300 under 
the policy crediting rate of 4%. 

 
2. The notation 20* is used to denote the end of policy year 20. 
 
3. The policy surrendered at the beginning of the first policy year has no surrender value.  Neither 

mortality nor expenses apply any more when the policy matures.  We denote all these values as 
N/A.  

 
4. The variable cost is assumed to be 0.1%. 
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Table A2: Effective Durations for Less-Sensitive Surrenders 
Less-Sensitive Surrenders 

 Long-Run Means of the Short Rate µ  
Year(s) to Maturity 2% 3% 4% 5% 6% 7% 8% 9% 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
5 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
6 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
7 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 
8 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 
9 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 

10 0.17 0.17 0.16 0.16 0.16 0.15 0.15 0.15 
11 0.23 0.23 0.23 0.22 0.22 0.21 0.21 0.21 
12 0.32 0.32 0.31 0.31 0.30 0.30 0.30 0.29 
13 0.44 0.45 0.44 0.43 0.43 0.42 0.42 0.42 
14 0.61 0.63 0.62 0.61 0.61 0.61 0.62 0.63 
15 0.86 0.89 0.89 0.90 0.92 0.94 0.97 1.02 
16 1.22 1.29 1.34 1.38 1.47 1.59 1.78 2.12 
17 1.76 1.96 2.15 2.40 2.94 3.95 7.80 -20.40
18 2.66 3.23 4.21 6.69 62.44 -6.04 -2.14 -0.97 
19 4.22 6.43 23.40 -8.27 -2.38 -0.97 -0.30 0.08 
20 7.63 41.35 -5.65 -1.62 -0.37 0.21 0.56 0.79 

 
Table A3: Effective Durations for More-Sensitive Surrenders 

More-Sensitive Surrenders 
 Long-Run Means of the Short Rate µ  

Year(s) to Maturity 2% 3% 4% 5% 6% 7% 8% 9% 
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
5 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02
6 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03
7 0.06 0.06 0.05 0.05 0.04 0.04 0.04 0.04
8 0.09 0.08 0.07 0.06 0.06 0.05 0.05 0.05
9 0.12 0.11 0.09 0.08 0.07 0.07 0.07 0.07

10 0.17 0.15 0.13 0.11 0.10 0.09 0.09 0.09
11 0.23 0.20 0.17 0.14 0.12 0.12 0.12 0.12
12 0.32 0.28 0.23 0.19 0.16 0.15 0.15 0.16
13 0.45 0.39 0.31 0.25 0.21 0.19 0.20 0.21
14 0.63 0.55 0.43 0.33 0.27 0.25 0.25 0.27
15 0.90 0.77 0.59 0.43 0.33 0.30 0.31 0.34
16 1.30 1.11 0.83 0.55 0.38 0.33 0.35 0.40
17 1.93 1.66 1.18 0.68 0.34 0.21 0.24 0.35
18 3.00 2.64 1.79 0.65 -0.36 -0.92 -1.04 -0.86
19 5.09 4.97 3.52 -3.62 42.71 14.04 9.44 6.82
20 10.85 26.71 -0.95 3.89 4.94 5.12 4.95 4.63
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Table A4: Effective Convexities for More-Sensitive Surrenders 
More-Sensitive Surrenders  

 Long-Run Means of the Short Rate µ  
Year(s) to Maturity 2% 3% 4% 5% 6% 7% 8% 9% 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
8 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 
9 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

10 0.02 0.02 0.02 0.01 0.00 0.00 0.00 0.00 
11 0.03 0.03 0.03 0.01 0.00 -0.01 -0.01 0.00 
12 0.05 0.05 0.04 0.02 0.00 -0.01 -0.01 -0.01 
13 0.08 0.09 0.08 0.03 -0.01 -0.03 -0.03 -0.03 
14 0.14 0.17 0.14 0.05 -0.03 -0.08 -0.08 -0.07 
15 0.25 0.33 0.27 0.08 -0.10 -0.19 -0.21 -0.19 
16 0.47 0.65 0.54 0.14 -0.28 -0.52 -0.59 -0.54 
17 0.94 1.37 1.17 0.24 -0.87 -1.62 -1.91 -1.86 
18 2.01 3.22 3.01 0.45 -3.53 -7.24 -9.73 -10.97
19 4.66 9.32 12.96 4.17 116.18 54.70 45.13 37.63 
20 13.20 82.57 -29.37 -3.29 7.00 13.11 16.84 18.86 

 
Table A5: Effective Convexities for Less-Sensitive Surrenders 

Less-Sensitive Surrenders  
 Long-Run Means of the Short Rate µ  

Year(s) to Maturity 2% 3% 4% 5% 6% 7% 8% 9% 
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
8 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
9 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
11 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 
12 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 
13 0.06 0.05 0.06 0.05 0.04 0.04 0.04 0.04 
14 0.10 0.10 0.11 0.09 0.09 0.09 0.09 0.09 
15 0.18 0.18 0.20 0.18 0.18 0.18 0.19 0.20 
16 0.33 0.36 0.39 0.39 0.40 0.43 0.49 0.60 
17 0.67 0.74 0.86 0.94 1.14 1.58 3.24 -8.95
18 1.33 1.69 2.36 3.79 36.87 -3.84 -1.53 -0.84
19 2.88 4.78 19.18 -7.31 -2.44 -1.29 -0.75 -0.44
20 7.36 45.32 -7.43 -2.79 -1.38 -0.73 -0.35 -0.09
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The time line below describes the relations among policy year k, insured’s age 
30+k-1, and the evaluation time t and where the net cash flows are. 

 

                 

        30     31    32       30+ k -2  30+ k -1  30+ k   30+ k -1+t-1 30+ k -1+t  30+ k +t 

 Time                             -1      0      1             t-1      t      t+1  
Figure A1: Illustrative Time Line

 Insured 
Age 

Policy Year   1     2                  k-1     k                   k-1+t    k+t 
t 
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Part Two: A Promising Asset Allocation and Leverage Strategy for a 
Life Insurer by Simulation Optimization 
 
 
INTRODUCTION 
 

Managing investments is important for life insurers to ensure that funds are 
available to pay claims when they fall due, in the future.  However, conflicts of 
interest between shareholders, regulators and policyholders make investment 
decisions difficult.  Shareholders of insurers urge them to generate higher returns 
from investments and underwriting but regulators and policyholders ask them to 
maintain risk at acceptable levels.  Life insurers thus have to manage divergent 
expectations emanating from both assets and liabilities sides.  In this study, we 
re-think the classic asset allocation problem specifically for life insurers.  We 
propose a non-linear simulation model with stochastic variables to derive promising 
asset allocations and leverage strategies. 

 
Extant literature has covered the asset allocation problem quite extensively.  

