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Abstract

In this thesis, we find the formula of tropical meromorphic function by
giving finite number of roots and poles (with multiplicities). We also find
a simple formula for tropical periodic function by giving finite number of
roots and poles (with multiplicities) during a period [0, T ). We then discuss
all cases of the tropical meromorphic solution functions of first-order linear
difference equation. At last, we provide a tropical approximated function of
a given continuous function. We hope it is helpful in solving the tropical
meromorphic solution functions of a given difference equation.
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摘摘摘 要要要

在這篇論文中，一個熱帶亞純函數(tropical meromorphic function)若給定
有限個零根(roots)與極點(poles)還有它們的重數(multiplicities)，我們證明了這
個熱帶亞純函數的存在與唯一性。另外，一個熱帶週期函數(tropical periodic
function)若給定一個週期區間內的有限個零根與極點還有它們的重數，我們也
找到了這個熱帶週期函數的一個簡單表達式。接著，給定一個一階線性差分方
程(first-order linear difference equation)，我們討論了各種情況下的所有熱帶
亞純函數解的表達式。最後，對於連續函數我們提供了一個它的熱帶近似函數，
希望對於解差分方程的熱帶亞純函數解時能有所助益。
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Chapter 1

Introduction

Tropical geometry is a relatively new area in mathematics, first developed
in the 1980s by Imre Simon, a mathematician and computer scientist from
Brazil. It is a piecewise-linear version of algebraic geometry, the algebraic
structure we work on is the set T = R ∪ {−∞} equipped with addition and
multiplication defined by:

x⊕ y = max{x, y},
x� y = x+ y.

In words, the tropical sum of two numbers is their maximum, and the
tropical product of two numbers is their usual sum. These two operations
both are associative and commutative, and the multiplication is distributive
with respect to the addition.

The identity elements for the tropical operations are 0T = −∞ for addi-
tion and 1T = 0 for multiplication. Observe that such a structure is not a
ring, since not all elements have tropical additive inverses. For example, the
function x⊕ 1 = 2 has no solutions in T.

We can define the tropical semiring in another way. For example, x⊕y =
min{x, y}, x � y = x + y. This is min-plus tropical semiring. However,
the work on min-plus tropical semiring is similar to the work on max-plus
tropical semiring. We will work on max-plus tropical semiring in this thesis,
and only with one variable.

For basic tropical geometry, one can see book [5], and [1], [2], [6], [7]. In
[1] and [2], Grigg and Manwaring give an elementary proof of the Fundamen-
tal Theorem of Algebra for polynomials over the rational tropical semi-ring,

2
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and they provide a simple algorithm for factoring tropical polynomials of a
single variable.

The main references of this thesis is [3] and [4], both are introduc-
ing tropical nevenlinna theory and applications on ultra-discrete equations,
which is an equation, written in terms of addition and max operators, such
that both dependent and independent variables take only discrete values.
Here we do not mention the tropical nevenlinna theory, and emphasizing on
tropical meromorphic function with integer slope or real slope (extended).
Given finite number of roots and poles (with multiplicities respectively) of
a tropical meromorphic function, we can represent the function immediately
just like general rational funtion by giving roots and poles (Chapter 3). And
in Chapter 4, we define a function

πa(x) := max{(1− a)([x]− x), a([−x]− (−x))}.

to generate the tropical T -periodic functions by giving roots and poles (with
multiplicities respectively) during an period [0, T ). In chapter 5, we want to
obtain a representation of all the extended tropical meromorphic solution
functions of first-order linear difference equation y(x + 1) = ay(x) + b, for
a, b ∈ R.

At last, we provide a tropical approximated function of a given continuous
function f(x) by

(f([x+ 1])− f([x]))(x− [x]) + f([x]).

It may be helpful in dealing with ultra-discrete equations, at least for first-
order linear difference equations.

3
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Chapter 2

Background

2.1 Arithmetic

Definition 2.1. We define operators ⊕ : T×T −→ T, and � : T×T −→ T
by:

x⊕ y := max{x, y},
x� y := x+ y.

Remark 2.1. For each x ∈ T,
x⊕ (−∞) = −∞, hence −∞ is the additive identity element.
x� 0 = x, hence 0 is the multiplicative identity element.

Example 2.1.

2⊕ 3 = max{2, 3} = 3; 2⊕ 2 = max{2, 2} = 2; 2⊕ (−∞) = max{2,−∞} = 2.

2� 3 = 2 + 3 = 5; 2� 0 = 2 + 0 = 2; 2� (−∞) = 2 + (−∞) = −∞.

Definition 2.2. For each integer n, define

x�n := n× x.

And define tropical division to be their usual subtraction:

x� y := x− y.

4
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Moreover, define

n⊕
i=1

ai := max{a1, a2, · · · , an}

n⊙
i=1

ai := a1 + a2 + · · ·+ an =
n∑
k=1

ak

The definition of semiring are given formally as the following:

Definition 2.3 (Semiring). A semiring is a set S equipped with two algebraic
operations, called addition and multiplication, such that:

(i) The addition and multiplicatioon are associative.

(ii) The addition is commutative.

(iii) The multiplication is distributive with respect to the addition.

Remark 2.2. (R ∪ {−∞},⊕,�) is a semiring.

2.2 Some Equalities and Inequalities

Under these new operations, there are some funny equalities and inequalities.

(i) (b� a)⊕ (d� c) = (b� c⊕ a� d)� (a� c)
It is an analogue of

b

a
+
d

c
=
bc+ ad

ac
.

(ii) x�(1T�n) = 1T � (x�n) = −n× x
It is an analogue of

x

1

n =
1

xn
.

5



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

(iii) The Freshman’s dream come true in tropical arithmetic:

(x⊕ y)�n = x�n ⊕ y�n

(iv) Tropical Cauchy inequality holds:

(
n⊕
i=1

a�2
i )� (

n⊕
i=1

b�2
i ) ≥ (

n⊕
i=1

(ai � bi))�2

i.e.

max{a1, · · · , an}+max{b1, · · · , bn} ≥ max{a1 + b1, · · · , an+ bn} (2.1)

(v) for aij ∈ R ∪ {−∞}, i = 1, 2, · · · ,m; j = 1, 2, · · · , n,

n⊕
j=1

(
m⊕
i=1

aij) =
m⊕
i=1

(
n⊕
j=1

aij) =
⊕

1≤i≤m,1≤j≤n

aij (2.2)

It is an analogue of

n∑
j=1

(
m∑
i=1

aij) =
m∑
i=1

(
n∑
j=1

aij) =
∑

1≤i≤n,1≤j≤m

aij

Proof. (iv): Let ar = max{a1, a2, · · · , an}, bs = max{b1, b2, · · · , bn}, then
ar ≥ ak for each k = 1, 2, · · · , n. And bs ≥ bk for each k = 1, 2, · · · , n.
Hence, ar + bs ≥ ak + bk for each k = 1, 2, · · · , n. Thus, (2.1) holds.

Remark 2.3. LetA = {r|ar = max{a1, a2, · · · , an}}, B = {s|bs = max{b1, b2, · · · , bn}},
then the equal sign of (2.1) holds if and only if A ∩B 6= φ.

6
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Chapter 3

Tropical Meromorphic
Functions

In this Chapter, we will derive the equation of tropical meromorphic
functions with prescribed roots and poles. In section 3.1, we first introduce
the tropical polynomials in one variable, and then tropical meromorphic func-
tions in section 3.2, if the slope is allowed to be non-integer, it is extended
tropical meromorphic functions in section 3.3.

