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Abstract

In this thesis, we find the formula of tropical meromorphic function by
giving finite number of roots and poles (with multiplicities). We also find
a simple formula for tropical periodic function by giving finite number of
roots and poles (with multiplicities) during a period [0,7"). We then discuss
all cases of the tropical meromorphic solution functions of first-order linear
difference equation. At last, we provide a tropical approximated function of
a given continuous function. We hope it is helpful in solving the tropical
meromorphic solution functions of a given difference equation.
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Chapter 1

Introduction

Tropical geometry is a relatively new area in mathematics, first developed
in the 1980s by Imre Simon, a mathematician and computer scientist from
Brazil. It is a piecewise-linear version of algebraic geometry, the algebraic
structure we work on is the set T = R U {—o0} equipped with addition and
multiplication defined by:

x @y = max{z,y},
rTOY=z+Yy.

In words, the tropical sum of two numbers is their maximum, and the
tropical product of two numbers is their usual sum. These two operations
both are associative and commutative, and the multiplication is distributive
with respect to the addition.

The identity elements for the tropical operations are O = —oo for addi-
tion and 1t = 0 for multiplication. Observe that such a structure is not a
ring, since not all elements have tropical additive inverses. For example, the
function z & 1 = 2 has no solutions in T.

We can define the tropical semiring in another way. For example, x &y =
min{z,y}, * ®y = x + y. This is min-plus tropical semiring. However,
the work on min-plus tropical semiring is similar to the work on max-plus
tropical semiring. We will work on max-plus tropical semiring in this thesis,
and only with one variable.

For basic tropical geometry, one can see book [5], and [1], [2], [6], [7]. In
[1] and [2], Grigg and Manwaring give an elementary proof of the Fundamen-
tal Theorem of Algebra for polynomials over the rational tropical semi-ring,



and they provide a simple algorithm for factoring tropical polynomials of a
single variable.

The main references of this thesis is [3] and [4], both are introduc-
ing tropical nevenlinna theory and applications on ultra-discrete equations,
which is an equation, written in terms of addition and max operators, such
that both dependent and independent variables take only discrete values.
Here we do not mention the tropical nevenlinna theory, and emphasizing on
tropical meromorphic function with integer slope or real slope (extended).
Given finite number of roots and poles (with multiplicities respectively) of
a tropical meromorphic function, we can represent the function immediately
just like general rational funtion by giving roots and poles (Chapter 3). And
in Chapter 4, we define a function

mo(7) = max{(1 = a)([z] = z), a([=2] = (=2))}.

to generate the tropical T-periodic functions by giving roots and poles (with
multiplicities respectively) during an period [0, T"). In chapter 5, we want to
obtain a representation of all the extended tropical meromorphic solution
functions of first-order linear difference equation y(x + 1) = ay(z) + b, for
a,beR.

At last, we provide a tropical approximated function of a given continuous
function f(z) by

(f(lz +1]) = f(l2D) (@ = [2]) + f([«)).

It may be helpful in dealing with ultra-discrete equations, at least for first-
order linear difference equations.



Chapter 2

Background

2.1 Arithmetic

Definition 2.1. We define operators ® : T xT — T,and © : TxT — T
by:

z @y = max{z, y},
TOQY:=x+y.

Remark 2.1. For each x € T,
x @ (—00) = —00, hence —oo is the additive identity element.
x ® 0 =z, hence 0 is the multiplicative identity element.

Example 2.1.

2@ 3=max{2,3} =3; 2@ 2 =max{2,2} =2; 2@ (—o0) = max{2, —oo} = 2.
203=243=5200=240=2;20(—x) =24+ (—o0) = —0.
Definition 2.2. For each integer n, define

29" i =n x x.

And define tropical division to be their usual subtraction:

TQY:=x—1Y.



Moreover, define

n
@ai = max{ay,az, - ,an}
i=1

n n

Qai=a+at ta=) a
=1 k=1

The definition of semiring are given formally as the following:

Definition 2.3 (Semiring). A semiring is a set S equipped with two algebraic
operations, called addition and multiplication, such that:

(i) The addition and multiplicatioon are associative.
(ii) The addition is commutative.
(iii) The multiplication is distributive with respect to the addition.

Remark 2.2. (RU{—o0},®,®) is a semiring.

2.2 Some Equalities and Inequalities

Under these new operations, there are some funny equalities and inequalities

(i) boa)d(doc)=0b0cda®d) @ (a®c)
It is an analogue of

b d be+ad
+-= .

a c ac
(i) 200" = 13 @ (2°") = —n x x
It is an analogue of
1
— 1
xn —=
:En



(iii) The Freshman’s dream come true in tropical arithmetic:

(z@y)" =" @y

(iv) Tropical Cauchy inequality holds:

n n n

(@ ai?) © (@ 17?) = (@ (ai © b))

=1 i= =1

i.e.

max{ay, - ,a,} +max{by,:-- ,b,} > max{a; +by, - ,a,+b,} (2.1)

(V) for aiJERU{_OO}7i:1727"' ,myg=1,2,-+- n,

n m n

PP ay) = @(@ w)= P ay (2.2)

j=1 i=1

e =J =

It is an analogue of

n m n

> Q) =3 D a) = >,

j=1 i=1 =1 j=1 1<i<n,1<j<m
Proof. (iv): Let a, = max{aj,as, - ,a,}, bs = max{by,by,---,b,}, then
a, > ap for each £ = 1,2,--- ,n. And b, > b, for each £ = 1,2,--- ,n.
Hence, a, + bs > ay, + by, for each k = 1,2, -+, n. Thus, (2.1) holds. ]

Remark 2.3. Let A = {r|a, = max{ay,as, -+ ,a,}}, B = {s|bs = max{by, bo, - ,b,}},
then the equal sign of (2.1) holds if and only if AN B # ¢.



Chapter 3

Tropical Meromorphic
Functions

In this Chapter, we will derive the equation of tropical meromorphic
functions with prescribed roots and poles. In section 3.1, we first introduce
the tropical polynomials in one variable, and then tropical meromorphic func-
tions in section 3.2, if the slope is allowed to be non-integer, it is extended
tropical meromorphic functions in section 3.3.