In financial literature, there are two categories of methods to address this problem.   
One is the mean-variance analysis of Markowitz (1952), which suggests the efficient 
frontier representing the best portfolios in terms of return-risk tradeoff.  The 
mean-variance analysis, however, is prone to two fundamental flaws: the 
single-period framework, and the inappropriate utility function assumed for the 
investor (Brennan et al., 1997).  The solution to a static portfolio choice problem can 
be different from the solution to a multi-period dynamic problem (Campbell, 2000).   
The other method to construct optimal portfolios originated from Merton (1971; 
1990).  The literature along this line formulates the asset allocation problem as a 
stochastic optimal control problem; solutions are characterized by 
Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDE) but it is difficult 
to get a closed-form solution from a high-dimensional PDE.  Also, numerical 
solutions of PDE can be obtained only in rare cases.  Cox and Huang (1989) made 
conceptual progress by showing that one can apply the Martingale representation 
theory to reduce the stochastic dynamic programming problem to a static problem in 
complete markets.  However, few closed-form solutions have been available, except 
for the simplest cases, and complex hedging terms are difficult to evaluate 
numerically.   

 
We need a powerful tool to integrate the asset allocation problem and leverage 

strategies for efficient asset and liability management by life insurers.  A 
company-wide simulation model is one such tool (Browne, Carson and Hoyt, 1999; 
Browne, Carson and Hoyt, 2001; Kaufmann et al., 2001; and Hardy, 1993, 1996).1  It 
is a “systemic approach” to financial modeling which projects financial results under 
a variety of possible scenarios, showing how outcomes might be affected by changing 
business, competitive and economic conditions.”  The system starts with two 
fundamental equations, as follows: 

                                                 
1 A company-wide simulation system is often named as “Dynamic Financial Analysis” (DFA) system in 
the non-life insurance industry.  What is called DFA in non-life insurance is also known as “Asset 
Liability Management” (ALM) in life insurance. 
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, ,i t j t t
i j

A L S− =∑ ∑ , and                        (1) 

 
, ,i t j t t

i j
A L S∆ − ∆ = ∆∑ ∑ ,                        (2) 

where ,i tA  and ,j tL  represent values of individual asset and liability items, 
respectively, at time t, and (.)∆  denotes the change of the variable.  Equation (1) 
depicts the fundamental relations among financial variables at any given point of time; 
Equation (2) captures the dynamic relations among the variables across time. The 
system can specify models for values of individual asset and liability items at time t.  
These models are supposed to reflect the stochastic nature of financial markets and 
insurance underwriting.2   
 

A company-wide simulation model, though powerful, is merely a descriptive 
model.  It only helps us understand the dynamics of, and complex interactions 
among, the elements of the system, and this system lacks optimization capability.  In 
other words, a simulation model helps us to know which proposed strategy is better 
but is unable to determine what the optimal strategy is.  It does not have the 
mechanism/algorithm to search for the optimum.  We, therefore, have to make 
educated guesses on what the optimal strategy could be like, and employ the 
trial-and-error method to determine the right strategy.  Trying all possible strategies 
to seek the optimum is infeasible due to the large number of decision variables.  A 
simulation model without an optimization mechanism is, therefore, incapable of 
helping managers maximize shareholder value. 

 
In this study, we apply the techniques of simulation optimization to address the 

asset allocation problem by simulating the system of a life insurer.  Comparatively 
few researchers have used a company-wide simulation model for optimization of a 
life insurer’s asset allocation.  We have found two articles in insurance and financial 
literature that focus on investment management for servicing participating policies 
with minimum guarantees.  Iwaki and Yumae (2004) analyze trading strategies in a 
continuous time economy by utilizing the Martingale method.  They derive an 
efficient frontier for the company, as well as trading strategies for efficient portfolios. 
Consiglio, Saunders, and Zenios (2006) examine asset-liability management 
associated with single-premium participating policies with minimum guarantees.   

 
In our company-wide simulation system for a life insurance company, we 

incorporate four types of assets and three types of insurance products.  Assets 
include default-free zero-coupon bonds, stock index, real estate index, and alternative 
investment characterized by “high-return and high-risk.”  Insurance products include 
20-year non-participating term life insurance, endowment, and pure endowment.  We 
assume that leverage represents the premiums received at the beginning of the first 
policy year, divided into the initial equity of shareholders.  Without loss of generality, 
for simplicity, we assume no new business comes after the second policy year.  The 
objective function of our simulation and optimization problem is maximization of the 
                                                 
2 The system’s major outcome is the insurer’s surplus/equity distribution at some point of time in the 
future.  Managers can employ the simulated surplus distribution to make choices among alternative 
strategies.  Life insurers can use a company-wide simulation system to assess asset allocation 
strategies by examining the impacts of alternative strategies on the surplus distribution over a target 
time horizon.  The simulation system therefore can help managers make investment and business 
decisions in a comprehensive and robust way. 
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expected annual rate of return of equity minus the risk and insolvency penalty.  We 
maximize this function through re-allocating investments in different assets every five 
periods. 

 
We find the promising asset allocation and leverage strategies by particle 

swarm optimization (PSO).  The PSO is a novel computational method that can 
solve difficult problems efficiently and reliably (Kendall and Su, 2005).  Eberhart 
and Kennedy (1995) introduced PSO, which is based on the analogy of birds flocking 
and fish schooling.  PSO has been shown to be powerful, easy to implement, rapid to 
converge, and computationally efficient (Poli, 2008).  Dissimilar to evolutionary 
algorithms, such as GA, PSO considers parameters of crossover probability, mutation 
probability, and population size, and it is more implementable.  

 
The promising leverage is 20 (i.e. the total premiums in the first year are 

twenty times the initial equity) and the corresponding asset allocation varies across 
periods.  The objective value is 24.63% with 5 insolvencies in the simulation.  We 
find no consistency in composition of the portfolio in terms of risky assets (stock, real 
estate and alternative investment) and fix income securities (default-free zero coupon 
bonds) at the time of different re-allocations.  In the first and sixteenth periods, 
weights of fix income securities are higher than weights of risky assets.  But it is the 
opposite in sixth and eleventh periods.  Allocations for the first and the last 
re-allocation period are relatively conservative, when weights of fix income securities 
are 70.75% and 67.62%, respectively.  At the sixth and the eleventh re-allocation, 
the insurer needs to hold more risky assts to improve the objective value.  The ratio 
of risky assets to fix income securities can even go up to 2.43.  However, weights of 
fix income securities at each re-allocation period are higher than 29% due to life 
insurers’ investment strategies being subject to penalty for violation of stipulated 
norms for asset allocation. 

 
Among risky assets, weights of equities and real estate dominate alternative 

investment.  Asset allocations show that equities have a prominent share in the 
investment portfolio in each period.  At each re-allocation, weight of stocks is higher 
than 13%.  Weight of real estate undergoes significant change after the fifth period, 
in the sixth period (rising from 4.78% to 28.15%), as well as after fifteenth, in the 
sixteenth period, when it plunges from 36.61% to 3.43%.  The rationale is that the 
price of real estate follows a jump diffusion process with the average number of 
jumps being 0.1 per year.  Alternative investment is not the first choice of investment 
because of the high risk it entails.  Even in the sixth and the eleventh period, to 
improve the objective value, the insurer prefers stock and real estate rather than 
alternative investment since the risks of real estate (0.18) and stock (0.25) are smaller 
than alternative investment (0.5).  When determining the composition of risky assets, 
insurers would concern more about risk than the return of each type of asset. 

 

Another contribution of this study is that we investigate asset allocation 
strategies under different leverages.  Insurance literatures indicate that capital 
structure (leverage) affects the risk-taking behavior of insurers.  Michaelsen and 
Goshay (1967), Hammond et al. (1976), and Harrington and Nelson (1986) found 
some degree of support for the hypothesis that insurers with higher portfolio risk 
operate with lower leverage ratios (measured by the ratio of net premium written to 
equity, which is similar to its definition in our study).  Cummins and Sommer (1996) 
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indicated that property and liability (P&L) insurers prefer to operate at finite levels of 
leverage (capital to asset ratio) and risk to avoid bankruptcy cost under the cost-based 
hypothesis, as in Shrieves and Dahl (1992).  Baranoff and Sager (2002; 2003; 2004) 
indicate support for finite risk hypothesis, that is, for life insurers, leverage (total 
liabilities to total assets) and the proportion of risky assets (stock) in portfolio are 
negatively interrelated.  We assume two different leverages (12 and 16) to compare 
promising asset allocations under these two scenarios with our promising asset 
allocation and leverage strategies. 

 
The results show that when leverage increases, insurers need to hold more fix 

income securities in the first period.  In other words, the finite risk hypothesis holds 
conditionally in a multi-period asset allocation.  When leverage is 12, the insurer 
re-allocates more investment to fix income securities in the first, sixth, and eleventh 
periods.  But in the sixteenth period, the insurer re-allocates to risky assets in full to 
increase the objective value.  When leverage is 16, the insurer holds more fix income 
securities only in the first and the sixth periods.  From the 11th period onwards, the 
insurer increases weights of risky assets to increase the objective value.  Asset 
allocation at these two points is different from the optimal because leverage strategies 
are not optimal in the simulation.  Thus, the insurer’s investment decisions are far 
away from the promising strategies.  Besides, volatility of annual rate of return of 
equity is decreasing as the leverage increases.  Numbers of insolvencies in 
simulation paths exhibit no correlation with leverage.  The objective value is then 
increasing, as the leverage increases, to reach closer to the promising strategy. 
 

The remainder of this paper is structured as follows.  Section 2 presents our 
simulation model, including the setting of asset and liability sides.  Section 3 
presents balance sheets of assets and liabilities for each period and formulates asset 
allocation and leverage strategy as a high-dimensional constrained optimization 
problem.  Section 4 presents the results and exhibits how leverage affects asset 
allocation strategy.  Section 5 presents conclusions. 
 
COMPANY-WIDE SIMULATION MODEL 
 
The Investment Markets 
 

We assume the assets of a life insurer are allocated, in different proportions, to 
default-free zero-coupon bonds, stocks, real estate and alternative investment 
characterized by “high-return and high-risk.”  The time to maturity of default-free 
zero-coupon bonds ranges from one to fifteen years.  The insurer is, therefore, able 
to invest in 18 securities. 

 
We assume the dynamics of the yearly interest rate tr  follow the CIR model 

(Cox, Ingersoll, and Ross, 1985).  The discrete-time CIR model is: 
[ ]t t r t rr r t r tκ µ σ ε∆ = − ∆ + ∆ ,                     (3) 

              ~ (0,1)r Nε ,                                   (4) 

where t∆  equals one year, µ  is the long-term average of the short-term rate, κ  
reflects the speed of mean reversion, rσ  is the volatility parameter of the process, 
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and rε  is a random number drawn from a standardized normal distribution.3  
Then we get the price dynamics of a default-free zero-coupon bond at time t for 
delivery of $1 at different maturity times tT > , which was derived in Cox, 
Ingersoll, and Ross (1985) as follows: 

( , )( , ) ( , ) tB t T rP t T A t T e−= ,                           (5) 

where 
( )

( )

2( 1)( , )
2 ( )( 1)

T t h

T t h

eB t T
h h eκ

−

−

−
=

+ + −
, 2

( )( )
22

( )

2( , ) [ ]
2 ( )( 1)

h T t

T t h

heA t T
h h e

κ
κµ
σ

κ

+ −

−=
+ + −

, 

0T t> > , and 2 22 rh κ σ= + . 
 
We assume the return of equities evolves according to a discrete-time version 

of interest-rate-adjusted geometric Brownian motion: 

( )t
t S S S

t

S r t t
S

π σ ε∆
= + ∆ + ∆ ,                       (6) 

where tS∆  denotes the change in the stock index at time t , t∆  equals one year, the 
constant parameter Sπ  denotes the risk premium on equities investment, Sσ  is 
volatility of the index return, and Sε  has a standard normal distribution. 
 

The return of investment in real estate (index) is specified by the jump 
diffusion model of Merton (1976).  Let REµ  be the expected return from real estate, 
λ  be the average number of jumps during time interval t∆ (one year), and β  is the 
average jump size measured as a percentage of the index, and REσ  is volatility of 
real estate index return.  The process for the real estate index is then: 

( ) ( )t
RE RE RE PSN

t

RE t t N t
RE

µ λβ σ ε∆
= − ∆ + ∆ + ∆ ,            (7) 

where PSNN  is a Poisson process with parameter λ , independent of REε .  Jump 
size β  is assumed to follow uniform distribution (-0.5, 0.5). 
 

We assume that price of one alternative investment follows geometric 
Brownian motions.  Alternative investment with high return and high risk can be 
regarded as a hedge fund, and is denoted by hh

tχ .  Price dynamics of the alternative 
investment is then as follows: 

hh hh hh

hh
t

hh
t

t t
χ χ χ

χ µ σ ε
χ
∆

= ∆ + ∆ ,                 (8) 

where hhχ
µ

 
and hhχ

σ
 
are the expected return and volatility, respectively, hhχ

ε  is 

drawn from standard normal distribution.  To incorporate the correlation between 
price dynamics of each type of asset, we specify a matrix R to describe the correlation 
of random terms of each type of asset.  Parameter values of the above asset models 
are shown in Appendix (Table 2). 
 
Cash Flow Specification of Insurance Products 
 

                                                 
3 Whenever the simulated r is negative due to the discretization, we substitute zero for the negative r. 
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We assume that liabilities of a life insurer are met from its aggregate reserves 
of traditional insurance products, including 20-year term life insurance, 20-year 
endowment, and 20-year pure endowment. 