7
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3.1 Tropical Polynomials in One Variable

Definition 3.1. In general, the tropical polynomials in one variable are

f(x) =
n⊕
i=0

(ai � x�i) = an � x�n ⊕ an−1 � x�(n−1) ⊕ · · · · · · ⊕ a1 � x⊕ a0.

Here the coefficients an, an−1, · · · · · · , a0 are real numbers and n is a non-
negative integer. When evaluating this function in classical arithmetic, we
have

f(x) = max{an + nx, an−1 + (n− 1)x, · · · · · · , a1 + x, a0}.

Remark 3.1. It is clear that this function f(x) maps T to T has the following
three important properties:

(i) f(x) is continuous.

(ii) f(x) is piecewise-linear, where the number of pieces is finite.

(iii) f(x) is convex, i.e., f(
x+ y

2
) ≤ 1

2
(f(x) + f(y)) for all x, y ∈ R.

Example 3.1. f(x) = x�2⊕1 is a tropical polynomial, the coefficient of x�2

is 0, and the coefficient of x is −∞, it is a missing term, and the constant

term is 1. We will see f(x) = max{2x, 1}, i.e., f(x) = 1 if x ≤ 1

2
; and

f(x) = 2x if x >
1

2
. (Figure 3.1(a))

Example 3.2. g(x) = x�2⊕1

2
�x⊕1 (Figure 3.1(b)), h(x) = x�2⊕(−1)�x⊕1

(Figure 3.1(c)). From the graph, we see f(x) in Example 3.1 and g(x),
h(x) are different tropical polynomials which define the same function. And
p(x) = x�2 ⊕ 1 � x ⊕ 1 (Figure 3.1(d)) defines a different function of them.

From Figure 3.1, we know that if the coefficient of x is less or equal to
1

2
, then

they all define the same function; and if the coefficient of x is larger than
1

2
,

then it will be a different function, it seems that
1

2
is the largest coefficient

of x to unchange the function. So we have the following definition.

Definition 3.2. Given two polynomials g(x) and h(x), if g(c) = h(c) for all
c ∈ R, then g(x) and h(x) are functionally equivalent.

8
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(a) f(x) = x�2 ⊕ 1. (b) g(x) = x�2 ⊕ 1
2
� x⊕ 1.

(c) h(x) = x�2 ⊕ (−1)� x⊕ 1. (d) p(x) = x�2 ⊕ 1� x⊕ 1.

Figure 3.1:

In classical, if g(x) and h(x) are functionally equivalent, if and only if
g(x) and h(x) are the same polynomials. But in tropical geometry, functional
equivalence does not mean the functions obtained from the same polynomials.

Although different tropical polynomials might define the same function,
we can adjust each of coefficient to be maximal, and to get a maximally
represented tropical polynomial which still represent the same function. One
can see section 3 in [8] to know how to derive the maximally represented
tropical polynomial of a given tropical polynomial. And the similar result
can be found in [2] and [1] on min-plus tropical polynomial, it is call least-
coefficient tropical polynomial in [2] and [1]. Moreover, each maximally
represented tropical polynomial (or least-coefficient tropical polynomial on
min-plus tropical polynomial) can be factorized into a product of linear terms,
it is the Fundamental Theorem of Tropical Algebra, you can see the proof in
[2] on min-plus form.

9
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3.2 Tropical Meromorphic Functions

Definition 3.3. A tropical rational function is a function of the form

R(x) = (am � x�m ⊕ · · · ⊕ a1 � x⊕ a0)� (bn � x�n ⊕ · · · ⊕ b1 � x⊕ b0)

where m and n are non-negative integers,and ai, bj ∈ T, i = 1, 2, · · · ,m; j =
1, 2, · · · , n.

Definition 3.4. A continuous piecewise linear function f : R → R is said
to be a tropical meromorphic function on R if both one-sided derivatives are
integers at each point x ∈ R.

In this thesis, if f(x) is a tropical meromorphic function on R, we call f(x)
an R-tropical meromorphic function. Note that every tropical polynomial is
an R-tropical meromorphic function, and so is tropical rational function.
Moreover, the word “piecewise” implies that there are finitely many pieces
in every bounded interval.

Example 3.3. f(x) = (x�2 ⊕ 0) � x (Figure 3.2(a)) is a tropical rational
function. In fact, it is equal to |x|. It shows in the following.

|x| = x+ + x−

x = x+ − x−

where x+ = max{x, 0}, x− = max{−x, 0}.
Summation of the above two equalities, it gets

|x| = 2x+ − x = 2 max{x, 0} − x = max{2x, 0} − x = (x�2 ⊕ 0)� x

Example 3.4. Figure 3.2(b) shows a function which is an R-tropical mero-
morphic function but not a rational function.

Note that in tropical functions, those non-differentiable points are special,
it comes the following definitions.

Definition 3.5. For each x ∈ R, let

wf (x) = lim
ε→0+

(f ′(x+ ε)− f ′(x− ε))

10
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(a) f(x) = (x�2 ⊕ 0)� x = |x|. (b) f(x) = |x|,−1 ≤ x ≤ 1; f(x +
2) = f(x) for each x ∈ R..

Figure 3.2:

(i) If wf (x) > 0, then x is called a root of f with multiplicity wf (x).

(ii) If wf (x) < 0, then x is called a pole of f with multiplicity −wf (x).

(iii) If wf (x) = 0, then x is called an ordinary point of f .

Note that all roots and poles of f constitute the support of wf (x).

Consider the function f(x) = x⊕ a = max{x, a}, which has a root at a.
From the point of view of algebra and factorization, it is perhaps more natural
to think of a as the negative of the root. However, there is no subtraction in
the tropical semi-ring and the definition given above is the natrual one from
the point of view of geometry.

Definition 3.6. If f is tropical meromorphic on R and f ′(x) = m for all
x < x0, for some constant m ∈ Z and x0 ∈ R, then we say that f is tropical
meromorphic on T. Define wf (−∞) = m and

(i) If m > 0, then the point −∞ is called a root of order m.

(ii) If m < 0, then the point −∞ is called a pole of order −m.

(iii) If m = 0, then the point −∞ is called an ordinary point.

11
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If f(x) is a tropical meromorphic function on T, we call f(x) an T-tropical
meromorphic function.

We know that in traditional rational functions, given roots and poles and
their multiplicities, we can find a suitable rational functions.

Example 3.5. Given two roots −1 and −2 with multiplicities 2 and 5 respec-
tively, and one pole −3 with multiplicity 7, and no other roots or poles. Then

the suitable function is f(x) =
k(x+ 1)2(x+ 2)5

(x+ 3)7
, k is a nonzero constant.

We have a similar tropical result in the following. Before it, we need some
lemmas at first.

Lemma 3.1 (The Linear Property of wf (x)). Suppose fi(x) are R-tropical
meromorphic functions, i = 1, 2, · · · , n, and c1, c2, · · · , cn are constants in
R. Let

f(x) =
n∑
i=1

cifi(x),

then

wf (x) =
n∑
i=1

ciwfi(x)

Proof. If x is not a root or pole of any fi(x), then f ′(x) =
∑n

i=1 cif
′
i(x),

hence, for any x ∈ R, and small ε,

wf (x) = lim
ε→0

(f ′(x+ ε) + f ′(x− ε))

= lim
ε→0

(
n∑
i=1

cif
′
i(x+ ε)−

n∑
i=1

cif
′
i(x− ε))

= lim
ε→0

(
n∑
i=1

ci(f
′
i(x+ ε)− f ′i(x− ε)))

=
n∑
i=1

ci lim
ε→0

(f ′i(x+ ε)− f ′i(x− ε))

=
n∑
i=1

ciwfi(x)

12
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Lemma 3.2. Two R-tropical meromorphic functions f(x) and g(x) satisfy
the relation

wf (x)− wg(x) ≡ 0

if and only if f(x)− g(x) is a linear function on R. That is, f(x)− g(x) =
Ax+B for some constants A and B.

Proof. Since f(x) and g(x) are R-tropical meromorphic functions, let h(x) =
f(x)− g(x), then by Lemma 3.1,

wh(x) = wf (x)− wg(x) = 0

Therefore, h′(x+) = h′(x−) holds for any x ∈ R. Then wh(x) ≡ 0 implies
h′(x) is a constant on R. Hence, h(x) = f(x)−g(x) is a linear function on R.
Coversely, of course that the w of any linear function vanishes identically.

Theorem 3.3. Given c1 < c2 < · · · < cn ∈ T, and α1, α2, · · · , αn ∈ Z, there
exist a tropical rational function f such that wf (ci) = αi for i = 1, 2, · · · , n
and wf (x) = 0 for x 6= ci, i = 1, 2, · · · , n.(i.e., ci is a root if αi > 0 and a
pole if αi < 0, and for any x 6= c1, c2, · · · , cn is an ordinary point.)

In fact,

f(x) = k � (
n⊙
i=1

(x⊕ ci)�αi)

with k a constant in R is the unique function satisfying the condition, the
uniqueness is up to the constant k.(Note that c1 might be −∞.)

First prove the existence of f .
Define m0 = 0 and

mj = α1 + α2 + · · ·+ αj =

j∑
i=1

αi

to be the slope of f(x) in (cj, cj+1), then

f(x) = k � (
n⊙
i=1

(x⊕ ci)�αi)

= k +
n∑
i=1

αi max{x, ci}

= k +
n∑
i=1

(mi −mi−1) max{x, ci}

13



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Proof.

Figure 3.3:

If x ∈ (cj, cj+1) for some j = 1, 2, · · · , n, then

f(x) = k +

j∑
i=1

(mi −mi−1) max{x, ci}+
n∑

i=j+1

(mi −mi−1) max{x, ci}

= k +

j∑
i=1

(mi −mi−1)x+
n∑

i=j+1

(mi −mi−1)ci

= k +mjx+
n∑

i=j+1

(mi −mi−1)ci

Therefore,
f ′(x) = mj for x ∈ (cj, cj+1). (3.1)

If x = ci for some i = 2, 3, · · · , n, then

wf (ci) = lim
ε→0+

(f ′(ci + ε)− f ′(ci − ε))

= lim
ε→0+

f ′(ci + ε)− lim
ε→0+

f ′(ci − ε)

Since ci + ε ∈ (ci, ci+1) and ci − ε ∈ (ci−1, ci), by (3.1) it follows

wf (ci) = mi −mi−1 = αi

14
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If c1 6= −∞, let c0 = −∞ ,−∞ is a ordinary point implies that f ′(x) = 0
for all x < x0 for some x0 ∈ R. Since there is no other non-ordinary point
between c0 and c1, so

f ′(x) = 0 for all x < c1. (3.2)

Hence,
wf (c1) = lim

ε→0+
(f ′(ci + ε)− f ′(ci − ε)) = m1 − 0 = α1

If c1 = −∞, by (3.1) it follows

f ′(x) = m1 for x ∈ (c1, c2)

i.e.,

f ′(x) = m1 for all x < c2, (3.3)

then

wf (−∞) = m1 = α1

wf (c1) = α1

It completes the proof of existence.

Now prove the uniqueness of f .
If g(x) is another function satisfying wg(ci) = αi, i = 1, 2, · · · , n; and wg(x) =
0 for any x 6= c1, c2, · · · , cn. Then we will prove the uniqueness by proving
that f(x)− g(x) is a constant.

case 1: c1 6= −∞
On this case,the least non-ordinary point is c1, hence c0 = −∞ is an

ordinary point, then wg(−∞)=0, it follows g′(x) = 0 for all x < c1, and by
(3.2) we know f ′(x) = 0 for all x < c1. Let h(x) = f(x)− g(x), then

h′(x) = f ′(x)− g′(x) = 0− 0 = 0 for x < c1. (3.4)

15
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And by Lemma 3.1,

wh(x) = wf (x)− wg(x)

=

{
0− 0 = 0 if x 6= c1, c2, · · · , cn
wf (ci)− wg(ci) = 0 if x = ci for some i = 1, 2, · · · , n.

Lemma 3.2 implies h(x) = Ax+B, for some constant A and B. And equation
(3.4) implies A = 0, therefore, h(x) = f(x)− g(x) is a constant.

case 2: c1 = −∞. (i.e., wg(−∞) = α1)

It follows g′(x) = α1 for all x < c2, and by (3.3), f ′(x) = α1 for all x < c2.
Then h′(x) = f ′(x)− g′(x) = α1 − α1 = 0 for all x < c2. Hence, wh(c1) = 0,
and h(x) is a constant for all x < c2.

If x = ci for i = 1, 2, · · · , n, then

wh(ci) = wf (ci)− wg(ci) = αi − αi = 0

holds for the same reason in case 1.
And if x is an ordinary point,

wh(x) = 0

holds for the same reason in case 1 too.
It completes the proof of uniqueness.

It follows the next theorem immediately.

Theorem 3.4. If a function is R-tropical meromorphic, then it is tropical
rational if and only if it has a finite number of roots and poles.

Proof. By definition it is clear that if f is tropical rational then it has a finite
number of roots and poles; conversely, if a tropical meromorphic function f
has a finite number of roots and poles then f is a tropical rational function
by Theorem 3.3.

So the Figure 3.2(b) in Example 3.3 with infinite roots and poles implies
that it is not a tropical rational function.

16
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Example 3.6. Let g(x) be a polynomial with root
1

2
of multiplicities 2.

Applying Theorem 3.3, one solution is the following polynomial:

g(x) = (x⊕ 1

2
)�2 = (x⊕ 1

2
)� (x⊕ 1

2
)

= x�2 ⊕ x� 1

2
⊕ 1

2
� x⊕ 1

2
� 1

2

= x�2 ⊕ 1

2
� x⊕ 1

We find that it is exactly the function in Figure 3.1(b). And since

max{2x, 1} =
max{2x, 1}+ max{2x, 1}

2
≥ 2x+ 1

2
= x+

1

2
,

then
g(x) = x�2 ⊕ 1

But x�2⊕ 1

2
�x⊕1 is the maximally represented tropical polynomial of g(x).

Example 3.7. f1(x) = (x ⊕ (−2)) � (x ⊕ (−1))�2 � (x ⊕ 1)�3 is a tropical
polynomial with roots −2, −1, 1 of multiplicities 1, 2, 3 respectively.(Figure
3.4(a)). f2(x) = (x)� (x⊕ (−1))�2� (x⊕ 1)�3 is a tropical polynomial with
roots −∞, −1, 1 of multiplicities 1, 2, 3 respectively. (Figure 3.4(b))

Example 3.8. In Example 3.3, we have show that |x| is a tropical rational
function, now we can get the expression of |x| in tropical rational form imme-
diately. From the graph of |x|, we know |x| have a pole −∞ of multiplicity
1, and a root 0 of multiplicity 2. Therefore, |x| = k� (x⊕0)�2� (x⊕ (−∞))
for some constant k, k = 0 follows from |0| = 0, one can omit −∞ to get the
same expression

|x| = (x⊕ 0)�2 � x = (x�2 ⊕ 0)� x

Example 3.9. Find the tropical rational function f(x) with non-ordinary
points −∞, −1, 0, 1, and wf (−∞) = 1, wf (−1) = −2, wf (0) = 2, wf (1) =
−2. That is, −∞, 0 are roots of multiplicities 1, 2 respectively; and −1, 1
are poles of multiplicities 2, 2 respectively. Therefore,

f(x) = k � (x⊕ (−∞))�1 � (x⊕ (−1))�(−2) � (x⊕ 0)�2 � (x⊕ 1)�(−2)

= k � (x⊕ (−∞))� (x⊕ 0)�2 � ((x⊕ (−1))�2 � (x⊕ 1)�2)

= k � (x)� (x⊕ 0)�2 � ((x⊕ (−1))�2 � (x⊕ 1)�2)

17
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(a) f1(x). (b) f2(x).

Figure 3.4:

If we hope f(0) = 0, then k = 2.

f(x) = 2� (x)� (x⊕ 0)�2 � ((x⊕ (−1))�2 � (x⊕ 1)�2)(Figure3.5(a))

Example 3.10. Given Figure 3.5(b), find the tropical rational expression
g(x) of it. Since g′(x) = 0 for all x < −2, then −∞ is an ordinary point, the
slope change at−2, −1, 1, 2, and wg(−2) = 2−0 = 2, wg(−1) = −2−2 = −4,
wg(1) = 2− (−2) = 4, wg(2) = 0− 2 = −2.Then

g(x) = k � (x⊕ (−2))�2 � (x⊕ (−1))�(−4) � (x⊕ 1)�4 � (x⊕ 2)�(−2)

= (k � (x⊕ (−2))�2 � (x⊕ 1)�4)� ((x⊕ (−1))�4 � (x⊕ 2)�2)

k = 2 follows from g(0) = 2.

3.3 Extended Tropical Meromorphic Functions

If we allow a tropical meromorphic function to have real slopes, this kind
of tropical meromorphic function is called an extended tropical meromorphic
function. So we have the following definitions.

18
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(a) f(x) = 2�(x)�(x⊕0)�2�((x⊕
(−1))�2 � (x⊕ 1)�2).

(b) g(x).

Figure 3.5:

Definition 3.7. An extended tropical polynomial is of the form:

f(x) = an � x�rn ⊕ an−1 � x�rn−1 ⊕ a1 � x�r1 ⊕ a0,

where ri ∈ R+ for all i = 1, 2, . . . , n; ai ∈ T, i = 0, 1, 2, · · · , n.

Definition 3.8. An extended tropical rational function is of the form:

f(x) = an � x�rn ⊕ an−1 � x�rn−1 ⊕ a1 � x�r1 ⊕ a0,

where ri ∈ R \ {0} for all i = 1, 2, . . . , n; ai ∈ T, i = 0, 1, 2, · · · , n.

Definition 3.9. A continuous piecewise linear function f : R→ R is said to
be a extended tropical meromorphic function on R if both one-sided deriva-
tives are real at each point x ∈ R

Theorem 3.3 will hold too in the extended tropical rational functions, we
restate the theorem in the following after slight modifications.

Theorem 3.5. Given c1 < c2 < · · · < cn ∈ T, and α1, α2, · · · , αn ∈ R,
there exist a extended tropical rational function f such that wf (ci) = αi for
i = 1, 2, · · · , n and wf (x) = 0 for x 6= ci, i = 1, 2, · · · , n.(i.e., ci is a root if
αi > 0 and a pole if αi < 0, and for any x 6= c1, c2, · · · , cn is an ordinary
point.)
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In fact,

f(x) = k � (
n⊙
i=1

(x⊕ ci)�αi)

with k a constant in R is the unique function satisfying the condition, the
uniqueness is up to the constant k.(Note that c1 may be −∞.)

Figure 3.6: h(x) = 1� (x⊕ (−∞))
�(−

1

2
)
� (x⊕ 0)

�
5

6 � (x⊕ 3)
�(−

1

3
)

Example 3.11. Find the extended tropical rational expression h(x) of Fig-

ure 3.6. Since h′(x) = −1

2
for all x < 0, then −∞ is a pole with wh(−∞) =

−1

2
, and wh(0) =

1

3
− (−1

2
) =

5

6
, wh(3) = 0− 1

3
= −1

3
. Therefore,

h(x) = k � (x⊕ (−∞))
�(−

1

2
)
� (x⊕ 0)

�
5

6 � (x⊕ 3)
�(−

1

3
)

k = 1 follows from h(0) = 0. we check this is really the true function of
Figure 3.6 in the following.
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h(x) =


1 + (−1

2
)x+

5

6
× 0 + (−1

3
)× 3 x ≤ 0

1 + (−1

2
)x+

5

6
× x+ (−1

3
)× 3 0 ≤ x ≤ 3

1 + (−1

2
)x+

5

6
× x+ (−1

3
)× x x ≥ 3

=


−1

2
× x x ≤ 0

1

3
× x 0 ≤ x ≤ 3

1 x ≥ 3

This is exactly the function of Figure 3.6.
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Chapter 4

Tropical Periodic Functions

In this chapter, we examine the extended tropical periodic meromorphic
functions. It will be shortened to be called tropical periodic function here.
Given an extended tropical meromorphic function f on an interval [0, T ),
with f(0) = limx→T− f(x), if we extend f to be a periodic function with
period T, that is, f(x+ T ) = f(x), can we find a formula to express it? It is
“Yes”, let’s see how to do it in the following.

In [4], Laine and Tohge consider a tropical meromorphic 1-period function
defined by

π(a,b)(x) =
1

a+ b
max{a(x− [x]),−b((x− [x]− 1))}

= {(a(x− [x]))⊕ (−b(x− [x])− 1)}
�

1

a+ b

for arbitrary parameters a, b ∈ R−. Laine and Tohge make conclusion that
any non-constant tropical meromorphic 1-periodic function f(x) can be rep-
resented as an R-linear combination of such function π(a,b)(x).

But here we provide a better function

πa(x) = max{(1− a)([x]− x), a([−x]− (−x))}
= ([x]− x)�(1−a) ⊕ ([−x]− (−x))�a

These functions will be used to generate the tropical periodic functions in
section 4.2 and 4.3. We first prove some properties of πa(x) in section 4.1.
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4.1 Generating Functions of Tropical Periodic

Functions

Definition 4.1 (Tropical Periodic Function). If f(x) is an extended tropical
meromorphic function on R, and there is a real number T > 0 such that
f(x + T ) = f(x) for all x ∈ R, then we say f(x) is an extended tropical
periodic meromorphic function.

It will be shortened to be called tropical periodic function here.
Let’s consider the following extended tropical meromorphic 1-periodic

function.

Definition 4.2. Define

πa(x) := max{(1− a)([x]− x), a([−x]− (−x))}

for 0 ≤ a < 1. (Figure 4.1)

The number a control the skewness of f(x). When a = 0, the graph is
just the x-axis. It has the following properties.

Remark 4.1.

(a)
πa(n) = 0 for each n ∈ Z. (4.1)

(b)
a− a2 = πa(a) ≤ πa(x) ≤ 0 for 0 ≤ x < 1. (4.2)

(c)

wπa(a) =

{
1 a 6= 0

0 a = 0
(4.3)

(d)

For n ∈ Z, wπa(n) =

{
−1 a 6= 0

0 a = 0
(4.4)

23



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

(a) a = 0.25. (b) a = 0.5.

(c) a = 0.75.

Figure 4.1: πa(x) = max{(1− a)([x]− x), a([−x]− (−x))}

(e)
wπa(x) = 0 if x is not an integer and x 6= a. (4.5)

Proof. We verify these properties by a straightforward computation.

(a)

πa(n) = max{(1− a)([n]− n), a([−n]− (−n))}
= max{(1− a)× 0, a× 0} = max{0, 0} = 0

(b)

πa(a) = max{(1− a)([a]− a), a([−a]− (−a))}
= max{(1− a)(−a), a(−1 + a)}
= max{a2 − a, a2 − a} = a2 − a
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If 0 ≤ x < 1,

πa(x) = max{(1− a)(0− x), a(−1 + x)} (4.6)

= max{ax− x, ax− a} (4.7)

=

{
(a− 1)x x ≤ a

ax− a x > a
(4.8)

(a − 1)x ≤ 0 and ax − a = a(x − 1) ≤ 0, hence, πa(x) ≤ 0 for 0 ≤ x < 1.
If x ≤ a, πa(x) = (a − 1)x ≥ (a − 1)a = a2 − a; if x > a, πa(x) = ax − a >
a × a − a = a2 − a, hence, πa(x) ≥ a2 − a for 0 ≤ x < 1. That is, a2 − a is
the minimum of πa(x).

(c) By (4.8), wπa(a) = limε→0+(π′a(a+ ε)− π′a(a− ε)) = limε→0+(a− (a−
1)) = 1 if a 6= 0. And since π0(x) = max{[x] − x, 0} = 0 for each x, then
wπ0(0) = 0.

(d) If a 6= 0,

wπa(n) = lim
ε→0+

(π′a(n+ ε)− π′a(n− ε))

= lim
ε→0+

(π′a(0 + ε)− π′a(1− ε))

= lim
ε→0+

((a− 1)− a) = −1.

If a = 0,

π0(x) = max{[x]− x, 0} = 0 ∀x.
wπ0(n) = lim

ε→0+
(π′0(n+ ε)− π′0(n− ε)) = 0− 0 = 0.

(e) It is clear that the support of wf on [0, 1) only possible at x = 0 or
x = a, so the conclusion holds.

4.2 R-linear Combination of Tropical 1-Periodic

Functions

We first introduce some lemmas before proving the main theorem in this
chapter.
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Lemma 4.1. Let f(x) = πa(
x

T
), T > 0, then wf (x) =

1

T
wπa(

x

T
).

Proof. If
x

T
is not a support of wπa , by Chain Rule, f ′(x) =

1

T
π′a(

x

T
).

wf (x) = lim
ε→0+

(f ′(x+ ε)− f ′(x− ε))

= lim
ε→0+

(
1

T
π′a(

x+ ε

T
)− 1

T
π′a(

x− ε
T

))

=
1

T
lim
ε→0+

(π′a(
x

T
+
ε

T
)− π′a(

x

T
− ε

T
))

=
1

T
wπa(

x

T
)

Lemma 4.2. A non-constant tropical periodic function has as many roots
and poles in a period interval, counting multiplicities. That is,∑

c∈(suppwf )
⋂

[0,T )

wf (c) = 0

for any tropical T -periodic function f(x). More generally,∑
c∈(suppwf )

⋂
[k,T+k)

wf (c) =
∑

k≤c<T+k

wf (x) = 0

for any real constant k.

Proof. Let f(x) be a tropical T -periodic function, {ci | i = 1, 2, · · · , k} is
the support of wf (x) on [0, T ) with 0 ≤ c1 < c2 < · · · < ck < T. Hence,
c0 := ck − T < c1 < c2 < · · · < ck < c1 + T := ck+1, Since f(x) is linear in
each (ci, ci+1), then f ′(c+i ) = f ′(c−i+1), i = 0, 1, 2, · · · , k. In particular,

f ′(c+k ) = f ′(c−k+1) = f ′((c1 + T )−) = f ′(c−1 )
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∑
c∈(suppwf )

⋂
[0,T )

wf (c) =
k∑
i=1

wf (ci)

=
k∑
i=1

lim
ε→0+

(f ′(ci + ε)− f ′(ci − ε))

=
k∑
i=1

(f ′(c+i )− f ′(c−i ))

= (f ′(c+1 )− f ′(c−1 )) + (f ′(c+2 )− f ′(c−2 )) + · · ·+ (f ′(c+k )− f ′(c−k ))

= f ′(c+k )− f ′(c−1 ) = 0

Figure 4.2:

Geometrically, it says that the sum of all changes of the slope is zero
during a period.(Figure 4.2)

Theorem 4.3 (R-linear Combination Of Tropical 1-Periodic Functions). Let
f(x) be an tropical 1-periodic function on R, {ci | i = 1, 2, · · · , k} is the
support of wf (x) on [0, 1) with 0 ≤ c1 < c2 < · · · < ck < 1. Then

f(x) = (
k∑
i=1

wf (ci)πci(x)) + f(0)
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Proof. Define

f̂(x) = (
k∑
i=1

wf (ci)πci(x)) + f(0)

If c1 = 0,

wf̂ (c1) = wf̂ (0) (4.9)

=
k∑
i=1

wf (ci)wπci (0) (4.10)

= 0× wf (c1) +
k∑
i=2

wf (ci)× (−1) (4.11)

= (−1)× (
k∑
i=2

wf (ci)) (4.12)

= (−1)× (−wf (c1)) (4.13)

= wf (c1) (4.14)

(4.10) follows by (4.1), (4.11) follows by (4.4), and (4.13) follows by Lemma
4.2.
If c1 6= 0, then cj 6= 0, j = 1, 2, · · · , k.

wf̂ (cj) =
k∑
i=1

wf (ci)wπci (cj) (4.15)

= wf (cj)wπcj (cj) (4.16)

= wf (cj) (4.17)

(4.15) follows by linear property of wf̂ , (4.16) and (4.17) follows by (4.3) and
(4.5). And if x 6= c1, c2, · · · , ck, wπcj (x) = 0 for each j, hence, wf̂ (x) = 0 =

wf (x). Therefore, for x ∈ [0, 1),

wf̂ (x) = 0 = wf (x).

And since f̂(x) is a linear finite combination of πa
,s which are of period one,

so f̂(x) is of period one too. Therefore, for all x ∈ R

wf̂ (x) = 0 = wf (x).
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By Lemma 3.2, f̂(x) = f(x)+Ax+B for some constants A and B. Moreover,

f̂(0) = (
k∑
i=1

wf (ci)πci(0)) + f(0) = 0 + f(0) = f(0).

πci(0) = 0 from (4.1), it follows B = 0. And,

f̂(1) = (
k∑
i=1

wf (ci)πci(1)) + f(0) = 0 + f(0) = f(0) = f(1).

It follows A = 0. Therefore,

f(x) = f̂(x) = (
k∑
i=1

wf (ci)πci(x)) + f(0)

Example 4.1. Let f(x) be a tropical 1-periodic function, {ci | i = 1, 2, · · · , k}
is the support of wf (x) on [0, 1) with c1 = 0.2, c2 = 0.4, c3 = 0.6, c4 = 0.8.
And wf (c1) = 1, wf (c2) = −3, wf (c3) = 3, wf (c4) = −1, f(0) = 0 (Figure
4.3). Note that wf (c1) +wf (c2) +wf (c3) +wf (c4) = 1 + (−3) + 3 + (−1) = 0.
Then by Theorem 4.3,

f(x) = (
4∑
i=1

wf (ci)πci(x)) + f(0)

= 1× π0.2(x) + (−3)× π0.4(x) + 3× π0.6(x) + (−1)× π0.8(x) + 0

= π0.2(x)− 3π0.4(x) + 3π0.6(x)− π0.8(x)

4.3 R-linear Combination of Tropical T -Periodic

Functions

Theorem 4.4 (R-linear Combination Of Tropical T -Periodic Functions).
Let f(x) be an tropical T -periodic function on R, {ci | i = 1, 2, · · · , k} is the
support of wf (x) on [0, T ) with 0 ≤ c1 < c2 < · · · < ck < T. Then

f(x) = T × (
k∑
i=1

wf (ci)πci
T

(
x

T
)) + f(0)
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Figure 4.3:

Proof. The proof is very similar to Theorem 4.3. Let fci(x) = πci
T

(
x

T
),

i = 1, 2, · · · , k. Define

f̂(x) = T × (
k∑
i=1

wf (ci)πci
T

(
x

T
)) + f(0) = T × (

k∑
i=1

wf (ci)fci(x)) + f(0)

If cj 6= 0

wf̂ (cj) = T × (
k∑
i=1

wf (ci)wfci (cj)) (4.18)

= T × (
k∑
i=1

wf (ci)×
1

T
wπci
T

(
cj
T

)) (4.19)

=
k∑
i=1

wf (ci)wπci
T

(
cj
T

) (4.20)

= wf (cj)wπcj
T

(
cj
T

) (4.21)

= wf (cj)× 1 (4.22)

= wf (cj) (4.23)
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(4.19) follows by Lemma 4.1, (4.21) follows by (4.5), (4.22) follows by (4.3).
If c1 = 0,

wf̂ (c1) = wf̂ (0) (4.24)

= T × (
k∑
i=1

wf (ci)wfci (0)) (4.25)

= T × (
k∑
i=1

wf (ci)×
1

T
wπci
T

(
0

T
)) (4.26)

=
k∑
i=1

wf (ci)wπci
t

(0) (4.27)

= 0 +
k∑
i=2

wf (ci)wπci
T

(0) (4.28)

=
k∑
i=2

wf (ci)× (−1) (4.29)

= wf (c1) (4.30)

(4.26) follows by Lemma 4.1, (4.28) and (4.29) follows by (4.4), (4.30) follows

by Lemma 4.2. And if x 6= c1, c2, · · · , ck, wπci
T

(
x

T
) = 0 for each j, hence,

wf̂ (x) = 0 = wf (x). Therefore, for all x in [0, T ), wf̂ (x) = 0 = wf (x). And

since f̂(x) is a linear finite combination of πci
T

(
x

T
) ,s which are with period

T , so is f̂(x). Therefore, for all x ∈ R

wf̂ (x) = 0 = wf (x).

By Lemma 3.2, f̂(x) = f(x)+Ax+B for some constants A and B. Moreover,

f̂(0) = (
k∑
i=1

wf (ci)πci
T

(
0

T
)) + f(0) = 0 + f(0) = f(0).
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πci
T

(0) = 0 from (4.1), it follows B = 0. And,

f̂(T ) = (
k∑
i=1

wf (ci)πci
T

(
T

T
)) + f(0) = 0 + f(0) = f(0).

It follows A = 0. Therefore,

f(x) = f̂(x) = T × (
k∑
i=1

wf (ci)πci
T

(
x

T
)) + f(0)

Example 4.2. Let’s consider Figure 3.2(b) now, that is, f(x) = |x|,−1 ≤
x ≤ 1; f(x + 2) = f(x) for each x ∈ R. We can find a finite R-linear combi-
nation of πa

,s for it. f(x) is of period 2, and {0, 1} are the support of wf on
[0, 2), wf (0) = 1− (−1) = 2, wf (1) = −1− 1 = −2, f(0) = 0. Therefore,

f(x) = 2× (2× π0

2

(
x

2
) + (−2)× π1

2

(
x

2
)) + f(0)

= −4π1

2

(
x

2
) = −4π0.5(

x

2
)

= −4×max{1

2
([
x

2
]− x

2
),

1

2
([
−x
2

]− (
−x
2

))}

= min{−2([
x

2
]− x

2
),−2([

−x
2

] +
x

2
)}

= min{−2[
x

2
] + x,−2[

−x
2

]− x}

= min{x, 2− x} for 0 ≤ x < 2

=

{
x 0 ≤ x < 1

2− x 1 ≤ x < 2

We see that −4π0.5(
x

2
) is really the formula we want to find.

Example 4.3. Given Figure 4.4, support of wf are 0, 1, 2, 2.5, 3, 4, and
wf (0) = 2 − (−2) = 4, wf (1) = 0 − 2 = −2, wf (2) = 1 − 0 = 1,
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wf (2.5) = −1 − 1 = −2, wf (3) = 0 − (−1) = 1, wf (0) = −2 − 0) = −2,
f(0) = 1. Therefore,

f(x) =5× (4× π0

5

(
x

5
) + (−2)× π1

5

(
x

5
) + 1× π2

5

(
x

5
) + (−2)× π2.5

5

(
x

5
)

+ 1× π3

5

(
x

5
) + (−2)× π4

5

(
x

5
)) + f(0)

=20π0(
x

5
)− 2π0.2(

x

5
) + π0.4(

x

5
)− 2π0.5(

x

5
) + π0.6(

x

5
)− 2π0.8(

x

5
) + 1

Figure 4.4:

Example 4.4. Let

fN(x) = (−N)� (x⊕ (−∞))�
N⊙

n=−N

((x⊕ n)�2 � (x⊕ (n− 1

2
))�2),
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See Figure 4.5 for N = 1 and N = 2. By Theorem 3.3 and Theorem 4.3,

lim
N→∞

fN(x) = 2π0(x) + (−2)π0.5(x) = −2π0.5(x)

= −2 max{1

2
([x]− x),

1

2
([−x]− (−x))}

= −max{[x]− x, [−x]− (−x)}
= 1T � (([x]− x)⊕ ([−x]− (−x)))

(a) f1(x). (b) f2(x).

Figure 4.5:
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Chapter 5

Application on Difference
Equations

In this chapter, we will consider difference equation of type

y(x+ 1) = y(x)�c = cy(x) (c ∈ R)

It is called ultradiscrete equations in [3] and [4], and we want to find
the solutions y(x) which are tropical meromorphic functions. Before it, we
consider certain special tropical meromorphic functions introduced in [4],
Laine and Tohge define

eα(x) := α[x](x− [x]) +

[x]−1∑
j=−∞

αj = α[x](x− [x] +
1

α− 1
),

where α is a real number with |α| > 1. In a similar way, they also define

eβ(x) :=
∞∑

j=[x]

βj−β[x](x−[x]) =
∞∑

j=[x]+1

βj+β[x](1−x+[x]) = β[x](
1

1− β
−x+[x]),

where β is real number with |β| < 1.
But now, we will multiply eα(x) by α, and then rename it by eα(x). It will
see new eα(x) still have the similar properties, and it will be better because
of weα(0) = α− 1, we will discover that at last.

35



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

5.1 Tropical Counterpart to The Exponential

Function

Definition 5.1. Let α be a real number with |α| > 1. Define a function
eα(x) on R by

eα(x) := α1+[x](x− [x]) +

[x]∑
j=−∞

αj = α1+[x](x− [x] +
1

α− 1
),

Then we will see

Remark 5.1.

(a)

eα(m) =
α1+m

α− 1
∀m ∈ Z. (5.1)

(b) For x ∈ [m,m+ 1), m ∈ Z,

eα(x) = α1+mx+ α1+m(−m+
1

α− 1
) (5.2)

(c) eα(x+ 1) = αeα(x) ∀x ∈ R.

(d) eα(x) is continuous on R. And

weα(m) = αm(α− 1), m ∈ Z. (5.3)

weα(x) = 0, x /∈ Z. (5.4)

In particular, we2(0) = 1.

Proof. These follows from Definition 5.1 by a straightforward computation.

(a) eα(m) = α1+m(m−m+
1

α
− 1) =

α1+m

α− 1
(b) For x ∈ [n, n+ 1), n ∈ Z,
eα(x) = α1+n(x− n+

1

α− 1
) = α1+nx+ α1+n(−n+

1

α− 1
)

36



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

(c) For x ∈ R,

eα(x+ 1) = α1+[x+1]((x+ 1)− [x+ 1] +
1

α− 1
)

= α1+1+[x]((x+ 1)− ([x] + 1) +
1

α− 1
)

= α× α1+[x](x− [x] +
1

α− 1
)

= αeα(x)

(d) From (b), linearity of eα(x) on [m,m + 1) implies that it is continuous
at non-integer points x, and it remains to verify that eα(x) is continuous at
integer points x = m ∈ Z. Take 0 < ε < 1, then

eα(m+ ε) = α1+m(m+ ε−m+
1

α− 1
) = α1+m(

1

α− 1
+ ε)

eα(m− ε) = αm((m− ε)− (m− 1) +
1

α− 1
) = αm(1 +

1

α− 1
− ε) = α1+m(

1

α− 1
− ε

α
)

It follows

lim
ε→0+

eα(m+ ε) = lim
ε→0+

eα(m− ε) = eα(m) =
αm+1

α− 1

Hence, eα(x) is continuous on R. And, by equation (5.2), for m ∈ Z, we can
get e′α(m+ ε) = α1+m, and e′α(m− ε) = αm. Therefore,

weα(m) = lim
ε→0+

(e′α(m+ ε)− e′α(m− ε))

= α1+m − αm = αm(α− 1)

In particular, we2(0) = α0(2− 1) = 1.

Example 5.1. The graph of e2(x) is an approximate function of 21+x. See
Figure 5.1, let Am be the point (m, 21+m), m ∈ Z. e2(x) is the graph of all
line segments by joining Am and Am+1, and e2(x) ≥ 21+x for all x ∈ R, the
eqaul sign holds if and only if x ∈ Z. The proof is given in the following.
Suppose n < x = n+ ε < n+ 1, for some n ∈ Z, 0 < ε < 1.

e2(x) = 21+n((n+ ε)− n+ 1) = 21+n(1 + ε) > 21+n × 2ε = 21+n+ε = 21+x

The inequality holds because of 1 + ε > 2ε for 0 < ε < 1. And if x = m ∈ Z,
e2(m) = 21+m follows from (5.1). For convenience, we omit 2 from e2(x), and
denote e(x) = e2(x).
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Figure 5.1: e2(x) is an aproximate function of 21+x.

5.2 Application on Difference Equations: First

Order

Now, let’s consider

y(x+ 1) = y(x)�c = cy(x) (c ∈ R). (5.5)

In [3], lemma 4.1, Halburd and Southall have shown that equation (5.5)
admits a nonconstant tropical meromorphic soluction on R if and only if
c = ±1. For convenience and completeness, we carry the proof into here and
make changes slightly.

Theorem 5.1. The equation (5.5) admits a nonconstant tropical meromor-
phic soluction on R if and only if c = ±1.

Proof. If c = 0 then y ≡ 0 is the only solution. If c = 1 then y is any tropical
meromorphic 1-periodic function. If u is any 2-periodic tropical meromorphic
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function, then y(x) := u(x+ 1)− u(x) is a tropical meromorphic solution of
equation (5.5) with c = −1. Conversely, if h(x) is a tropical meromorphic
solution function of y(x+ 1) = −y(x), then there exist a 2-periodic function
v(x) such that h(x) = v(x+ 1)− v(x). We can define

v(x) =

{
0 0 ≤ x < 1

−h(x) 1 ≤ x < 2

and v(x+ 2) = v(x) for each x ∈ R. Then

v(x+ 1) =

{
−h(x+ 1) 0 ≤ x < 1

0 1 ≤ x < 2

v(x+ 1)− v(x) =

{
−h(x+ 1) = h(x) 0 ≤ x < 1

h(x) 1 ≤ x < 2

Hence, by periodicity of h(x) and v(x), h(x) = v(x+ 1)− v(x) for all x ∈ R.
If y is nonconstant then there is an x0 ∈ R such that y′ exists and is a

nonzero integer m at x0. It follows from equation (5.5) that for all v ∈ Z,
y′(x0 − v) =

m

cv
. Therefore if c 6= ±1 then for sufficiently large v, 0 <

|y′(x0 − v)| < 1, and hence the slope is not an integer.

Note that if we allow the solution y(x) with non-integer slope, then any
extended tropical meromorphic 1-periodic function is a solution of equation
y(x+ 1) = y(x). And we can express the solutions with a linear combination
of πa(x) ’s by Theorem 4.3.

The following theorem is the case of c 6= 0,±1.

Theorem 5.2.
y(x+ 1) = cy(x), c 6= 0,±1. (5.6)

Given an arbitrary extended tropical meromorphic solution f to equation
(5.6) with discontinuities of slope at x1, x2, · · · , xk in [0, 1), then f can be
represented as a linear combination of finite shifts of the function e2(x), that
is,

f(x) =
k∑
i=1

wf (xi)e2(x− xi) =
k∑
i=1

wf (xi)e(x− xi)
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Proof. Given a non-trivial tropical meromorphic solution f to equation (5.6),
there are only finitely many points x1, x2, · · · , xk in the interval on which
wf (x) 6= 0. And at least one point x such that wf (x) 6= 0. If wf (x) = 0 for
all x ∈ [0, 1), there exist ε > 0 such that f(x) = ax + b on [−ε, 1) for some
constants a and b. For every δ with 0 < δ < ε, equation (5.6) implies

y(1− δ) = cy(−δ)
a(1− δ) + b = c(a(−δ) + b)

c =
a(1− δ) + b

a(−δ) + b
= 1 +

a

b− aδ
but c is a constant, a contradiction.

Define f̂(x) =
∑k

i=1wf (xi)e2(x− xi) =
∑k

i=1wf (xi)e(x− xi), then

f̂(x+ 1) =
k∑
i=1

wf (xi)e(x+ 1− xi)

=
k∑
i=1

wf (xi)ce(x− xi)

= c
k∑
i=1

wf (xi)e(x− xi)

= cf̂(x)

Hence, f̂ is a solution of equation (5.6).

When x ∈ [0, 1), we see that if x 6= xj,

wf̂ (x) =
k∑
i=1

wf (xi)we(x− xi) =
k∑
i=1

wf (xi)× 0 = 0

e(x−xi) is the shift of e(x) to right for xi unit, we(x−xi) 6= 0 only for x = xi
on [0, 1), hence, if x 6= x1, x2, · · · , xk, we(x− xi) = 0 for each i = 1, 2, · · · , k.

And, for j = 1, 2, · · · , k,

wf̂ (xj) =
k∑
i=1

wf (xi)we(xj − xi)

= wf (xj)we(xj − xj)
= wf (xj)we(0) = wf (xj)× 1 = wf (xj)
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we(0) = 1 follows by equality (5.3).
Therefore, applying Lemma 3.2 to conclude that f(x) = f̂(x) + Ax + B

for some constants A,B ∈ R. And for each x ∈ R,

f(x+ 1)− cf(x) = f̂(x+ 1) + A(x+ 1) +B − c(f̂(x) + Ax+B)

= (f̂(x+ 1)− cf̂(x)) + (1− c)Ax+ A+ (1− c)B
= (1− c)Ax+ A+ (1− c)B = 0

We conclude A = 0 and B = 0 since c 6= 1.
Hence, f = f̂ on [0, 1). If x is a real number such that n ≤ x < n+ 1 for

some n ∈ Z, let x = n+ x0, then 0 ≤ x0 < 1, f(x) = f(n+ x0) = cnf(x0) =
cnf̂(x0) = f̂(n+ x0) = f̂(x). Therefore, f(x) = f̂(x) for all x ∈ R.

Remark 5.2. When applying Theorem 5.2, we prefer to write the represen-
tation for f in the form

f(x) =
k∑
i=1

aie(x− xi)

where ai = wf (xi).

Now, let’s consider the equation

y(x+ 1) = y(x) + b (b ∈ R) (5.7)

It is clear that y(x) = bx is a solution function of equation (5.7), and if
h(x) is an extended tropical meromorphic function such that h(x+1) = h(x),
then h(x) + bx is an extended tropical meromorphic solution function of
equation (5.7). Moreover, all solution functions of equation (5.7) is the form
h(x) + bx, where h(x) is a tropical 1-periodic function.

And now the equation

y(x+ 1) = ay(x) + b (a, b ∈ R, a 6= 0,±1) (5.8)

can be turned into

y(x+ 1)− b

1− a
= a(y(x)− b

1− a
) (5.9)

Let z(x) = y(x)− b

1− a
, equation (5.9) turn into

z(x+ 1) = az(x) (5.10)
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By Theorem 5.2, the solution function of equation (5.10) can be represented
as z(x) =

∑k
i=1 aie(x − xi), where 0 ≤ xi < 1, ai ∈ R \ {0}. Hence, the

solution function of equation (5.8) can be represented as

y(x) = (
k∑
i=1

aie(x− xi)) +
b

1− a
.

Last case, consider the equation

y(x+ 1) = −y(x) + b (b ∈ R). (5.11)

Subtract both sides by − b
2
, it turns into

y(x+ 1)− b

2
= −(y(x)− b

2
)

Hence, by Theorem 5.1, the solution function of equation (5.11) can be rep-
resented as

y(x) = u(x+ 1)− u(x) +
b

2

where u(x) is any 2-periodic tropical meromorphic function. So far we have
discussed all the circumstances of equation y(x+ 1) = ay(x) + b.

For the example of second order difference equations, one can see [4],
Laine and Tohge consider equation

y(x+ 1) + y(x− 1) = cy(x)

for c ∈ R.

5.3 Tropical Approximated Function

We found that each continuous function defined on R can be approx-
imated by extended tropical meromorphic functions. Given a continuous
function f(x) on R, connect the line between the point (m, f(m)) and (m+
1, f(m+1)) for each integer m. This will be a function of an extended tropical
approximated of original function. The function is

(f([x+ 1])− f([x]))(x− [x]) + f([x]). (5.12)
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where [x] represent the greatest integer not exceeding x.

If every
1

n
as a line linking, then this function is

Tfn(x) :=
f(

1

n
[n(x+

1

n
)])− f(

1

n
[nx])

1

n

(x− 1

n
[nx]) + f(

1

n
[nx])

It is continuous piecewise linear, and limn→∞ Tfn(x) = f(x) for each x ∈ R.

Theorem 5.3. Given a continuous function f(x) on R, define

Tfn(x) :=
f(

1

n
[n(x+

1

n
)])− f(

1

n
[nx])

1

n

(x− 1

n
[nx]) + f(

1

n
[nx])

then Tfn(x) is continuous piecewise linear for each n ∈ N, and
limn→∞ Tfn(x) = f(x) for each x ∈ R.

Proof. If n ∈ N, x =
m

n
for some m ∈ Z, then

Tfn(x) = Tfn(
m

n
) = f(

m

n
) = f(x).

If x ∈ (
m

n
,
m+ 1

n
),

T fn(x) =
f(
m+ 1

n
)− f(

m

n
)

1

n

(x− m

n
) + f(

m

n
).

If x ∈ (
m− 1

n
,
m

n
),

T fn(x) =
f(
m

n
)− f(

m− 1

n
)

1

n

(x− m− 1

n
) + f(

m− 1

n
).

Hence,

lim

x→(
m

n
)+

Tfn(x) = f(
m

n
),
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and

lim

x→(
m

n
)−

Tfn(x) = f(
m

n
)− f(

m− 1

n
) + f(

m− 1

n
) = f(

m

n
).

Therefore, Tfn(x) is continuous piecewise linear for each n ∈ N.
Next, if x ∈ Z, then Tfn(x) = f(x) for each n ∈ N, and clearly limn→∞ Tfn(x) =

f(x). If x ∈ (t, t + 1) for some t ∈ Z, continuity of f(x) implies that f(x) is
uniformly continuous on [t, t + 1], given ε > 0, there exists δ1 > 0 such

that |x − y| < δ1 and x, y ∈ [t, t + 1] implies |f(x) − f(y)| < ε

2
. Let

δ2 = min{x−t, t+1−x}, there exists N ∈ N such that
1

N
< δ := min{δ1, δ2},

for each n ≥ N, there exists mn ∈ Z such that t <
mn

n
≤ x <

mn + 1

n
< t+1,

and

|Tfn(x)− f(x)| = |Tfn(x)− Tfn(
mn

n
) + Tfn(

mn

n
)− f(x)|

≤ |Tfn(x)− Tfn(
mn

n
)|+ |Tfn(

mn

n
)− f(x)|

= |
f(
mn + 1

n
)− f(

mn

n
)

1

n

(x− mn

n
)|+ |f(

mn

n
)− f(x)|

≤ |f(
mn + 1

n
)− f(

mn

n
)|+ |f(

mn

n
)− f(x)|

≤ ε

2
+
ε

2
= ε

Therefore, limn→∞ Tfn(x) = f(x) for each x ∈ R.

In fact, {Tfn} converges to f uniformly on any closed bounded interval.

Example 5.2. If f(x) = 2x+1, then

Tf1(x) = f([x+ 1]− f([x]))(x− [x]) + f([x])

= (2[x+1]+1 − 2[x+1])(x− [x]) + 2[x]+1

= 2[x]+1(x− [x]) + 2[x]+1

= 2[x]+1(x− [x] + 1)

It is precisely the function e2(x) of section 5.1.
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Given first-order linear difference equations with general solutions, we
can use Formula (5.12) to find their tropical approximated solutions. We can
then use these tropical approximated solutions to generate all the extended
tropical meromorphic solutions of the given difference equations. For the
future research, we hope these results can be extended to difference equations
in general.
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