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Robust diagnostics for count regression models

Tsung-Chi Cheng*

1 Introduction

Poisson regression model and its various modifications have been extensively applied
in many context in social sciences studies. Poisson regression is the standard method
used to model count response data. However, the Poisson distribution assumes the
equality of its mean and variance — a property that is rarely found in real data. Data
that have greater variance than the mean are termed Poisson overdispersed, but are
more commonly designated as simply overdispersed.

Negative binomial regression is a standard method used to model overdispersed
Poisson data. The negative binomial is traditionally derived from a Poisson-Gamma
mixture model. However, the negative binomial may also be thought of as a member
of the single parameter exponential family of distributions. This family of distribu-
tions admits a characterization known as the generalized linear model (GLM), which
summarizes each member of the family. Most importantly, the characterization is
applicable to the negative binomial. Such interpretation allows statisticians to apply
to the negative binomial model the various goodness-of-fit tests and residual analyses
that have been developed for GLM.

When the negative binomial is used to model overdispersed Poisson count data,
the distribution can be thought of as an extension to the Poisson model. Certainly,
when the negative binomial is derived as a Poisson-Gamma mixture, thinking of it

in this way makes perfect sense. The original derivation of the negative binomial
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regression model stems from this manner of understanding it, and has continued to

characterize the model to the present time.

2 Count regression model

Modeling count variables is a common task in microeconometrics, social and political
sciences. Poisson regression is appropriate when the dependent variable is a count of
events. It can be used to model the number of occurrences or the rate of occurrence
of an event of interest as a function of some independent variables. An event count
refers to the number of times an event occurs, for example the number of attending
performing arts in this study. The events must be independent in the sense that
the participation of one respondent will not make another more or less likely to
participate, but the probability per participation is related to covariates.

In Poisson regression it is assumed that the response variable Y, number of oc-
currences of an event, has a Poisson distribution given k explanatory variables. The

Poisson regression model is then defined as:

where

;= exp(a!3). (2)

The log of the mean (2) is assumed to be a linear function of the independent variables.
The link function g relates the linear predictor to the expected value p; of y;. That

is, fort =1,2,---,n,
9(ui) = log(u;) = i3,

which is also called as the log-linear model in the context of the generalized linear
model (McCullagh and Nelder, 1989).

For an overview of the count data models in econometrics, one can refer to
Cameron and Trivedi (1998) as well as Long and Freese (2006). The latter also

provides an introduction to Stata, which is a statistical computing package. The



maximum likelihood estimation is the most popular method for estimating the coeffi-
cients, B and =, of all models discussed in this section. For other related issues, such
as model selection, one can refer to McCullagh and Nelder (1989) and Cameron and

Trivedi (2005).

2.1 Negative regression model

The classical Poisson regression model for count data is often of limited use in some
disciplines because the empirical count data typically exhibit overdispersion and/or an
excess number of zeros. The negative binomial (NB) regression model is a generalized
linear model that accommodates a solution to the overdispersion problem and may
function better in the case of excess zeros. Instead of assuming that the distribution
of Y is Poisson, Y is assumed to follow a negative binomial distribution in the NB
regression model. The negative binomial distribution is defined as:

1

f(yi|wi)zf(yi+a—1)< oL )a <L>yi’ o

yill'(e™!) \at 44 a4 g

where I'(+) is the gamma function and p; is corresponding to (2). This relaxes the
assumption of equality between mean and variance (a property of the Poisson distri-
bution) since the variance of the negative binomial distribution is equal to u + au?,
where @ > 0 is a dispersion parameter. If a = 0, then the negative binomial dis-
tribution reduces to Poisson. Lawless (1987) discusses the statistical properties of
Negative regression model.

Consider the log-likelihood for the i¢th observation

li = B, a;y;) =log(P(a™! + ;) —log(D(y; + 1)) —
log(I'(a™)) + yilog(ap/ (1 + ap;)) — o™ log(1 + au;) (3)

Hilbe (2008, p. 90) uses the deviance as the basis for the convergence criterion and
the log-likelihood function could have been used as well. The estimation of « is rather
intractable. The estimation of 8 and « are well-discussed in Hilbe (2008, chapter 5).
Once the ML estimates of 3 and « are obtained, denoted by @ and &, the estimated

value of the model is log(f;) = w?B The signed square-root deviance residual for



the 7th observation is then

~

o ‘ . 1 14 an;
dr = d(yi;ui,a)=Slgn(yi—m)\/§{glog AM.

PN 1/2
fii(1 + ay;)

The function glm.nb in R is a modification of the system function glm to include

+y; log

estimation of the additional parameter, 6 (= 1/«), for a Negative Binomial generalized
linear model. An alternating iteration process is used. For given 6 the GLM is fitted
using the same process as used by glm. For fixed means the 6 parameter is estimated

using score and information iterations. The two are alternated until convergence of
both.