 
To focus on leverage and asset allocation problems, we assume all policies are 

newly issued to 30-year-old males, and no further business will be solicited.  Death 
benefits and surrender values are assumed to be payable at the end of the year, while 
premiums and expenses are received and paid at the beginning of the year.  The 
expected net cash flow at time ( {0})t t N∈ ∪ , for a policy that is at the end of policy 
year k (denoted by 'k , 1 ' 19k≤ ≤  and 0 20 't k≤ < − ), but before the k+1-th net 
premium is collected, can then be represented as:4 

( )
1 30 , 1 1

( ) ( ) ( ) ( ),
30 30 1 30 1 ,

( )
30 1 , 1 1

( | ') =

[ (1 ) ],           if 0
[( ) ( ) ]

[ (1 ) ]            

j
t

j j j j
t k cm k t vcost k t

d j s j j
t k k t d t k t s k t

j j j j
t k cm k t vcost k t

E NCF k

p L L t
p q B p q B

p L L

τ

τ τ

τ

π λ

π λ

+ + + + + +

+ + + − + + +

+ + + + + +

− × × − − − =

× × + × ×

− × × − − − if 1,t

⎧
⎪
⎨
⎪ ≥⎩

     (9) 

where { ,  , }j tm ed ped∈  indicates the type of policy, 
( )
30t kp τ
+  is the probability that 

the policy for an insured male of age 30 k+  remains valid for t years,5 ( )
30 1

d
k tq + + −  is 

the probability of the insured of age 30 1k t+ + −  dying within one year, j
dB  denotes 

the death benefit paid at the end of the year in which the insured dies, ( ),
1

s j
tq +  is the 

probability that the policy is surrendered in year 1t + ,6 ,
j

s k tB +  denotes the cash 
surrender value paid at the end of policy year k t+ ,7 jπ  denotes the premium 
received at the beginning of each surviving year , , 1

j
cm k tL + +  represents the rate of 

commission paid at the beginning of policy year 1k t+ + , j
vcostL  stands for the 

variable cost rate, and 1
j

k tλ + +  represents the fixed cost incurred at the beginning of 
policy year 1k t+ + . 
 

On the day a policy comes into force, the reserve will be incurred, after the 
first premium being collected.  The expected net cash flow at time  ( )t t N∈ , for the 
policy that is at the beginning of the first policy year ( 1k =  and 1 20t≤ < ), can then 
be represented as: 

( ) ( ) ( ) ( ),
1 30 30 1 1 30 ,

( )
30 ,

( | 1) = ( ) ( ) 

                              [ (1 )] ]

j d j s j j
t t t d t t s t

j j j j
t cm t vcost t

E NCF k p q B p q B

p L L

τ τ

τ π λ
− + − −= × × + × ×

− × × − − − .
      (10) 

 

                                                 
4 Note that the insured is at age 30+k-1 when the policy is at the beginning of policy year k. 
5 Note that ( )

0 30 1kp τ
+ − =1.  The upper script (τ) indicate a function referring to all causes or total force of 

decrement.  Two causes of decrement, death and surrender, are considered in this paper and are 
denoted by the upper scripts (d) and (s) respectively. 
6 Note that ( ) ( ) ( )

30 1 1 1 30 1 11  d s
k t t k tq q p τ

+ − + − + − + −− − = .  A policy not terminated in a year by death or surrender 
means that the policy remains valid for a year.  Furthermore, ( ) ( ) ( )

1 30 1 1 30 1 1 30 1t k k t t kp p pτ τ τ
− + − + − + − + −× = , i.e., the 

probability of a policy with an insured age 30+k-1 being valid for t years equals the probability of the 
policy being valid for t-1 years times the probability of the policy with the insured age 30+k-1+t-1 
remaining valid for one more year. 
7 This is equivalent to saying that the cash surrender value is paid at the end of year t. 
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Survival benefits for endowment and pure endowment policies are counted for 
the purpose of expected net cash flow only in policy due for two cases.  One is at the 
beginning of the first policy year, when the planning horizon time t = 20.  The other 
is at the end of the kth policy year (i.e. 1 ' 19k≤ ≤ ), when the planning horizon time t 
= 20 'k− .  At the beginning of the first policy, the expected net cash flows for 

20t = , including death, surrender, and survival benefit payments, without counting 
incoming net premium, can be represented as:  

( ) ( ) ( ) ( ),
20 19 30 49 19 30 20 ,20

( )
19 30

( | 1) = ( ) ( ) 

                              +

j d j s j j
d s

j
surv

E NCF k p q B p q B

p B

τ τ

τ

= × × + × ×

× .
      (11) 

 
At the end of the kth policy year also, the expected net cash flow for 

20 't k= − , including death, surrender, and survival benefit payments, without 
counting incoming net premium, can be represented as:  

( ) ( ) ( ) ( ),
20 ' 20 30 49 20 30 1 , 1

( )
20 30

( | ') = ( ) ( ) 

                              +

j d j s j j
k k k d k k k s k

j
k k surv

E NCF k p q B p q B

p B

τ τ

τ

− − + − + + +

− +

× × + × ×

× ,
      (12) 

where j
survB  denotes the survival benefit for policy j.   

 
Actuarial assumptions about some of the above variables are shown in Tables 

A2 to A4. 
 

Policy Reserves 
 

The present value of the expected net cash flows associated with policy j after 
the first net premium being received, 1

jR , can then be expressed as: 
20

1 1
[ ( | 1) / (1, )]j j

tt
R E NCF k P t

=
= =∑ ,               (13) 

and the present value of the expected net cash flows associated with policy j before 
the k + 1 net premium being received, '

j
kR , can be expressed as: 

20 '
' 0

[ ( | ') / ( ', )],    if 1 ' 19kj
k tt

R E NCF k P k t k−

=
= ≤ ≤∑ ,            (14) 

where ( ', 0) 1P k =  equals the face value of zero-coupon bonds.  In short, we 
calculate the reserves at the beginning of the first policy year, and at the end of each 
policy year, from the first to the nineteenth year.   
 
Aggregate Reserves 
 

We now know the reserves for each policy j in the first year, after net premium 
being collected, and at the end of each policy year, before the next net premium being 
received.  The only thing we need to know, to calculate aggregate reserves, is the 
number of policies j issued at the beginning of the first policy year.  Aggregate 
reserves for k = 1 and 1 ' 19k≤ ≤  are then expressed as: 

1 1

' '

j
j

j
j

k j k
j

AGR Q R
AGR

AGR Q R

⎧ = ×
⎪= ⎨

= ×⎪
⎩

∑

∑
,                    (15) 

where jQ  is the number of policies j issued at the beginning of the first policy year.   
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ASSET ALLOCATION PROBLEM 
 
The Dynamics of the Insurer’s Financial Status 

 
At the beginning, business comes in.  The insurer receives premiums from 

writing twenty-year term life insurance, endowment, and pure endowment, pays the 
associated underwriting expenses, and then allocates net premiums along with the 
capital at the beginning of period one ( 1E ), among four asset classes considered in the 
previous section.  The insurer can set the leverage to capital (L) ratio to determine 
the number of policies that can be issued (to maintain the leverage),8 and then 
calculate the number of policies as 1(1/ 3) / j

jQ E L π= × × .  Let 1s , 1re , 1ai , and 

1b  denote allocations of funds to equities, real estate, alternative investment, and 
risk-free zero-coupon bonds,9 respectively, where 10 1s≤ ≤ , 10 1re≤ ≤ , 10 1ai≤ ≤ , 

10 1b≤ ≤  and 1 1 1 1 1s re ai b+ + + = .  In other words, borrowings and short sales are 
not allowed. 

 
Investment returns and underwriting outcomes are realized at the end of a 

period.  We assume that losses incurred are paid by selling assets proportionally, at 
market value.  Asset allocation of the insurer will hence remain unaffected by sale of 
assets.  The insurer’s positions at the end of year k (i.e. 'k ) will then be as follows: 
stock positions 

' ( 1) ' ' '( / / before
k k k k k k k kSP SP F s S CL SP TA−= + × − × ,               (16) 

real estate positions  
' ( 1) ' ' '( / ) / before

k k k k k k k kREP REP F re RE CL REP TA−= + × − × ,        (17) 
alternative investment positions 

' ( 1) ' ' '( / ) / before
k k k k k k k kAIP AIP F ai AI CL AIP TA−= + × − × ,          (18) 

positions in L-year ( NL∈  and 15L < ) default-free bonds  
1 1

' ( 1) ' ' '(1/15) / ( , ) /L L L before
k k k k k k kB B F b P k L CL B TA+ +

−= + × × − × ,        (19) 
positions in fifteen-year default-free bonds 

15 1 1
' ( 1) ' ' '( (1/15)) / ( ,1)) / ( ',15) / before

k k k k k k kB B F b P k P k CL B TA−= + × × − × , (20) 
where kF  denotes funds available for investment at time k, 0 1ks≤ ≤ , 0 1kre≤ ≤ , 
0 1kai≤ ≤ , 0 1kb≤ ≤ , 2, , 20k = L  denote weights of each asset class, '

before
kTA  

denote total asset value before paying claims at the end of the year, and 'kCL  denotes 
claim payments.  Taking stock positions as example, positions at the beginning of 
year k ( kSP ) are equal to ( 1) ' /k k k kSP F s S− + × , that is, positions after paying claims at 
the end of year k-1 plus new positions taken by new investments.  Positions in other 
asset classes are calculated in the same way, at the end of each year, after paying the 
claims. 
 

As the position in each asset class is known, total asset value of the insurer, 
                                                 
8 Without loss of generality, we assume L N∈ . 
9 For simplicity, we assume that the insurer invests in the one-year, two-year, ... , and fifteen-year bonds 
with an equal weight of 1/15.  The amount of the matured bonds is further assumed to be re-invested 
onto the fifteen-year bond to ensure that the longest maturity of the invested bonds remains to be 15 
across time. 
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after paying the claims at the end of each year, is as follows: 

'
after
kTA = 

15

' ' ' ' ' ' '
1

( ', )L
k k k k k k k

L

SP S REP RE AIP AI B P k L
=

× + × + × +∑ .     (21) 

Whenever ' '
after

k kAGR TA> , the insurer is deemed insolvent, and we stop simulating 
that path. 
 

The number of paths to be simulated is set to be 10,000.  For simplicity, 
without loss of generality, we assume that the insurer makes re-allocation decisions at 
the beginning of years 1, 6, 11, and 16 only.  More specifically, 1kθ θ=

r r
 for k = 1 – 5, 

6kθ θ=
r r

 for k = 6 – 10, 11kθ θ=
r r

 for k = 11 – 15, 16kθ θ=
r r

 for k = 16 – 20, where 

[ ]'
k k k k ks re ai bθ =
r

.  We further assume that the insurer re-allocates all its assets 

according to kθ
r

 at the beginning of periods 1, 6, 11, and 16.  We are interested in 
the financial condition of the insurer at the end of year 20.   
 
The Problem 
 

The insurer has to maximize its objective function over the time horizon [0, 
20].  The objective function contains three components: expected annual rate of 
return on surplus (investment assets), volatility of the rate of annual return, and ruin 
penalty.  The insurer prefers a high annual rate of return on its surplus but low 
volatility and ruin penalty.  More specifically, the optimization problem of the 
insurer is: 

20
20' 1 1,

20
20' 1 1

1max{ ( ( ) / 1)

         ( ( ) / 1 ) Pr(ruin)},
s.t.
     1

     0 1

k

i

L i solventsolvent

i

k k k k

k

E E E
I

E E E i solvent

s re ai b

θ

ϕ σ γ

θ

∈

− −

− × − − ∈ − ×

+ + + =

≤ ≤

∑v

v

     (22) 

where solventI  is the number of simulated paths in which no insolvency occurs, 
0.5ϕ =  is a constant chosen by the insurer to reflect risk aversion, 10γ =  is to 

reflect the relative importance of ruin probability.  Ruin probability is measured as 
number of insolvent paths divided by the number of simulated paths. 
 
Simulation Optimization for the Problem 
 

Our problem can be regarded as a discrete-time stochastic optimization 
problem, and particle swarm optimization (PSO) is the recommended tool for 
obtaining a promising answer (Kendall and Su, 2005; and Lu et al., 2006).  PSO is a 
population-based co-operative process first proposed by Eberhart and Kennedy (1995), 
inspired by flocks of birds and shoals of fish.  It has been used with enormous 
success across a wide range of applications.  Poli (2008) found around eleven 
publications in which PSO has been used for financial risk early warning, investment 
decision-making, option pricing, and investment portfolio selection.  

 
We use PSO to solve the asset allocation problem for two reasons.  One is 
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that PSO has been recognized for being as good as genetic algorithm (GA) and 
evolution strategy (ES) in solving high-dimensional and non-linear functions.  The 
other is that PSO is more applicable than other optimization algorithms (i.e. PSO has 
been less explored and offers more potential operations resources).  Details of PSO, 
including its formulation, algorithm, and effectiveness, are provided in the Appendix.  
 
RESULTS 
 
Promising Asset Allocation and Leverage 
 

In the promising solution obtained from our simulation, leverage level is 20 
and asset allocations vary across periods.  The objective value is 24.63% with 7 
insolvencies occurring in the simulation.  There is no consistency in the composition 
of allocations, in terms of risky (stock, real estate and alternative investment) and 
risk-free (default-free zero coupon bonds) assets in re-allocations for different periods.  
In first and sixteenth periods, weights of fix income securities are higher than weights 
of risky assets but it is the opposite in sixth and eleventh periods.  Allocations in the 
first and the last period are relatively conservative; weights of fix income securities 
are 70.75% and 67.62%, respectively.  In sixth and eleventh periods, the insurer 
adjusts its portfolio to have more risky assets, to improve the objective value; the ratio 
of risky assets to fix income securities goes up to 2.43.  Besides, weights of fix 
income securities after all re-allocations are higher than 29% because of 
intermediation and investment strategies being subject to penalty for volatility of 
equity and insolvency norms.10 

 
[Insert Table 1 Here] 

 

In Figure 1, we observe that for risky assets, weights of stock index plus real 
estate index are higher than alternative investment.  In addition, the promising asset 
allocations show that equities play an important role in the investment portfolio in 
each period.  After each re-allocation, weights of stocks are above 13%.  However, 
weights of real estate index and alternative investment vary across periods.  Weights 
of real estate experience significant change in the sixth period (rising from 4.78% to 
28.15%), as well as the sixteenth period (declining from 36.61% to 3.43%).  The 
rationale is that the price of real estate follows a jump diffusion process with the 
average number of jumps being 0.1 per year.  Alternative investment is not the first 
choice of investment in any of the periods because of its high risk.  Even in sixth and 
eleventh periods, to improve the objective value, the insurer prefers stocks and real 
estate over alternative investment since risks of real estate (0.18) and stock (0.25) are 
smaller than alternative investment (0.5).  When determining the composition of 
risky assets, the insurer would be more concerned about the risk than the return of 
each asset. 

 

[Insert Figure 1 Here] 
 
Comparison of Leverage 

                                                 
10 We record the asset allocations and leverage level before PSO converges in Appendix (Table 6).  
The leverage is same as the promising case, 20, and asset allocations are similar to the promising case 
except the last period.  However, in this case, there is more insolvency with a higher volatility. 
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We set two leverage levels, 12 and 16, and find the corresponding promising 
asset allocations.  Especially, we examine the finite risk hypothesis of capital and 
risk in insurance literature.  Promising asset allocations for leverages of 16 and 12 
are shown in Tables 2 and 3.  Compared to Table 1, the results show that when 
leverage increases, the insurer needs to hold more fix income securities in the first 
period.  In other words, the finite risk hypothesis in insurance literature holds 
conditionally in a multi-period asset allocation. 

 
[Insert Tables 2 and 3 Here] 

 
When leverage is 12, the insurer holds more fix income securities in the first, 

sixth, and eleventh periods.  But in sixteenth period and thereafter, the insurer 
invests in risky assets to the fullest extent, to increase the objective value.  When 
leverage is 16, the insurer holds more fix income securities only in the first and the 
sixth periods.  From the eleventh period and thereafter, the insurer increases weights 
of risky assets to increase the objective value.  Asset allocations in these two 
scenarios are different from the promising allocation because leverage strategies in the 
simulation are not optimal.  Besides, volatility of annual rate of return of equity is 
decreasing as the leverage increases.  Insolvencies in simulation paths exhibit no 
consistent correlation with leverage.  Objective value increases as leverage increases.  

 
In Figure 2, where leverage = 16, we observe that weights of risky assets 

increase gradually from the sixth period onwards.  It reveals that the simulation 
optimization mechanism leads the insurer to improve the objective value by 
increasing weights of risky assets.  This phenomenon is also shown for leverage = 12 
in Figure 3. 

 
[Insert Figures 2 and 3 Here] 

 
In Figures 2 and 3, we find that the stock index is important for the life insurer.  

Weights of stock index in each re-allocation are higher than 10.2%.  Real estate 
index is also favorable for the insurer to improve the objective value.  Weights of 
real estate index are higher than 11.37% in all periods.  Besides, weights of stock 
index plus real estate index dominate weights of alternative investment.  Even if 
leverage does not reach the promising level, the insurer is concerned more about the 
risk than the return while choosing risky assets. 

 
CONCLUSIONS 
 

This study presents a company-wide simulation model and optimization 
algorithm for analyzing asset allocation and leverage strategies for a life insurer 
selling traditional policies.  The model allows the insurer to compare different 
leverage strategies to determine how to construct a promising asset allocation.  The 
promising asset allocation and leverage strategies are derived from numerical 
calculations that consider leverage as an internal factor in asset allocation.  Also, our 
results demonstrate how to compare different leverage strategies for specific 
promising asset allocations. 
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TABLES AND FIGURES 
 

Table 1: Promising Asset Allocation and Leverage 
Leverage = 20 
Objective Value = 0.2463 
Simulation Paths Insolvencies = 7 
Volatility of Annual Rate of Return on Equity = 0.0514 

 Asset Weights (%) 
Asset Class / Time 1-5 6-10 11-15 16-20 
(A) Stock 13.76 16.28 29.23 15.13 
(B) Real Estate 4.78 28.15 36.61 3.43 
(C) Alternative Investment 10.71 12.35 5.09 13.82 
(D) Default-Free Zero-Coupon-Bonds 70.75 43.22 29.07 67.62 
Total Risky Assets = (A)+(B)+(C) 29.25 56.78 70.93 32.38 
Total Fix Income Securities = (D) 70.75 43.22 29.07 67.62 

 
 

Table 2: Asset Allocation; Given Leverage = 16 
Leverage = 16 
Objective Value = 0.2390 
Simulation Paths Insolvencies = 8 
Volatility of Annual Rate of Return on Equity = 0.0543 

 Asset Weights (%) 
Asset Class / Time 1-5 6-10 11-15 16-20 
(A) Stock 10.20 21.03 35.68 18.25 
(B) Real Estate 11.37 23.24 18.93 35.55 
(C) Alternative Investment 16.79 5.23 10.46 44.09 
(D) Default-Free Zero-Coupon-Bonds 61.64 50.50 34.92 2.10 
Total Risky Assets = (A)+(B)+(C) 38.36 49.50 65.08 97.90 
Total Fix Income Securities = (D) 61.64 50.50 34.92 2.10 
 
 

Table 3: Asset Allocation; Given Leverage = 12 
Leverage = 12 
Objective Value = 0.2211 
Simulation Paths Insolvencies = 5 
Volatility of Annual Rate of Return on Equity = 0.0652 

 Asset Weights (%) 
Asset Class / Time 1-5 6-10 11-15 16-20 
(A) Stock 12.63 12.63 19.92 71.82 
(B) Real Estate 12.63 16.46 12.55 12.47 
(C) Alternative Investment 16.61 1.33 7.57 15.71 
(D) Default-Free Zero-Coupon-Bonds 58.13 69.58 59.95 0.00 
Total Risky Assets = (A)+(B)+(C) 41.87 30.42 40.05 100.00 
Total Fix Income Securities = (D) 58.13 69.58 59.95 0.00 
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Figure 1: Composition of Promising Assets after Each Re-allocation under Optimal 

Leverage 
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Figure 2: Assets Composition after Each Re-allocation under Leverage = 16 
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Figure 3: Assets Composition after Each Re-allocation under Leverage = 12 
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APPENDICES 
 

Particle Swarm Optimization 
 

In PSO, the particles are placed in the search space of some problem or 
function, and each evaluates the fitness at its current location.  Each particle then 
determines its movement through the search space by combining some aspect of the 
history of its own fitness values with those of one or more members of the swarm, and 
then moving through the search space with a velocity determined by the locations and 
processed fitness values of other members, along with some random perturbations.  
Members of the swarm that a particle can interact with are called its social 
neighborhood.  Social neighborhoods of all particles together form a PSO social 
network. 

 
Take a maximizing N-dimensional function f for example.  Each particle is 

N-dimensional, and is a potential optimum of f.  Each particle has a memory of the 
best solution that is found, called its personal best.  A particle flies through the 
search space with a velocity which is dynamically adjusted according to its personal 
best and the best solution found by a neighborhood of particles. 

 
This is, thus, a sharing of information.  Particles profit from discoveries and 

previous experiences of other particles during the exploration and search for higher 
objective function values.  The first, called global best (gbest), connects all particles 
in the population to one another.  The second, called local best (lbest), creates a 
neighborhood for each individual comprising it and its k  nearest neighborhoods in 
the population. 
 
Formulation 
 

Let i indicate a particle’s index in the swarm.  Then 1 2{ , , , }sS p p p= L  is a 
swarm of s particles.  Each particle has a current position 1 2( , , )T

i i i iNp p p p= L  and 
flies through the N-dimensional search space Nℜ  with current velocity 

1, 2( , , )T
i i i iNv v v v= L  which is dynamically adjusted according to its own previous best 

solution 1 2( , , , )T
i i i iNx x x x= L  and the current best solution % ix  of the entire swarm 

(gbest) or the particle’s neighborhood (lbest). 
 
At iteration time t of the PSO, the velocity and particle updates are specified 

separately for each dimension j of the velocity and particle vectors.  A particle iP  
will interact and move according to the follow equations: 

%1
1 1 2 2( ) ( )

tt t t t t t t
ijij t ij ij ij ijv v R x p R x pω ϕ ϕ+ = + − + −                (a1) 

   max max min
max

( )t
t

t
ω ω ω ω= − −                             (a2) 

1 1t t t
ij ij ijp v p+ += +                                      (a3) 

where 1R  and 2R  are two independent variables uniformly distributed in [0,1], ω  
is a constant known as the inertia weight which determines the speed of convergence, 
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max 0.9ω =  and min 0.4ω =  have been shown to give good conversion, 1ϕ  and 2ϕ  
are two constants known as the acceleration coefficients, and 1 20 , 2ϕ ϕ≤ ≤ , which 
control the relative proportion of cognition and social interaction in the swarm (Shi 
and Eberhart, 1998).  Values maxt  and t indicate the maximum and current iteration 
numbers and we set maxt  to be 1500. 
 
Algorithm 
 

The standard PSO algorithm to maximize function : Nf ℜ →ℜ  is presented 
below: 

 
1. Set the iteration number t to be zero, and initialize swarm S of N-dimensional 

particles 0
ip ; each component 0

ijp  is randomly initialized to a value in the initial 
domain of the swarm, an interval [ min max,p p ].  Since the particles are already 
randomly distributed, velocities of particles are initialized to the zero vector 0T . 

 
2. Evaluate performance ( )t

if p  of each particle. 
 
3. Compare the personal best of each particle to its current performance, and set t

ix  

to be the better performance for 
1 1

1

,  if ( ) ( )
,  if ( ) ( )

t t t
t i i i

i t t t
i i i

x f p f x
x

p f p f x

− −

−

⎧ ≤
= ⎨

>⎩
. 

 

4. Set the global best % %
1 2 1 2{ , , , ( )} max{ ( ), ( ), , ( )}

t tt t t t t t
s sx x x x f x f x f x f x∈ =L L  to 

the position of the particle with the best performance within the entire swarm.   
When a local best PSO is implemented, set the neighborhood best 
% %{ ( ) max{ ( )}i i

t t t
Q Qi jx Q f x f x∈ = , { , , , , }t t t

j i i k i i kx Q x x x− +∀ ∈ = L L , k  is the 

number of nearest neighborhoods. 
 
5. Change the velocity vector for each particle according to equation (a1). 
 
6. Let t = t + 1.  
 
7. Go to Step 2, and repeat until convergence or max 1500t t= = . 
 
Effectiveness of PSO 
 

Effectiveness of PSO has been recognized to be more efficient than other 
algorithms in solving complex non-linear and multi-modal functions with multi- 
variables (Huang, 2009).  Complex functions in Huang (2009) originate from 
Schwefel (1981), Yao and Liu (1996), and Vesterstrom and Thomsen (2004).  
Appendix Table 1 presents these functions. 
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Table A1: High Dimension Complex Functions 
Function list (n=50) Constrains Minimal value Remark 

( )1 2
1 0

1( )
4000

n
ii

f x x−

=
= −∑

r  

1

0
cos 1

1
n i
i

x
i

−

=

⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

∏  
600 600xi− ≤ ≤

1(0) 0f =
r

 Griewangk’s
Problem 

21

2
0

1( )
2

n

i
i

f x x
−

=

⎛ ⎞⎢ ⎥= +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
∑

r
 100 100xi− ≤ ≤  2 ( ) 0;

0.5 0.5
pf

p
=

− ≤ ≤

r

 Step 
Function 

( )1

3
0

( ) sin
n

i i
i

f x x x
−

=

= −∑
r

 500 500xi− ≤ ≤
3 420.97( ) 20,949.14f = −
uuuuur

 Schewefel’s 
Problem 

1
2

4
0

( ) ( 10cos(2 ) 10)
n

i i
i

f x x xπ
−

=

= − +∑
r

 5.12 512xi− ≤ ≤
4 (0) 0f =
r

 Rastrigin’s 
Function 

1
2

5
0

1( ) 20 0.2
n

i
i

f x exp x
n

−

=

⎛ ⎞
= − − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑

r  
1

0

1 cos(2 ) 20
n

i
i

exp x e
n

π
−

=

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
∑  

32 32xi− ≤ ≤  
5 (0) 0f =
r

 Ackley’s 
Function 

 
Table A2: Notations and Values of Asset Models’ Parameters 

Description Notation Value 
CIR Interest Rate Model 

Mean reverting speed κ  0.25 
Long term interest rate µ  0.04 
Volatility of interest rate rσ  0.03 

Interest Rate Adjusted Geometric Brownian Model 
Risk premium sπ  0.07 
Volatility of the stock return sσ  0.25 

Real Estate Model 
Expected return of real estate REµ  0.055 
Volatility of return of the real estate REσ  0.18 
Average jumps in one year λ  0.1 
Average jump size as proportion of 
the real estate index 

β  Uniform(-0.5,0.5) 

Alternative Investments 
Expected return of high-return and 
high risk investments 

hhχ
µ  0.15 

Volatility of high-return –high-risk 
investments 

hhχ
σ  0.5 

Correlation Matrix
 

Specific correlation matrix after 
Cholesky decomposition R

 

                                     

1 0 0 0
0.5 0.866 0 0
0.6 0 0.8 0
0.4 0.5774 0.575 0.4196

hh

hh

S RE rx

S

RE

x

r

ε ε ε ε

ε
ε
ε
ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
− − −⎢ ⎥⎣ ⎦
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Table A3: Actuarial Assumption of Twenty-Year Term Life Insurance 
Insured’s 

Age 
Mortality Rate 

of age a 
At the Beginning of 

Policy Year 
Surrender 

Value 
Commission 

Rate 
Fixed 

Expense 
Variable 
Cost Rate

a  ( )d term
aq  k  ,

term
s kB  ,

term
cm kL  term

kλ  term
vcostL  

30 0.0009790 1 N/A 62.40% 420 0.001 
31 0.0010055 2 N/A 22% 126 0.001 
32 0.0010481 3 1,359 14.6% 126 0.001 
33 0.0011075 4 2,758 8.0% 126 0.001 
34 0.0011826 5 4,169 8.0% 126 0.001 
35 0.0012712 6 5,566 8.0% 126 0.001 
36 0.0013711 7 6,923 8.0% 126 0.001 
37 0.0014807 8 8,212 8.0% 126 0.001 
38 0.0015989 9 9,410 8.0% 126 0.001 
39 0.0017291 10 10,491 8.0% 126 0.001 
40 0.0018749 11 11,422 5.0% 126 0.001 
41 0.0020407 12 11,981 5.0% 126 0.001 
42 0.0022297 13 12,284 5.0% 126 0.001 
43 0.0024446 14 12,282 5.0% 126 0.001 
44 0.0026795 15 11,918 5.0% 126 0.001 
45 0.0029268 16 11,141 5.0% 126 0.001 
46 0.0031784 17 9,910 5.0% 126 0.001 
47 0.0034268 18 8,198 5.0% 126 0.001 
48 0.0036671 19 5,986 5.0% 126 0.001 
49 0.0039091 20 3,263 5.0% 126 0.001 
50 N/A 20* N/A N/A N/A N/A 

 
1. The death benefit is $1,000,000.  The policy is issued to a 30 year-old male, and the annual 

premium the insured is expected to pay at the beginning of each surviving year is $4,200 under the 
policy crediting rate of 4%. 

 
2. We assume a fixed rate of surrenders in each policy year at 5% for term life insurance. 
 
3. Notation 20* is used to denote the end of policy year 20. 
 
4. Policies surrendered at the beginning of the first, second, and last policy year have no surrender 

value.  Neither mortality nor expenses apply when these policies mature.  We denote all these 
values as N/A. 

 
5. The variable cost is assumed to be 0.1%. 
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Table A4: Actuarial Assumption of Twenty-Year Endowment 
Insured’s 

Age 
Mortality Rate 

of age a 
At the Beginning of 

Policy Year 
Surrender 

Value 
Commission 

Rate 
Fixed 

Expense 
Variable 
Cost Rate

a  ( )d ed
aq  k  ,

ed
s kB  ,

ed
cm kL  ed

kλ  ed
vcostL  

30 0.0009790 1 N/A 62.40% 4,530 0.001 
31 0.0010055 2 8,161 27.00% 1,359 0.001 
32 0.0010481 3 39789 20.60% 1,359 0.001 
33 0.0011075 4 73,767 14.00% 1,359 0.001 
34 0.0011826 5 110,192 13.00% 1,359 0.001 
35 0.0012712 6 149,173 12.00% 1,359 0.001 
36 0.0013711 7 190,831 10.00% 1,359 0.001 
37 0.0014807 8 235,294 10.00% 1,359 0.001 
38 0.0015989 9 282,707 10.00% 1,359 0.001 
39 0.0017291 10 333,223 10.00% 1,359 0.001 
40 0.0018749 11 387,004 7.00% 1,359 0.001 
41 0.0020407 12 437,655 7.00% 1,359 0.001 
42 0.0022297 13 490,342 7.00% 1,359 0.001 
43 0.0024446 14 545,163 7.00% 1,359 0.001 
44 0.0026795 15 602,227 7.00% 1,359 0.001 
45 0.0029268 16 661,664 7.00% 1,359 0.001 
46 0.0031784 17 723,620 7.00% 1,359 0.001 
47 0.0034268 18 788,259 7.00% 1,359 0.001 
48 0.0036671 19 855,760 7.00% 1,359 0.001 
49 0.0039091 20 926,314 7.00% 1,359 0.001 
50 N/A 20* 1,000,000 N/A N/A N/A 

 
1. The death benefit and survival benefit is $1,000,000.  The policy is issued to a 30 year-old male, 

and the annual premium payable at the beginning of each surviving year is $45,300 under the 
policy crediting rate of 4%. 

 
2. We assume a fixed surrender rate in each policy year at 7% level for endowment. 
 
3. Notation 20* is used to denote the end of policy year 20. 
 
4. A policy surrendered at the beginning of the first policy year has no surrender value. Neither 

mortality nor expenses apply when the policy matures.  We denote all these values as N/A. 
 
5. The variable cost is assumed to be 0.1%. 
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Table A5: Actuarial Assumption of Twenty-Year Pure Endowment 
Insured’s 

Age 
Mortality Rate 

of age a 
At the Beginning of 

Policy Year 
Surrender 

Value 
Commission 

Rate 
Fixed 

Expense 
Variable 
Cost Rate

a  ( )d ped
aq  k  ,

ped
s kB  ,

ped
cm kL  ped

kλ  ped
vcostL  

30 0.0009790 1 N/A 72.96% 3,570 0.001 
31 0.0010055 2 27,707 28.00% 1,071 0.001 
32 0.0010481 3 57,552 21.60% 1,071 0.001 
33 0.0011075 4 89,652 15.00% 1,071 0.001 
34 0.0011826 5 124,130 14.00% 1,071 0.001 
35 0.0012712 6 161,121 13.00% 1,071 0.001 
36 0.0013711 7 200,769 6.00% 1,071 0.001 
37 0.0014807 8 243,227 6.00% 1,071 0.001 
38 0.0015989 9 288,660 6.00% 1,071 0.001 
39 0.0017291 10 337,247 6.00% 1,071 0.001 
40 0.0018749 11 389,178 5.00% 1,071 0.001 
41 0.0020407 12 438,092 5.00% 1,071 0.001 
42 0.0022297 13 489,259 5.00% 1,071 0.001 
43 0.0024446 14 542,825 5.00% 1,071 0.001 
44 0.0026795 15 598,957 5.00% 1,071 0.001 
45 0.0029268 16 657,831 5.00% 1,071 0.001 
46 0.0031784 17 719,633 5.00% 1,071 0.001 
47 0.0034268 18 784,554 5.00% 1,071 0.001 
48 0.0036671 19 852,785 5.00% 1,071 0.001 
49 0.0039091 20 924,525 5.00% 1,071 0.001 
50 N/A 20* 1,000,000 N/A N/A N/A 

 
1. The survival benefit is $1,000,000.  The policy is issued to a 30 year-old male, and the annual 

premium payable at the beginning of each surviving year is $35,700 under the policy crediting rate 
of 4%. 

 
2. We assume a fixed surrender rate in each policy year at 7% level for pure endowment. 
 
3. Notation 20* is used to denote the end of policy year 20. 
 
4. A policy surrendered at the beginning of the first policy year has no surrender value.  Neither 

mortality nor expenses apply when the policy matures.  We denote all these values as N/A. 
 
5. The variable cost is assumed to be 0.1%. 

 
 

Table A6: Promising Asset Allocation and Leverage Ratio before PSO Converges 
Leverage Ratio = 20 
Objective Value = 0.2443 
Simulation Paths Insolvencies = 20 
Volatility of Annual Rate of Return on Equity = 0.07215 

 Asset Weights (%) 
Asset Class / Time 1-5 6-10 11-15 16-20 
(A) Stock 11.16 16.23 61.35 9.94 
(B) Real Estate 3.83 29.14 9.64 2.83 
(C) Alternative Investment 16.87 12.37 3.94 39.37 
(D) Risk-Free Zero-Coupon –Bonds 68.15 42.25 25.08 47.85 
Total Risky Assets = (A)+(B)+(C) 31.85 57.75 74.92 52.15 
Total Fix Income Securities = (D) 68.15 42.25 25.08 47.85 

 

 