3.1 Tropical Polynomials in One Variable

Definition 3.1. In general, the tropical polynomials in one variable are

n

flz) = @(ai ©r”) =a,02"" ®a, , ©2°" V... ®a; O d ag.
i=0
Here the coefficients a,,, a,_1, -« -- ,ap are real numbers and n is a non-

negative integer. When evaluating this function in classical arithmetic, we
have
f(z) = max{a, +nz,a, 1+ (n— 1)z, a1+ x, a0}

Remark 3.1. It is clear that this function f(z) maps T to T has the following
three important properties:

(i) f(z) is continuous.

(ii) f(z) is piecewise-linear, where the number of pieces is finite.

By / 1

! 5 < 5(f(@) + f()) for all 2,y € R.
Example 3.1. f(x) = 2©2@1 is a tropical polynomial, the coefficient of 22
is 0, and the coefficient of z is —o0, it is a missing term, and the constant

1
term is 1. We will see f(z) = max{2z,1}, ie., f(z) = 1if v < 5 and

(iii) f(x) is convex, i.e., f(

f@)=2cif x> % (Figure 3.1(a)

1
Example 3.2. g(x) = x®2@§®x@1 (Figure 3.1(b)), h(z) = 22 (—1)Ozd1
(Figure 3.1(c)). From the graph, we see f(x) in Example 3.1 and g¢(z),

h(x) are different tropical polynomials which define the same function. And
plx) =22® 102 ® 1 (Figure 3.1(d)) defines a different function of them.

1
From Figure 3.1, we know that if the coefficient of x is less or equal to 3 then
1
they all define the same function; and if the coefficient of x is larger than 2

1
then it will be a different function, it seems that — is the largest coefficient

of z to unchange the function. So we have the following definition.

Definition 3.2. Given two polynomials g(z) and h(z), if g(c) = h(c) for all
c € R, then g(z) and h(z) are functionally equivalent.

8



(a) f(z) =22 1. (b) g(x)'::rm@%@x@l.

(c) h(z) :xGQé(~l)®x@1. (d) p(z) =2 @10z 1.

Figure 3.1:

In classical, if g(z) and h(z) are functionally equivalent, if and only if
g(x) and h(x) are the same polynomials. But in tropical geometry, functional
equivalence does not mean the functions obtained from the same polynomials.

Although different tropical polynomials might define the same function,
we can adjust each of coefficient to be maximal, and to get a maximally
represented tropical polynomial which still represent the same function. One
can see section 3 in [8] to know how to derive the maximally represented
tropical polynomial of a given tropical polynomial. And the similar result
can be found in [2] and [1] on min-plus tropical polynomial, it is call least-
coefficient tropical polynomial in [2] and [1]. Moreover, each maximally
represented tropical polynomial (or least-coefficient tropical polynomial on
min-plus tropical polynomial) can be factorized into a product of linear terms,
it is the Fundamental Theorem of Tropical Algebra, you can see the proof in
[2] on min-plus form.



3.2 Tropical Meromorphic Functions
Definition 3.3. A tropical rational function is a function of the form
R(z)=(ayn @2 @® - ®a; 0xDag) @ (b, @z ® - B by © D by)

where m and n are non-negative integers,and a;,0; € T,i = 1,2,--- ,m;j =
1,2, ,n.

Definition 3.4. A continuous piecewise linear function f : R — R is said
to be a tropical meromorphic function on R if both one-sided derivatives are
integers at each point x € R.

In this thesis, if f(z) is a tropical meromorphic function on R, we call f(x)
an R-tropical meromorphic function. Note that every tropical polynomial is
an R-tropical meromorphic function, and so is tropical rational function.
Moreover, the word “piecewise” implies that there are finitely many pieces
in every bounded interval.

Example 3.3. f(z) = (z®* & 0) @ = (Figure 3.2(a)) is a tropical rational
function. In fact, it is equal to |z|. It shows in the following.

|| = 2t + a2

where * = max{z,0}, 27 = max{—=z, 0}.
Summation of the above two equalities, it gets

|z| = 22" — 2 = 2max{z,0} — z = max{22,0} —z = (z**®0) 0z
Example 3.4. Figure 3.2(b) shows a function which is an R-tropical mero-
morphic function but not a rational function.

Note that in tropical functions, those non-differentiable points are special,
it comes the following definitions.

Definition 3.5. For each x € R, let

wy(x) = lim (f'(z +€) — f'(z —€))

e—0t

10



(@) f(x) =@ @0)ow=lzl.  (b) f(¥)=|z,-1<z <L f(z+
2) = f(z) for each x € R..

Figure 3.2:

(i) If wy(x) > 0, then z is called a root of f with multiplicity w(x).
(ii) If wy(x) < 0, then z is called a pole of f with multiplicity —w(z).
(iii) If ws(z) = 0, then z is called an ordinary point of f.

Note that all roots and poles of f constitute the support of wy(z).

Consider the function f(x) = 2 @ a = max{z,a}, which has a root at a.
From the point of view of algebra and factorization, it is perhaps more natural
to think of a as the negative of the root. However, there is no subtraction in
the tropical semi-ring and the definition given above is the natrual one from
the point of view of geometry.

Definition 3.6. If f is tropical meromorphic on R and f’(z) = m for all
x < xg, for some constant m € Z and xy € R, then we say that f is tropical
meromorphic on T. Define ws(—o00) = m and

(i) If m > 0, then the point —oo is called a root of order m.
(ii) If m < 0, then the point —oc is called a pole of order —m.

(iii) If m = 0, then the point —oo is called an ordinary point.

11



If f(z) is a tropical meromorphic function on T, we call f(x) an T-tropical
meromorphic function.

We know that in traditional rational functions, given roots and poles and
their multiplicities, we can find a suitable rational functions.

Example 3.5. Given two roots —1 and —2 with multiplicities 2 and 5 respec-

tively, and one pole —3 with multiplicity 7, and no other roots or poles. Then

k(z+1)*(x+2)°
(x +3)7

the suitable function is f(z) = , k is a nonzero constant.

We have a similar tropical result in the following. Before it, we need some
lemmas at first.

Lemma 3.1 (The Linear Property of ws(z)). Suppose fi(x) are R-tropical
meromorphic functions, 1+ = 1,2,--- . n, and ci,co, - , ¢, are constants in
R. Let

n

f(z) = Zcifi(x)a

i=1
then

wy(@) = 3 eawy (2)

Proof. If = is not a root or pole of any fi(z), then f'(x) = Y7, cif/(x),
hence, for any x € R, and small €,

wp(e) =l (f(x+ ) + 'z~ ¢))

- 11_{%(; cifi(x+e€) — Z;cif{(ﬂf —€))

_ 113%(2 G(fi(x+e€) — fl(x —e)))

= gci%(ﬂ(xﬁ) — filz —¢))

n
= Z CiWy; (ZL‘)
=1

12



Lemma 3.2. Two R-tropical meromorphic functions f(x) and g(x) satisfy
the relation

we(x) —wy(z) =0
if and only if f(x) — g(x) is a linear function on R. That is, f(x) — g(x) =
Ax + B for some constants A and B.

Proof. Since f(x) and g(z) are R-tropical meromorphic functions, let h(z) =
f(z) — g(x), then by Lemma 3.1,

wi(x) = wp(w) — wy(z) = 0

Therefore, h'(x+) = h'(z—) holds for any x € R. Then w,(xz) = 0 implies
h'(z) is a constant on R. Hence, h(x) = f(x)— g(z) is a linear function on R.
Coversely, of course that the w of any linear function vanishes identically. [

Theorem 3.3. Given cq < co < ---<c¢, €T, and ay,a0, -+ ,a, € Z, there
exist a tropical rational function f such that wy(c;) = a; fori=1,2,--- ., n
and wy(z) = 0 for x # ¢;;i = 1,2,---,n.(i.e., ¢ is a root if a; > 0 and a
pole if a; < 0, and for any x # ¢1,¢s,-++ , ¢, i an ordinary point.)

In fact,

n

@) = ko (O e a)®™)

i=1
with k a constant in R is the unique function satisfying the condition, the
uniqueness is up to the constant k.(Note that ¢; might be —o0.)

First prove the existence of f.
Define my = 0 and

J
mj:al—l—ag—i—---—I—aj:Zai

to be the slope of f(z) in (¢;, ¢j+1), then

n

f(@) = ko (D))

=1

=k+ Z a; max{x,c;}

i=1

=k+ Z — m;_1) max{z, ¢;}

13



Proof.

Figure 3.3:
If v € (¢j,¢j41) for some j =1,2,---  n, then
J n
flz)=Fk+ Z:(mZ —m;_q1) max{z,c;} + Z (m; — m;_1) max{zx, ¢;}
i=1 i=j+1
J n
=k+ Z(mz — mi,l)x + Z (mz 7 mi,l)ci
i=1 i=j+1

=k+m;x+ Z (m; —mi_1)¢

i=j+1
Therefore,

Fla)=m; for @€ (cjcpm). (3.1
If x = ¢; for some i = 2,3,--+ ,n, then

wi(e) = lim (e + ) = (e = )
= lim f'(¢; +€) — lim f'(¢; —¢)

e—0t e—0+

Since ¢; + € € (¢;,¢i41) and ¢; — € € (¢;_1,¢;), by (3.1) it follows

UJf(C,L) =m; —Mm;—1 = &

14



If ¢y # —00, let ¢g = —00 ,—o0 is a ordinary point implies that f'(z) = 0
for all < xg for some zy € R. Since there is no other non-ordinary point
between ¢y and ¢y, so

f(x)=0 for all x<c. (3.2)

Hence,
we(cr) = lil(%(f/(ci +e)—fllci—€)=my —0=qy

If ¢; = —o0, by (3.1) it follows

f'(x)=mqy for x€ (c1,co)
ie.,

f(x)=mq for all z<co, (3.3)
then

w(—o0) =my = oy

we(c) = m

It completes the proof of existence.

Now prove the uniqueness of f.
If g(x) is another function satisfying w,(c;) = o, i = 1,2, -+ ,n; and wy(z) =
0 for any x # c¢1,¢o, -+ ,¢,. Then we will prove the uniqueness by proving
that f(z) — g(z) is a constant.

case 1: ¢; # —0o0

On this case,the least non-ordinary point is c¢;, hence ¢¢ = —o0 is an
ordinary point, then w,(—o00)=0, it follows ¢'(x) = 0 for all < ¢;, and by
(3.2) we know f'(z) =0 for all x < ¢;. Let h(z) = f(x) — g(x), then

(x)=f(z)—¢'(x)=0—-0=0  for x<ec. (3.4)

15



And by Lemma 3.1,

wn(7) = wi(x) — wy(2)

0—-0=0 ifx #cy,c0, 0,0y
we(c;) —wy(e) =0 if x = ¢; for some i =1,2,---  n.

Lemma 3.2 implies h(z) = Az + B, for some constant A and B. And equation
(3.4) implies A = 0, therefore, h(z) = f(x) — g(x) is a constant.

case 2: ¢ = —00. (l.e., wy(—00) = ay)

It follows ¢/'(z) = oy for all x < ¢y, and by (3.3), f'(x) = oy for all x < ¢,.
Then P/ (z) = f'(x) — ¢'(x) = a; — oy = 0 for all x < ¢y. Hence, wy(c;) = 0,
and h(x) is a constant for all z < ¢.

Ifx=c fori=1,2,--- n, then

wp(c) = we(c) —wg(c) =0 —a; =0

holds for the same reason in case 1.
And if = is an ordinary point,

wp(z) =0

holds for the same reason in case 1 too.
It completes the proof of uniqueness. O

It follows the next theorem immediately.

Theorem 3.4. If a function is R-tropical meromorphic, then it is tropical
rational if and only if it has a finite number of roots and poles.

Proof. By definition it is clear that if f is tropical rational then it has a finite
number of roots and poles; conversely, if a tropical meromorphic function f
has a finite number of roots and poles then f is a tropical rational function
by Theorem 3.3. O]

So the Figure 3.2(b) in Example 3.3 with infinite roots and poles implies
that it is not a tropical rational function.

16



1
Example 3.6. Let g(z) be a polynomial with root 3 of multiplicities 2.
Applying Theorem 3.3, one solution is the following polynomial:

_ Lioa _ 1 1
o) = (@6 ) = (26 1) 0 (6 )
190G 0rB SO
B 272 272
1
=2 @ 5 0z® 1
We find that it is exactly the function in Figure 3.1(b). And since
max {2, 1} = max{2z,1} + max{2z, 1} > 2v+1 - 1’
2 2 2
then
g(x) =z? @1

1
But 2% ® 5 ®x @1 is the maximally represented tropical polynomial of g(z).

Example 3.7. fi(z) = (2 & (-2)) ©® (@ (—1))?> © (z ® 1)? is a tropical
polynomial with roots —2, —1, 1 of multiplicities 1, 2, 3 respectively.(Figure
34(a). fo(z) = () © (z® (—1))??® (x & 1)®3 is a tropical polynomial with
roots —oo, —1, 1 of multiplicities 1, 2, 3 respectively. (Figure 3.4(b))
Example 3.8. In Example 3.3, we have show that |z| is a tropical rational
function, now we can get the expression of |z| in tropical rational form imme-
diately. From the graph of |z|, we know |z| have a pole —oo of multiplicity
1, and a root 0 of multiplicity 2. Therefore, |z| = k©® (z®0)?? 2 (2D (—o0))
for some constant k, k= 0 follows from |0| = 0, one can omit —oo to get the
same expression

lz| = (z®0)*0r=(2*®0)0x

Example 3.9. Find the tropical rational function f(z) with non-ordinary
points —oo, —1, 0, 1, and wy(—o00) = 1, wy(—1) = =2, wr(0) = 2, wy(l) =
—2. That is, —oo, 0 are roots of multiplicities 1, 2 respectively; and —1, 1
are poles of multiplicities 2, 2 respectively. Therefore,

f@)=ko (@ (—0)” 0 @a (-1)"?e(ze0)” e (ze1)°?
= kO (®(-00) O (z®0)? 2 ((r®(-1))? 6 (r ®1)%?)
— ko @) o (e0)? 0 (ze (-1)? 6 (z6 1))

17



(1,6) 6 (1,6)

:
0

-4 -3 -2 /1 0 1 2 3 4 -4 -3 -2 -1
2,1 B

(a) fi(z). (b) fa(w).

Figure 3.4:

If we hope f(0) =0, then k = 2.

fl2) =20 ()0 (e 0)? o ((z® (-1)? 06 (¢ ®1)°?)(Figure3.5(a))

Example 3.10. Given Figure 3.5(b), find the tropical rational expression
g(x) of it. Since ¢'(z) = 0 for all x < —2, then —oco is an ordinary point, the
slope change at —2, —1, 1, 2, and w,(—2) = 2—0 = 2, wy(—1) = —2—2 = —4,
wy(l) =2 —(=2) =4, wy(2) =0—2 = —2.Then
9(@)=ko (@ (-2)Po@a(-))*"PoEe )" o (@e2)*?
=ko@e(-2)”e@al)* o (e (-1))" 0o (ze2)*)

k = 2 follows from ¢(0) =

3.3 Extended Tropical Meromorphic Functions

If we allow a tropical meromorphic function to have real slopes, this kind
of tropical meromorphic function is called an extended tropical meromorphic
function. So we have the following definitions.

18



(-1, 4)
4

(2,2) (2.2)
2

(1,1) (1,1)
1

Figure 3.5:

Definition 3.7. An extended tropical polynomial is of the form:
flx) =a, 02°™ ® a1 ©2°™ " B a; © 2°™ D ay,
where r; e Rt foralli=1,2,...,n;a; € T,i=0,1,2,--- ,n.
Definition 3.8. An extended tropical rational function is of the form:
f(z) =a, ©2" @ ay_q @2 B ag © 2 B ay,
where r; € R\ {0} foralli=1,2,...,n;a, € T,1=0,1,2,--+ ,n.

Definition 3.9. A continuous piecewise linear function f : R — R is said to
be a extended tropical meromorphic function on R if both one-sided deriva-
tives are real at each point z € R

Theorem 3.3 will hold too in the extended tropical rational functions, we
restate the theorem in the following after slight modifications.

Theorem 3.5. Given ¢; < ¢ < --- < ¢, € T, and ay,9, -+ ,a, € R,
there exist a extended tropical rational function f such that we(c;) = oy for
i=1,2,---,n and wy(z) =0 for v # ¢;,i = 1,2,--- ,n.(i.e., ¢ is a root if
a; > 0 and a pole if a; < 0, and for any x # c1,¢co,-++ ,¢p 1S an ordinary
point.)
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In fact,

n

f@) =k o (D))

i=1
with k a constant in R 1s the unique function satisfying the condition, the
uniqueness is up to the constant k.(Note that ¢c; may be —oc0.)

1 5 1
Figure 3.6: h(z) =10 (z & (—oo))Q(iﬁ) o (z® ())@8 o 3)®(f§)

Example 3.11. Find the extended tropical rational expression h(z) of Fig-

1
ure 3.6. Since h'(z) = —= for all x < 0, then —oo is a pole with wy,(—o0) =
1 1 1 1 1
—5, and U}h(O) = g - (—5) — g, wh<3) =0- g = —g Therefore,
( 1) : ( 1)
(-2 o= -5
hz)=ko(xd(—o0)) 2 0x®0) 60(xa3) 3

k = 1 follows from h(0) = 0. we check this is really the true function of
Figure 3.6 in the following.
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( 1 1
1+(—%)x+—x0+(—i—i)x3
h(z) = 1+(—%)x+—xx+(—§)x3
(
—lxx <0
12 -
= gxx 0<z<3
1 x> 3

This is exactly the function of Figure 3.6.
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Chapter 4

Tropical Periodic Functions

In this chapter, we examine the extended tropical periodic meromorphic
functions. It will be shortened to be called tropical periodic function here.
Given an extended tropical meromorphic function f on an interval [0,7),
with f(0) = lim, - f(z), if we extend f to be a periodic function with
period T, that is, f(z 4+ T) = f(z), can we find a formula to express it? It is
“Yes”, let’s see how to do it in the following.

In [4], Laine and Tohge consider a tropical meromorphic 1-period function
defined by

1

(ab) (o
T (x) P

max{a(z — [z]), —b((x — [z] — 1))}
1
= {(a(w = [a]) & (=b(x —[z]) = 1)} a+b

for arbitrary parameters a,b € R™. Laine and Tohge make conclusion that
any non-constant tropical meromorphic 1-periodic function f(z) can be rep-
resented as an R-linear combination of such function 7(® ().

But here we provide a better function

ma(2) = max{(1 — a)([z] — x), a([-z] = (=)}
= (l2] = 2)°""Y @ ([~a] - (=2))*

These functions will be used to generate the tropical periodic functions in
section 4.2 and 4.3. We first prove some properties of 7,(x) in section 4.1.
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4.1 Generating Functions of Tropical Periodic
Functions

Definition 4.1 (Tropical Periodic Function). If f(x) is an extended tropical
meromorphic function on R, and there is a real number 7" > 0 such that
flx+T) = f(z) for all z € R, then we say f(x) is an extended tropical
periodic meromorphic function.

It will be shortened to be called tropical periodic function here.
Let’s consider the following extended tropical meromorphic 1-periodic
function.

Definition 4.2. Define
a(2) := max{(1 —a)([z] — x), a([-2] — (—2))}
for 0 < a < 1. (Figure 4.1)

The number a control the skewness of f(x). When a = 0, the graph is
just the x-axis. It has the following properties.

Remark 4.1.

(a)
m.(n) =0 for eachn € Z. (4.1)

(b)
a—a®=m,(a) <m(r) <0 for 0<z<1. (4.2)

()
wm<a>={é 7 (13)

(d)
For neZ, wy,(n)= {;1 Zio (4.4)
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(a) a = 0.25. (b) a=0.5.

(¢) a=0.75.

Figure 4.1: 7,(z) = max{(1 — a)([z] — z),a([—z] — (—x))}

()

Wy, (x) =0 if x is not an integer and z # a.

Proof. We verify these properties by a straightforward computation.

(a)

ma(n) = max{(1 — a)([n] = n), a([=n] = (=n))}
= max{(l —a) x 0,a x 0} = max{0,0} =0

mo(a) = max{(1 - a)([a] = a), a([=a] = (=a))}
=max{(1l —a)(—a),a(—1+a)}

=max{a®’ —a,a’* —a} =a* —a

24
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fo<z<l,

7o(z) = max{(1 — a)(0 — x),a(—1 + x)}

= max{ar — x,ar — a} 4.7
:{(a—l)x x<a (4.8)
ar —a r>a

(a— 1)z <0and ar —a = a(z — 1) < 0, hence, m,(x) <0 for 0 < z < 1.
Ifz<a mr)=(a—1z>(a—1)a=a*>—a;if x> a, n,(z) =ax —a >
axa—a=a®—a, hence, m,(r) > a®* —a for 0 < x < 1. That is, a®> — a is
the minimum of 7, (x).

(c) By (4.8), wy,(a) =lim _o+(7.(a+¢€) — 7. (a —¢€)) = lim._ o+ (a — (a —
1)) = 1if a # 0. And since my(x) = max{[z] — 2,0} = 0 for each x, then
wr, (0) = 0.

(d) If a # 0,
wr, (n) = lim (m(n +€) — 1 (n — ©))
= lim (w,(0+ €) = m,(L - ©))
= Aple=bEa =
If a =0,

mo(z) = max{[z] — 2,0} =0 Vuz.

W (N) = Elirgi(wf)(n +¢€)—mp(n—€)=0—-0=0.

(e) It is clear that the support of wy on [0,1) only possible at = 0 or
r = a, so the conclusion holds. O

4.2 R-linear Combination of Tropical 1-Periodic
Functions

We first introduce some lemmas before proving the main theorem in this
chapter.
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T 1 €T

Lemma 4.1. Let f(x) = ﬂa(T), T >0, then we(x) = Twﬂa(f),
X, : , 1, x
Proof. If — is not a support of w,,, by Chain Rule, f'(z) = =7, (=).
T “ T T
wy(x) = T (f'(x +€) ~ 'z — )
B 1, v+e 1, x—ce¢
= tim (o, () — 2 (T2)
1 ey € 1L €
1 x
- fwﬂ'a(f)

[]

Lemma 4.2. A non-constant tropical periodic function has as many roots
and poles in a period interval, counting multiplicities. That is,

Z wy(c) =0
c€(suppwy) N[0,T)
for any tropical T-periodic function f(x). More generally,
> wi(e) =Y w(x) =0
ce(suppwy) N[k, T+k) k<c<T+k
for any real constant k.

Proof. Let f(x) be a tropical T-periodic function, {¢; | i = 1,2,--- ,k} is
the support of wy(x) on [0,7) with 0 < ¢ < ¢2 < -+ < ¢ < T. Hence,
o=k —T <c1<ecy<- - <e¢p<c+ T :=cppr, Since f(x) is linear in
each (¢;, ¢iq1), then f'(¢f) = f'(¢;;,),i=0,1,2,--- , k. In particular,

Fi(e) = o) = fla+T)7) = fle)
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Yo w9 =) wyle)

c€(suppwy) (N[0,T) i=1

i=1

= (f'(ceh) = fler)) + (f(e) = f(e)) + -+ (f(ef) = f1(er)

= fi(cf) = file) =0

C1 : optT

Figure 4.2:

Geometrically, it says that the sum of all changes of the slope is zero
during a period.(Figure 4.2)

Theorem 4.3 (R-linear Combination Of Tropical 1-Periodic Functions). Let
f(z) be an tropical 1-periodic function on R, {c; | i = 1,2,---  k} is the
support of we(z) on [0,1) with 0 <¢; < ¢y <--- <¢p < 1. Then

fz) = (Z wy(ci)me (x)) + f(0)
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Proof. Define

flw) = wile)me, (@) + £(0)
If C1 = 0,
wi(cr) = w;(0) (4.9)
k
= wa(ci)wmi (0) (4.10)
=0 x wf(c1)+zwf(ci) x (—=1) (4.11)
= (1) x (Z wy(ci)) (4.12)
= (1) x (—wy(e1)) (4.13)
— w(cy) (4.14)

(4.10) follows by (4.1), (4.11) follows by (4.4), and (4.13) follows by Lemma
4.2.
Ifc; #0,thenc; #0,5 =1,2,--- k.

wile;) = Z wy(ci)wn,, (¢5) (4.15)
= wy(¢j)wn,, (¢)) (4.16)
= ws(¢;) (4.17)

(4.15) follows by linear property of w¢, (4.16) and (4.17) follows by (4.3) and
(4.5). And if @ # c1,¢2, -+, c, Wr, (x) = 0 for each j, hence, w(z) = 0 =
wy(z). Therefore, for x € [0,1),

wf(x) =0=wy(x).

And since f(x) is a linear finite combination of 7, s which are of period one,
so f(x) is of period one too. Therefore, for all z € R

wi(z) =0=ws(x).
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By Lemma 3.2, f(z) = f(z)+Az+ B for some constants A and B. Moreover,

wa i), (0)) + f£(0) = 0+ f(0) = £(0).

7;(0) = 0 from (4.1), it follows B = 0. And,

wa i) (1)) + £(0) = 0+ £(0) = £(0) = f(1).

It follows A = 0. Therefore,

flx :f waczﬂ'c )+ f(0)

[]

Example 4.1. Let f(z) be a tropical 1-periodic function, {¢; | i =1,2,--- , k}
is the support of w¢(x) on [0,1) with ¢; = 0.2,¢5 = 0.4,¢5 = 0.6,¢4 = 0.8.
And we(cr) = L,ws(er) = =3, wy(cs) = 3, ws(es) = —1, f(0) = 0 (Figure
4.3). Note that wy(c1) +wp(ca) +wp(cs) +wp(eq) =14 (=3)+3+(—1) =0.
Then by Theorem 4.3,

wa ci) e, (2)) + f(0)

=1x 7'('()_2( )+ (=3) X mou(x) + 3 X moe(x) + (1) X mos(z) + 0
= mo.2(x) — 3mp.a(x) + 3mos(x) — mos(x)

4.3 R-linear Combination of Tropical 7-Periodic

Functions
Theorem 4.4 (R-linear Combination Of Tropical T-Periodic Functions).

Let f(x) be an tropical T-periodic function on R, {c; |1 =1,2,---  k} is the
support of we(z) on [0,T) with0 < ¢y < cg <--- < ¢ <T. Then

f(a) =T x wacmex )+ £(0)
=1 T
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" c 0
= m,=
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L mg=1
024

€3

-0.44

Figure 4.3:

Proof. The proof is very similar to Theorem 4.3. Let f. () = m¢, (%),
T

1=1,2,---, k. Define

fla)=Tx () Wf(ci)ﬂg(%)) +1(0) =T % (Y wy(e)fe () + (0)
T =1

If Cj ?é 0
wileg) = T (3 wyleuy, () (4.18)
=T 5 (" wyles) %wﬂci (2) (4.19)
1=1 T
= > wylewng, (2) (4.20)
1=1 f
= wy(e)wre, () (4.21)
T
=wy(cj) x 1 4.22)
= wy(cj) 4.23
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(4.19) follows by Lemma 4.1, (4.21) follows by (4.5), (4.22) follows by (4.3).
If C1 = 0,

wg(cr) = w;(0) (4.24)
X (Z wy(e;)wy,, (0)) (4.25)
wa i) wﬁc (;)) (4.26)
T
Z (ci wﬂc (4.27)
= t
= 04> wy(c)wn, (0) (4.28)
=2 T
k
— wa(ci) X (=1) (4.29)
= wy(c1) (4.30)

(4.26) follows by Lemma 4.1, (4.28) and (4.29) follows by (4.4), (4.30) follows
by Lemma 4.2. And if © # ¢1,¢9, -+, Cp, Wr . (%) = 0 for each j, hence,

~—

N &y

wi(z) =0 = wy(z). And

) >s which are with period

T
wi(z) = 0 = wy(z). Therefore, for all z in [0,T
since f(z) is a linear finite combination of 7 ¢, (

T
T, sois f(x). Therefore, for all x € R

wi(z) =0=ws(x).

By Lemma 3.2, f(z) = f(z)+Az+ B for some constants A and B. Moreover,

waczm )+ £(0) = 0+ £(0) = F(0).
T
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me; (0) =0 from (4.1), it follows B = 0. And,
T
k

.ﬂﬂ=%§:wﬂwﬂa()%hﬂ)—0+f@)=fm)
i=1 T

It follows A = 0. Therefore,

]

Example 4.2. Let’s consider Figure 3.2(b) now, that is, f(z) = |z|,—1 <
x < 1; f(xr+2) = f(x) for each x € R. We can find a finite R-linear combi-

nation of 7, s for it. f(x) is of period 2, and {0, 1} are the support of w; on
0,2), wr(0) =1—(=1) =2, wp(l) = =1 — 1= -2, f(0) = 0. Therefore,

J@) =2 @x 7o (5)+(=2) x 71(3)) + f(0)

2 2

= —4r) (5) = ~4mo5(3)
2 1 1

= —4xmax{Z([5] - 5), 5 (5] = ()}
= min{-2([3] = 3): —2<[§J +3))
:min{—Q[g]—l—x —2[ ] —z}
= min{z, 2 — x} for 0<z<?2
)z 0<z<l
S l2-z 1<z<?2

We see that —4%0.5(2) is really the formula we want to find.

Example 4.3. Given Figure 4.4, support of w; are 0,1,2,2.5,3,4, and
wr(0) = 2 —(-2) =4, we(l) = 0-2 = =2, we(2) =1-0 =1,
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wy(25) = =11 = =2, wy(3) = 0 (=1) = L, wy(0) = ~2-0) = -2,
f(0) = 1. Therefore,

J@) =5 x (4xmp(2) + (=2) x w1 (5) + 1 xma(5) + (-2) x mo5(5)
DA
+1x 7r§(g) +(—2) x F%(g)) + f(0)
D D
:2071'0(3) — 27?0.2(5) + 7T0.4(g) — 27'('0_5(3) + 7T0_6(5> — 277—0.8(3) + 1
: N
Figure 4.4:
Example 4.4. Let
fn@)=(=N)o@e(-) o (O (en?o (e nh- %))92),
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See Figure 4.5 for N =1 and N = 2. By Theorem 3.3 and Theorem 4.3,
Jimf(2) = 2mo(2) + (=2)705 () = —2m0.5(2)

=9 max{%([x] —x), 5([—37] — (=)}
= —max{[zr] — z,[-2] — (—2)}
=1r @ (([z] — z) ® ([-z] — (—x)))

(a) fi(z). (b) fa(z).

Figure 4.5:
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Chapter 5

Application on Difference
Equations

In this chapter, we will consider difference equation of type

yr+1) =y@)* =cylx) (c€R)

It is called ultradiscrete equations in [3] and [4], and we want to find
the solutions y(z) which are tropical meromorphic functions. Before it, we
consider certain special tropical meromorphic functions introduced in [4],
Laine and Tohge define

[z]—-1
eo(r) = al?! (x = [z]) + Z ol = ol (v — [z] +

j==00

1
a—1

),

where « is a real number with |a| > 1. In a similar way, they also define

ea(@)i= D F=pa—lal) = ) B+ (1—wt[r]) = ﬁ[ﬂ(ﬁ—xﬂx]),
j=lx] j=lz]+1

where (3 is real number with || < 1.

But now, we will multiply e, (z) by «, and then rename it by e, (x). It will
see new e, (x) still have the similar properties, and it will be better because
of w,, (0) = a — 1, we will discover that at last.
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5.1 Tropical Counterpart to The Exponential
Function

Definition 5.1. Let o be a real number with |a| > 1. Define a function
eo(z) on R by

[]
. 1
S EHEO PO J— A=l
eo(r) = o' "W (z — [2]) —l—j;woz a T (r — 2] + - 1),
Then we will see
Remark 5.1.
(a)
" ez 5.1
eoé(m)—oé_1 m € 2. (5.1)
(b) For x € [m,m + 1), m € Z,
— A 1+m I+m/ D)
eo(x) =a M4+ a M +&_1) (5.2)
(c) ea(z+1) =aes(z) Yz € R.
(d) eq(z) is continuous on R. And
We, (M) =a™(a—1), m€Z. (5.3)
We, (x) =0, x¢&7Z. (5.4)

In particular, w,,(0) = 1.

Proof. These follows from Definition 5.1 by a straightforward computation.
al-l—m

a—1

® calm) = ot#m —m s L 1)
(b) For x € [n,n+ 1), n € Z,

1
eo(r) = ™ (z —n + —1) = oty + ot (—n +
a JR—

a—1

)
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(c) For z € R,

ea(z+1) = (x4 1) = [z +1] +

)

a—1

=@ 1) = ([2] + 1) +

L

a—1

)

a—1

= ax ol (g — [2] +

= ae, ()

(d) From (b), linearity of e,(x) on [m, m + 1) implies that it is continuous
at non-integer points z, and it remains to verify that e, (z) is continuous at
integer points x =m € Z. Take 0 < ¢ < 1, then

_ 1+m o . 1+m
ea(m+e€)=a™(m+e m+a—1) a (—a—1+€>
1 1 €
N - — ,m o /. —1 — ml \WFY — +m/ - =
ea(m—¢€)=a™((m—¢)—(m )+a_1) Oz(—l—a_l €) =« (a—l a)
It follows
am—l—l
l' o :1 . — = €4 =
€irg£re(m+e) E_lgie(m €) = eq(m) po—

Hence, e, () is continuous on R. And, by equation (5.2), for m € Z, we can
get €/ (m +¢€) = o™ and €/, (m — €) = a™. Therefore,
We, (M) = Iim+(e;(m +e)—el (m—e€)

e—0

=o' — " = a"(a —1)

In particular, w,,(0) = a2 —1) = 1. O

Example 5.1. The graph of ey(x) is an approximate function of 2*%. See
Figure 5.1, let A,, be the point (m,2*™), m € Z. ey(x) is the graph of all
line segments by joining A,, and A,,.1, and ey(z) > 277 for all z € R, the
eqaul sign holds if and only if © € Z. The proof is given in the following.
Suppose n < x =n+e<n-+1, forsomen e€Z,0 <e<1.

ea(r) =2 ((n+€) —n+ 1) = 21" (1 + €) > 21" x 2¢ = MFnhe = olte

The inequality holds because of 1+ € >2°for 0 <e < 1. Andif x =m € Z,
ea(m) = 217 follows from (5.1). For convenience, we omit 2 from es(x), and
denote e(x) = es(x).
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Figure 5.1: ey(x) is an aproximate function of 212,

5.2 Application on Difference Equations: First
Order

Now, let’s consider
y(r +1) =y(x)® = cy(x) (c € R). (5.5)

In [3], lemma 4.1, Halburd and Southall have shown that equation (5.5)
admits a nonconstant tropical meromorphic soluction on R if and only if
¢ = 1. For convenience and completeness, we carry the proof into here and
make changes slightly.

Theorem 5.1. The equation (5.5) admits a nonconstant tropical meromor-
phic soluction on R if and only if c = +1.

Proof. 1f ¢ = 0 then y = 0 is the only solution. If ¢ = 1 then y is any tropical
meromorphic 1-periodic function. If u is any 2-periodic tropical meromorphic
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function, then y(z) := u(x + 1) — u(x) is a tropical meromorphic solution of
equation (5.5) with ¢ = —1. Conversely, if h(z) is a tropical meromorphic
solution function of y(x + 1) = —y(z), then there exist a 2-periodic function
v(x) such that h(x) = v(x + 1) — v(x). We can define

o) = {0 <<l
| —h(2) 1<z<2

and v(x + 2) = v(x) for each € R. Then

—h 1 0< 1
v(x—i—l):{ (v +1) =R
0 1<x<?2

—h(z+1) = h(x) 0<z<l
h(x) 1<z<2

vz +1) —v(x) = {

Hence, by periodicity of h(z) and v(x), h(z) =v(x+1) —v(z) for all z € R.

If y is nonconstant then there is an zy € R such that 3/ exists and is a
nonzero integer m at xy. It follows from equation (5.5) that for all v € Z,
Y (xg —v) = E@ Therefore if ¢ # +1 then for sufficiently large v, 0 <

|y (o — v)| < 1, and hence the slope is not an integer. O

Note that if we allow the solution y(z) with non-integer slope, then any
extended tropical meromorphic 1-periodic function is a solution of equation
y(x+1) = y(x). And we can express the solutions with a linear combination
of m(z) ’s by Theorem 4.3.

The following theorem is the case of ¢ # 0, £1.

Theorem 5.2.
y(x +1) =cy(z), c#0,+£l1. (5.6)

Given an arbitrary extended tropical meromorphic solution f to equation
(5.6) with discontinuities of slope at x1,xo,--- ,x in [0,1), then f can be
represented as a linear combination of finite shifts of the function ex(x), that
18,

flz) = wa(xz')ez(x — ;) = wa(fﬁi)e(fb’ — ;)

39



Proof. Given a non-trivial tropical meromorphic solution f to equation (5.6),
there are only finitely many points xq,xs, -+, in the interval on which
wy(x) # 0. And at least one point x such that wy(z) # 0. If wy(z) = 0 for
all z € [0,1), there exist € > 0 such that f(x) = ax + b on [—¢, 1) for some
constants a and b. For every § with 0 < § < €, equation (5.6) implies

y(1—9) = cy(=9)

a(l—0)+b=c(a(—=9)+0)

a(l—0)+b a
= 1
A=) +b  b—w
but ¢ is a constant, a contradiction.
Define f(z) = S wi(a;)eslr — z;) = S5 wy(x)e(x — ;), then
k

fle+1)= wa(xi)e(x +1—a)

i=1

k
2 Z we(x;)ce(w — ;)

Hence, f is a solution of equation (5.6).
When z € [0,1), we see that if x # z;,
k k
wi(z) = wa(xi)we(x — 1) = wa(xi) x0=0
i=1 i=1
e(x —x;) is the shift of e(z) to right for z; unit, w.(z —z;) # 0 only for z = z;

on [0,1), hence, if x # 1,29, -+, x, we(x — x;) =0 for each i = 1,2,--- | k.
And, for j =1,2,--- , k,

wi(z;) = wa(xi)we(%‘ )

= wy(zj)we(z; — ;)

= wy(z;)we(0) = wy(x;) X 1 = wy(x;)
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we(0) = 1 follows by equality (5.3). )
Therefore, applying Lemma 3.2 to conclude that f(z) = f(z) + Az + B
for some constants A, B € R. And for each =z € R,

fla+1) —cf(z) = flx+ 1)+ Az + 1)+ B — ¢(f(z) + Az + B)
= (fx+1) —cf@)+(1—c)Az+ A+ (1—-c)B
=(1-cAz+A+(1-¢)B=0
We conclude A =0 and B = 0 since ¢ # 1.
Hence, f = f on [0,1). If z is a real number such that n <z <n+ 1 for

some n € Z, let x = n+ xo, then 0 < < 1, f(x) = f(n +x0) = " f(w0) =
" f(zo) = f(n+ zo) = f(x). Therefore, f(x) = f(x) for all z € R. O

Remark 5.2. When applying Theorem 5.2, we prefer to write the represen-
tation for f in the form

k
flz) = Zaie(ﬂf — ;)

where a; = wy(z;).

Now, let’s consider the equation
ylx+1)=y(x)+0b (b € R) (5.7)

It is clear that y(x) = bx is a solution function of equation (5.7), and if
h(x) is an extended tropical meromorphic function such that h(z+1) = h(x),
then h(z) + bz is an extended tropical meromorphic solution function of
equation (5.7). Moreover, all solution functions of equation (5.7) is the form
h(x) 4 bz, where h(z) is a tropical 1-periodic function.

And now the equation

y(x+1) =ay(x) +b (a,b € R,a #0,+1) (5.8)

can be turned into

b b

y(@ +1) = —— =aly(z) -

) (5.9)

1—a

Let z(x) = y(z) —

. , equation (5.9) turn into
—a

z(x +1) = az(x) (5.10)
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By Theorem 5.2, the solution function of equation (5.10) can be represented
as z(r) = YF  ae(r — x;), where 0 < z; < 1, a; € R\ {0}. Hence, the
solution function of equation (5.8) can be represented as

k
V(o) = (el =) 4 7
Last case, consider the equation
ylx +1) =—=y(x) +b (b € R). (5.11)
Subtract both sides by —g, it turns into
Yo 1)~ g = () - o)

Hence, by Theorem 5.1, the solution function of equation (5.11) can be rep-
resented as

y(x) = u(x + 1) —u(x) + g

where u(z) is any 2-periodic tropical meromorphic function. So far we have
discussed all the circumstances of equation y(z + 1) = ay(x) + b.

For the example of second order difference equations, one can see [4],
Laine and Tohge consider equation

y(x +1) +y(z —1) = cy(z)

for ¢ € R.

5.3 Tropical Approximated Function

We found that each continuous function defined on R can be approx-
imated by extended tropical meromorphic functions. Given a continuous
function f(z) on R, connect the line between the point (m, f(m)) and (m +
1, f(m+1)) for each integer m. This will be a function of an extended tropical
approximated of original function. The function is

(f(fz +1]) = (D) (@ = [2]) + f([))- (5.12)
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where [z] represent the greatest integer not exceeding x.

If every — as a line linking, then this function is
n

fCm@+ D) - fEma) )
Tfue) = — (¢~ ~nal) + f(-[na)

S

It is continuous piecewise linear, and lim,, ., T'f,(z) = f(z) for each z € R.

Theorem 5.3. Given a continuous function f(x) on R, define

fEne+ 2N ey |
Tfo(e) o= BT T (o L na]) 4 ([

n

then T f,(x) is continuous piecewise linear for each n € N, and
lim,, . Tfn(x) = f(z) for each z € R.

Proof. If n e N, z = i for some m € Z, then
n

Thu(e) = Tf(F) = F(7) = /(@)
If v € (%, m;— 1),
pEEL gy
Tfalw) = —g—— (e — ) + f(—).
If x € ( - 1,%),
m m—1
FEV=FE=) i med
Tfo(w) = - (z — )+ F(—)
Hence,
lim  Tfu(x) = (5,
z—(—)*
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and

)= F(2).

n

i

lim T, (z) = f(
x—*(g)’

") - K

Therefore, T'f,,(z) is continuous piecewise linear for each n € N.

Next, ifz € Z, then T'f,,(z) = f(x) for each n € N, and clearly lim,, o, T'f,(z) =
f(z). If x € (t,t+ 1) for some t € Z, continuity of f(x) implies that f(z) is
uniformly continuous on [t,¢ + 1], given € > 0, there exists §; > 0 such
that |z —y| < & and z,y € [t,t + 1] implies |f(z) — f(y)| < % Let

1
dy = min{z—t,t+1—=x}, there exists N € N such that N < d := min{dy, 02 },

. m m, + 1
for each n > N, there exists m,, € Z such that t < — < 2 < —
n n

< t+1,

and
Tfa(2) = @) = |Tfale) = TH(ED) + Dol 52 = f(2)
< [T fula) - Tfn<7>| + \Tfn(%) ~ f(@)|

my + 1 m
—— )= f(—
=B (e = T [ F(5) — f(2)
n
< A = SR AR < (@)
<S4f=e
— 2 2
Therefore, lim,, . T'f,(z) = f(z) for each z € R. O

In fact, {Tf,} converges to f uniformly on any closed bounded interval.

Example 5.2. If f(z) = 2*"! then

Tfi(z) = f([z + 1] = f([z])) (= — [z]) + f([z])
(2[:c+1]+1 2[:1:—1—1])(m [{E]) + 2[x]+1
= 2T — [o]) + 2!
=2l (g — [2] + 1)

It is precisely the function es(x) of section 5.1.
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Given first-order linear difference equations with general solutions, we
can use Formula (5.12) to find their tropical approximated solutions. We can
then use these tropical approximated solutions to generate all the extended
tropical meromorphic solutions of the given difference equations. For the
future research, we hope these results can be extended to difference equations
in general.
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