2.2 The maximum trimmed likelihood estimator

The trimmed likelihood principle is based on trimming the likelihood function rather
than directly trimming the data, which was introduced independently by Hadi and
Luceno (1997) and Vandev and Neykov (1998). Instead of summing up all values
of the log likelihood function for each observation according to ML estimation, the

trimmed likelihood approach considers to maximize the following objective function:
b

> wiyl(0;0).), (5)

i=a

where a < b, v = (a,b) € {1,2,---,n}, and
1(97 x(l),u) > 1(97 x(2),u) > 2 1(97 x(n),u)a (6)

for any given value of 6. Here I(6;x;) = In f(z;;0) is the contribution of the ith
observation to the log likelihood function. The weights w;’s (> 0) are discussed in
Vandev and Neykov (1998). The estimator 6(a, b, w) is obtained by maximizing (5).
The resulting method is called as the mazimum trimmed likelihood (MTL) method
and 0(a, b, w) is the maximum trimmed likelihood estimator (MTLE).

Neykov et al. (2007) give the combinatorial representation of MTLE (5) evaluating
at a = 1 and b = ¢ as follows:

0  QeqQ Qeq

q
max > wyol(0; x34).0) = maxmax Y w;l(6; x;) = maxmax > wil(0; z;),
i=1 i€Q i€Q
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where @ is the set of all g-subsets of the set {1,---,n}. Therefore, it follows that all
possible (Z) partitions of the data have to be fitted by the MLE, and the MTLE is
given by the partition with the maximum log-likelihood.

In order to study the breakdown properties of general estimators such as LMS and
LTS, Vandev (1993) develops a d-fullness technique. The d-fullness technique allows
the statistician to choose the tuning parameter ¢ according to the expected percent
of outliers in data. For computational aspect, Neykov and Miiller (2003) propose a
fast computing algorithm for MTLE, which is analogous to the C-step for LTS and
MCD of Rousseeuw and van Driessen (1999, 2006).

3 Robust diagnostics for NB regression model

In this section, we first apply the fast algorithm to obtain the MTLE for NB regression
model. Then simulated data are used to illustrate the approach. We conduct a
simulation study to compare MTLE with MLE and then a real data is analyzed to

find a new conclusion.

3.1 Computing algorithms

To obtain the RTML estimate of 8, this subsection employs both the fast algorithm
for MTLE of Neykov and Miiller (2003) and the forward search algorithm of Atkinson
(1994). The fast algorithm is used to obtain an outlier-free subset and then the
observations of the subset are incremented in such a way that outliers are unlikely to
be included. As explained in Neykov et al. (2007), computing the MTLE is infeasible
for large data sets because of its combinatorial nature. To get an approximative
MTLE solution, an algorithm called FAST-TLE was developed in Neykov and Miiller
(2003).

The basic idea behind the FAST algorithm consists of carrying out many two-
step procedures: a trial step followed by a refinement step (so-called the Concen-
tration step). It reduces to the FAST-LTS and FAST-MCD algorithms proposed by
Rousseeuw and Van Driessen (1999 and 2006) in the regression and multivariate cases,

respectively. Here the subsample size of the trial step can be any values between p and



q, for example the so-called elemental sets are used in Rousseeuw and Van Driessen’s
papers.

The details of the proposed procedure is as follows.

e In the trial step a subsample of size s is selected randomly from the data and

then the model is fitted to that subsample to get a trial ML estimate.
e The refinement step is designed by the so-called concentration procedure:

— (a) the observations with the ¢ largest log-likelihood based on the current

estimate are found, starting with the trial MLE as initial estimator;
— (b) fitting the model to these g observations yields an improved fit.

— Repeating (a) and (b) leads to an iterative procedure.

The convergence is always guaranteed after a finite number of steps since there are
only finitely many g-subsets out of (Z) (Neykov and Miiller 2003). The one with
the largest value of the sum of ¢ largest log-likelihood is then an approximate to the
solution of MTLE. The resulting estimates are denoted by Bq and &,.

Once the MTLE estimates of 3 is obtained, the estimated value of the model
is log(fliq) = a:iTBq. The corresponding log-likelihood (3) for the ith observation is

defined as:

liq = UBy, dg;y;) =log(D(a;" + i) —log(T(y; + 1)) —
log(F(oAzq_l)) + Yi IOg(O‘qﬂi,q/(l + é‘qﬂ@q)) - é‘;l log(1 + @qﬂi,q) (7)

The resulting signed square-root deviance residual (4) for the ith observation is then

dig = d(ys; fi g dq) = sign(y; — [M,tl)\/5
- At a2
% {Ai log I+ O‘:}ﬁ%,q + y;log ?{2(1 + O‘qA/iz,q)}
Qq 1+ Gqyi flig(1 + