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�

�i

Ω

Ω01

Ω02

Ω03

�

�̂

se(�)

Z

ZR

ZU

�̃0

T

pA,(⋅)

�, �

Independent Poisson random samples.

Independent Poisson random samples.

Sample sum and sample mean of group i.

n1

n2

True mean rate of group i.

Full parameter space in Poisson.

Null parameter space of the null hypothesis of

equality.

Null parameter space of the null hypothesis of

non-superiority.

Null parameter space of the null hypothesis of

inferiority.

The difference between the true mean rate of group

1 and group 2.

Maximum likelihood estimator of � under Ω.

Asymptotic standard error of �.

Wald statistic.

Wald statistic with constrained MLE of asymptotic

standard error.

Wald statistic with unconstrained MLE of asymp-

totic standard error.

Restricted maximum likelihood estimator under

�1 = �2.

Two-independent-sample random variable.

Asymptotic p-value based on (⋅).
Mean and standard error of asymptotic distribution

of ZR.

VII



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Notation

�̄(⋅)

Z⋅,c

C

poi(⋅, �)

p()

CI,⋅

pE,R

pE,U

C∗

C,0

(Li, Ui)

�̃0i

Δ0

Zi∗

�̃i

�∗, �∗

�̄Zi∗

n2,Zi

n2,Zi∗

p()

CI,Zi∗

pE,Zi∗

C∗∗

�̃i3

Asymptotic power function of (⋅).
ZR, ZU Continuity corrected.

100(1− )% confidence interval of  under Ω01.

Probability of Poisson distribution with mean �.

Confidence intervalp-value based on Z⋅.

Estimated p-value based on ZR.

Estimated p-value based on ZU .

100(1− )% confidence interval of  under Ω02.

100(1− )% cross product of �1, �2 under Ω.

Independent 100
√

(1− )% confidence interval of

�1, �2 under Ω respectively.

Restricted maximum likelihood estimator of �i on

Ω02.

Non-inferiority limit.

Wald test statistic with the unconstricted estimator

of the standard error under Ω03.

Restricted maximum likelihood estimator of �i with

respect to �1 − �2 + Δ0 = 0.

Asymptotic mean and standard error of ZR∗ .

Asymptotic power function of Zi∗ .

The minimum sample size of the second group

required for Zi at significance level �.

The minimum sample size of the second group

required for Zi∗ at significance level �.

Confidence interval p-value based on Zi∗ .

Estimated p-value based on Zi∗ .

100(1− )% confidence interval of  under Ω03.

Some estimator of �i under the restricted null

parameter space Ω03.

VIII



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Abstract

The Poisson distribution is a well-known suitable model for modeling a rare

events in variety fields such as biology, commerce, quality control, and so on.

Many applications involve comparisons of two treatment groups and focus

on showing the superiority of the new treatment to the conventional one, or

the non-inferiority of the experimental implement to the standard implement

upon the cost consideration. We aim to develop statistical tests for testing

the superiority and non-inferiority by two independent random samples from

Poisson distributions. In developing these tests, both computational and

theoretical difficulties arise from presence of nuisance parameters. In this

study, we first consider the problems with the null hypothesis of equality

for simplicity. The problems are extended to have a regular null hypothesis

of non-superiority next. Subsequently, the proposed methods are further

investigated in establishing the non-inferiority.

Two types of Wald test statistics are of our main research interest. The

correspondent asymptotic testing procedures are developed by using the nor-

mal limiting distribution. In our study, the asymptotic distribution of the

test statistics are derived. The asymptotic power functions and the sam-

ple size formula are further obtained. Given the power functions, we justify

the validity and unbiasedness of the tests. The adequate continuity correc-

tion term for these tests is also found to reduce inflation of the type I error

rate. On the other hand, the exact testing procedures based on two exact

p-values, the confidence-interval p-value (Berger and Boos (1994)), and the

estimated p-value (Krishnamoorthy and Thomson (2004)), are also applied in
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our study. It is known that an exact testing procedure tends to involve com-

plex computations. In this thesis, several strategies are proposed to lessen

the computational burden. For the confidence-interval p-value, a truncated

confidence set is used to narrow the area for finding the p-value. Further,

the test statistic is verify whether they fulfill the property of convexity. It is

shown that under the convexity the exact p-value occurs somewhere of the

boundary of the null parameter space. On the other hand, for the estimated

p-value, a simpler point estimate is applied instead of the use of the restricted

maximum likelihood estimators, which are less straightforward in this prob-

lem. The estimated p-value is shown to provide a conservative conclusion.

The calculations of the sample sizes required by using the two exact tests are

discussed.

Intensive numerical studies show that the performances of the asymptotic

tests depend on the fraction of the two sample sizes and the continuity cor-

rection can be useful in some cases to reduce the inflation of the type I error

rate. However, with small samples, the two exact tests are more adequate in

the sense of having a well-controlled type I error rate. A data set of breast

cancer patients is analyzed by the proposed methods for illustration.

keywords: Asymptotic test, Barnard convexity condition, exact test,

non-inferiority, Poisson, p-value, restricted maximum likelihood estimator(RMLE),

superiority, unbiasedness, validity.
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Chapter 1

Introduction

1.1 Motivation

It is well known that the Poisson distribution is a suitable model for rare

events in variety fields such as biology, commerce, quality control, and so

on. Those applications are usually used to compare two population means,

and some practical examples have been illustrated in literature. For exam-

ple, to compare the rate of breast cancer of the group with/without X-ray

fluoroscopy examination during treatment for tuberculosis, the equality of

the mean numbers of cases in a given person-years at risk of the two groups

are tested (Ng and Tang (2005)). Another example investigates whether

the failure rate of the new component is less than the current one in planes

(Shiue and Bain, 1982). Sometimes, a severe conclusion may be unnecessary

as adopting some consideration. For instance, in air filter system one wants

to know whether the experimental air filter is not inferior than the standard

one, when the former one is relatively cheaper (Lui, 2005). Actually, these

comparison can be described by statistical hypothesis in terms of either the

1
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difference of the two Poisson means or their ratio. Here, the comparison is

considered in terms of difference of the two Poisson means.

Gail (1974) introduced two different experiments. In the first experiment,

the total number of the two Poisson variables is predetermined. In the other

experiment, the length of experiment duration is fixed instead. The exact

test based on the conditional distribution given the fixed total number, which

was proposed by Przyborowski and Wilenski in 1940, is an adequate testing

method in the former experiment. This test is uniformly most powerful

among unbiased tests. In the later experiment, which is more common in

practice, an unconditional test is more suitable. When the sample sizes or

the mean parameters are large, a normal approximation is considered for the

unconditional test to lessen the computation.

Sometimes the experiment durations of the two Poisson variables are

unequal. For example, one is interested in the comparison of failure rate of

an airplane component between war time and peace time. The simulating

condition of war time is more expensive than that of peace time, see Shiue

and Bain (1982). The authors generalized the conditional exact test and a

normal approximated test to the unequal interval cases. An approximation

formula of the experiment length required to achieve a specified power is

also proposed and is shown to be useful through an empirical study. Thode

(1997) provided an alternative normal approximated test and showed that

the new test is more powerful than the test proposed by Shiue and Bain

(1982) when the mean rate is large for a lengthy experiment. Basically,

these proposed methods were developed in terms of the difference of the

two Poisson means in literatures. Alternative, some authors expressed the

comparison in terms of the ratio of the two positive means, see Ng and

Tang (2005), Gu et al. (2008). Ng and Tang (2005) tested the unity of the

mean ratio. They compared two normal approximated tests, which apply

2
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the logarithmic-transformed rate ratio in the numerator of the test statistic,

and adopt two different estimations for the standard error. They found that

two specific test statistics perform well, especially when the means values

are large. Gu et al. (2008) extended the numerical comparisons to more

tests. However, all the existing the procedures were studied and compared

through numerical studies in most literatures. In this paper, we consider a

comparison between two independent Poisson random samples with a fixed

experiment duration. When the sample sizes are unbalanced, the scenario is

equivalent to the unequal duration case.

In application of Poisson model, testing the non-inferiority is an impor-

tant problem as well when the endpoint is count data. For instance, in a

medical study one aims to justify that the efficiency of an experimental drug

is non-inferior to some control drug with a given non-inferiority margin(Song,

2009). Lui (2005) studied the calculation of the sample sizes required and

power by exact tests for testing non-inferiority. The author further derived

the formulae of calculation of sample sizes and power by large sample theory,

in which a test statistic involves a logarithmic-transformation was proposed.

Corinna and Jochen (2005) studied the calculation of sample sizes and power

by the likelihood ratio test, the score test, and the exact conditional test, in

which the power calculations were illustrated graphically. These authors ex-

press the hypothesis of non-inferiority in terms of the ratio of two group

means. Here, we will develop statistical tests in testing the non-inferiority in

terms of the difference of two group means.

This study investigates two types of testing method: asymptotic, and

exact tests. The first aim is to investigate the performance of the two types

Wald test. The validity and unbiasedness of the two tests will be studied

in Poisson problem. The asymptotic power and sample size formula of the

two tests will be derived, too. Further, the test will be compared with the

3
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two-independent-sample T -test. Which is originally proposed for testing two

normal population means with an unknown, equal variance. To improve

a mild inflation of type I error rate, we modify the three tests by adding

some continuity correction term. Pirie and Hamdan (1972) derived a con-

tinuity correction term when the two Poisson random samples are of equal

size. In this paper, adequate continuity correction term for general cases

will also be derived. There are two important theoretical properties for a

testing procedure: Validity and unbiasedness. Given a test statistic, the cor-

respondent p-value can be found and it shows the strength of evidence to

reject the null hypothesis. The statistical conclusion can be drawn based

on the p-value. Berger and Boos (1994) called a p-value valid if it satisfies

P�(p ≤ �) ≤ �, for each � ∈ [0, 1], for all � in null parameter space. On

the other hand, a p-value is called unbiased if P�(p ≤ �) ≥ �, for every �

over the alternative parameter space (Lehmann, 1986). So far, the proposed

tests of this problem in literatures are rarely justified for these theoretical

properties. In this study, the asymptotic testing procedures will be explored

whether they satisfy the validity and unbiasedness.

When the sample sizes are small or the mean parameter are insufficiently

large, the uses of an asymptotic test is inadequate. The exact methods based

on the exact sampling distribution of the test statistic will be proposed. In

the problem of comparing two Poisson means, nuisance parameters present

in the sampling distribution. Casella and Berger (1990) define the standard

p-value that considers the least favorable case under the principle of conser-

vativeness. However, the standard p-value is less powerful and tends to be

unnecessarily over-conservative by not taking the data information into con-

sideration. Moreover, the computation becomes complex and inefficient when

the null parameter space is an infinite set. Berger and Boos (1994) showed

that the p-value constructed as the maximum over a confidence region of

the nuisance parameters is valid. The associated confidence-set p-value has

4
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been shown to be valid and will be considered here. Although the extent of

searching the maximum has been reduced, intensive calculations are neces-

sary to find out the maximum. Röhmel and Mansmann (1999) showed that

in a binomial problem, once the test statistic satisfies the Barnard convexity

condition, the supremum of the p-value occurs at the boundaries and the

calculations of confidence-set p-value can be hence greatly reduced. In the

study, we will generalize previous result to Poisson problems. Two types of

Wald test will be examined whether they satisfy the convexity condition or

not. Hence, more efficient confidence-set p-values will be obtained.

On the other hand, Krishnamoorthy and Thomson (2004) inspired by

Storer and Kim (1990) developed a nearly exact testing methods. The as-

sociated p-value is exact because it is evaluated under Poisson distribution.

The authors use an point estimate of the nuisance parameter in calculation of

the exact p-value. The same test was studied in Gu et al. (2008). Although

the estimated p-value was shown to perform well and can control its exact

type I error rate below the nominal level in selected settings in these papers.

However, this testing procedure could not guarantee a well-controlled type

I error rate theoretically. Here, the estimated p-value proposed by Krish-

namoorthy and Thomson (2004) will be adapted. However, the restricted

estimation will be modified for handy applications.

Basically, the content of the null parameter space determines the complex-

ity of computation of a p-value. In this study, we are interested in testing

superiority and non-inferiority. These associated null parameter space are

infinite regions in concluding diagonal line or others in the first quadrant.

Then, the calculation of searching p-value is quite complicated. In next

chapter, we first consider the null hypothesis of equality for simplicity. The

investigations will be extended to a conventional superiority in Chapter 3.

The validity and the power of the proposed testing methods will be derived

5
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theoretically. Intensive numerical studies will be provided as well. Subse-

quently, these proposed testing procedure will further be applied to testing

non-inferiority in Chapter 4. Similarly, the validity and unbiasedness of these

testing procedure will be explored, and the performances between them will

be compared.

1.2 Outline

This articles is organized as follows. In Chapter 2, we will focus on testing

the null hypothesis of equality. We will give the asymptotic properties and

the sample size formula of two types Wald test and T -test in Section 2.2.

Adequate continuity correction terms will be derived. In Section 2.3, several

exact testing procedures will be introduced. Subsequently, numerical studies

will be presented in Section 2.4. The power and the type I error rate of

the proposed tests will be compared. In Chapter 3, the problem will be

extended to testing superiority. Further we will study the validity of the

asymptotic tests and exact tests proposed in Chapter 2. More issues on

the exact tests will be discussed. Similarly, some numerical study will be

given. In Chapter 4, two types Wald test statistic will be redefined at the

null hypothesis of testing non-inferiority. There are two asymptotic tests

and exact tests based on this two test statistics are explored. Similarly, the

validity and unbiasedness of two testing procedure will be examined and the

correspondent sample size formulae will be derived, respectively. In Chapter

5, our proposed methods will be applied on a real example of breast cancer.

Last, a brief conclusion will be presented. In this study, all numerical studies

are conducted by MATLAB software and C++ language.

6
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Chapter 2

Testing the null hypothesis of
equality

Assume two independent Poisson random samples within a fixed duration,

(Y11, ⋅ ⋅ ⋅ , Y1n1), (Y21, ⋅ ⋅ ⋅ , Y2n2),

Y1i
iid∼ Poi(�1), Y2j

iid∼ Poi(�2), for i = 1 ⋅ ⋅ ⋅n1, j = 1 ⋅ ⋅ ⋅n2,

where Poi(⋅) is a Poisson distribution with the mean rate (⋅). Then, the full

parameter space is the first quadrant on ℛ2,

Ω = {(�1, �2)∣�1 > 0, �2 > 0}.

This study mainly focuses on three types of one-sided hypothesis testing

problems on comparing the two Poisson distributions. The first two problems

are the so-called superiority tests, while the third one is the non-inferiority

test. An essential difference between these problems is the extent of the

associated null parameter space, which determines the complexity of the

problem as explained in Chapter 1. See Figure 2.1 for the plots of the three

null parameter spaces. In this chapter, for simplicity, we consider the null

hypothesis of equality. The associated null parameter space includes only

7
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the diagonal (Ω01 = {0 < �1 = �2} in Figure 2.1). Next chapter, the test of

superiority will be explored. The correspondent null space be extended to

Ω02 which is the region above and including the diagonal line. Subsequently,

the problem of testing non-inferiority correspondent to the null space Ω03

will be studied.

2.1 Statistical Hypothesis and Test Statistics

If prior knowledge indicates the equality of the two population, the statistical

hypothesis can be expressed as follows,

H01 : �1 = �2, vs. H1 : �1 > �2.

It’s seen that Y1 =
∑n1

i=1 Y1i, Y2 =
∑n2

j=1 Y2j are sufficient statistics, and

the maximum likelihood estimator(MLE) of � = �1 − �2 can be derived as

�̂ = Ȳ1 − Ȳ2, where Ȳ1, Ȳ2 are the MLE of �1 and �2 under Ω, respectively.

Dividing the MLE �̂ by its estimated asymptotic standard error se(�̂),

one obtains the Wald’s test statistic,

Z =
�̂

se(�̂)
,

where se(�̂) is obtained by plugging some consistent estimators of �1, �2 in

the standard error of �̂. In general, two common estimators are employed,

one with constrained MLE is

ZR =
Ȳ1 − Ȳ2√
�̃0

n1
+ �̃0

n2

,

where �̃0 = Y1+Y2

n1+n2
is RMLE(restricted maximum likelihood estimator)under

8
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H01 : �1 = �2 = �. The other one with unconstrained MLE is

ZU =
Ȳ1 − Ȳ2√
Ȳ1

n1
+ Ȳ2

n2

.

On the other hand, when testing the equality of two normal means, the two-

independent sample T -test is commonly used. We will study the applicability

of this test in the comparison of Poisson means. Let S2
1 , S

2
2 be the sample

variances of the two random samples, respectively. The two-independent-

sample T statistic is

T =
Ȳ1 − Ȳ2

Sp
√

1
n1

+ 1
n2

, where S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

is the pooled sample variance. The null hypothesis H01 is rejected if a suffi-

ciently large value of Z or T is observed.

The asymptotic p-values of the two Wald’s tests can be computed straight-

forward under normality, while the asymptotic p-value of the T -test is found

under a t-distribution with degrees of freedom (n1 +n2− 2). The theoretical

performance of the asymptotic power function of the three p-values will be

studied in next section.

2.2 Asymptotic p-values

In the following, the asymptotic p-values of the observed zR, zU , t0 are

pA,R = 1− Φ(zU), pA,U = 1− Φ(zR), pT = 1− t(n1+n2−2)(t0)

where Φ(⋅) is the distribution function ofN(0, 1), and t�(⋅) is the t-distribution

with degrees of freedom � . The null hypothesis is rejected if the p-value is

not greater than the significance level �. In the following, we will explore the

9
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Figure 2.1: The joint parameter space Ω is all, the null parameter space
Ω01 for testing the equality, and the null parameter space Ω02 for testing
superiority, the null parameter space Ω03 for testing non-inferiority.

validity and asymptotic power function of the three asymptotic tests, and

deriving formula of required sample sizes for these tests.

Theorem 1. Let �0 be the true value of �, and � = n1/n2 ∈ (0, 1) be the

sample size fraction of the first group to the second group. As n1, n2 →∞,

ZR ⋅ � − �
d→ N(0, 1) and ZU − �

d→ N(0, 1).

In which,

� =
�0√

(1+�)�2+�0
n2�

, � =

√
(1 + �)�2 + ��0

(1 + �)�2 + �0

.

At significance level �, H01 is rejected if the test statistic exceeds z�,

where z� is the 100(1 − �)%-th percentile of N(0, 1). Then the asymptotic

power functions of ZR, ZU can be found as follows,

�̄ZR(�0, �2, n2, �) = 1− Φ(z�� − �), �̄ZU (�0, �2, n2, �) = 1− Φ (z� − �) .

10
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Under H01, �0 = 0, then � = 0, � = 1, and further �̄ZU = �̄ZR = �. That

is, both the two asymptotic tests successfully control their type I error rate

at the significance level. The correspondent p-values are called asymptotic

valid.

When �0 > 0, � > 0, the asymptotic power �̄ZU can be shown always

greater than �. It indicates that the testing procedure ZU is an unbiased

test approximately. Nevertheless, the unbiasedness of ZR is not always true.

When the first group has a smaller size than the second group, i.e. � ≤ 1,

� ≤ 1, the asymptotic power �̄ZR is always above the nominal level � and

increases as �0. On the contrary, if � > 1, the power may not exceed the

nominal level. In the following we explore the behavior of the asymptotic

power �̄ZR at some extreme �2 as �0 > 0, � > 1. As �2 approaches to infinity,

� =
�0√

�2(1+�)+�0
n2�

→ 0, � =

√
�2(1 + �) + ��0

�2(1 + �) + �0

→ 1.

Then the asymptotic power of ZR converges to the level �. As �2 → 0,

� =
�0√

�2(1+�)+�0
n2�

→
√
n2��0, � =

√
�2(1 + �) + ��0

�2(1 + �) + �0

→ √�.

Hence,

lim
�2→0

�̄ZR = 1− Φ
(
z�
√
�−

√
n2��0

)
. (2.1)

In this case, one can see that �̄ZR increases as �0 increases. However it’s easy

to derive that the power is less than � when

�0 <

{
z�(
√
�− 1)
√
n2�

}2

.

Hence, ZR tends to be biased when the sample sizes are extremely unbalanced

and the means of group are relatively small, i.e. � >> 1, �1 ≈ 0, �2 ≈ 0.

See Figure 2.2 for the plots of the asymptotic power function of ZR for

11
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� = 8, 20, 50, �2 = 0.03 and n2 = 10. In summary, ZR is not always an

unbiased test for � > 1.

In the next theorem, the asymptotic distribution of T is shown the same

as that of ZR in this Poisson problem. It’s known that the mean and the

variance coincide in a Poisson population. Hence the two test statistics use a

sample estimate of standard error of �̂ in the denominator under a common

constraint.

Theorem 2. Let �0 be the true value of �, and � = n1/n2 be the sample

size fraction of the first group to the second group. As n1, n2 →∞,

T� − � d→ N(0, 1).

When n1, n2 are sufficiently large, the critical value of the T test ap-

proximates to that of the Wald test, t(n1+n2−2,�) ≈ z�. In addition, from

Theorem 2, T and ZR have the same asymptotic distribution. Consequently,

the asymptotic power of T can be derived to be equal to the power of ZR,

�̄T (�0, �2, �, n2) = �̄ZR = 1− Φ (z�� − �) .

Hence T has the same performance as ZR approximately. According to the

discussion in previous paragraphs, T is a valid test, and is unbiased as � ≤ 1.

As � > 1, T is not necessarily unbiased.

Based on the power function of a testing procedure, the necessary sample

size for achievement of a prespecified power at some alternative setting at

significance level can be further determined. Given �, to achieve a prespec-

ified power level 1− �0 at �2, �0 > 0, the minimal sample size of the second

12
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group required for the ZU and ZR at significant level � is given as

n∗2,ZR ≥
{
z�� + z�0

�0

}2{
�2(1 + �) + �0

�

}
, (2.2)

and

n∗2,ZU ≥
{
z� + z�0

�0

}2{
�2(1 + �) + �0

�

}
, (2.3)

respectively. The size of the first group is found as n∗1 = [n∗2 ⋅ �] + 1, in which

[a] = q, the q is the maximum integer less than or equal to a. The formulae

of sample sizes for T is equivalent to the equation (2.2).

It can be seen that the powers and sample size formulae of the three

tests mainly differ in the multiple of z�, �. When � = 1, the sample sizes

are balanced, � = 1 and the three tests are equivalent in terms of the power

function and the sample size formula. When �0 = 0, all �̄ZR = �̄T = �̄ZU = �.

When �0 > 0, we discover that �̄ZU < �̄ZR = �̄T if � < 1, �̄ZU > �̄ZR = �̄T , if

� > 1. See Figure 2.3. It indicates that the ZR− /T -tests are more powerful

and required less observations for a specified power than the ZU -test when

there are less observations in the first group. The result is opposite when the

samples size of the first group is more than that of the second group. Hence,

when the sampling cost for a subject from the first group is more expensive

than from the second group, one may consider a study of � < 1, and the use

of ZR or T is suggested.

In this study, the sampling fraction � ∈ (0,∞) is considered a fixed con-

stant exactly or approximately. It requires that the two group sizes n1, n2

have the same converging rates. Otherwise, as both sizes converge to infin-

ity, the statistic correspondent to the larger sample converges to a constant

faster than others. The subsequent asymptotic distribution of the testing

statistic becomes trivial and is less worthy to derive. On the other hand,

in the design stage, the sampling fraction � should be specified a priori for

13
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sample size determination. In practice, the information, as well as �2, �0,

are obtained after a consultation with experts of the related field and after

taking consideration of a realistic situation on applications.

When testing a parameter of a discrete distribution, a continuity correc-

tion is often added in the test statistic when one applies an approximation

by some continuous distribution. The continuity correction revised by Pirie

and Hamdan (1972) is employed in the Poisson problem. It’s known that

given an unbiased and sufficient estimator �̂ for �, the continuity corrected

test statistic is
�̂ − 1

2
b

se(�̂)
,

provided that the support of �̂ has equal spacings with space b.

Pirie and Hamdan (1972) indicated that for two independent Poisson

random samples, the MLE �̂ has equal spacings if one of n1, n2 is an integer

multiple of the other. Specifically, when n1 = n2, b = 1. In the following

theorem, we extend the results of Pirie and Hamdan (1972) to any n1, n2.

Theorem 3. For any n1, n2, the sampling distribution of �̂ has equal

spacings with space

b =
1

2m
,

where m is the least common multiple of n1, n2.

Consequently, the continuity-corrected two Wald’s test and T -test are

defined as

Zc =
�̂ − 1

2m

se(�̂)
, Tc =

�̂ − 1
2m

sp
√

1
n1

+ 1
n2

,

respectively. In which Zc can be either ZR,c or ZU,c.

14



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

2.3 Exact p-values

When the sample sizes are insufficient or the mean values are relatively small,

exact testing procedures are more adequate than asymptotic ones. Given

a realization of a test statistic, an exact p-value is defined and calculated

under the exact null distribution. In many applications, the null distribution

often involves an unknown nuisance parameter(s). Here, both the Wald

statistics ZU , ZR are functions of the sufficient statistics (Y1, Y2). Under the

null hypothesis, H01 : �1 = �2 = � > 0, Y1, Y2 independently follow a Poisson

distribution with mean n1�, n2�, respectively. Given an observed z0 of the

Wald statistic Z, where Z can be either ZU or ZR, an exact p-value is defined

under the true null distribution, which involves the unknown common mean

value �,

p�(z0) = P (Z ≥ z0∣�1 = �2 = �) =
∑
y1≥0

∑
y2≥0

poi(y1, n1�)poi(y2, n2�)I{Z≥z0},

(2.4)

where poi(y, �′) is the probability function of Poisson distribution with mean

�′ and I is the indicator function. The common � is a nuisance parameter.

In the following, several testing procedures to deal with unknown nuisance

parameters in literature are reviewed.

Casella and Berger (1990) defined the following standard p-value that

considers the most conservative scenario and guarantees the validity,

ps = sup
�1,�2∈Ω01

P (Z ≥ z0∣�1 = �2 = �),

where Ω01 = {(�1, �2) : �1 = �2 > 0} is the null parameter space of H01. Ω01

is unbounded in a Poisson problem, hence the computation of the standard

p-value is difficult in real-world applications. In addition, not taking the data

15
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information into consideration, one may obtain an unnecessarily conservative

conclusion.

To ease the computational burden brought by searching the supremum

over an infinite interval, Berger and Boos (1994) proposed a confidence-set p-

value and showed that it is valid. The confidence-set p-value is the supremum

over a confidence-set of the nuisance parameter. Here, given an observation

zR of ZR, the confidence-set p-value is defined as

p()

CI,R = sup
�∈C

P (ZR ≥ zR ∣ �1 = �2 = �) + , (2.5)

where C is a 100(1− )% confidence interval for the nuisance parameter �.

On the other hand, given zU , the confidence-set p-value based on ZU is

p()

CI,U = sup
�∈C

P (ZU ≥ zU ∣ �1 = �2 = �) + . (2.6)

In which,  is a positive real number and is far less than � for a non-trivial

conclusion. In this study, we consider the following 100(1 − )% exact con-

fidence interval C of �,

1

2(n1 + n2)
(�2

(1−/2, 2(Y1+Y2)), �
2
(/2, 2(Y1+Y2+1))),

where �2
�,v is the 100(1 − �)-th percentile of a chi-square distribution with

degrees of freedom v (Casella and Berger, 1990). The confidence interval

is based on the following equivalent relationship between Poisson and Chi-

square random variables,



2
= P (Y ≤ y0) = P (�2

2(y0+1) > 2(n1 + n2)�),



2
= P (Y ≥ y0) = P (�2

2y0
< 2(n1 + n2)�),

where Y follows Poi((n1 + n2)�), �2
2(⋅) is a random variable with degrees of

freedom 2(⋅).

16



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Krishnamoorthy and Thomson (2004) proposed an alternative exact p-

value by using the RMLE �̃0 of the nuisance parameter �. That is, given

zR, zU , the estimated p-value are defined as

pE,R = P (ZR ≥ zR ∣ �̃0), pE,U = P (ZU ≥ zU ∣ �̃0),

respectively. The estimated p-value has great reduction in computation and

performs well empirically. Although the estimator owns many pleasant prop-

erties in the inference of point estimation under H01, but the resultant p-value

does not guarantee a valid test theoretically.

As the Wald statistic depends on the data only through the two sufficient

statistics (Y1, Y2), the exact power of the test correspondent to the p-value,

p, is given by ∑
y1≥0

∑
y2≥0

poi(y1, n1�1)poi(y2, n2�2)I{p≤�}.

Given a predetermined power level 1−�0 at some specific �2 and �0 > 0 , the

required sample size of the second group is the smallest integers such that

the exact power achieves the level, and it is found as follows

n∗2 = min{n2 :
∑
y1≥0

∑
y2≥0

poi(y1, ([n2�] + 1)(�2 + �0))poi(y2, n2�2)I{p≤�} ≥ 1− �0},

(2.7)

for some � > 0. Further n∗1 = [n∗2�] + 1.

2.4 Numerical study

In this section, we investigate the performance of the two test statistics

ZR, ZU , as well as T . The asymptotic testing procedures by using the asymp-

totic p−values are considered. The effect of a continuity correction are ex-

plored in these asymptotic tests. Denote the p-value as pA if it is without a

17
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continuity correction; as pAc if it is with a continuity correction term. The

exact tests by using the confidence-set p-value, denoted as pCI , and the es-

timated p-value, denoted as pE, of ZR, ZU are further studied. As described

in previous section, the calculation of the exact power is straightforward

when the test statistic depends on the data only through the two sufficient

statistics Y1, Y2. Here, except the T -test, the exact type I error rate and

the exact power of each test are calculated. The power of the T -test is

found through 100, 000 replicates. In this numerical analysis, we consider

�2 = 0.3, 0.4, 0.6, 1, 2, 3, n2 = 10, 30, �0 = 0, 1, � = 3/5, 1, 5/3 and � = 0.05.

The calculated type I error rate and power are presented in Table 2.1-2.4.

The required samples sizes of the second group to achieve 1 − �0 = 80%

power at �0 = 0.6, 1 are provided in Table 2.5-2.10.

We first compare the three asymptotic tests in Table 2.1 to 2.4. Although

ZR and T are found to have different results in the finite sample cases from

the tables, we find that the two tests have quite consistent patterns. It jus-

tifies the theoretical results given in Section 2.2 that the two test statistics

have the same asymptotic distributions. Theoretically, at �0 = 0 the asymp-

totic sizes of the three tests are independent of � and equal to the nominal

significance level �. However, the finite-sample results in Table 2.1 and Table

2.3 appear to be more consistent with the asymptotic power functions under

the alternative hypothesis. When � = 3/5 < 1, ZR and T have more chance

to reject the null hypothesis than ZU . The trend becomes the opposite when

� > 1. Basically, the type I error rate of the three tests sometimes exceed

the nominal level � = 5%. Although as the sample sizes increase, there are

some improvement in the type I error rate, the differences are not obvious.

When � = 3/5, the sizes of ZR and T are not well-controlled at � = 5%,

and T is more liberal than ZR at small �2 and n2 = 10. For � = 5/3, the

inflation of the type I error rate of ZU is even worse. For the three tests,

at � > 1, � < 1, adding a continuity correction or increasing the sample size

18
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entail limited improvement. Overall speaking, ZR and T is more robust to

the choice of � than ZU . ZU is too liberal for � > 1 and is too conservative

for � < 1.

Next the two exact p-values, pCI , pE, are studied. Note that in finding

the confidence-set p-value, the supremum is searched over 16 grids of the

confidence interval of the common mean value �. Moreover, we consider

 = 0.001. Table 2.1 and 2.3 show that the two exact approaches have their

type I error rate well-controlled. The confidence-interval p-value is more

conservative than the estimated p-value. The computations involved are

greatly reduced for the estimated p-value. One should keep in mind that the

estimated p-value is not a valid test theoretically. Although in these selected

scenarios of our simulation, its type I error rate does not exceed the nominal

level. It is possible that the estimated p-value has an inflated type I error

rate in other cases.

Table 2.5-2.10 present the required sample size of the second group for

80% power at �0 = 0.6, 1.0. The results for the three asymptotic tests are

based on the asymptotic sample size formulae (2.2) and (2.3). For the two

exact tests, the figures are the minimal integers such that the exact power

achieves the level by (2.7). All the tests need less required sample size of

the second group for 80% power when the �0 increases. Between the three

asymptotic tests, ZU needs a slightly smaller sample than ZR and T for

� > 1. On the contrary, however, with the smaller sample size, the exact

type I error rate of three asymptotic tests often exceeds the nominal level

�. The inflation is more severe in the application of ZU and showed limited

improvement with the continuity correction.

Moreover, the sample sizes obtained for the two exact tests are near that of

the asymptotic tests and the differences are within 3 units in all cases. With
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the calculated sample size, every exact test achieves the prespecified power

level and has a well-controlled type I error rate. In summary, although the

exact tests are more time-consuming, they guarantee more adequate statisti-

cal conclusions. The asymptotic sample sizes (2.2) and (2.3) can be regarded

as an efficient alternative of (2.7) for the exact tests. A much quicker solution

can be obtained and the result is found to be close to the exact sample size.
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Table 2.1: The type I error rate (�0 = 0) of asymptotic p-value test (pA) and
exact p-value test (pCI , pE) based on T, ZR, ZU respectively for n2 = 10.

Test �2

� Statistic p-value 0.3 0.4 0.6 1 2 3

3/5 T pA,T 0.0660 0.0600 0.0544 0.0514 0.0525 0.0513
pAc,T 0.0652 0.0582 0.0505 0.0486 0.0509 0.0497

ZR pA,R 0.0540 0.0528 0.0537 0.0519 0.0529 0.0524
pAc,R 0.0540 0.0528 0.0537 0.0505 0.0498 0.0496

p(=0.001)

CI,R 0.0385 0.0412 0.0359 0.0375 0.0446 0.0483

pE,R 0.0406 0.0476 0.0502 0.0466 0.0493 0.0483

ZU pA,U 0.0219 0.0232 0.0266 0.0334 0.0410 0.0426
pAc,U 0.0219 0.0232 0.0265 0.0308 0.0378 0.0403

p(=0.001)

CI,U 0.0385 0.0417 0.0402 0.0461 0.0482 0.0483

pE,U 0.0389 0.0433 0.0459 0.0487 0.0482 0.0483

1 T pA,T 0.0473 0.0455 0.0482 0.0509 0.0498 0.0475
pAc,T 0.0302 0.0344 0.0383 0.0408 0.0427 0.0417

ZR pA,R 0.0497 0.0508 0.0515 0.0489 0.0496 0.0497
pAc,R 0.0331 0.0358 0.0371 0.0396 0.0414 0.0437

p(=0.001)

CI,R 0.0448 0.0421 0.0454 0.0487 0.0475 0.0471

pE,R 0.0448 0.0421 0.0454 0.0487 0.0496 0.0497

ZU pA,U 0.0497 0.0508 0.0515 0.0489 0.0496 0.0497
pAc,U 0.0331 0.0358 0.0371 0.0397 0.0414 0.0437

p(=0.001)

CI,U 0.0448 0.0421 0.0454 0.0487 0.0475 0.0471

pE,U 0.0448 0.0421 0.0454 0.0487 0.0496 0.0497

5/3 T pA,T 0.0417 0.0420 0.0444 0.0457 0.0472 0.0480
pAc,T 0.0354 0.0403 0.0430 0.0439 0.0454 0.0465

ZR pA,R 0.0455 0.0474 0.0461 0.0484 0.0462 0.0467
pAc,R 0.0369 0.0388 0.0434 0.0447 0.0457 0.0460

p(=0.001)

CI,R 0.0455 0.0474 0.0461 0.0482 0.0459 0.0467

pE,R 0.0455 0.0474 0.0461 0.0484 0.0470 0.0491

ZU pA,U 0.0799 0.0711 0.0644 0.0632 0.0563 0.0548
pAc,U 0.0724 0.0697 0.0629 0.0589 0.0562 0.0543

p(=0.001)

CI,U 0.0353 0.0335 0.0324 0.0420 0.0457 0.0467

pE,U 0.0455 0.0474 0.0461 0.0484 0.0470 0.0491
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Table 2.2: The type I error rate (�0 = 1) of asymptotic p-value test (pA) and
exact p-value test (pCI , pE) based on T, ZR, ZU respectively for n2 = 10.

Test �2

� Statistic p-value 0.3 0.4 0.6 1 2 3

3/5 T pA,T 0.7263 0.6709 0.5833 0.4693 0.3332 0.2638
pAc,T 0.7148 0.6579 0.5733 0.4642 0.3273 0.2594

ZR pA,R 0.7576 0.7037 0.6129 0.5024 0.3516 0.2834
pAc,R 0.7575 0.7034 0.6093 0.4873 0.3438 0.2723

p(=0.001)

CI,R 0.6841 0.6209 0.5469 0.4524 0.3341 0.2705

pE,R 0.7429 0.6816 0.5899 0.4848 0.3380 0.2705

ZU pA,U 0.6505 0.5996 0.5275 0.4425 0.3139 0.2497
pAc,U 0.6500 0.5971 0.5162 0.4268 0.3005 0.2453

p(=0.001)

CI,U 0.7042 0.6560 0.5878 0.4743 0.3374 0.2705

pE,U 0.7282 0.6817 0.6013 0.4751 0.3374 0.2705

1 T pA,T 0.8068 0.7565 0.6714 0.5494 0.3887 0.3102
pAc,T 0.7729 0.7206 0.6327 0.5136 0.3625 0.2901

ZR pA,R 0.8387 0.7872 0.6996 0.5773 0.4073 0.3274
pAc,R 0.8044 0.7532 0.6641 0.5364 0.3818 0.3050

p(=0.001)

CI,R 0.8323 0.7847 0.6992 0.5724 0.3988 0.3193

pE,R 0.8323 0.7847 0.6994 0.5773 0.4073 0.3263

ZU pA,U 0.8387 0.7872 0.6996 0.5773 0.4073 0.3274
pAc,U 0.8044 0.7532 0.6641 0.5364 0.3818 0.3050

p(=0.001)

CI,U 0.8323 0.7847 0.6992 0.5724 0.3988 0.3193

pE,U 0.8323 0.7847 0.6994 0.5773 0.4073 0.3263

5/3 T pA,T 0.8687 0.8212 0.7395 0.6142 0.4396 0.3458
pAc,T 0.8633 0.8147 0.7328 0.6065 0.4332 0.3415

ZR pA,R 0.8948 0.8522 0.7733 0.6419 0.4524 0.3657
pAc,R 0.8869 0.8422 0.7615 0.6275 0.4522 0.3589

p(=0.001)

CI,R 0.8948 0.8521 0.7709 0.6339 0.4524 0.3657

pE,R 0.8948 0.8523 0.7743 0.6499 0.4549 0.3729

ZU pA,U 0.9208 0.8832 0.8086 0.6749 0.4876 0.3917
pAc,U 0.9140 0.8750 0.8002 0.6695 0.4875 0.3846

p(=0.001)

CI,U 0.8693 0.8313 0.7595 0.6275 0.4524 0.3656

pE,U 0.8948 0.8523 0.7743 0.6499 0.4549 0.3729
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Table 2.3: The type I error rate (�0 = 0) of asymptotic p-value test (pA) and
exact p-value test (pCI , pE) based on T, ZR, ZU respectively for n2 = 30.

Test �2

� Statistic p-value 0.3 0.4 0.6 1 2 3

3/5 T pA,T 0.0529 0.0515 0.0526 0.0517 0.0517 0.0506
pAc,T 0.0516 0.0504 0.0500 0.0497 0.0505 0.0496

ZR pA,R 0.0523 0.0525 0.0536 0.0524 0.0516 0.0510
pAc,R 0.0516 0.0493 0.0501 0.0496 0.0499 0.0502

p(=0.001)

CI,R 0.0356 0.0405 0.0426 0.0483 0.0484 0.0489

pE,R 0.0467 0.0476 0.0499 0.0483 0.0499 0.0496

ZU pA,U 0.0314 0.0370 0.0404 0.0426 0.0447 0.0455
pAc,U 0.0297 0.0336 0.0374 0.0403 0.0431 0.0441

p(=0.001)

CI,U 0.0450 0.0463 0.0477 0.0483 0.0482 0.0486

pE,U 0.0490 0.0471 0.0477 0.0483 0.0499 0.0496

1 T pA,T 0.0514 0.0490 0.0509 0.0515 0.0487 0.0491
pAc,T 0.0389 0.0386 0.0422 0.0453 0.0442 0.0458

ZR pA,R 0.0492 0.0489 0.0498 0.0497 0.0497 0.0500
pAc,R 0.0394 0.0396 0.0408 0.0437 0.0453 0.0465

p(=0.001)

CI,R 0.0486 0.0487 0.0475 0.0471 0.0486 0.0488

pE,R 0.0486 0.0489 0.0498 0.0497 0.0497 0.0498

ZU pA,U 0.0492 0.0489 0.0498 0.0497 0.0497 0.0500
pAc,U 0.0394 0.0396 0.0408 0.0437 0.0453 0.0465

p(=0.001)

CI,U 0.0486 0.0487 0.0475 0.0471 0.0486 0.0488

pE,U 0.0486 0.0489 0.0498 0.0497 0.0497 0.0498

5/3 T pA,T 0.0477 0.0468 0.0477 0.0486 0.0481 0.0486
pAc,T 0.0429 0.0441 0.0460 0.0474 0.0472 0.0479

ZR pA,R 0.0456 0.0467 0.0482 0.0470 0.0486 0.0491
pAc,R 0.0452 0.0451 0.0464 0.0469 0.0477 0.0480

p(=0.001)

CI,R 0.0456 0.0467 0.0482 0.0470 0.0486 0.0490

pE,R 0.0484 0.0497 0.0496 0.0475 0.0497 0.0499

ZU pA,U 0.0639 0.0621 0.0593 0.0554 0.0547 0.0536
pAc,U 0.0598 0.0576 0.0570 0.0553 0.0537 0.0529

p(=0.001)

CI,U 0.0393 0.0414 0.0459 0.0469 0.0479 0.0484

pE,U 0.0453 0.0475 0.0496 0.0475 0.0497 0.0499
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Table 2.4: The type I error rate (�0 = 1) of asymptotic p-value test (pA) and
exact p-value test (pCI , pE) based on T, ZR, ZU respectively for n2 = 30.

Test �2

� Statistic p-value 0.3 0.4 0.6 1 2 3

3/5 T pA,T 0.9894 0.9771 0.9477 0.8685 0.6846 0.5612
pAc,T 0.9887 0.9759 0.9457 0.8648 0.6809 0.5574

ZR pA,R 0.9905 0.9805 0.9518 0.8765 0.6935 0.5676
pAc,R 0.9896 0.9791 0.9497 0.8716 0.6893 0.5640

p(=0.001)

CI,R 0.9871 0.9768 0.9477 0.8697 0.6852 0.5595

pE,R 0.9896 0.9788 0.9478 0.8697 0.6892 0.5618

ZU pA,U 0.9865 0.9745 0.9415 0.8577 0.6709 0.5460
pAc,U 0.9853 0.9722 0.9376 0.8537 0.6658 0.5424

p(=0.001)

CI,U 0.9889 0.9784 0.9478 0.8690 0.6852 0.5577

pE,U 0.9889 0.9784 0.9478 0.8697 0.6892 0.5635

1 T pA,R 0.9977 0.9949 0.9825 0.9361 0.7872 0.6591
pAc,R 0.9971 0.9937 0.9796 0.9293 0.7746 0.6459

ZR pA,R 0.9984 0.9956 0.9842 0.9415 0.7918 0.6668
pAc,R 0.9979 0.9946 0.9816 0.9343 0.7814 0.6545

p(=0.001)

CI,R 0.9983 0.9953 0.9832 0.9393 0.7885 0.6612

pE,R 0.9984 0.9956 0.9842 0.9405 0.7918 0.6654

ZU pA,U 0.9984 0.9956 0.9842 0.9415 0.7918 0.6668
pAc,U 0.9979 0.9946 0.9816 0.9343 0.7814 0.6545

p(=0.001)

CI,U 0.9983 0.9953 0.9832 0.9393 0.7885 0.6612

pE,U 0.9984 0.9956 0.9842 0.9405 0.7918 0.6654

5/3 T pA,T 0.9998 0.9989 0.9945 0.9710 0.8572 0.7370
pAc,T 0.9997 0.9988 0.9942 0.9702 0.8551 0.7345

ZR pA,R 0.9998 0.9991 0.9953 0.9730 0.8625 0.7457
pAc,R 0.9998 0.9991 0.9953 0.9720 0.8604 0.7425

p(=0.001)

CI,R 0.9998 0.9991 0.9953 0.9726 0.8619 0.7447

pE,R 0.9998 0.9992 0.9953 0.9746 0.8646 0.7479

ZU pA,U 0.9999 0.9994 0.9963 0.9769 0.8730 0.7586
pAc,U 0.9998 0.9994 0.9963 0.9760 0.8716 0.7565

p(=0.001)

CI,U 0.9998 0.9991 0.9953 0.9726 0.8612 0.7438

pE,U 0.9998 0.9992 0.9953 0.9746 0.8646 0.7479
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Table 2.5: To achieve 80% power at �0 = 0.6, the required sample size of the
second group n∗2 of ZR, ZU , T for � = 3/5. Based on the required samples n∗2, the
power and the type I error rate (in parentheses) are given.

Test �2

Statistic p-value 0.3 0.4 0.6 1 2

T pA,T n∗2 27 31 41 59 105
Power 0.8241 0.8111 0.8124 0.8055 0.7995
(Size) (0.0526) (0.0533) (0.0536) (0.0527) (0.0512)

pAc,T Power 0.8210 0.8040 0.8088 0.8025 0.7976
(Size) (0.0495) (0.0495) (0.0507) 0.0514) (0.0506)

ZR pA,R n∗2 27 31 41 59 105
Power 0.8285 0.8088 0.8105 0.8045 0.8037
(Size) (0.0514) (0.0543) (0.0528) (0.0516) (0.0508)

pAc,R Power 0.8179 0.8048 0.8067 0.8021 0.8017
(Size) (0.0506) (0.0499) (0.0509) (0.0500) (0.0499)

p(=0.001)

CI,R n∗2 28 33 42 61 108

Power 0.8147 0.8107 0.8118 0.8074 0.8055
(Size) (0.0449) (0.0480) (0.0477) (0.0484) (0.0488)

pE,R n∗2 27 32 41 59 107
Power 0.8078 0.8141 0.8018 0.8001 0.8068
(Size) (0.0451) (0.0466) (0.0485) (0.0496) (0.0498)

ZU pA,U n∗2 31 36 45 63 109
Power 0.8301 0.8295 0.8216 0.8068 0.8053
(Size) (0.0345) (0.0399) (0.0426) (0.0443) (0.0469)

p(=0.001)

Ac,U
Power 0.8212 0.8188 (0.8184) 0.8039 0.8036

(Size) (0.0304) (0.0368) (0.0395) (0.0428) (0.0464)

pCI,U n∗2 28 33 42 61 108
Power 0.8023 0.8097 0.8072 0.8056 0.8050
(Size) (0.0440) (0.0442) (0.0458) (0.0483) (0.0488)

pE,U n∗2 27 32 41 60 107
Power 0.8083 0.8141 0.8018 0.8086 0.8068
(Size) (0.0466) (0.0469) (0.0485) (0.0499) (0.0498)
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Table 2.6: To achieve 80% power at �0 = 0.6, the required sample size of the
second group n∗2 of ZR, ZU , T for � = 1. Based on the required samples n∗2, the
power and the type I error rate (in parentheses) are given.

Test �2

Statistic p-value 0.3 0.4 0.6 1 2

T pA,T n∗2 21 25 31 45 79
Power 0.8159 0.8190 0.8014 0.8003 0.7978
(Size) (0.0491) (0.0494) (0.0496) (0.0498) (0.0490)

pAc,T Power 0.7865 0.7933 0.7821 0.7871 0.7904
(Size) (0.0368) (0.0393) (0.0417) (0.0448) (0.0463)

ZR pA,R n∗2 21 25 31 45 79
Power 0.8244 0.8279 0.8084 0.8059 0.8017
(Size) (0.0512) (0.0489) (0.0498) (0.0505) (0.0499)

pAc,R Power 0.7971 0.8012 0.7909 0.7931 0.7940
(Size) (0.0373) (0.0396) (0.0410) (0.0448) (0.0471)

p(=0.001)

CI,R n∗2 20 24 31 45 80

Power 0.8070 0.8088 0.8014 0.8032 0.8025
(Size) (0.0454) (0.0487) (0.0475) (0.0488) (0.0489)

pE,R n∗2 20 24 31 45 79
Power 0.8073 0.8140 0.8084 0.8058 0.8011
(Size) (0.0454) (0.0487) (0.0498) (0.0497) (0.0499)

ZU pA,U n∗2 21 25 31 45 79
Power 0.8244 0.8279 0.8084 0.8059 0.8017
(Size) (0.0512) (0.0489) (0.0498) (0.0505) (0.0499)

pAc,U Power 0.7971 0.8012 0.7909 0.7931 0.7940
(Size) (0.0373) (0.0396) (0.0410) (0.0448) (0.0471)

p(=0.001)

CI,U n∗2 20 24 31 45 80

Power 0.8070 0.8088 0.8014 0.8032 0.8025
(Size) (0.0454) (0.0487) (0.0475) (0.0488) (0.0489)

pE,U n∗2 20 24 31 45 79
Power 0.8073 0.8140 0.8084 0.8058 0.8011
(Size) (0.0454) (0.0487) (0.0498) (0.0497) (0.0499)
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Table 2.7: To achieve 80% power at �0 = 0.6, the required sample size of the
second group n∗2 of ZR, ZU , T for � = 5/3. Based on the required samples n∗2, the
power and the type I error rate (in parentheses) are given.

Test �2

Statistic p-value 0.3 0.4 0.6 1 2

T pA,T n∗2 18 20 26 37 64
Power 0.8265 0.8094 0.8117 0.8057 0.7984
(Size) (0.0491) (0.0494) (0.0496) (0.0498) (0.0490)

pAc,T Power 0.8194 0.8038 0.8074 0.8026 0.7966
(Size) (0.0368) (0.0393) (0.0417) (0.0448) (0.0463)

ZR pA,R n∗2 18 20 26 37 64
Power 0.8376 0.8151 0.8240 0.8090 0.8022
(Size) (0.0479) (0.0457) (0.0474) (0.0496) (0.0492)

pAc,R Power 0.8339 0.8080 0.8131 0.8054 0.8003
(Size) (0.0415) (0.0431) (0.0452) (0.0496) (0.0484)

p(=0.001)

CI,R n∗2 18 20 26 37 65

Power 0.8376 0.8151 0.8165 0.8040 0.8066
(Size) (0.0479) (0.0456) (0.0474) (0.0487) (0.0489)

pE,R n∗2 17 20 25 36 64
Power 0.8188 0.8201 0.8004 0.8069 0.8030
(Size) (0.0467) (0.0456) (0.0495) (0.0476) (0.0499)

ZU pA,U n∗2 15 18 23 34 62
Power 0.8182 0.8148 0.8030 0.7967 0.8008
(Size) (0.0753) (0.0645) (0.0598) (0.0579) (0.0532)

pAc,U Power 0.8072 0.8058 0.8006 0.7927 0.7988
(Size) (0.0749) (0.0630) (0.0574) (0.0579) (0.0524)

p(=0.001)

CI,U n∗2 18 20 26 37 65

Power 0.8213 0.8078 0.8131 0.8038 0.8062
(Size) (0.0374) (0.0374) (0.0451) (0.0449) (0.0488)

pE,U n∗2 17 20 25 36 64
Power 0.8188 0.8201 0.8004 0.8069 0.8030
(Size) (0.0401) (0.0446) (0.0495) (0.0476) (0.0499)
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Table 2.8: To achieve 80% power at �0 = 1, the required sample size of the second
group n∗2 of ZR, ZU , T for � = 3/5. Based on the required samples n∗2, the power
and the type I error rate (in parentheses) are given.

Test �2

Statistic p-value 0.3 0.4 0.6 1 2

T pA,T n∗2 13 15 18 25 41
Power 0.8239 0.8243 0.8129 0.8072 0.8027
(Size) (0.0570) (0.0582) (0.0542) (0.0518) (0.0508)

pAc,T Power 0.8206 0.8184 0.8093 0.8025 0.7999
(Size) (0.0496) (0.0515) (0.0508) (0.0493) (0.0495)

ZR pA,R n∗2 13 15 18 25 41
Power 0.8342 0.8393 0.8134 0.8219 0.8014
(Size) (0.0589) (0.0537) (0.0554) (0.0522) (0.0508)

pAc,R Power 0.8155 0.8346 0.8050 0.8133 0.8014
(Size) (0.0412) (0.0537) (0.0494) (0.0501) (0.0504)

p(=0.001)

CI,R n∗2 14 15 19 25 42

Power 0.8383 0.8040 0.8217 0.8118 0.8064
(Size) (0.0426) (0.0359) (0.0435) (0.0477) (0.0486)

pE,R n∗2 12 15 19 25 42
Power 0.8010 0.8191 0.8217 0.8118 0.8068
(Size) (0.0421) (0.0445) (0.0446) (0.0482) (0.0486)

ZU pA,U n∗2 16 17 21 27 44
Power 0.8581 0.8385 0.8335 0.8200 0.8108
(Size) (0.0292) (0.0265) (0.0386) (0.0410) (0.0455)

pAc,U Power 0.8488 0.8275 0.8297 0.8141 0.8098
(Size) (0.0208) (0.0257) (0.0356) (0.0395) (0.0440)

p(=0.001)

CI,U n∗2 14 15 19 25 42

Power 0.8363 0.8260 0.8217 0.8118 0.8059
(Size) (0.0426) (0.0402) (0.0446) (0.0482) (0.0481)

pE,U n∗2 12 15 19 25 42
Power 0.8010 0.8305 0.8217 0.8118 0.8068
(Size) (0.0421) (0.0459) (0.0446) (0.0482) (0.0488)
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Table 2.9: To achieve 80% power at �0 = 1, the required sample size of the second
group n∗2 of ZR, ZU , T for � = 1. Based on the required samples n∗2, the power and
the type I error rate (in parentheses) are given.

Test �2

Statistic p-value 0.3 0.4 0.6 1 2

T pA,T n∗2 10 12 14 19 31
Power 0.8050 0.8261 0.8067 0.8039 0.7986
(Size) (0.0462) (0.0497) (0.0488) (0.0502) (0.0495)

pAc,T Power 0.7714 0.7954 0.7814 0.7845 0.7866
(Size) (0.0296) (0.0322) (0.0395) (0.0427) (0.0453)

ZR pA,R n∗2 10 12 14 19 31
Power 0.8387 0.8486 0.8258 0.8159 0.8032
(Size) (0.0497) (0.0518) (0.0495) (0.0497) (0.0498)

p(=0.001)

Ac,R
Power 0.8044 0.8237 0.7978 0.7988 0.7934

(Size) (0.0331) (0.0364) (0.0391) (0.0411) (0.0454)

pCI,R n∗2 10 11 14 19 31
Power 0.8323 0.8192 0.8227 0.8089 0.8001
(Size) (0.0448) (0.0422) (0.0484) (0.0474) (0.0487)

pE,R n∗2 10 11 14 19 31
Power 0.8323 0.8192 0.8227 0.8117 0.8001
(Size) (0.0448) (0.0422) (0.0484) (0.0475) (0.0487)

ZU pA,U n∗2 10 12 14 19 31
Power 0.8387 0.8486 0.8258 0.8159 0.8032
(Size) (0.0497) (0.0518) (0.0495) (0.0497) (0.0498)

pAc,U Power 0.8044 0.8237 0.7978 0.7988 0.7934
(Size) (0.0331) (0.0364) (0.0391) (0.0411) (0.0454)

p(=0.001)

CI,U n∗2 10 11 14 19 31

Power 0.8323 0.8192 0.8227 0.8089 0.8001
(Size) (0.0448) (0.0422) (0.0484) (0.0475) (0.0487)

pE,U n∗2 10 11 14 19 31
Power 0.8323 0.8192 0.8227 0.8117 0.8001
(Size) (0.0448) (0.0422) (0.0484) (0.0475) (0.0487)
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Table 2.10: To achieve 80% power at �0 = 1, the required sample size of the
second group n∗2 of ZR, ZU , T for � = 5/3. Based on the required samples n∗2, the
power and the type I error rate (in parentheses) are given.

Test �2

Statistic p-value 0.3 0.4 0.6 1 2

T pA,T n∗2 9 10 12 16 26
Power 0.8362 0.8329 0.8208 0.8151 0.8105
(Size) (0.0462) (0.0497) (0.0488) (0.0502) (0.0495)

pAc,T Power 0.8275 0.8229 0.8134 0.8111 0.8080
(Size) (0.0296) (0.0322) (0.0395) (0.0427) (0.0453)

ZR pA,R n∗2 9 10 12 16 26
Power 0.8638 0.8522 0.8398 0.8180 0.8146
(Size) (0.0404) (0.0474) (0.0468) (0.0479) (0.0486)

pAc,R Power 0.8605 0.8422 0.8335 0.8128 0.8117
(Size) (0.0394) (0.0388) (0.0446) (0.0466) (0.0475)

p(=0.001)

CI,R n∗2 8 9 11 15 26

Power 0.8101 0.8134 0.8027 0.8023 0.8145
(Size) (0.0366) (0.0429) (0.0445) (0.0474) (0.0475)

pE,R n∗2 8 9 11 15 26
Power 0.8222 0.8206 0.8099 0.8023 0.8146
(Size) (0.0366) (0.0429) (0.0481) (0.0477) (0.0486)

ZU pA,U n∗2 7 8 10 14 24
Power 0.8244 0.8159 0.8086 0.8020 0.8030
(Size) (0.0922) (0.0802) (0.0644) (0.0596) (0.0551)

pAc,U Power 0.8059 0.8143 0.8002 0.8016 0.8000
(Size) (0.0651) (0.0749) (0.0629) (0.0578) (0.0532)

p(=0.001)

CI,U n∗2 9 10 12 16 26

Power 0.8427 0.8313 0.8288 0.8128 0.8132
(Size) (0.0394) (0.0335) (0.0383) (0.0469) (0.0468)

pE,U n∗2 8 9 11 15 26
Power 0.8222 0.8122 0.8099 0.8023 0.8146
(Size) (0.0366) (0.0389) (0.0446) (0.0474) (0.0486)
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Figure 2.2: As n2 = 10, �2 = 0.03, � = 8, 20, 50, the asymptotic power of ZR
over �0 ∈ (0, 0.1).
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Figure 2.3: As n2 = 10, �2 = 0.3, � = 3/5, 1, 5/3, the asymptotic powers of
the ZR(the dotted and dashed line) and ZU(the solid line) over �0 ∈ (0, 1).
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Chapter 3

Testing the superiority

3.1 Statistical hypothesis and Test Statistics

In this chapter, we consider testing the superiority with the conventional

complementary null hypothesis,

H02 : �1 ≤ �2 vs. H1 : �1 > �2.

Recall that the null parameter space is denoted as Ω02 = {(�1, �2) : �1 ≤
�2, �1 > 0}, which is region above and includes the diagonal line, see Figure

2.1 in Chapter 2. The two types of Wald statistic, ZR, ZU are employed

as test statistics. First, their correspondent asymptotic testing procedures

will be investigated. Since this chapter and Chapter 2 only differ in the

null hypothesis, which affects the validity property of a test. Hence, in next

section, we will focus on justifying the validity of the two asymptotic tests.

The two exact tests based on the confidence-set p-value and the estimated

p-value will be introduced in this chapter. Because the null parameter space

becomes wider here, computation of an exact test increases and becomes

more complicated. Hence one important goal of our study is to develop
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efficient exact tests with successful reduction in computations. The details

will be given in Section 3.3. Later the results of a numerical study will be

presented and discussed in Section 3.4.

3.2 Asymptotic p-values

If the means of two groups are relative large or sample sizes are sufficiently

enough, an asymptotic test under normality can be considered in this prob-

lem. Since the alternative hypothesis remains the same as Chapter 2, we

have the same results in the property of unbiasedness for the testing pro-

cedures and it suffices to investigate their validity here. In this section, we

study the two asymptotic testing procedures based on the p-values pA,R and

pA,U defined in Chapter 2. From Theorem 1 in Chapter 2, recall that the

asymptotic distributions of ZR and ZU are expressed as follows,

ZR ⋅ � − �
d→ N(0, 1) and ZU − �

d→ N(0, 1) as n1, n2 →∞.

In which,

� =
�0√

(1+�)�2+�0
n2�

, � =

√
(1 + �)�2 + ��0

(1 + �)�2 + �0

.

Consequently, the asymptotic power functions of the two asymptotic tests

are respectively represented as follows:

�̄ZR(�0, �2, �, n2) = 1− Φ (z�� − �) ,

and

�̄ZU (�0, �2, �, n2) = 1− Φ (z� − �0) .

Under H02, we have �0 = �1 − �2 ≤ 0. If the sampling fraction � ≤ 1,

then the component � in �̄ZR is easily found greater than 1, and z��−� ≥ z�
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is always true. Further, taking the partial derivative of �̄ZR with respect to

�0, we find that �̄ZR increases as �0. Hence, the maximum of �̄ZR occurs at

�0 = 0 and is equal to �. It means that the asymptotic test by using the

p-value pA,R is asymptotic valid when � ≤ 1. However, when � > 1, the

power �̄ZR may exceed the level � whenever

z�� − � < z�. (3.1)

It is likely to happen with an extremely large � when the true �1 is close to

zero and �0 is nearly −�2. Figure 3.4 give the plots of the asymptotic power

function �̄ZR for �0 ∈ (−0.3, 0) with n2 = 5, �2 = 0.3 at various scenarios of

�. In the left panel, one can see that �̄ZR has maximal value � at �0 = 0 as

� < 1 or � is not far greater than 1. On the other hand, in the right panel,

where the power functions are evaluated at � = 18, 25, 30, we discover that

�̄ZR can exceed � in the area where �0 is close to the boundary −�2 = −0.3.

The magnitude and area of the inflation of the type I error rate become

severe as � increases. However, this fault can be improved when sample sizes

increase sightly. Note that we have shown that the asymptotic test based on

ZR is asymptotic valid under the null hypothesis of equality H01 in Chapter

2. Here in this section, the test is found not able to control its type I error

rate at significance level when the first group has an extremely larger sample

size than the second group. Note that in Chapter 2, we have shown that

the two-independent-sample T -test has the same asymptotic distribution as

ZR. They own the same asymptotic properties for sufficiently large n1, n2.

On the other hand, we find that �̄ZU increases as �0. Hence its maximum

occurs at �0 = 0 and is equal to �. Thus the asymptotic test by using ZU is

asymptotic valid under H02.

In summary, we find from Chapter 2 and Chapter 3 that the asymptotic

test correspondent to ZU is asymptotic valid under both H01, H02 and is

always unbiased. On the other hand, the tests by using the p-values pA,R
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and pT of the test statistics ZR, T are asymptotic valid under H01, but no

longer valid under H02 when � is extremely large. Further, recall from last

chapter, the two tests are biased under such circumstances.
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3.3 Exact p-values

When the sample sizes are insufficient or the mean values are relatively small,

exact testing procedures are more appropriate for establishing the superiority.

Consider the Wald statistic Z, where Z can be either ZR or ZU . Under the

null hypothesis of non-superiority, H02, the exact p-value given an observed

z0 is defined as follows,

p(�1,�2)(z0) = P (Z ≥ z0∣H02 : 0 < �1 ≤ �2)

=
∑
y1≥0

∑
y2≥0

poi(y1, n1�1)poi(y2, n2�2)I{Z≥z0},

where poi(y, �′) is the probability function of Poisson distribution with mean

�′, and y1, y2 are possible outcomes of Y1, Y2, respectively. The exact p-value

p(�1, �2) depends on two nuisance parameters. Again to control the size of

a testing procedure, one can consider the standard p-value, which is defined

as the supremum of the exact p-value over the null parameter space. Recall

that in last chapter, an exact p-value involves only single nuisance parameter,

the common mean value under H01. Hence, the supremum is searched only

along the main diagonal �1 = �2. Now because the null parameter space

becomes wider, computing a standard exact p-value is a more complicated

task here. In this chapter we aim to find the testing procedures that are

efficient in reducing calculations of p-values. The first strategy is to reduce

the range for the supremum search. Again, the confidence-set p-value and a

revised estimated p-value are proposed in this section.

Under H02, the confidence-set p-value by Berger and Boos (1994) is de-

fined as,

pCI = sup
(�1,�2)∈C∗



P (Z ≥ z0∣0 < �1 ≤ �2) + .

In which C∗ is a joint confidence set of (�1, �2) that guarantees 100(1− )%
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confidence within the null parameter space Ω02. That is,

P ((�1, �2) ∈ C∗ ∣�1, �2) ≥ 1− , for any (�1, �2) ∈ Ω02,

where Ω02 = {(�1, �2) : 0 < �1 ≤ �2}. The construction of a confidence

set in a restricted parameter space is less straight forward. Subsequently,

we propose to truncate a confidence set that is build under the unrestricted

parameter space. Consider the following cross-product set,

C,0 = {(�1, �2) : L1 ≤ �1 ≤ U1, L2 ≤ �2 ≤ U2},

where (L1, U1) and (L2, U2) are two independent 100
√

(1− )% confidence

interval of �1 and �2 respectively. Then it is easily shown that C,0 is a

100(1−)% confidence set of (�1, �2) in the unrestricted parameter space Ω.

Next theorem shows that the coverage probability of the truncated confidence

set, which is defined as the intercept of C,0 and Ω02, is at least 1−  under

Ω02.

Theorem 4. Let C∗ = C,0 ∩Ω02 be the truncated confidence set. Then

P ((�1, �2) ∈ C∗ ∣ �1, �2) ≥ 1− , for all (�1, �2) ∈ Ω02.

Again (L1, U1) and (L2, U2) are derived through the relation between

Poisson distribution and chi-squared distribution, and are respectively rep-

resented as follows,

(L1, U1) =
1

2n1

(
�2

(1−(1−
√

1−)/2, 2Y1), �
2
((1−

√
1−)/2, 2(Y1+1))

)
,

and

(L2, U2) =
1

2n2

(
�2

(1−(1−
√

1−)/2, 2Y2), �
2
((1−

√
1−)/2, 2(Y2+1))

)
.
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Furthermore, C∗ is of the following form,

C∗ = {L1 ≤ �1 ≤ min(U1, �2), L2 ≤ �2 ≤ U2} .

Consequently, the correspondent confidence-set p-value of ZR is given by

p()

CI,R = sup
(�1,�2)∈C∗



P (ZR ≥ zR∣0 < �1 ≤ �2) + ,

and the correspondent confidence-set p-value of ZU is given by

p()

CI,U = sup
(�1,�2)∈C∗



P (ZU ≥ zU ∣0 < �1 ≤ �2) + ,

as long as the realization of C∗ is not empty. When the observed C,0 is

completely outside of Ω02, then C∗ is empty. In this case, we define pCI =

 < �, and reject the null hypothesis H02. This confidence-set p-value is

always valid. However, C∗ is still a large region and the calculations required

for the p-value pCI are not as easy as before. In the following, a sufficient

condition on the test statistic for its correspondent p-value to own some kind

of monotonicity is introduced. The monotonicity ensures that the supremum

occurs at the boundary. As a consequence, computational burden is greatly

reduced.

Barnard (1947) proposed the so-called convexity condition for a test

statistic in a bivariate discrete distribution. The condition is described as

follows:

S(s1, s2) ≤ S(s1 + 1, s2) and S(s1, s2) ≤ S(s1, s2 − 1),

where (s1, s2) is a realization of the two discrete random variables. The con-

dition means that: If an outcome leads to reject the null hypothesis, then

the outcome with greater value of the random variable in the first population

or smaller value of the random variable in the second population, leads to

reject the null hypotheses as well. Röhmel and Mansmann (1999) derived
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the property that whenever the test statistic S satisfies the convexity condi-

tion, the supremum of the exact p-value is a maximum and is attained at a

boundary point under the Binomial distribution. We show that the property

holds in comparing two Poisson means in next theorem.

Theorem 5. Let S be a test statistic that depends on the data only

through the two sufficient statistics (Y1, Y2) in comparing two Poisson means.

Suppose S satisfies the convexity condition. Then given s0, the supremum

of P (S ≥ s0∣�1, �2) occurs at a boundary point of the parameter space.

Theorem 6. ZR, ZU satisfy the convexity condition.

The convexity of ZU , ZR in Theorem 6 is shown from the monotonicity

of ZU and ZR with respect to Y1 and Y2, see Appendix A.6. Hence, by

Theorem 5 and 6, we obtain that the confidence-set p-values of ZR and ZU

are evaluated in the boundary of the confidence set C∗ . That is,

p()

CI,R = sup
(�1,�2)∈∂C∗



P (ZR ≥ zR∣�1, �2) + ,

p()

CI,U = sup
(�1,�2)∈∂C∗



P (ZU ≥ zU ∣�1, �2) + ,

where ∂C∗ is the boundary of C∗ . Therefore, we discover that the two associ-

ated confidence-set p-values based on ZR and ZU can have their computations

dramatically reduced.

Moreover, the probabilities, P (ZR ≥ zR∣�1, �2), P (ZU ≥ zU ∣�1, �2) can

be shown to be increasing as �1 increases and �2 decreases, see the proof

of Theorem 5 in Appendix. Hence, when C∗ is non-empty, the supremums

for the confidence-set p-values based on ZR, ZU either occur at the point
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(U1, L2) or somewhere on the diagonal. Again the supremums are found by

grid-search method in the latter case.

In testing the null hypothesis of equality, the estimated exact p-value

proposed by Krishnamoorthy and Thomson (2004) although does not guar-

antee theoretical validity, but has great computational efficiency and gives

satisfactory performance in numerical studies. In the following, we adapt the

idea and propose an estimated exact p-value for testing the null hypothesis

of non-superiority. Define the estimated exact p-values as

pE,R = P (ZR ≥ zR∣�̃01, �̃02), pE,U = P (ZU ≥ zU ∣�̃01, �̃02),

where (�̃01, �̃02) are some estimators of (�1, �2) under the restricted null pa-

rameter space Ω02. Potential candidates for (�̃01, �̃02) are the RMLEs on Ω02.

However, because directly solving for RMLEs is quite difficult, we consider

a revised procedure. First solve for the unrestricted MLEs (�̂1, �̂2). If it

happens that (�̂1, �̂2) ∈ Ω02, i.e. �̂1 ≤ �̂2, (�̂1, �̂2) are exactly the RMLEs

under Ω02 and let (�̃01, �̃02) = (�̂1, �̂2). However, if �̂1 > �̂2, we take the

RMLE under the diagonal �1 = �2, i.e. (�̃01, �̃02) = (�̃0, �̃0). In summary,

(�̃01, �̃02) =

⎧⎨⎩ (�̂1, �̂2), if �̂1 ≤ �̂2;

(�̃0, �̃0), if �̂1 > �̂2.

The reason for selecting the RMLE under the diagonal is for a conservative

conclusion. It’s known that the exact p-value is an increasing function as the

parameter point (�1, �2) moves toward the down-right direction. To avoid a

liberal conclusion, the p-value is evaluated at the most down-right location

of Ω02, which is on the main diagonal. In next section, we will conduct

extensive numerical studies to compare the performance of these proposed

testing procedures.
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3.4 Numerical Studies

In the numerical studies, the test statistics used are ZR, ZU and T . For

ZR, ZU , the asymptotic test by using the asymptotic p-value, denoted as pA,

and the two exact tests by using the confidence-set p-value and the estimated

p-value, denoted as pE, are investigated. Two confidence-set p-values are con-

structed at  = 0.001, 0.005, and denoted as p(=0.001)

CI,⋅ , p(=0.005)

CI,⋅ , respectively.

For the two-independent-sample T statistic, only the test by using pA calcu-

lated from a t-distribution is studied. Because the Wald statistics are func-

tions of the two sufficient statistics, the exact powers of the associated tests

can be easily computed. On the other hand, the power of the T -test is found

through 100,000 replicates. We consider �2 = 1, 2, n2 = 10, � = 3/5, 1, 5/3,

and �0 is ranged within -0.25 to 2. The scenarios of �0 ≤ 0 correspond to null

cases, while that of � > 0 are the alternative ones. Table 3.1-3.2 present the

power at 5% significant level.

First, we compare the three asymptotic tests in Table 3.1 and 3.2. We

find that although ZR and T have different numerical results in the finite

sample case, they have quite consistent patterns as presented in Chapter 2.

When � = 1, ZR and ZU are of the same form and have completely the same

results.

Theoretically, as � ≤ 1, the type I error rate of ZR (T ) increases as �0, and

has its maximum � = 5% occurred at �0 = 0 approximately. One finds the

consistent trend in the finite-sample cases from Table 3.1 and 3.2. However,

the maximal type I error rate, occurred at �0 = 0, exceeds the nominal level

for � = 3/5. On the other hand, ZU is found being not able to control its type

I error rate when � = 5/3. Recall that ZU is always valid asymptotically. In

Table 3.1 and 3.2, all the power of the three tests increase with �0 > 0. When
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� = 3/5 < 1, ZR and T have more chance to reject the null hypothesis than

ZU . The trend is contrary when � = 5/3 > 1. In summary, the findings on

the comparison between the three asymptotic tests are the same as Chapter

2.

On the other hand, we can find that the two exact p-values almost have

their sizes well controlled at � = 5%. The only exception is at �2 = 2, �0 =

0, � = 3/5, at where the estimated p-value of ZU has a type I error rate

5.3%. Using the same test statistic, the size of the estimated p-value pE

is always more close to the nominal level and is more efficient in computa-

tions than the confidence-set p-value pCI . However, the estimated p-value is

not theoretically valid and sometimes exceeds the nominal level as found in

the exception. For the estimated p-value, the use of ZU brings about more

powerful results than ZR when � ∕= 1.

For a confidence-set p-value, a larger  leads to less computations involved

for the supremum search. However, with a trade-off term, which adjusts for

the selection of , of the confidence-set p-value, the performance of the test is

not significantly affected by . As other testing procedures, the test statistic

used in the confidence-set p-value causes some effect on the performance.

Interestingly, the trend is totally opposite to that of the asymptotic tests.

Here compared with the use of ZR, the employment of ZU is more powerful

at � < 1, and less powerful at � > 1.
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Table 3.1: Type I error rate and power of asymptotic p-value and exact p-value at
�2 = 1, n2 = 10, these p-values are based on test statistics T,ZR, ZU respectively.

Test �
� Statistic p-value -0.25 -0.15 -0.1 -0.05 0.0 0.1 0.5 1.0 1.5 2.0

3/5 T pA,T 0.0170 0.0279 0.0348 0.0430 0.0526 0.0772 0.2166 0.4709 0.7053 0.8627

ZR pA,R 0.0157 0.0266 0.0337 0.0421 0.0519 0.0757 0.2298 0.5024 0.7432 0.8907

p
(=0.001)
CI,R

0.0096 0.0176 0.0231 0.0297 0.0375 0.0574 0.1942 0.4524 0.6999 0.8655

p
(=0.005)
CI,R

0.0097 0.0176 0.0232 0.0297 0.0375 0.0574 0.1941 0.4520 0.6990 0.8643

pE,R 0.0137 0.0233 0.0297 0.0372 0.0460 0.0675 0.2099 0.4728 0.7194 0.8781

ZU pA,U 0.0082 0.0153 0.0202 0.0262 0.0334 0.0517 0.1833 0.4425 0.6942 0.8623

p
(=0.001)
CI,U

0.0129 0.0228 0.0293 0.0370 0.0461 0.0682 0.2120 0.4743 0.7199 0.8782

p
(=0.005)
CI,U

0.0107 0.0197 0.0258 0.0330 0.0416 0.0628 0.2037 0.4629 0.7085 0.8706

pE,U 0.0145 0.0250 0.0318 0.0399 0.0493 0.0721 0.2199 0.4871 0.7310 0.8841

1 T pA,T 0.0140 0.0248 0.0320 0.0408 0.0507 0.0762 0.2443 0.5479 0.7995 0.9315

ZR pA,R 0.0126 0.0230 0.0301 0.0387 0.0489 0.0748 0.2554 0.5773 0.8279 0.9477

p
(=0.001)
CI,R

0.0123 0.0227 0.0298 0.0384 0.0487 0.0746 0.2544 0.5724 0.8223 0.9451

p
(=0.005)
CI,R

0.0104 0.0191 0.0251 0.0326 0.0415 0.0646 0.2350 0.5554 0.8145 0.9422

pE,R 0.0123 0.0227 0.0298 0.0384 0.0487 0.0747 0.2554 0.5773 0.8279 0.9477

ZU pA,U 0.0126 0.0230 0.0301 0.0387 0.0489 0.0748 0.2554 0.5773 0.8279 0.9477

p
(=0.001)
CI,U

0.0123 0.0227 0.0298 0.0384 0.0487 0.0746 0.2544 0.5724 0.8223 0.9451

p
(=0.005)
CI,U

0.0104 0.0191 0.0251 0.0326 0.0415 0.0646 0.2350 0.5554 0.8145 0.9422

pE,U 0.0123 0.0227 0.0298 0.0384 0.0487 0.0747 0.2554 0.5773 0.8279 0.9477

5/3 T pA,T 0.0110 0.0203 0.0285 0.0370 0.0474 0.0735 0.2712 0.6269 0.8719 0.9699

ZR pA,R 0.0101 0.0196 0.0264 0.0351 0.0457 0.0736 0.2831 0.6497 0.8918 0.9782

p
(=0.001)
CI,R

0.0101 0.0196 0.0265 0.0351 0.0457 0.0736 0.2831 0.6495 0.8912 0.9776

p
(=0.005)
CI,R

0.0092 0.0183 0.0248 0.0329 0.0429 0.0694 0.2731 0.6391 0.8852 0.9757

pE,R 0.0112 0.0216 0.0289 0.0379 0.0488 0.0771 0.2858 0.6560 0.8954 0.9792

ZU pA,U 0.0159 0.0292 0.0384 0.0496 0.0629 0.0964 0.3250 0.6888 0.9100 0.9831

p
(=0.001)
CI,U

0.0082 0.0168 0.0231 0.0312 0.0411 0.0674 0.2678 0.6323 0.8864 0.9771

p
(=0.005)
CI,U

0.0082 0.0168 0.0231 0.0312 0.0411 0.0674 0.2676 0.6293 0.8806 0.9747

pE,U 0.0111 0.0216 0.0291 0.0385 0.0499 0.0795 0.2945 0.6592 0.8957 0.9793
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Table 3.2: Type I error rate and power of asymptotic p-value and exact p-value at
�2 = 2, n2 = 10, these p-values are based on test statistics T,ZR, ZU respectively.

Test �
� Statistic p-value -0.25 -0.15 -0.1 -0.05 0.0 0.1 0.5 1 1.5 2

3/5 T pA,T 0.0246 0.0345 0.0403 0.0458 0.0527 0.0666 0.1582 0.3345 0.5299 0.7120

ZR pA,R 0.0242 0.0338 0.0395 0.0459 0.0529 0.0694 0.1669 0.3516 0.5618 0.7433

p
(=0.001)
CI,R

0.0191 0.0274 0.0325 0.0382 0.0446 0.0597 0.1524 0.3341 0.5451 0.7302

p
(=0.005)
CI,R

0.0183 0.0261 0.0309 0.0363 0.0424 0.0567 0.1453 0.3219 0.5310 0.7179

pE,R 0.0215 0.0305 0.0359 0.0419 0.0486 0.0644 0.1595 0.3432 0.5540 0.7368

ZU pA,U 0.0177 0.0253 0.0299 0.0351 0.0409 0.0546 0.1396 0.3110 0.5177 0.7060

p
(=0.001)
CI,U

0.0214 0.0303 0.0356 0.0415 0.0482 0.0637 0.1570 0.3374 0.5467 0.7308

p
(=0.005)
CI,U

0.0195 0.0277 0.0326 0.0382 0.0444 0.0590 0.1481 0.3240 0.5320 0.7183

pE,U 0.0232 0.0329 0.0388 0.0455 0.0530 0.0706 0.1811 0.4002 0.6415 0.8260

1 T pA,T 0.0204 0.0304 0.0366 0.0439 0.0500 0.0680 0.1744 0.3880 0.6236 0.8075

ZR pA,R, 0.0201 0.0295 0.0354 0.0420 0.0496 0.0675 0.1818 0.4073 0.6508 0.8333

p
(=0.001)
CI,R

0.0190 0.0281 0.0337 0.0401 0.0475 0.0649 0.1769 0.3988 0.6413 0.8267

p
(=0.005)
CI,R

0.0178 0.0264 0.0317 0.0378 0.0448 0.0613 0.1683 0.3853 0.6285 0.8177

pE,R 0.0201 0.0295 0.0354 0.0420 0.0496 0.0675 0.1818 0.4073 0.6508 0.8333

ZU pA,U 0.0201 0.0295 0.0354 0.0420 0.0496 0.0675 0.1818 0.4073 0.6508 0.8333

p
(=0.001)
CI,U

0.0190 0.0281 0.0337 0.0401 0.0475 0.0649 0.1769 0.3988 0.6413 0.8267

p
(=0.005)
CI,U

0.0178 0.0264 0.0317 0.0378 0.0448 0.0613 0.1683 0.3853 0.6285 0.8177

pE,U 0.0201 0.0295 0.0354 0.0420 0.0496 0.0675 0.1818 0.4073 0.6508 0.8333

5/3 T pA,T 0.0178 0.0273 0.0328 0.0410 0.0480 0.0657 0.1925 0.4464 0.7058 0.8804

ZR pA,R 0.0173 0.0268 0.0328 0.0398 0.0479 0.0677 0.1993 0.4608 0.7274 0.8981

p
(=0.001)
CI,R

0.0172 0.0265 0.0325 0.0393 0.0473 0.0665 0.1954 0.4573 0.7266 0.8980

p
(=0.005)
CI,R

0.0161 0.0248 0.0303 0.0366 0.0442 0.0624 0.1879 0.4495 0.7148 0.8875

pE,R 0.0182 0.0279 0.0341 0.0413 0.0497 0.0700 0.2060 0.4702 0.7311 0.8987

ZU pA,U 0.0220 0.0335 0.0407 0.0491 0.0587 0.0817 0.2287 0.4987 0.7554 0.9118

p
(=0.001)
CI,U

0.0161 0.0252 0.0311 0.0379 0.0458 0.0651 0.1952 0.4584 0.7270 0.8980

p
(=0.005)
CI,U

0.0152 0.0235 0.0289 0.0351 0.0424 0.0602 0.1851 0.4459 0.7109 0.8859

pE,U 0.0183 0.0280 0.0342 0.0415 0.0498 0.0703 0.2089 0.4793 0.7377 0.9003
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Figure 3.1: The asymptotic power function of the ZR (dotted and dashed
line) and the ZU (dashed line) when n2 = 5, �2 = 0.3, �0 = −0.3 : 0.05 : 0,
� = 3/5, 1, 5/3 in the left panel, � = 18, 25, 30 in the right panel.
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Chapter 4

Non-inferiority Test

So far, our study focuses on identification of the superiority. It is sometimes

unnecessary to draw such a strong conclusion. Instead, the non-inferiority

test is of interest. For example (Lui, 2005), there are two air filter systems in

an air pollution research, it is examined that the cheaper system is not inferior

than the other one. That is, one aims to achieve the following alternative

hypothesis,

Ha : �1 > �2 −Δ0.

In which, the non-inferiority limit Δ0 is a positive real number and is prede-

termined by the investigators or experts of the related professional fields. In

a clinical non-inferiority trial, it is commonly chosen as 0.2�2 (Lui, 2005).

In next section, the Wald test statistics will be redefined first due to the

presence of the non-zero non-inferiority limit. Their correspondent asymp-

totic testing procedures will be explored as well as two types of exact testing

procedures later in this chapter. Regarding the asymptotic tests, we will de-

rive their asymptotic distribution and power function for further verification

on validity and unbiasedness. For the exact tests, the confidence-set p-value
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will be considered. It has been shown in Chapter 3 that once a test statistic

satisfies the convexity condition, there is a great reduction in computation

of a confidence-set p-value. The convexity of the two new-defined Wald test

statistics will be justified in later section. On the other hand the estimated

p-value will be applied for this problem. This chapter will end up with nu-

merical studies on the type I error rate and power, as well as the sample size

formulae of these proposed testing procedures.

4.1 Statistical Hypothesis and Test Statistics

Given some Δ0 > 0, consider the following hypothesis⎧⎨⎩ H03 : �1 ≤ �2 −Δ0,

Ha3 : �1 > �2 −Δ0.

The null space corresponding H03 is Ω03 = {�1 ≤ �2 −Δ0}, see Figure 2.1.

The Wald test statistic with respect to the non-inferiority test can be

easily derived and has the following form:

Z∗ =
�̂ + Δ0

se(�̂)
,

where �̂ = Ȳ1 − Ȳ2 is the MLE of � = �1 − �2, and se(�̂) is obtained by

plugging some consistent estimators of �1, �2 in the standard error of �̂. In

this study, two estimators of �1, �2 are considered: The unconstrained and

constrained MLE. The test statistic with the unconstrained estimator of the

standard error can be easily seen and given as

ZU∗ =
Ȳ1 − Ȳ2 + Δ0√

�̂1

n1
+ �̂2

n2

.
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On the other hand, the constrained MLE is solved by maximizing the likeli-

hood

L(�1, �2) = Y1 ln�1 − n1�1 + Y2 ln�2 − n2�2,

subject to �1 = �2 + Δ0. The restricted MLE(RMLE) of �2 and �1 can be

found as follows (see Appendix A.7 for details),

�̃2 =
1

2

⎧⎨⎩�̃0 + Δ0 +

√
(�̃0 + Δ0)2 − 4�̂2Δ0

1 + �

⎫⎬⎭
and

�̃1 =
1

2

⎧⎨⎩�̃0 −Δ0 +

√
(�̃0 + Δ0)2 − 4�̂2Δ0

1 + �

⎫⎬⎭ .

Consequently, the Wald test statistic with the constrained estimator of the

standard error is given as follows,

ZR∗ =
Ȳ1 − Ȳ2 + Δ0√

�̃1

n1
+ �̃2

n2

.

Note that in previous chapters, the two Wald test statistics correspondent

to the superiority test are shown exactly of the same form when � = 1.

However, the property is no longer true with respect to ZR∗ and ZU∗ .

4.2 Asymptotic p-values

First of all, consider the asymptotic testing procedures based on the two

asymptotic p-values at some observed zR∗ , zU∗ ,

pA,R∗ = 1− Φ(zR∗), pA,U∗ = 1− Φ(zU∗).

The following theorem gives the asymptotic distributions of ZR∗ and ZU∗

in this Poisson problem. Subsequently, the correspondent asymptotic power
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function and the behavior of type I error rate of two asymptotic tests can be

further investigated. Define �∗ = �1 − �2 + Δ0 and �∗0 be the correspondent

true value.

Theorem 7. As n1, n2 →∞,

ZR∗�∗ − �∗ d→ N(0, 1), ZU∗ − �∗ d→ N(0, 1),

where

�∗2 =
(1 + �)�2 −Δ0 + ��∗0 +

√
((1 + �)�2 + Δ0 + ��∗0)2 − 4�2Δ0(1 + �)

2((1 + �)�2 −Δ0 + �∗0)
,

and

�∗ =
�∗0√

�2(1+�)+�∗0
n2�

.

By Theorem 7, we can show that the asymptotic tests of ZR∗ and ZU∗

have their power functions as follows,

�̄ZR∗ (�∗0, �2, n2, �,Δ0) = 1− Φ(z��
∗ − �∗), (4.1)

and

�̄ZU∗ (�∗0, �2, n2, �,Δ0) = 1− Φ(z� − �∗), (4.2)

approximately.

By (4.1) and (4.2), under �∗0 = 0, �∗ = 1, �∗ = 0, and

�̄ZR∗ = �̄ZU∗ = 1− Φ(z�) = �.

That is, the type I error rates of both tests achieve the significance level �

at the boundary of the null parameter space. Further by (4.2), we can find
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that the maximal type I error rate of ZU∗ occurred at �∗0 = 0 and is equal to

�. Hence the asymptotic test based on ZU∗ is a valid test asymptotically.

On the other hand, with a complicated component �∗ involved, the jus-

tification of validity of ZR∗ is less straight forward. By simple algebra the

following inequality about �∗ can be shown,√
(1 + �)�2 −Δ0 + ��∗0
(1 + �)�2 −Δ0 + �∗0

≤ �∗. (4.3)

When � ≤ 1, from (4.3), then �∗ ≥ 1, and hence z��
∗ − �∗ ≥ z�, for any

�∗0 < 0. We can find that the maximum of �̄ZR∗ occurred at �∗0 = 0 and is equal

to �. Therefore, the type I error rate of ZR∗ is controlled at the significance

level �, and the correspondent asymptotic p-value is asymptotically valid

whenever � ≤ 1. For example, Figure 4.1 gives the plots of the asymptotic

type I error rate of ZR∗ versus �∗0 at �2 = 0.2, n2 = 2,Δ0 = 0.2�2 and � = 5%.

The three plots on the left panel are correspondent to � = 0.2, 0.5, 0.8. One

can see that the type I error rate increases with �∗0 and the maximum, equal

to �, occurs at the boundary �∗0 = 0. We further find that as long as � is not

too unbalanced, the type I error rate can be still controlled. See the right

panel of Figure 4.1 for � = 1.2, 1.4, 1.6. In contrast, when � > 1, the type

I error rate can exceed the nominal level � especially when � is extremely

large, and n2 is relatively small. See the left panel of Figure 4.2 for the type I

error rate of ZR∗ with � = 1.7, 3, 5 and n2 = 2. However, as the sample sizes

are slightly increased, the inflation of the type I error rate can be successfully

improved. In the previous example, if n2 is increased from 2 to 7, the type I

error rates are then controlled within the level �, see the right panel of Figure

4.2. In summary, the asymptotic test based on ZR∗ is not always valid when

the first group is extremely larger than the second group, � >> 1, and the

group sizes are small.

Next we focus on the investigation on the power function of the two
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asymptotic testing procedures over the alternative parameter space. It can

be easily shown that the power function of ZU∗ is always greater than or equal

to �. That is, it is asymptotically unbiased. However, similar to previous

results, the performance of ZR∗ is more complicated.

First, we examine the case that �2 → 0. When one considers that Δ0

is proportional to �2, the non-inferiority limit approaches to 0 as �2. Given

�∗0, n2, we can find that �∗ →
√
n2��∗0, �

∗ → √� as �2 approaches to 0, then

we have

lim
�2→0

�̄ZR∗ = 1− Φ(z�
√
�−

√
n2��∗0).

As � ≤ 1, the limit always exceeds �. But, it is not necessarily true when

� > 1. In Figure 4.3, all the power functions �̄ZR∗ are above the level � = 5%

when �2 = 0.02, n2 = 2 and � = 0.2, 0.4, 0.6, 0.8, 1, 1.2. In the left panel of

Figure 4.4, we see that the unbiasedness breaks down when � exceeds 1.3.

Again, the problem can be improved with a slight increment in the sample

size. In this example, the power function becomes no less than � when n2 is

increased from 2 to 7, see the right panel of Figure 4.4.

Next, we study the case that �2 →∞. It follows that �∗ → 0, �∗ → 1 as

�2 approaches to infinite given some �∗0, n2. Then, the power converges to

lim
�2→∞

�̄ZR∗ = 1− Φ(z�) = �.

The limit is then independent with � as �2 approaches to infinite. For �2 =

100, 200, n2 = 2 and � = 0.5, 5, 50, the power is found decreasing as �2

increases. And, all the powers are above the nominal level and increase as �

increases, see Figure 4.5.

In summary, while the asymptotic test of ZU∗ is always unbiased, the

power of the asymptotic test of ZR∗ may be below the nominal level when

�2 is relatively small and � is larger than one.
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Based on power function of a testing procedure, the necessary sample size

for achievement of a prespecified power at some alternative setting at signif-

icance level can be further determined. Given �, to achieve a prespecified

power level 1−�0 at �2, �∗0 > 0, the minimal sample size of the second group

required for the ZR∗ and ZU∗ at significance level � is given as

n2,ZR∗ ≥
(
z� + z�
�∗0

)2{
�2(1 + �)−Δ0 + �∗0

�

}
. (4.4)

and,

n2,ZU∗ ≥
(
z� + z�
�∗0

)2{
�2(1 + �)−Δ0 + �∗0

�

}
. (4.5)

respectively. The size of the first group is fund as n1 = [n2 ⋅ �] + 1.
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4.3 Exact p-values

In testing the superiority, we have found that the confidence-set p-value has

advantage of validity, and the revised estimated p-value has benefit of con-

venient use. Further both have satisfactory performances in numerical stud-

ies. Therefore, we adopt the two exact p-value in testing the non-inferiority.

The exact testing procedures of ZU∗ and ZR∗ based on the correspondent

confidence-set p-value and estimated p-value are proposed and studied. It

is known that the null parameter space of a non-inferiority test is different

from that of a superiority test. An exact p-value is defined as follows, given

an observed z0,

p∗(�1,�2)(z0) = P (Z ≥ z0∣H03 : 0 < �1 ≤ �2 −Δ0)

=
∑
y1≥0

∑
y2≥0

poi(y1, n1�1)poi(y2, n2�2)I{Z≥z0},

where poi(y, �′) is the probability function of Poisson distribution with mean

�′, and y1, y2 are possible outcomes of Y1, Y2, respectively.

To solve for the computational difficulty brought by an infinite null pa-

rameter space, a confidence-set p-value is considered. The confidence-set

p-value of ZR∗ is presented as follows,

p()

CI,ZR∗ = sup
(�1,�2)∈C∗∗



P (ZR∗ ≥ zR∗∣�1, �2) + ,

and the confidence-set p-value of ZU∗ is presented as follows,

p()

CI,ZU∗ = sup
(�1,�2)∈C∗∗



P (ZU∗ ≥ zU∗∣�1, �2) + ,

where C∗∗ is a 100(1 − )% confidence interval of �1 and �2 over the null

parameter space Ω03. Following from Chapter 3, we first consider the cross

product set C,0 = (L1, U1) × (L2, U2), where (L1, U1) is the 100
√

(1− )%
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confidence interval of �1 and (L2, U2) is the 100
√

(1− )% confidence interval

of �2. Here, the two exact interval estimates are applied,

(L1, U1) =
1

2n1

(
�2

(1−(1−
√

1−)/2, 2Y1), �
2
((1−

√
1−)/2, 2(Y1+1))

)
,

and

(L2, U2) =
1

2n2

(
�2

(1−(1−
√

1−)/2, 2Y2), �
2
((1−

√
1−)/2, 2(Y2+1))

)
.

Then C,0 is a 100(1−)% confidence interval of �1 and �2 in the unrestricted

parameter space Ω. Subsequently, the confidence set C∗∗ is constructed as

the intersection of the cross product set C,0 and Ω03. That is,

C∗∗ = C,0 ∩ Ω03 = {L1 ≤ �1 ≤ min(U1, �2 −Δ0), L2 ≤ �2 ≤ U2}.

Note that when the observed interval estimate C,0 is completely outside of

Ω03, C∗∗ is empty. In this case, we define pCI =  < �, and reject the null

hypothesis H03.

It is known that once a test statistic satisfies the Barnard convexity con-

dition, the computation of the correspondent confidence-set p-value can be

further reduced due to the monotonic property of Poisson distribution. In

the following, the two Wald test statistics are investigated to confirm whether

they satisfy the Barnard convexity condition.

Theorem 8. ZR∗ satisfy the convexity condition.

The convexity of ZR∗ in Theorem 8 is shown from the monotonicity of

ZR∗ with respect to Y1 and Y2, see Appendix A.9. As a consequence, from

Theorem 8 and 5 of Chapter 3, the confidence-set p-value of ZR∗ is evaluated

in the boundary of the confidence set C∗∗ . That is,

p()

CI,ZR∗ = sup
(�1,�2)∈∂C∗∗



P (ZR∗ ≥ zR∗∣�1, �2) + ,
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where ∂C∗∗ is the boundary of C∗∗ . The associated confidence-set p-value

based on ZR∗ can has its computation dramatically reduced. Furthermore,

the probabilities P (ZR∗ > zR∗ ∣ �1, �2) can be shown to be increasing as �1

increases and �2 decreases, see proof of Theorem 5 of Chapter 3. Therefore,

when C∗∗ is not empty, the supremum in pCI,ZR∗ either occurs at the point

(U1, L2) or somewhere on the intersect of C,0 and the line �1 = �2 −Δ0.

Next, to check the convexity condition on ZU∗ , we consider the partial

derivative of ZU∗ w.r.t. Y1 and Y2 respectively,

∂ZU∗

∂Y1

=

1
n2

1
(Y1

n1
+ Y2

n2
−Δ0) + 2Y2

n1n2
2

2(Y1

n2
1

+ Y2

n2
2
)
√

Y1

n2
1

+ Y2

n2
2

, (4.6)

∂ZU∗

∂Y2

= −
Y1

n1n2
( 2
n1

+ 1
n2

) + Y2

n3
2

+ Δ0

n2
2

2(Y1

n2
1

+ y2

n2
2
)
√

Y1

n2
1

+ y2

n2
2

. (4.7)

Since the numerator and denominator are both positive in (4.7), we can

find that the partial derivative of ZU∗ w.r.t. Y2 is negative. Then ZU∗ is

decreasing in Y2. But, (4.6) can not be showed always positive because

1
n1

(Y1

n1
+ Y2

n2
− Δ0) + 2Y2

n2
2
< 0 may occurs at some Y1, Y2 in the numerator of

(4.6). Hence, one can not conclude the monotonicity of ZU∗ in Y1. Several

contour plots of ZU∗ = k for k ranged from 2 to 10, are given in Figure 4.6-4.9

for n2 = 10, � = 3/5,Δ0 = 0.2, 2. In Figure 4.6, the point marked symbol of

star indicates a break down of monotonicity. One can see that the failure of

the convexity condition ZU∗ is likely to occur for small Y1, Y2. Further, the

content depends on the non-inferiority limit, Δ0 and �. When Δ0 = 0.2, ZU∗

satisfies the convexity condition in the full sample space, see Figure 4.7. On

the other hand, Figure 4.8 and 4.9 are the contour plots for � = 1, 5/3 and

Δ0 = 2.

Since ZU∗ fails to satisfy the Barnard convexity, the supremum in pCI,ZU∗

may occur somewhere outside the boundary of C∗∗ . However, since it is
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observed that the break-down of convexity is not severe from the numerical

study. For simplicity, we suggest to find the confidence-set p-value of ZU∗ at

the boundary ∂C∗∗ ,

p()

CI,ZU∗ = sup
(�1,�2)∈∂C∗∗



P (ZR∗ ≥ zR∗∣�1, �2) + .

Following Chapter 3.3, we propose a revised estimated p-value in testing

the non-inferiority. The estimated exact p-values based on ZR∗ and ZU∗ are

redefined as

pE,ZR∗ = P (ZR∗ ≥ zR∗∣�̃13, �̃23),

and,

pE,ZU∗ = P (ZU∗ ≥ zU∗ ∣�̃13, �̃23),

respectively. In which, �̃13 and �̃23 are some estimators of �1, �2 under the

restricted null parameter space Ω03. Again, similar to Chapter 3.3, we con-

sider a revised RMLE. First, find the unrestricted MLE �̂1 and �̂2 of �1

and �2. If �̂1 ≤ �̂2−Δ0, then �̂1, �̂2 are exact the RMLEs under Ω03 and let

(�̃13, �̃23) = (�̂1, �̂2). If �̂1 > �̂2−Δ0, we consider the RMLE on the boundary

�1 = �2 −Δ0, that is, (�̃13, �̃23) = (�̃1, �̃2). In summary,

(�̃13, �̃23) =

⎧⎨⎩ (�̂1, �̂2), if �̂1 ≤ �̂2 −Δ0;

(�̃1, �̃2), if �̂1 > �̂2 −Δ0.

In this chapter, the exact p-value bases on ZR∗ is increasing as �1 and de-

creasing as �2. respectively. The exact p-value is an increasing function as

(�1, �2) moves toward at the down-right direction. Hence, adopting the MLE

on the boundary leads to a more conservative conclusion. In next section, the

performance of these proposed testing procedures will be compared through

numerical studies.

As the Wald statistic depends on the data only through the two sufficient
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statistics (Y1, Y2), the exact power of the test correspondent to an exact p-

value, p, is given by∑
y1≥0

∑
y2≥0

poi(y1, n1�1)poi(y2, n2�2)I{p≤�},

where p is either pCI , pE of ZR∗ or ZU∗ . Given a predetermined power level

1 − �0, at some specific �2, Δ0, �0, the required sample size of the second

group is the smallest integers such that the exact power achieves level,

n2 = min{n2 :
∑
y1≥0

∑
y2≥0

poi(y1, n1�1)poi(y2, n2�2)I{p≤�} ≥ 1− �0}, (4.8)

for some � > 0. Further n1 = [n2 ⋅ �] + 1.
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4.4 Numerical Studies

Based on the two test statistics, ZU∗ , ZR∗ , the asymptotic test using the

asymptotic p-value(denoted as pA), and the two exact tests using the confidence-

set p-value and the estimated p-value(denoted as pE) are explored in this sec-

tion. There are two confidence-set p-values constructed with  = 0.001, 0.005,

and denoted as p(=0.001)

CI,⋅ , p(=0.001)

CI,⋅ , respectively. Because the Wald statistics

are function of the two sufficient statistics Y1, Y2, the powers of the associ-

ated tests can be directly calculated through their sampling distribution. In

testing the non-inferiority, the maximal acceptable non-inferiority limit Δ0 is

chosen as 0.2�2. We consider n2 = 10, � = 3/5, 1, 5/3, � = 0.05. The type I

error rate and power of four test procedures are computed at true difference

�∗0 = �1−�2 + Δ0 ranged within -0.25 to 2 for �2 = 1, 2. Table 4.1 - 4.2 show

the type I error rate and power calculated. On the other hand, the required

sample sizes of the second group to achieve 80% power at �∗0 = 0.6, 1 are

presented in Table 4.3 - 4.8. In which, only the results of the confidence-set

p-value with  = 0.001 are reported.

We first compare the two asymptotic tests in Table 4.1 and 4.2. The

two tests have monotone increasing power with �∗0. As �∗0 ≤ 0, the maximal

type I error rates of ZR∗ , ZU∗ occur at �∗0 = 0, the boundary of the null

parameter space for testing the non-inferiority. However, the finite sample

results in Table 4.1 and 4.2 show that ZR∗ has more chance in rejecting the

null hypothesis than ZU∗ when � = 3/5 < 1. It is contrary when � ≥ 1.

As �∗0 = 0, �2 = 1, the type I error rate of ZR∗(ZU∗) exceeds the significance

level � = 0.05 for � = 3/5(5/3). As the mean value increases, the inflation

of the type I error rate is reduced, but the improvement is not significant. In

summary, ZU∗ is liberal as � = 5/3, 1, and ZR∗ is liberal as � = 3/5, 1.
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Next the two exact p-values, pCI , pE are investigated. In last section,

although we have justified numerically that due to the breakdown to the

convexity condition, the supremum in pCI of ZU∗ does not guarantee to occur

at the boundary of the confidence-set. However, in this thesis, for simplicity

we propose to search for the supremum over the boundary of the confidence-

set. Here the supremums of the two confidence-set exact p-values are searched

over 16 grids on the boundary of the truncated confidence-set in the null

parameter space. From Table 4.1 to 4.2, we discover that the two exact p-

values are always well-controlled at � = 0.05. By Table 4.1 and 4.2, we find

that the power of pCI by using ZR∗ is greater than that of pCI by using ZU∗ .

The trend is not in accordance with that of the asymptotic tests. On the

other hand, in applying the estimated p-value, the two test statistics ZR∗ and

ZU∗ generate indifferent performances.

Table 4.3 - 4.8 present the required sample size of the second group for

80% power at �∗0 = 0.6, 1.0. And, based on the required sample sizes, the type

I error rate at �∗0=-0.2,-0.1,-0.05,0, and the power at �∗0=0.6 or 1 of these tests

are also reported. The results for the two asymptotic tests are based on the

asymptotic sample size formulae (4.4) and (4.5). For the two exact tests, the

figures are the minimal integers such that the exact power achieves the level

by (4.8). All the tests need less sample size when �∗0 increases, as expected.

Between the two asymptotic tests, ZU∗ needs a slightly smaller sample than

ZR∗ for � > 1. It is the contrary as � < 1. On the other hand, we find that

the exact type I error rate of two asymptotic tests often exceeds the nominal

level � = 5% as � ≥ 1. The inflation is more severe in the application of ZU∗ .

With the calculated sample size, every exact test achieves the prespecified

power level and has a well-controlled type I error rate. Similarly, for the

application of testing inferiority,the asymptotic sample sizes (4.4) and (4.5)

can be regarded as an efficient alternative of (4.8) for the exact tests. A
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much quicker solution can be obtained and the result is found to be close to

the exact sample size.
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Table 4.1: Type I error rate and power of asymptotic p-value and exact p-value at
�2 = 1, n2 = 10, these p-values are based on test statistics ZR∗ , ZU∗ respectively.

Test �∗0
� Statistic p-value -0.25 -0.15 -0.1 -0.05 0.0 0.5 1.0 1.5 2.0

3/5 ZR∗ pA,R∗ 0.0140 0.0262 0.0344 0.0442 0.0557 0.2542 0.5301 0.7630 0.9024

p
(=0.001)
CI,R∗ 0.0098 0.0185 0.0245 0.0319 0.0406 0.2182 0.5010 0.7474 0.8951

p
(=0.005)
CI,R∗ 0.0096 0.0179 0.0237 0.0306 0.0388 0.2062 0.4841 0.7352 0.8886

pE,R∗ 0.0103 0.0198 0.0264 0.0345 0.0441 0.2318 0.5136 0.7531 0.8968

ZU∗ pA,U∗ 0.0096 0.0177 0.0233 0.0300 0.0380 0.1978 0.4684 0.7223 0.8817

p
(=0.001)
CI,U∗ 0.0098 0.0185 0.0245 0.0319 0.0406 0.2182 0.5010 0.7474 0.8951

p
(=0.005)
CI,U∗ 0.0096 0.0177 0.0233 0.0300 0.0380 0.1979 0.4692 0.7242 0.8838

pE,U∗ 0.0103 0.0198 0.0264 0.0345 0.0441 0.2318 0.5136 0.7531 0.8968

1 ZR∗ pA,R∗ 0.0121 0.0233 0.0311 0.0405 0.0517 0.2726 0.6027 0.8465 0.9559

p
(=0.001)
CI,R∗ 0.0112 0.0212 0.0282 0.0368 0.0471 0.2614 0.5876 0.8361 0.9523

p
(=0.005)
CI,R∗ 0.0095 0.0185 0.0249 0.0329 0.0425 0.2482 0.5750 0.8279 0.9486

pE,R∗ 0.0113 0.0212 0.0282 0.0368 0.0471 0.2617 0.5905 0.8404 0.9545

ZU∗ pA,U∗ 0.0134 0.0245 0.0322 0.0415 0.0526 0.2727 0.6027 0.8465 0.9559

p
(=0.001)
CI,U∗ 0.0095 0.0185 0.0249 0.0329 0.0425 0.2490 0.5802 0.8346 0.9521

p
(=0.005)
CI,U∗ 0.0080 0.0161 0.0219 0.0292 0.0383 0.2381 0.5627 0.8228 0.9477

pE,U∗ 0.0113 0.0213 0.0282 0.0368 0.0472 0.2659 0.5983 0.8420 0.9537

5/3 ZR∗ pA,R∗ 0.0090 0.0185 0.0254 0.0342 0.0449 0.2833 0.6603 0.9006 0.9807

p
(=0.001)
CI,R∗ 0.0092 0.0186 0.0256 0.0343 0.0449 0.2832 0.6588 0.8958 0.9776

p
(=0.005)
CI,R∗ 0.0087 0.0174 0.0238 0.0317 0.0416 0.2774 0.6451 0.8854 0.9756

pE,R 0.0106 0.0210 0.0285 0.0379 0.0493 0.2911 0.6614 0.8997 0.9797

ZU∗ pA,U∗ 0.0155 0.0294 0.0390 0.0508 0.0648 0.3346 0.7035 0.9187 0.9851

p
(=0.001)
CI,U∗ 0.0064 0.0140 0.0198 0.0273 0.0369 0.2774 0.6583 0.8958 0.9776

p
(=0.005)
CI,U∗ 0.0064 0.0140 0.0198 0.0273 0.0368 0.2676 0.6281 0.8810 0.9753

pE,U∗ 0.0106 0.0210 0.0285 0.0379 0.0493 0.2911 0.6615 0.9006 0.9806
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Table 4.2: Type I error rate and power of asymptotic p-value and exact p-value at
�2 = 2, n2 = 10, these p-values are based on test statistics ZR∗ , ZU∗ respectively.

Test �
� Statistic p-value -0.25 -0.15 -0.1 -0.05 0.0 0.5 1 1.5 2

3/5 ZR∗ pA,R∗ 0.0228 0.0327 0.0387 0.0454 0.0529 0.1759 0.3738 0.5917 0.7712

p
(=0.001)
CI,R∗ 0.0170 0.0251 0.0302 0.0360 0.0425 0.1575 0.3535 0.5740 0.7584

p
(=0.005)
CI,R∗ 0.0165 0.0244 0.0292 0.0348 0.0410 0.1510 0.3413 0.5600 0.7466

pE,R∗ 0.0209 0.0302 0.0358 0.0422 0.0493 0.1667 0.3598 0.5768 0.7593

ZU∗ pA,U∗ 0.0176 0.0257 0.0307 0.0363 0.0427 0.1510 0.3364 0.5530 0.7408

p
(=0.001)
CI,U∗ 0.0170 0.0251 0.0302 0.0360 0.0425 0.1575 0.3535 0.5740 0.7584

p
(=0.005)
CI,U∗ 0.0153 0.0225 0.0270 0.0321 0.0379 0.1417 0.3282 0.5491 0.7403

pE,U∗ 0.0209 0.0302 0.0358 0.0422 0.0493 0.1667 0.3598 0.5768 0.7593

1 ZR∗ pA,R∗ 0.0183 0.0277 0.0336 0.0404 0.0482 0.1895 0.4297 0.6782 0.8539

p
(=0.001)
CI,R∗ 0.0178 0.0271 0.0329 0.0395 0.0471 0.1837 0.4184 0.6673 0.8473

p
(=0.005)
CI,R∗ 0.0159 0.0243 0.0296 0.0357 0.0427 0.1730 0.4046 0.6554 0.8396

pE,R∗ 0.0183 0.0277 0.0336 0.0404 0.0481 0.1884 0.4256 0.6727 0.8506

ZU∗ pA,U∗ 0.0202 0.0303 0.0366 0.0438 0.0520 0.1951 0.4327 0.6791 0.8543

p
(=0.001)
CI,U∗ 0.0168 0.0259 0.0317 0.0383 0.0459 0.1831 0.4183 0.6673 0.8473

p
(=0.005)
CI,U∗ 0.0157 0.0241 0.0294 0.0356 0.0426 0.1730 0.4046 0.6554 0.8396

pE,U∗ 0.0183 0.0277 0.0336 0.0404 0.0481 0.1884 0.4256 0.6727 0.8506

5/3 ZR∗ pA,R∗ 0.0159 0.0251 0.0311 0.0381 0.0462 0.2029 0.4733 0.7366 0.9008

p
(=0.001)
CI,R∗ 0.0164 0.0256 0.0315 0.0385 0.0466 0.2030 0.4733 0.7368 0.9014

p
(=0.005)
CI,R∗ 0.0153 0.0243 0.0300 0.0366 0.0442 0.1854 0.4437 0.7195 0.8960

pE,R∗ 0.0171 0.0264 0.0324 0.0394 0.0474 0.2032 0.4735 0.7382 0.9037

ZU∗ pA,U∗ 0.0220 0.0333 0.0404 0.0487 0.0583 0.2314 0.5096 0.7644 0.9153

p
(=0.001)
CI,U∗ 0.0155 0.0248 0.0308 0.0379 0.0461 0.2029 0.4733 0.7368 0.9014

p
(=0.005)
CI,U∗ 0.0143 0.0227 0.0280 0.0343 0.0415 0.1809 0.4384 0.7103 0.8899

pE,U∗ 0.0164 0.0256 0.0315 0.0385 0.0466 0.2030 0.4735 0.7382 0.9037
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Table 4.3: To achieve 80% power at �∗0 = 0.6, � = 3/5, the required sample size
of the second group n2 of the asymptotic p-values and exact p-value which are
conducted at ZR∗ , ZU∗ . Based on the required samples n2, the power and the type
I error rate (in parentheses) are given at various �∗0 in Ω03 .

Test �2
Statistic p-value �∗0 0.3 0.4 0.6 1 2
ZR∗ pA,R∗ n2 25 29 37 53 93

0.6 0.8132 0.8125 0.8076 0.7969 0.7960
0 (0.0485) (0.0527) (0.0519) (0.0507) (0.0506)

-0.05 (0.0237) (0.0284) (0.0291) (0.0300) (0.0312)
-0.1 (0.0093) (0.0134) (0.0148) (0.0166) (0.0182)
-0.2 (0.0004) (0.0016) (0.0026) (0.0039) (0.0052)

P
(=0.005)
CI,R∗ 27 32 39 58 100

0.6 0.8166 0.8084 0.8003 0.8103 0.8067
0 (0.0439) (0.0437) (0.0444) (0.0445) (0.0446)

-0.05 (0.0207) (0.0221) (0.0239) (0.0253) (0.0266)
-0.1 (0.0077) (0.0094) (0.0116) (0.0133) (0.0149)
-0.2 (0.0003) (0.0007) (0.0018) (0.0028) (0.0039)

PE,R∗ 25 29 39 55 98

0.6 0.8039 0.8009 0.8113 0.8099 0.8125
0 (0.0485) (0.0474) (0.0487) (0.0500) (0.0501)

-0.05 (0.0237) (0.0245) (0.0266) (0.0291) (0.0304)
-0.1 (0.0093) (0.0108) (0.0130) (0.0157) (0.0174)
-0.2 (0.0007) (0.0011) (0.0020) (0.0035) (0.0047)

ZU∗ pA,U∗ n2 29 33 41 57 97

0.6 0.8298 0.8191 0.8125 0.8096 0.8035
0 (0.0398) (0.0408) (0.0418) (0.0455) (0.0477)

-0.05 (0.0182) (0.0205) (0.0222) (0.0260) (0.0289)
-0.1 (0.0064) (0.0089) (0.0105) (0.0137) (0.0165)
-0.2 (0.0002) (0.0008) (0.0015) (0.0029) (0.0045)

P
(=0.005)
CI,U∗ 27 32 40 58 100

0.6 0.8087 0.8157 0.8131 0.8079 0.8067
0 (0.0439) (0.0416) (0.0432) (0.0443) (0.0446)

-0.05 (0.0207) (0.0203) (0.0230) (0.0252) (0.0266)
-0.1 (0.0077) (0.0082) (0.0109) (0.0133) (0.0149)
-0.2 (0.0003) (0.0006) (0.0016) (0.0028) (0.0039)

PE,U∗ 25 29 39 55 97

0.6 0.8039 0.8009 0.8113 0.8099 0.8105
0 (0.0484) (0.0474) (0.0487) (0.0500) (0.0501)

-0.05 (0.0236) (0.0245) (0.0266) (0.0291) (0.0304)
-0.1 (0.0091) (0.0108) (0.0129) (0.0157) (0.0175)
-0.2 (0.0002) (0.0011) (0.0020) (0.0035) (0.0048)
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Table 4.4: To achieve 80% power at �∗0 = 0.6, � = 1, the required sample size
of the second group n2 of the asymptotic p-values and exact p-value which are
conducted at ZR∗ , ZU∗ . Based on the required samples n2, the power and the type
I error rate (in parentheses) are given at various �∗0 in Ω03.

Test �2
Statistic p-value �∗0 0.3 0.4 0.6 1 2
ZR∗ pA,R∗ n2 19 23 29 41 72

0.6 0.8103 0.8152 0.8038 0.7976 0.7975
0 (0.0501) (0.0472) (0.0509) (0.0494) (0.0500)

-0.05 (0.0260) (0.0247) (0.0287) (0.0293) (0.0308)
-0.1 (0.0116) (0.0115) (0.0147) (0.0162) (0.0180)
-0.2 (0.0007) (0.0016) (0.0026) (0.0039) (0.0052)

P
(=0.005)
CI,R∗ 20 24 30 44 79

0.6 0.8020 0.8102 0.8009 0.8081 0.8161
0 (0.0412) (0.0439) (0.0440) (0.0444) (0.0448)

-0.05 (0.0201) (0.0228) (0.0242) (0.0256) (0.0266)
-0.1 (0.0079) (0.0103) (0.0121) (0.0137) (0.0149)
-0.2 (0.0005) (0.0012) (0.0021) (0.0030) (0.0039)

PE,R∗ 20 23 32 44 78

0.6 0.8154 0.8118 0.8389 0.8225 0.8253
0 (0.0480) (0.0458) (0.0498) (0.0492) (0.0498)

-0.05 (0.0244) (0.0243) (0.0273) (0.0286) (0.0300)
-0.1 (0.0106) (0.0113) (0.0135) (0.0154) (0.0171)
-0.2 (0.0017) (0.0014) (0.0022) (0.0035) (0.0046)

ZU∗ pA,U∗ n2 19 22 28 41 72

0.6 0.8103 0.8045 0.7967 0.8023 0.8002
0 (0.0503) (0.0537) (0.0539) (0.0517) (0.0507)

-0.05 (0.0263) (0.0301) (0.0313) (0.0308) (0.0313)
-0.1 (0.0122) (0.0149) (0.0167) (0.0171) (0.0183)
-0.2 (0.0019) (0.0021) (0.0034) (0.0042) (0.0053)

P
(=0.005)
CI,U∗ 21 24 30 44 78

0.6 0.8122 0.8089 0.8008 0.8081 0.8115
0 (0.0221) (0.0356) (0.0416) (0.0435) (0.0448)

-0.05 (0.0087) (0.0175) (0.0226) (0.0249) (0.0267)
-0.1 (0.0031) (0.0074) (0.0111) (0.0133) (0.0150)
-0.2 (0.0004) (0.0007) (0.0018) (0.0029) (0.0040)

PE,U∗ 20 23 29 42 75

0.6 0.8154 0.8118 0.8035 0.8051 0.8123
0 (0.0451) (0.0454) (0.0485) (0.0494) (0.0498)

-0.05 (0.0210) (0.0236) (0.0275) (0.0290) (0.0303)
-0.1 (0.0076) (0.0106) (0.0142) (0.0159) (0.0175)
-0.2 (0.0001) (0.0010) (0.0026) (0.0038) (0.0049)
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Table 4.5: To achieve 80% power at �∗0 = 0.6, � = 5/3, the required sample size
of the second group n2 of the asymptotic p-values and exact p-value which are
conducted at ZR∗ , ZU∗ . Based on the required samples n2, the power and the type
I error rate (in parentheses) are given at various �∗0 in Ω03.

Test �2
Statistic p-value �∗0 0.3 0.4 0.6 1 2
ZR∗ pA,R∗ n2 16 19 24 34 60

0.6 0.8026 0.8076 0.8034 0.7949 0.8009
0 (0.0389) (0.0444) (0.0472) (0.0504) (0.0489)

-0.05 (0.0198) (0.0234) (0.0267) (0.0302) (0.0301)
-0.1 (0.0093) (0.0108) (0.0138) (0.0169) (0.0176)
-0.2 (0.0007) (0.0014) (0.0028) (0.0042) (0.0051)

P
(=0.005)
CI,R∗ 17 20 25 36 64

0.6 0.8187 0.8171 0.8062 0.8052 0.8102
0 (0.0394) (0.0434) (0.0421) (0.0422) (0.0448)

-0.05 (0.0192) (0.0227) (0.0238) (0.0243) (0.0269)
-0.1 (0.0084) (0.0103) (0.0124) (0.0131) (0.0152)
-0.2 (0.0006) (0.0012) (0.0023) (0.0031) (0.0041)

PE,R∗ 16 19 24 35 63

0.6 0.8109 0.8146 0.8119 0.8089 0.8197
0 (0.0462) (0.0460) (0.0499) (0.0499) (0.0499)

-0.05 (0.0232) (0.0254) (0.0286) (0.0296) (0.0304)
-0.1 (0.0103) (0.0126) (0.0150) (0.0164) (0.0175)
-0.2 (0.0036) (0.0017) (0.0030) (0.0040) (0.0049)

ZU∗ pA,U∗ n2 13 16 21 31 57

0.6 0.7797 0.7871 0.7866 0.7846 0.7960
0 (0.0891) (0.0733) (0.0630) (0.0595) (0.0543)

-0.05 (0.0574) (0.0469) (0.0388) (0.0372) (0.0342)
-0.1 (0.0347) (0.0279) (0.0222) (0.0219) (0.0205)
-0.2 (0.0116) (0.0071) (0.0056) (0.0062) (0.0063)

P
(=0.005)
CI,U∗ 17 20 25 36 63

0.6 0.8064 0.8153 0.8062 0.8052 0.8054
0 (0.0203) (0.0347) (0.0388) (0.0421) (0.0444)

-0.05 (0.0095) (0.0165) (0.0213) (0.0242) (0.0267)
-0.1 (0.0059) (0.0062) (0.0105) (0.0130) (0.0153)
-0.2 (0.0019) (0.0003) (0.0017) (0.0029) (0.0042)

PE,U∗ 16 19 24 35 62

0.6 0.8027 0.8146 0.8119 0.8089 0.8140
0 (0.0382) (0.0460) (0.0486) (0.0499) (0.0497)

-0.05 (0.0186) (0.0253) (0.0273) (0.0296) (0.0304)
-0.1 (0.0076) (0.0126) (0.0140) (0.0164) (0.0176)
-0.2 (0.0002) (0.0015) (0.0028) (0.0040) (0.0050)
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Table 4.6: To achieve 80% power at �∗0 = 1.0, � = 3/5, the required sample size
of the second group n2 of the asymptotic p-values and exact p-value which are
conducted at ZR∗ , ZU∗ . Based on the required samples n2, the power and the type
I error rate (in parentheses) are given at various �∗0 in Ω03.

Test �2
Statistic p-value �∗0 0.3 0.4 0.6 1 2
ZR∗ pA,R∗ n2 12 13 16 22 36

1.0 0.8492 0.7810 0.7918 0.7993 0.7883
0 (0.0608) (0.0466) (0.0572) (0.0509) (0.0512)

-0.05 (0.0364) (0.0309) (0.0408) (0.0364) (0.0381)
-0.1 (0.0185) (0.0191) (0.0278) (0.0252) (0.0277)
-0.2 (0.0012) (0.0057) (0.0108) (0.0108) (0.0136)

P
(=0.005)
CI,R∗ 14 15 18 24 40

1.0 0.8347 0.8286 0.8001 0.8050 0.8143
0 (0.0371) (0.0373) (0.0437) (0.0444) (0.0444)

-0.05 (0.0228) (0.0243) (0.0293) (0.0310) (0.0321)
-0.1 (0.0122) (0.0146) (0.0184) (0.0208) (0.0226)
-0.2 (0.0000) (0.0033) (0.0056) (0.0082) (0.0104)

PE,R∗ 13 14 17 24 38

1.0 0.8120 0.8050 0.8098 0.8189 0.8007
0 (0.0407) (0.0451) (0.0510) (0.0493) (0.0502)

-0.05 (0.0230) (0.0289) (0.0340) (0.0349) (0.0370)
-0.1 (0.0106) (0.0167) (0.0212) (0.0238) (0.0266)
-0.2 (0.0003) (0.0031) (0.0062) (0.0098) (0.0128)

ZU∗ pA,U∗ n2 14 16 18 24 39

1.0 0.8124 0.8317 0.7960 0.8037 0.8042
0 (0.0262) (0.0451) (0.0359) (0.0424) (0.0453)

-0.05 (0.0147) (0.0281) (0.0230) (0.0295) (0.0330)
-0.1 (0.0073) (0.0159) (0.0138) (0.0198) (0.0234)
-0.2 (0.0006) (0.0034) (0.0038) (0.0079) (0.0109)

P
(=0.005)
CI,U∗ 13 15 18 24 40

1.0 0.8046 0.8285 0.8083 0.8042 0.8129
0 (0.0365) (0.0268) (0.0412) (0.0424) (0.0444)

-0.05 (0.0225) (0.0154) (0.0269) (0.0295) (0.0321)
-0.1 (0.0120) (0.0080) (0.0165) (0.0198) (0.0226)
-0.2 (0.0009) (0.0014) (0.0048) (0.0079) (0.0104)

PE,U∗ 12 14 17 24 38

1.0 0.8059 0.8095 0.8098 0.8189 0.8007
0 (0.0226) (0.0420) (0.0510) (0.0493) (0.0502)

-0.05 (0.0114) (0.0264) (0.0340) (0.0349) (0.0370)
-0.1 (0.0046) (0.0152) (0.0212) (0.0238) (0.0266)
-0.2 (0.0001) (0.0029) (0.0062) (0.0098) (0.0128)
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Table 4.7: To achieve 80% power at �∗0 = 1.0, � = 1, the required sample size
of the second group n2 of the asymptotic p-values and exact p-value which are
conducted at ZR∗ , ZU∗ . Based on the required samples n2, the power and the type
I error rate (in parentheses) are given at various �∗0 in Ω03.

Test �2
Statistic p-value �∗0 0.3 0.4 0.6 1 2
ZR∗ pA,R∗ n2 9 10 13 17 28

1.0 0.8152 0.8030 0.8149 0.7985 0.7936
0 (0.0391) (0.0504) (0.0513) (0.0478) (0.0498)

-0.05 (0.0225) (0.0335) (0.0351) (0.0342) (0.0370)
-0.1 (0.0108) (0.0212) (0.0227) (0.0238) (0.0269)
-0.2 (0.0004) (0.0070) (0.0077) (0.0103) (0.0133)

P
(=0.005)
CI,R∗ 10 11 14 18 30

1.0 0.8318 0.8083 0.8246 0.8009 0.8038
0 (0.0386) (0.0369) (0.0423) (0.0440) (0.0446)

-0.05 (0.0221) (0.0227) (0.0287) (0.0311) (0.0326)
-0.1 (0.0106) (0.0128) (0.0186) (0.0212) (0.0232)
-0.2 (0.0004) (0.0025) (0.0063) (0.0089) (0.0110)

PE,R∗ 10 10 13 18 29

1.0 0.8446 0.8010 0.8141 0.8174 0.8064
0 (0.0287) (0.0377) (0.0465) (0.0492) (0.0496)

-0.05 (0.0138) (0.0237) (0.0320) (0.0352) (0.0366)
-0.1 (0.0050) (0.0137) (0.0210) (0.0243) (0.0264)
-0.2 (0.0000) (0.0028) (0.0074) (0.0105) (0.0128)

ZU∗ pA,U∗ n2 9 10 12 17 28

1.0 0.8163 0.8032 0.7950 0.8038 0.7969
0 (0.0572) (0.0658) (0.0577) (0.0532) (0.0515)

-0.05 (0.0403) (0.0478) (0.0417) (0.0387) (0.0384)
-0.1 (0.0259) (0.0336) (0.0291) (0.0273) (0.0280)
-0.2 (0.0034) (0.0155) (0.0126) (0.0124) (0.0139)

P
(=0.005)
CI,U∗ 10 11 14 18 30

1.0 0.8154 0.8025 0.8246 0.8008 0.8038
0 (0.0385) (0.0314) (0.0373) (0.0416) (0.0446)

-0.05 (0.0221) (0.0217) (0.0238) (0.0291) (0.0326)
-0.1 (0.0106) (0.0145) (0.0141) (0.0198) (0.0232)
-0.2 (0.0004) (0.0053) (0.0036) (0.0081) (0.0110)

PE,U∗ 10 10 13 18 29

1.0 0.8446 0.8010 0.8091 0.8174 0.8064
0 (0.0287) (0.0377) (0.0455) (0.0488) (0.0496)

-0.05 (0.0138) (0.0237) (0.0316) (0.0347) (0.0366)
-0.1 (0.0050) (0.0137) (0.0208) (0.0239) (0.0264)
-0.2 (0.0000) (0.0028) (0.0073) (0.0100) (0.0128)
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Table 4.8: To achieve 80% power at �∗0 = 1.0, � = 5/3, the required sample size
of the second group n2 of the asymptotic p-values and exact p-value which are
conducted at ZR∗ , ZU∗ . Based on the required samples n2, the power and the type
I error rate (in parentheses) are given at various �∗0 in Ω03.

Test �2
Statistic p-value �∗0 0.3 0.4 0.6 1 2
ZR∗ pA,R∗ n2 8 9 10 14 23

1.0 0.8221 0.8264 0.7806 0.7906 0.7896
0 (0.0380) (0.0446) (0.0427) (0.0465) (0.0479)

-0.05 (0.0223) (0.0288) (0.0301) (0.0334) (0.0359)
-0.1 (0.0103) (0.0169) (0.0206) (0.0233) (0.0263)
-0.2 (0.0002) (0.0032) (0.0084) (0.0104) (0.0133)

P
(=0.005)
CI,R∗ 8 9 11 15 25

1.0 0.8136 0.8086 0.8082 0.8011 0.8072
0 (0.0378) (0.0352) (0.0420) (0.0426) (0.0443)

-0.05 (0.0223) (0.0227) (0.0289) (0.0304) (0.0323)
-0.1 (0.0103) (0.0138) (0.0191) (0.0210) (0.0230)
-0.2 (0.0002) (0.0030) (0.0073) (0.0091) (0.0109)

PE,R∗ 8 9 11 15 24

1.0 0.8348 0.8296 0.8242 0.8242 0.8080
0 (0.0380) (0.0446) (0.0489) (0.0485) (0.0497)

-0.05 (0.0223) (0.0288) (0.0336) (0.0345) (0.0366)
-0.1 (0.0103) (0.0169) (0.0220) (0.0239) (0.0263)
-0.2 (0.0002) (0.0032) (0.0078) (0.0104) (0.0127)

ZU∗ pA,U∗ n2 6 7 9 12 22

1.0 0.7863 0.7829 0.7941 0.7721 0.7916
0 (0.1250) (0.0864) (0.0728) (0.0631) (0.0567)

-0.05 (0.0975) (0.0724) (0.0546) (0.0482) (0.0432)
-0.1 (0.0684) (0.0619) (0.0399) (0.0361) (0.0323)
-0.2 (0.0102) (0.0450) (0.0192) (0.0188) (0.0171)

P
(=0.005)
CI,U∗ 9 10 12 16 25

1.0 0.8324 0.8326 0.8323 0.8151 0.8040
0 (0.0467) (0.0284) (0.0329) (0.0403) (0.0443)

-0.05 (0.0377) (0.0204) (0.0205) (0.0278) (0.0323)
-0.1 (0.0291) (0.0146) (0.0116) (0.0186) (0.0230)
-0.2 (0.0069) (0.0056) (0.0025) (0.0075) (0.0109)

PE,U∗ 8 9 11 15 24

1.0 0.8262 0.8296 0.8242 0.8243 0.8080
0 (0.0378) (0.0446) (0.0489) (0.0485) (0.0497)

-0.05 (0.0223) (0.0288) (0.0336) (0.0345) (0.0366)
-0.1 (0.0103) (0.0169) (0.0219) (0.0239) (0.0263)
-0.2 (0.0002) (0.0032) (0.0076) (0.0104) (0.0127)
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Figure 4.1: As n2 = 2, �2 = 0.2,Δ0 = 0.2�2, � = 0.2, 0.5, 0.8, 1.2, 1.4, 1.6, �0 =
−0.16 : 0.001 : 0, the asymptotic type I error rate of the ZR∗(solid line).

Figure 4.2: As n2 = 2, 7, �2 = 0.2,Δ0 = 0.2�2, � = 1.7, 3, 5, �∗0 = −0.16 :
0.001 : 0, the asymptotic type I error rate of the ZR∗(solid line).
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Figure 4.3: As n2 = 2, �2 = 0.02,Δ0 = 0.2�2, � = 0.2, 0.4, 0.6, 0.8, 1, 1.2, �∗0 =
0 : 0.001 : 0.05, the asymptotic power of the ZR∗(solid line).

Figure 4.4: As n2 = 2, 7, �2 = 0.02,Δ0 = 0.2�2, � = 1.3, 1.6, 2, �∗0 = 0 : 0.001 :
0.05, the asymptotic power of the ZR∗(solid line).
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Figure 4.5: As n2 = 2, �2 = 100, 200,Δ0 = 0.2�2, � = 0.5, 5, 50, �∗0 = 0 : 1 :
10, the asymptotic power of the ZR∗(solid line).

Figure 4.6: As n2 = 10,Δ0 = 2, � = 0.6, a contour map of ZU∗ =
2, 3, 4, 5, 6, 7, 8, 9, 10.
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Figure 4.7: As n2 = 10; Δ0 = 0.2; � = 0.6, a contour map of ZU∗ = k for
k = 2, 3, 4.

Figure 4.8: As n2 = 10; Δ0 = 2; � = 1, a contour map of ZU∗ = k for
k = 2, 3, 4, 5, 6, 7, 8, 9, 10.
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Figure 4.9: As n2 = 10; Δ0 = 2; � = 5/3, a some contour map of ZU∗ = k for
k = 2, 3, 4, 5, 6, 7, 8, 9, 10.
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Chapter 5

Real Example

5.1 Real Example

In this section, the methods introduced are applied to the breast cancer

study described in Ng and Tang (2005). Female subjects were classified

according to whether they had been examined by using X-ray fluoroscopy

during treatment for tuberculosis. The investigators suspect that the use

of X-ray fluoroscopy will lead to a higher occurrence rate of breast cancer.

Define �1 as the mean incidence number of breast cancer per person-year

of the treatment group, in which patients had received X-ray; and �2 be

the mean incidence number per person-year of the control group, in which

patients were not examined by X-ray. Then we test the following hypothesis

for establishing the superiority,

H0 : �1 = �2 H1 : �1 > �2.

On the other hand, the procedures proposed can be easily extend to the case

where every observation has a different experimental duration. Assume Yij be

the Poisson random variable in the i-th group with mij units of duration, i =
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1, 2, j = 1, 2, ⋅ ⋅ ⋅ , ni. Define n∗i =
∑ni

j=1 mij, i = 1, 2. Then ni can be replaced

by n∗i in the test statistic, one can employ the approach straightforward.

From Ng and Tang (2005), it was reported that the treatment group had

y1 = 41 cases of breast cancer in n∗1 = 28010 persons-year at risk and the

control group had y2 = 15 cases of breast cancer in n∗2 = 19017 person-

years at risk. It was found that �̂1 = 1.464, �̂2 = 0.789 and �̃0 = 1.191 per

1000 person-year. Consequently, zU = 2.2047, zR = 2.0818 with asymptotic

p-value 0.0137, 0.0187, respectively. The finding that the p-value of zU is

smaller than the p-value of zR is consistent with our numerical results. When

� > 1(here, 28010/19017=1.47), ZU tends to have a more liberal conclusion

than ZR in an asymptotic test. The estimated p-value is evaluated at �1 =

�2 = �̃0 = 0.0011. For the confidence-set p-value, the joint 99.9%(with

 = 0.001) confidence set of (�1, �2) is {0.0008 ≤ �1 = �2 ≤ 0.00177}. And

the supremum of the p-value of ZR occurs at �1 = �2 = 0.0014, and the

supremum of the p-value of ZU occurs at �1 = �2 = 0.0010. The calculated

p-value are reported in Table 5.1. All these p-values are less than � = 0.05

and lead to the conclusion of rejecting the null hypothesis. The increase in

the incidence rate of breast cancer by using the X-ray fluoroscopy achieves

statistical significance.

Table 5.1: The asymptotic, estimated and confidence-set p-value of the Wald
Z-test ZR, ZU .

p-value ZU = 2.2047 ZR = 2.0818
Asymptotic 0.0137 0.0187
Estimated 0.0186 0.0177

Confidence-set 0.0188 0.0182

76



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Chapter 6

Concluding Remarks

In this study, we investigate several asymptotic and exact statistical pro-

cedures for comparing two Poisson means in identifying the superiority and

non-inferiority. Two types of Wald test are considered, and they give different

forms with respect to the superiority and the non-inferiority test respectively.

The asymptotic power functions of the asymptotic procedures are derived and

the correspondent asymptotic sample size formula are provided in the two

testing problems. Consequently, the two asymptotic tests are compared in

terms of the asymptotic power function and the required sample size. One

concludes that the performances of the tests depend on the fraction of the

group sizes. Moreover, the trends of asymptotic power function of testing

superiority are consistent with that of testing non-inferiority. In this study,

an exact test does not mean the use of the conventional p-value, which is de-

noted as the standard p-value in Chapter 2. The test is exact in the sense that

the calculation of the p-value or is based on the exact sampling distribution

of the test statistic. In fact, in the Poisson problem, the calculation of the

exact standard p−value is rather difficult because the null parameter space

is unbounded. Two alternative procedures, in which the computation of a
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p-value is taken either over a bounded space or a single point, are considered

and proposed. The exact procedures under investigation are the confidence-

set p-value and the estimated p-value. The definition and the computation of

the exact p-values are introduced in details. The correspondent exact sam-

ple sizes for power requirement are shown to be found numerically. In this

study, intensive numerical studies are provided and it is concluded that the

asymptotic tests tend to have inflated type I error rates. On the contrary,

the exact procedures have adequate performance overall, and dominate the

asymptotic tests. Moreover, the quick solutions based on the asymptotic

sample size formulae are found to provide good approximations to the exact

sample sizes for testing superiority or non-inferiority.

The confidence-interval p-value is the sum of the supremum over a 100(1−
)% confidence region of the nuisance parameter(s) and . In which, the

figure  must be far less than the nominal level �. If not, the resultant p-value

is easy to exceed �, and the test tends to give an insignificant conclusion.

The testing procedure becomes powerless and is meaningless. Further, from

Table 4.1 and 4.2, we find that the confidence interval p-values with  = 0.001

are more powerful than that with  = 0.005 . It seems that the choice of 

affects the performance of the testing procedure. It is worthy to have more

intensive investigations on the effect of  in future study.
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Appendix

A.1

Theorem 1. Let �0 be the true value of �, and � = n1/n2 ∈ (0, 1) be the

sample size fraction of the first group to the second group. As n1, n2 →∞,

ZR� − �
d→ N(0, 1) and ZU − �

d→ N(0, 1).

Under �1 = �2 = �, define the testing statistic

ZR =
Ȳ1 − Ȳ2√
�̃0( 1

n1
+ 1

n2
)
,

where �̃0 = Y1+Y2

n1+n2
. By C. L. T, we have that

ZR =
Ȳ1 − Ȳ2√
�1

n1
+ �2

n2

=
Ȳ1 − Ȳ2√
�( 1

n1
+ 1

n2
)

d→ N(0, 1).

And,
Y1

n1

= �̂1
p→ �,

Y2

n2

= �̂2
p→ �,

Y1 + Y2

n1 + n2

p→ �,√
Y1+Y2

n1+n2√
�

p→ 1.
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Then,

ZR =
Ȳ1 − Ȳ2√
�̃0( 1

n1
+ 1

n2
)

=

Ȳ1−Ȳ2√
�( 1
n1

+ 1
n2

)√
Y1+Y2
n1+n2√
�

(By Slutsky’s theorem)

d→ N(0, 1).

Hence, we have that

P (ZR ≥ z�∣�1 = �2 = �) ≤ �.

Therefore, the ZR is valid.

Alternative, if �1 > �2 is true, the �0 = �1 − �2 is defined. The following

asymptotic distribution be hold,

Z∗ =
Ȳ1 − Ȳ2 − �0√

�1

n1
+ �2

n2

d→ N(0, 1).

And,
Y1

n1

= �̂1
p→ �1,

Y2

n2

= �̂2
p→ �2,

Y1 + Y2

n1 + n2

p→ ��1 + �2

1 + �
,√

Y1+Y2

n1+n2√
��1+�2

1+�

p→ 1.

Hence, we have that
Ȳ1−Ȳ2−�0√

�1
n1

+
�2
n2√

Y1+Y2
n1+n2√
��1+�2

1+�

d→ N(0, 1).
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Subsequently, we can find that

Ȳ1−Ȳ2−�0√
�1
n1

+
�2
n2√

Y1+Y2
n1+n2√
��1+�2

1+�

=
Ȳ1 − Ȳ2√

Y1+Y2

n1+n2

√
��1+�2

1+�√
�1

n1
+ �2

n2

− �0√
�1

n1
+ �2

n2

√
��1+�2

1+�√
Y1+Y2

n1+n2

=
Ȳ1 − Ȳ2√

Y1+Y2

n1+n2
( 1
n1

+ 1
n2

)

√
��1+�2

1+�

√
1
n1

+ 1
n2√

�1

n1
+ �2

n2

− �0√
�1

n1
+ �2

n2

(1 + op(1))

= ZR

√
��1 + �2

�1 + ��2

− �0√
�1+��2

n2�

(1 + op(1)).

Then, we have

ZR� − �0
d→ N(0, 1), as n1, n2 −→∞,

where � =
√

��1+�2

�1+��2
, �0 = �0√

�1+��2
n2�

. We can find that the behavior of ZR is

the same as the T . And, the power function of the ZR can be derived as

follows,

�̄ZR(�0, �2, n2, �) = P (ZR ≥ �∣�0)

= P (ZR� − �0 ≥ z�� − �0∣�0)

= 1− Φ(z�� − �0).

Given �, �0 and �2, the required sample sizes of the second group satisfied

the power is greater than 1− �0 is

n∗2,ZR ≥

⎛⎝z�
√

�2(1+�)+��0
�2(1+�)+�0

+ z�

�0

⎞⎠2

�2(1 + �) + �0

�
.

ZU =
�̂ − �
se(�̂)

=
�̂

se(�̂)

d→ N(0, 1), as n1, n2 →∞,
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where se(�̂) = Ȳ1

n1
+ Ȳ2

n2
. Hence,

P (ZU ≥ z� ∣ H0) ≤ �,

that is, the type I error is controlled at � asymptotically.

Under � = �0, the variance of the MLE of �, is given by

�2
�̂

=
�1

n1

+
�2

n2

,

since Ȳ1 and Ȳ2 are independent. Then the estimated standard error satisfies

se(�̂)

��̂

p→ 1, provided �1, �2 > 0.

Then according to the asymptotic normality of the MLE, Z’s easily derived

that for

ZU −
�0

�2
�̂

d→ N(0, 1).

Hence the asymptotic power of Z can be derived too as

�̄ZU (�0,�1,�,n2) = P (ZU ≥ z� ∣ � = �0)

= P (ZU −
�0

��̂
≥ z� −

�0

��̂
∣ �0)

≈ 1− Φ(z� −
�0

��̂
),

where �0
��̂

= �0 = �0√
�1+��2
n2�

.

Given �, �0 and �2, for the power greater than 1− �0, i.e.,

1− Φ(z� −
�0√

�2(1+�)+�0
n2�

) ≥ 1− �0,

the required size of the second group should satisfies

z� −
�0√

�2(1+�)+�0
n2�

≤ −z�0 .
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The necessary asymptotic sample size is thus

n∗2,ZU ≥
(
z� + z�0

�0

)2
�2(1 + �) + �0

�
.

A.2

Theorem 2. Let �0 be the true value of �, and � = n1/n2 be the sample size

fraction of the first group to the second group. As n1, n2 →∞,

T� − � d→ N(0, 1).

Under H0 : �1 = �2 = �, for some � > 0, We have

Y11, ⋅ ⋅ ⋅ , Y1n1 , Y21, ⋅ ⋅ ⋅ , Y2n2 ∼ Poi(�).

Then

Y1 =

n1∑
i=1

Y1i ∼ Poi(n1�) and Y2 =

n2∑
i=1

Y2i ∼ Poi(n2�).

By C.L.T., as n1, n2 →∞, and n1 = n2�,

√
n1(Ȳ1 − �) =

√
n2�(Ȳ1 − �)

d→ N(0, �),

and
√
n2(Ȳ2 − �)

d→ N(0, �),

√
n2(
√
�(Ȳ2 − �))

d→ N(0, ��),

The sampling distribution of
√
n2(Ȳ1−Ȳ2) can be derived straight forward

√
n2(Ȳ1−Ȳ2) =

1
√
�

{√
n2�(Ȳ1 − �)−

√
n2(
√
�(Ȳ2 − �))

} d→ N

(
0, �(1 +

1

�
)

)
,
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and hence,
√
n2

(Ȳ1 − Ȳ2)√
�(1 + 1

�
)

=
Ȳ1 − Ȳ2√
�( 1

n1
+ 1

n2
)

d→ N(0, 1).

Let

s2
1 =

∑n1

i=1(Y1i − Ȳ1)2

n1 − 1
, s2

2 =

∑n2

i=1(Y2i − Ȳ2)2

n2 − 1
,

and the polled variance estimate is,

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
.

By WLLN, it can be shown that, as n1, n2 →∞,

s2
p

�

p→ 1, sp
p→
√
�.

By Slustky Theorem, the T-test statistic has an asymptotical standard nor-

mal distribution,

Ȳ1 − Ȳ2

sp
√

1
n1

+ 1
n2

=

Ȳ1−Ȳ2√
�( 1
n1

+ 1
n2

)

sp√
�

d→ N(0, 1).

On the other hand, it’s known that as n1, n2 →∞, we can have t(n1+n2−2,�) ≈
z�. Consequently, the T-test has asymptotical level �, i.e.

P (T ≥ t(n1+n2−2,�) ∣ H0) ≈ P (Z ≥ z�) ≤ �.

Under H1 : �1 − �2 = � = �0 > 0, then we have

Ȳ1 − Ȳ2 − �0√
�1

n1
+ �2

n2

d→ N(0, 1),

as n1, n2 →∞. Further since s2
1

p→ �1, s
2
2

p→ �2, and � = n1

n2
,

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

p→ ��1 + �2

1 + �
,

sp√
��1+�2

1+�

p→ 1.

86



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Hence
Ȳ1−Ȳ2−�0√

�1
n1

+
�2
n2

sp√
��1+�2

1+�

d→ N(0, 1).

Moreover, since �1 = �2 + �0,

Ȳ1−Ȳ2−�0√
�1
n1

+
�2
n2

sp√
��1+�2

1+�

=
Ȳ1 − Ȳ2

sp

√
��1+�2

1+�√
n2�1+n1�2

n1n2

− �0

sp

√
��1+�2

1+�√
�1

n1
+ �2

n2

=
Ȳ1 − Ȳ2

sp
√

1
n1

+ 1
n2

√
(��1 + �2)n1n2

(1 + �)(n2�1 + n1�2)

√
1

n1

+
1

n2

− �0√
�1

n1
+ �2

n2

(1 + op(1))

=
Ȳ1 − Ȳ2

sp
√

1
n1

+ 1
n2

√
��1 + �2

�1 + ��2

− �0√
�1+��2

n2�

(1 + op(1))

= T�T − �0(1 + op(1)),

where �T =
√

��1+�2

�1+��2
, �0 = �0√

(�1+��2)/n2�
. Hence we have

T�T − �0
d→ N(0, 1), as n1, n2 →∞.

Then the asymptotic power of the T-test can be derived as,

�̄T (�0, �2, �, n2) = P (T ≥ t(n1+n2−2,�) ∣ �0)

= P (T�T − �0 ≥ t(n1+n2−2,�)�T − �0)

≈ 1− Φ(Z��T − �0).

Consequently, given �, �0 and �2, for the power greater than 1− �0,

1− Φ

⎛⎝z�
√
�2(1 + �) + ��0

�2(1 + �) + �0

− �0√
�2(1+�)+�0

n2�

⎞⎠ ≥ 1− �0,

the required size of the second group should satisfies

z�

√
�2(1 + �) + ��0

�2(1 + �) + �0

− �0√
�2(1+�)+�0

n2�

≤ z1−�0 = −z�0 .
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The necessary asymptotic sample size is thus

n∗2 ≥

⎛⎝z�
√

�2(1+�)+��0
�2(1+�)+�0

+ z�0

�0

⎞⎠2

�2(1 + �) + �0

�
.

A.3

Theorem 3. For any n1, n2, the sampling distribution of �̂ has equal spac-

ings with space

b =
1

2m
,

where m is the least common multiple of n1, n2.

Assume n1 = kn2, where k = p
q

is a fraction of two relatively prime

integers, p, q, (p, q) = 1. Then m = qn1 = pn2 is the least common multi-

ple(LCM) of the n1, n2. It’s known that

�̂ = Ȳ1 − Ȳ2 =
1

n1

∑
Y1i −

1

n2

∑
Y2i =

1

m
(q
∑

Y1i − p
∑

Y2i).

Let A = {(t1, t2) : ti ∈ N
∪
{0}} be the support of (

∑
Y1i,

∑
Y2i). The

support of the estimator �̂ = 1
m

(q
∑
Y1i − p

∑
Y2i) can be obtained by con-

sidering all possible (t1, t2) in A. In the following, we first show that the

support of (q
∑
Y1i − p

∑
Y2i) is exactly the set of integer values and thus

has unity space, b = 1. Consequently, �̂ has equal spacings with b = 1
m

.

For (q, p) = 1, there exist integers s1 and s2 to satisfy

qs1 + ps2 = 1, (1)

where one of s1, s2 is negative (Yang and Yang, 1983). If s1 > 0 and s2 < 0,

by letting t1 = s1 and t2 = −s2, one can rewrite (1) by

qt1 − pt2 = 1, (2)
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and (t1, t2) ∈ A. Multiplying (2) by −1, we have −qt1 + pt2 = −1. Adding

the left hand side of the equation by qp(t1 + t2)− pq(t1 + t2), then

q(t1(p− 1) + t2p)− p(t2(q − 1) + t1q) = −1, or qt′1 − pt′2 = −1, (3)

where t′1 = t1(p− 1) + t2p > 0 and t′2 = t2(q − 1) + t1q > 0, and (t′1, t
′
2) ∈ A.

That is, for any p, q, such that (p, q) = 1, there exist (t1, t2), (t′1, t
′
2) ∈ A such

that (2), (3) are true.

Similarly, when s1 < 0 and s2 > 0, we can find (t∗1, t
∗
2) and (t∗∗1 , t

∗∗
2 ) in A

such that qt∗1− pt∗2 = 1 and qt∗∗1 − pt∗∗2 = −1. Hence, (q
∑
Y1i− p

∑
Y2i) has

positive mass at 1,−1 and their multiples. The support is the set of integers

and the space b = 1. So, �̂ has equal spacings with b = 1
m

. The continuity

corrected Z-test and T -test are

ZC =
�̂ − 1

2m

se(�̂)
, TC =

�̂ − 1
2m

sp
√

1
n1

+ 1
n2

.

A.4

Theorem 4. Let C∗ = C,0 ∩ Ω02 be the truncated confidence set. Then

P ((�1, �2) ∈ C∗ ∣ �1, �2) ≥ 1− , for all (�1, �2) ∈ Ω02.

First, we express C∗ as the following form,

L1 ≤ �1 ≤ min(U1, �2), L2 ≤ �2 ≤ U2.
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Note that the two intervals are build on two independent statistics. Then,

at any (�1, �2) such that �1 ≤ �2,

P (L1 ≤ �1 ≤ min(U1, �2), L2 ≤ �2 ≤ U2∣�1, �2)

= P (L1 ≤ �1 ≤ min(U1, �2)∣�1, �2)P (L2 ≤ �2 ≤ U2∣�1, �2).

And

P (L1 ≤ �1 ≤ min(U1, �2)∣�1, �2)

= P (L1 ≤ �1 ≤ U1, U1 < �2∣�1, �2) + P (L1 ≤ �1 ≤ �2, U1 ≥ �2∣�1, �2)

= P (L1 ≤ �1 ≤ U1, U1 < �2∣�1, �2) + P (L1 ≤ �1, U1 ≥ �2∣�1, �2).

Since under Ω02, �1 ≤ �2, {U1 ≥ �2} is a subset of {U1 ≥ �1}, and

P (L1 ≤ �1, U1 ≥ �2∣�1, �2)

= P (L1 ≤ �1, U1 ≥ �1, U1 ≥ �2∣�1, �2)

= P (L1 ≤ �1 ≤ U1, U1 ≥ �2∣�1, �2).

Consequently, for �1 ≤ �2,

P (L1 ≤ �1 ≤ min(U1, �2)∣�1, �2) = P (L1 ≤ �1 ≤ U1∣�1, �2),

and

P (L1 ≤ �1 ≤ min(U1, �2), L2 ≤ �2 ≤ U2∣�1, �2)

= P (L1 ≤ �1 ≤ U1∣�1, �2)P (L2 ≤ �2 ≤ U2∣�1, �2)

≥ 1− .

A.5

Theorem 5. Let S be a test statistic that depends on the data only through

the two sufficient statistics (Y1, Y2) in comparing two Poisson means. Suppose
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S satisfies the convexity condition. Then given s0, the supremum of P (S ≥
s0∣�1, �2) occurs at a boundary point of the parameter space.

Consider the probability function of the Poisson distribution, poi(x∣�),

then
∂

∂�
P (X∣�) = P (X − 1∣�)− P (X∣�), for x = 1, 2, ⋅ ⋅ ⋅ .

Given one the test statistic S and one observation (y10, y20), then the p-value

is

PS(�1, �2) =
∑

S(y1,y2)≥S0(y10,y20)

P (y1 ∣ �1)P (y2 ∣ �2),

where, the {S(y1, y2) ≥ S0(y10, y20)} is rejection region, and, it can be

rewritten as {(y1, y2) : S(y1, y) ≥ S0}. We can derive a function ℎ : {y2 :

0, 1, 2, 3, ⋅ ⋅ ⋅ }⇀ {y1 : a, a+1, a+2, a+3, ⋅ ⋅ ⋅ } such that {(y1, y2) : S(y1, y2) ≥
S0} = {(y1, y2) : y1 ≥ ℎ(y2)}, and also can find the other function ℎ∗ : {y1 :

a, a+1, a+2, a+3, ⋅ ⋅ ⋅ }⇀ {y2 : 0, 1, 2, 3, ⋅ ⋅ ⋅ } such that {(y1, y2) : S(y1, y2) ≥
S0} = {(y1, y2) : y2 ≤ ℎ∗(y1)}. Hence, The PS can be shown having the fol-

lowing two expressions.

PS(�1, �2) =
∑

S(y1,y2)≥S(y10,y20)

poi(y1∣�1)poi(y2∣�2)

=
∞∑
y2=0

∞∑
y1≥ℎ(y2)

poi(y1∣�1)poi(y2∣�2), (1)

and

PS(�1, �2) =
∑

S(y1,y2)≥S(y10,y20)

poi(y1∣�1)poi(y2∣�2)

=
∞∑
y1=a

∑
y2≤ℎ∗(y1)

poi(y1∣�1)poi(y2∣�2), (2)
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by (1),

PS(�1, �2) = poi(y2 = 0∣�2)
∑

y1≥ℎ(0)

poi(y1∣�1)

+ poi(y2 = 1∣�2)
∑

y1≥ℎ(1)

poi(y1∣�1)

+ ⋅ ⋅ ⋅

+ poi(y2 = N2∣�2)
∑

y1≥ℎ(N2)

poi(y1∣�1)

+ ⋅ ⋅ ⋅ ,

and

∂PS(�1, �2)

∂�2

= −poi(y2 = 0∣�2)
∑

y1≥ℎ(0)

poi(y1∣�1)

+ (poi(y2 = 0∣�2)− poi(y2 = 1∣�2))
∑

y1≥ℎ(1)

P (y1∣�1)

+ (poi(y2 = 1∣�2)− poi(y2∣�2))
∑

y1≥ℎ(2)

P (y1∣�1)

+ ⋅ ⋅ ⋅

+ (poi(y2 = N2 − 1∣�2)− poi(y2 = N2∣�2))
∑

y1≥ℎ(N2)

poi(y1∣�1)

+
...

= −
∞∑
y2=0

poi(y2∣�2)poi(y1 = ℎ(y2)∣�1)

< 0.

By (2)

PS(�1, �2) = poi(y1 = a∣�1)
∑

y2≤ℎ∗(a)

poi(y2∣�2)

+ poi(y1 = a+ 1∣�1)
∑

y2≤ℎ∗(a+1)

poi(y2∣�2)

+ ⋅ ⋅ ⋅

+ poi(y1 = N1∣�1)
∑

y2≤ℎ∗(N1)

poi(y2∣�2),
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and

∂PS(�1, �2)

∂�1

= (poi(y1 = a− 1∣�1)− poi(y1 = a∣�1))
∑

y2≤ℎ∗(a)

poi(y2∣�2)

+(poi(y1 = a∣�1)− poi(y1 = a+ 1∣�1))
∑

y2≤ℎ∗(a+1)

poi(y2∣�2)

+(poi(y1 = a∣�1)− poi(y1 = a+ 1∣�1))
∑

y2≤ℎ∗(a+1)

poi(y2∣�2)

+ ⋅ ⋅ ⋅

+(poi(y1 = N1∣�1)− poi(y1 = N1∣�1))
∑

y2≤ℎ∗(N1)

poi(y2∣�2)

= (poi(y1 = a− 1∣�1)− poi(y1 = a∣�1))poi(y2 = 0∣�2)

+(poi(y1 = a∣�1)− poi(y1 = a+ 1∣�1))(poi(y2 = 0∣�2) + poi(y2 = 1∣�2))

+(poi(y1 = a+ 1∣�1)− poi(y1 = a+ 2∣�1))

(poi(y2 = 0∣�2) + poi(y2 = 1∣�2) + poi(y=2∣�2))

+(poi(y1 = a+ 2∣�1)− poi(y1 = a+ 3∣�1))

(poi(y2 = 0∣�2) + poi(y2 = 1∣�2) + poi(y2 = 2∣�2) + poi(y2 = 3∣�2))

+ ⋅ ⋅ ⋅

+(poi(y1 = N1 − 1∣�1)− poi(y1 = N1∣�1))

(poi(y2 = 0∣�2) + poi(y2 = 1∣�2) + poi(y2 = 2∣�2) + ⋅ ⋅ ⋅+ poi(y2 = ℎ∗(N1)))

=

N1∑
y1=a

(poi(y1∣�1)− poi(N1∣�1))poi(y2 = ℎ∗(y1)∣�2)

> 0,

where N1 → ∞, such that poi(N1∣�1)
.
= 0. Moreover, the space of the null

hypothesis H02 is a compact set, then the supremum of the P� is maximum

can be shown in the Poisson problem.
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A.6

Theorem 6. ZR, ZU satisfy the convexity condition.

For the test statistic

ZU(Y1, Y2) =
Y1

n1
− Y2

n2√
Y1

n2
1

+ Y2

n2
2

,

we have

∂ZU(Y1, Y2)

∂Y1

=

1
n1

√
Y1

n2
1

+ Y2

n2
2
− (Y1

n1
− Y2

n2
)

1

n2
1

2

√
Y1
n2

1
+
Y2
n2

2

Y1

n2
1

+ Y2

n2
2

=

2
n1

(Y1

n2
1

+ Y2

n2
2
)− 1

n2
1
(Y1

n1
− Y2

n2
)

2(Y1

n2
1

+ Y2

n2
2
)
√

Y1

n2
1

+ Y2

n2
2

=

Y1

n3
1

+ Y2

n1n2
( 1
n1

+ 2
n2

)

2(Y1

n2
1

+ Y2

n2
2
)
√

Y1

n2
1

+ Y2

n2
2

> 0.

and

∂ZU(Y1, Y2)

∂Y2

=

− 1
n2

√
Y1

n2
1

+ Y2

n2
2
− (Y1

n1
− Y2

n2
)

1

n2
2

2

√
Y1
n2

1
+
Y2
n2

2

Y1

n2
1

+ Y2

n2
2

=

−2
n2

(Y1

n2
1

+ Y2

n2
2
)− 1

n2
2
(Y1

n1
− Y2

n2
)

2(Y1

n2
1

+ Y2

n2
2
)
√

Y1

n2
1

+ Y2

n2
2

= −
Y1

n1n2
( 2
n1

+ 1
n2

) + Y2

n3
2

2(Y1

n2
1

+ Y2

n2
2
)
√

Y1

n2
1

+ Y2

n2
2

< 0,
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So ZU(Y1, Y2) is increasing in Y1, and decreasing in Y2, hence we have

ZU(Y1, Y2) ≤ ZU(Y1 +1, Y2), and ZU(Y1, Y2) ≤ ZU(Y1, Y2−1). The ZU(Y1, Y2)

satisfies convexity condition.

For the test statistic

ZR(Y1, Y2) =
Y1

n1
− Y2

n2√
( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
)

, we have

∂ZR(Y1, Y2)

∂Y1

=

1
n1

√
( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
)− (Y1

n1
− Y2

n2
)

( 1
n1

+ 1
n2

)( 1
n1+n2

)

2
√

( 1
n1

+ 1
n2

)(
Y1
n1

+
Y2
n2

)

( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
)

=
1
n1

( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
)− (Y1

n1
− Y2

n2
)( 1
n1

+ 1
n2

)( 1
n1+n2

)

2( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
)
√

( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
)

=
Y2

n1+n2
( 1
n1

+ 1
n2

)

2(Y1+Y2

n1+n2
)
√

( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
)

=
Y2

n1n2

2(Y1+Y2

n1+n2
)
√

( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
)

> 0,

and

∂ZR(Y1, Y2)

∂Y2

=

−1
n2

√
( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
)− (Y1

n1
− Y2

n2
)

( 1
n1

+ 1
n2

)( 1
n1+n2

)

2
√

( 1
n1

+ 1
n2

)(
Y1
n1

+
Y2
n2

)

( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
)

= −
1
n1

( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
) + (Y1

n1
− Y2

n2
)( 1
n1

+ 1
n2

)( 1
n1+n2

)

2( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
)
√

( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
)

= −
Y1

n1+n2
( 1
n1

+ 1
n2

)

2(Y1+Y2

n1+n2
)
√

( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
)

= −
Y1

n1n2

2(Y1+Y2

n1+n2
)
√

( 1
n1

+ 1
n2

)(Y1+Y2

n1+n2
)

< 0,
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hence ZR is increasing in Y1 and decreasing in Y2, then it can be provided

ZR(Y1, Y2) ≤ ZR(Y1 + 1, Y2) and ZR(Y1, Y2) ≤ ZR(Y1, Y2 − 1), hence the ZR

satisfies the convexity condition.

A.7

The derivation of restricted MLE of �1 and �2 on H03.

The constrained MLE maximizes the following likelihood function,

L(�1, �2) = Y1 ln�1 − n1�1 + Y2 ln�2 − n2�2, subject to �1 = �2 −Δ0.

The likelihood function can be rewritten to as the following function of

�2,

L(�2) = Y1 ln(�2 −Δ0)− n1(�2 −Δ0) + Y2 ln�2 − n2�2,

taking the derivative of the likelihood function L(�2) with respect to �2, we

have
∂L(�2)

∂�2

=
Y1

�2 −Δ0

− n1 +
Y2

�2

− n2 = 0.

The RMLE of �2 satisfies

(n1 + n2)�2
2 − [(n1 + n2)Δ0 + Y1 + Y2]�2 + Y2Δ0 = 0,

and hence we have possible multiple solutions of �2,

[(n1 + n2)Δ0 + Y1 + Y2]±
√

[(n1 + n2)Δ0 + Y1 + Y2]2 − 4(n1 + n2)Y2Δ0

2(n1 + n2)
,

The solution with negative squared term leads to a negative RMLE of �1

and thus is not a valid RMLE. In the following, we have the RMLEs of �2

and �1 on �1 = �2 −Δ0. Define

�̂1 =
Y1

n1

, �̂2 =
Y2

n2

, �̃0 =
Y1 + Y2

n1 + n2

=
�

1 + �
�̂1 +

1

1 + �
�̂2.
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Then the RMLEs are

�̃2 =
1

2

{
�̃0 + Δ0 +

√
(�̃0 + Δ0)2 − 4

1

1 + �
�̂2Δ0

}
and

�̃1 =
1

2

{
�̃0 −Δ0 +

√
(�̃0 + Δ0)2 − 4

1

1 + �
�̂2Δ0

}
.

A.8

Theorem 7. As n1, n2 →∞,

ZR∗�∗ − �∗ d→ N(0, 1), ZU∗ − �∗ d→ N(0, 1),

where

�∗2 =
(1 + �)�2 −Δ0 + ��∗0 +

√
((1 + �)�2 + Δ0 + ��∗0)2 − 4�2Δ0(1 + �)

2((1 + �)�2 −Δ0 + �∗0)
,

and

�∗ =
�∗0√

�2(1+�)+�∗0
n2�

.

Under �1 = �2 −Δ0, the restricted MLE of �1 and �2 can be derived as

follows,

�̃2 =
1

2

{
�̃0 + Δ0 +

√
(�̃0 + Δ0)2 − 4

1

1 + �
�̂2Δ0

}
and

�̃1 =
1

2

{
�̃0 −Δ0 +

√
(�̃0 + Δ0)2 − 4

1

1 + �
�̂2Δ0

}
.

And the testing statistic is defined as follows,

ZR∗ =
Ȳ1 − Ȳ2 + Δ0√

�̃1

n1
+ �̃2

n2
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Similarly, under �1 = �2 −Δ0 we have that

Z∗∗ =
Ȳ1 − Ȳ2 + Δ0√

�1

n1
+ �2

n2

=
Ȳ1 − Ȳ2 + Δ0√

�2−Δ0

n1
+ �2

n2

=
Ȳ1 − Ȳ2 + Δ0√
�2( 1

n1
+ 1

n2
)− Δ0

n1

d→ N(0, 1).

We know that

�̃0
p→ �2 −

�Δ0

1 + �
,

and √
(�̃0 + Δ0)2 − 4

1

1 + �
�̂2Δ0

p→ �2 −
Δ0

1 + �
,

�̃2
p→ �2,

and
�̃2

�2

p→ 1,

then √
�̃2( 1

n1
+ 1

n2
)− Δ0

n2�√
�2( 1

n1
+ 1

n2
)− Δ0

n2�

p→ 1.

Hence, we have as follows

ZR∗ =
Ȳ1 − Ȳ2 + Δ0√

�̃1

n1
+ �̃2

n2

=
Ȳ1 − Ȳ2 + Δ0√

�̃2−Δ0

n1
+ �̃2

n2

=
Ȳ1 − Ȳ2 + Δ0√
�̃2( 1

n1
+ 1

n2
)− Δ0

n2�

=

Ȳ1−Ȳ2+Δ0√
�2( 1

n1
+ 1
n2

)− Δ0
n2�√

�̃2( 1
n1

+ 1
n2

)− Δ0
n2�

�2( 1
n1

+ 1
n2

)− Δ0
n2�

d→ N(0, 1).

98



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Therefor, we can derive that

P (ZR∗ ≥ z�∣�1 = �2 −Δ0) ≤ �,

then the validity of ZR∗ is hold.

As the alternative of H03 is true, that is �1 > �2−Δ0, we have as follows,

Z∗∗∗ =
Ȳ1 − Ȳ2 + Δ0 − �∗0√

�1

n1
+ �2

n2

d→ N(0, 1),

where �∗0 = �1 − �2 + Δ0. Because �̂1
p→ �1 and �̂2

p→ �2, we can derive the

following the limit converge form (Jun Shao, 1998)

�̃1
p→ q1(�1, �2), �̃2

p→ q2(�1, �2),

where

q1(�1, �2) =
1

2

{
��1 + �2

1 + �
−Δ0 +

√
(
��1 + �2

1 + �
+ Δ0)2 − 4

�2Δ0

1 + �

}
,

and

q2(�1, �2) =
1

2

{
��1 + �2

1 + �
+ Δ0 +

√
(
��1 + �2

1 + �
+ Δ0)2 − 4

�2Δ0

1 + �

}
.

Further, we have

�̃1

n1

+
�̃2

n2

p→ q1(�1, �2)

n1

+
q2(�1, �2)

n2

,

and √
�̃1

n1
+ �̃2

n2√
q1(�1,�2)

n1
+ q2(�1,�2)

n2

p→ 1

Then, the limit distribution can be derived as follows

Ȳ1−Ȳ2+Δ0−�∗0√
�1
n1

+
�2
n2√

�̃1
n1

+
�̃2
n2√

q1(�1,�2)
n1

+
q2(�1,�2)

n2

d→ N(0, 1).
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Next, the above equation can be rewritten as follows

Ȳ1−Ȳ2+Δ0−�∗0√
�1
n1

+
�2
n2√

�̃1
n1

+
�̃2
n2√

q1(�1,�2)
n1

+
q2(�1,�2)

n2

=
Ȳ1 − Ȳ2 + Δ0 − �∗0√

�̃1

n1
+ �̃2

n2

√
q1(�1,�2)

n1
+ q2(�1,�2)

n2√
�1

n1
+ �2

n2

= ZR∗

√
q1(�1,�2)

n1
+ q2(�1,�2)

n2√
�1

n1
+ �2

n2

− �∗0√
�1

n1
+ �2

n2

√
�̃1

n1
+ �̃2

n2√
q1(�1,�2)

n1
+ q2(�1,�2)

n2

= ZR∗

√
q1(�1,�2)

n1
+ q2(�1,�2)

n2√
�1

n1
+ �2

n2

− �∗0√
�1

n1
+ �2

n2

(1 + op(1)).

Then, we can obtain

ZR∗

√
q1(�1,�2)

n1
+ q2(�1,�2)

n2√
�1

n1
+ �2

n2

− �∗0√
�1

n1
+ �2

n2

d→ N(0, 1).

Let

ZU∗ =
Ȳ1 − Ȳ2 + Δ0√

�̂1

n1
+ �̂2

n2

.

Similarly, the asymptotic distribution of ZU∗ can be derived as follows:

ZU∗ − �∗0√
�1

n1
+ �2

n2

d→ N(0, 1).

where

�∗ =

√
q1(�1,�2)

n1
+ q2(�1,�2)

n2√
�1

n1
+ �2

n2

,
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the other,

q1(�1, �2)

n1

+
q2(�1, �2)

n2

=
1

n2�
{q1(�1, �2) + �q2(�1, �2)}

=
1

2n2�

⎧⎨⎩��1 + �2

1 + �
−Δ0 +

√(
��1 + �2

1 + �
+ Δ0

)2

− 4
�2Δ0

1 + �

⎫⎬⎭
+

�

2n2�

⎧⎨⎩��1 + �2

1 + �
+ Δ0 +

√(
��1 + �2

1 + �
+ Δ0

)2

− 4
�2Δ0

1 + �

⎫⎬⎭
=

1

2n2�

{
��1 + �2 − (1− �)Δ0 +

√
(��1 + �2 + (1 + �)Δ0)2 − 4�2Δ0(1 + �)

}
,

then,

q1(�1,�2)
n1

+ q2(�1,�2)
n2

�1

n1
+ �2

n2

=

1
2n2�

{
��1 + �2 − (1− �)Δ0 +

√
(��1 + �2 + (1 + �)Δ0)2 − 4�2Δ0(1 + �)

}
�1+��2

n2�

=
��1 + �2 − (1− �)Δ0 +

√
(��1 + �2 + (1 + �)Δ0)2 − 4�2Δ0(1 + �)

2(�1 + ��2)
.

Given �1 = �2 −Δ0 + �∗0, �
∗
0 > 0, the �∗ can be rewritten as

�∗ =

√√√⎷��1 + �2 − (1− �)Δ0 +
√

(��1 + �2 + (1 + �)Δ0)2 − 4�2Δ0(1 + �)

2(�1 + ��2)

=

√√√⎷(1 + �)�2 −Δ0 + ��∗0 +
√

((1 + �)�2 + Δ0 + ��∗0)2 − 4�2Δ0(1 + �)

2((1 + �)�2 −Δ0 + �∗0)
.

So, the power function of ZR∗ be can fund as follows

�̄ZR∗ (�∗0, �2, n2, �,Δ0) = P (ZR∗ ≥ z�∣�1 = �2 −Δ0 + �∗0)

= P (ZR∗�∗ − �∗ ≥ z��
∗ − �∗∣�1 = �2 −Δ0 + �∗0)

= 1− Φ(z��
∗ − �∗).
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Similarly, the power function of ZU∗ be can fund as follows:

�̄ZU∗ (�∗0, �2, n2, �,Δ0) = 1− Φ(z� − �∗),

where

�∗ =
�∗0√

�1

n1
+ �2

n2

=
�∗0√

�2(1+�)−Δ0+�∗0
n2�

.

Given �, �∗0,Δ0 and �2, the required sample sizes of the second group

satisfied the power is greater than 1− �0 is

n2,ZR∗ ≥
(
z��

∗ + z�0

�∗0

)2
�2(1 + �)−Δ0 + �∗0

�

,and

n2,ZU∗ ≥
(
z� + z�0

�∗0

)2
�2(1 + �)−Δ0 + �∗0

�
.

A.9

Theorem 8. ZR∗ satisfy the convexity condition.

Firstly, we execute the partial derivative of ZR∗ wrt �̂1:

∂ZR∗

∂�̂1

=
1

�̃1

n1
+ �̃2

n2

⎧⎨⎩
√
�̃1

n1

+
�̃2

n2

− (�̂1 − �̂2 + Δ0)
1

2
√

�̃1

n1
+ �̃2

n2

(
∂ �̃1

n1

∂�̂1

+
∂ �̃2

n2

∂�̂1

)

⎫⎬⎭
=

1

2( �̃1

n1
+ �̃2

n2
)

3
2

{
2(
�̃1

n1

+
�̃2

n2

)− (�̂1 − �̂2 + Δ)
1

n2

�̃2

�̃1 + �̃2 − �̃0

}

=
1

2( �̃1+��̃2

n2�
)

3
2

{
2

n2�
(�̃1 + ��̃2)− 1

n2

(�̂1 − �̂2 + Δ)
�̃2

�̃1 + �̃2 − �̃0

}

=
1

2
√

(�̃1+��̃2)3

n2�

{
2
(

(1 + �)�̃2 −Δ0

)
− �(�̂1 − �̂2 + Δ)

�̃2

�̃1 + �̃2 − �̃0

}
.
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since

∂ �̃1

n1

∂�̂1

=
1

2n2

⎛⎝ 1

1 + �
+

1

1 + �

�̃0 + Δ0√
(�̃0 + Δ0)2 − 4 1

1+�
�̂2Δ0

⎞⎠ ,

and

∂ �̃2

n2

∂�̂1

=
1

2n2

⎛⎝ �

1 + �
+

�

1 + �

�̃0 + Δ0√
(�̃0 + Δ0)2 − 4 1

1+�
�̂2Δ0

⎞⎠ ,

and

∂ �̃1

n1

∂�̂1

+
∂ �̃2

n2

∂�̂1

=
1

2n2

(1 +
�̃0 + Δ0√

(�̃0 + Δ0)2 − 4 1
1+�

�̂2Δ0

)

=
1

n2

�̃2

�̃1 + �̃2 − �̃0

.

On the other hand, consider the partial derivative of ZR∗ wrt �̂2,

∂ZR∗

∂�̂2

=
1

�̃1

n1
+ �̃2

n2

⎧⎨⎩−
√
�̃1

n1

+
�̃2

n2

− (�̂1 − �̂2 + Δ0)
1

2
√

�̃1

n1
+ �̃2

n2

(
∂ �̃1

n1

∂�̂2

+
∂ �̃2

n2

∂�̂2

)

⎫⎬⎭
=

−1

2( �̃1

n1
+ �̃2

n2
)

3
2

{
2(
�̃1

n1

+
�̃2

n2

) + (�̂1 − �̂2 + Δ0)
1

n2�

�̃1

�̃1 + �̃2 − �̃0

}

=
−1

2( �̃1+��̃2

n2�
)

3
2

{
2

n2�
(�̃1 + ��̃2) +

1

n2�
(�̂1 − �̂2 + Δ0)

�̃1

�̃1 + �̃2 − �̃0

}

=
−1

2
√

(�̃1+��̃2)3

n2�

{
2((1 + �)�̃2 −Δ0) + (�̂1 − �̂2 + Δ0)

�̃1

�̃1 + �̃2 − �̃0

}
.

(1)

Where

∂ �̃1

n1

∂�̂2

=
1

2n2�

⎛⎝ 1

1 + �
+

1

1 + �

�̃0 −Δ0√
(�̃0 + Δ0)2 − 4 1

1+�
�̂2Δ0

⎞⎠ ,
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and

∂ �̃2

n2

∂�̂2

=
1

2n2

⎛⎝ 1

1 + �
+

1

1 + �

�̃0 −Δ0√
(�̃0 + Δ0)2 − 4 1

1+�
�̂2Δ0

⎞⎠ ,

and

∂ �̃1

n1

∂�̂2

+
∂ �̃2

n2

∂�̂2

=
1

2n2�
(1 +

�̃0 −Δ0√
(�̃0 + Δ0)2 − 4 1

1+�
�̂2Δ0

)

=
1

n2�

�̃1

�̃1 + �̃2 − �̃0

.

In (1), as �̂1 − �̂2 + Δ0 ≥ 0, then ∂ZR∗

∂�̂2
< 0 must be obtained. Similarly,

we only check the sign of ∂ZR∗

∂�̂2
if �̂1 − �̂2 + Δ0 < 0.

The following can be derived,

�̃1

�̃1 + �̃2 − �̃0

=
1

2

(
�̃0 −Δ0 +

√
(�̃0 + Δ0)2 − 4 1

1+�
�̂2Δ0

)
√

(�̃0 + Δ0)2 − 4 1
1+�

�̂2Δ0

=
1

2

⎛⎝1 +
�̃0 −Δ0√

(�̃0 + Δ0)2 − 4 1
1+�

�̂2Δ0

⎞⎠ .
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And, we have follows as,√
(�̃0 + Δ0)2 − 4

1

1 + �
�̂2Δ0

=

√
(

�

1 + �
�̂1 +

1

1 + �
�̂2 + Δ0)2 − 4

1

1 + �
�̂2Δ0

=

√
(

�

1 + �
�̂1 +

1

1 + �
�̂2 −Δ0)2 + 4

�

1 + �
�̂1Δ0

≥
√

(
�

1 + �
�̂1 +

1

1 + �
�̂2 −Δ0)2

=∣�̃0 −Δ0∣,

then,
∣�̃0 −Δ0∣√

(�̃0 + Δ0)2 − 4 1
1+�

�̂2Δ0

≤ 1,

and

−1 ≤ �̃0 −Δ0√
(�̃0 + Δ0)2 − 4 1

1+�
�̂2Δ0

≤ 1.

Hence, we have

⇒ 0 ≤ 1 +
�̃0 −Δ0√

(�̃0 + Δ0)2 − 4 1
1+�

�̂2Δ0

≤ 2

⇒ 0 ≤ 1

2

⎧⎨⎩1 +
�̃0 −Δ0√

(�̃0 + Δ0)2 − 4 1
1+�

�̂2Δ0

⎫⎬⎭ ≤ 1

⇒ 0 ≤ �̃1

�̃1 + �̃2 − �̃0

≤ 1.

If �̂1 − �̂2 + Δ0 < 0, then

(�̂1 − �̂2 + Δ0) ≤ (�̂1 − �̂2 + Δ0)
�̃1

�̃1 + �̃2 − �̃0

≤ 0,
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2((1 + �)�̃2 −Δ0) + (�̂1 − �̂2 + Δ0)

≤2((1 + �)�̃2 −Δ0) + (�̂1 − �̂2 + Δ0)
�̃1

�̃1 + �̃2 − �̃0

≤2((1 + �)�̃2 −Δ0),

and,

2
(

(1 + �)�̃2 −Δ0

)
+ �̂1 − �̂2 + Δ0

=2

(
1 + �

2
(�̃0 + Δ0 +

√
(�̃0 + Δ0)2 − 4

1

1 + �
�̂2Δ0)−Δ0

)
+ �̂1 − �̂2 + Δ0

=(1 + �)

(
�

1 + �
�̂1 +

1

1 + �
�̂2 + Δ0 +

√
(�̃0 + Δ0)2 − 4

1

1 + �
�̂2Δ0

)
− 2Δ0 + �̂1 − �̂2 + Δ0

=(1 + �)�̂1 + (1 + �)Δ0 −Δ0 +

√
(�̃0 + Δ0)2 − 4

1

1 + �
�̂2Δ0

=(1 + �)�̂1 + �Δ0 +

√
(�̃0 + Δ0)2 − 4

1

1 + �
�̂2Δ0

>0.

Therefore, as �̂1 − �̂2 + Δ0 < 0 we still can provide that

2
(

(1 + �)�̃2 −Δ0

)
+ (�̂1 − �̂2 + Δ0)

�̃1

�̃1 + �̃2 − �̃0

> 0.
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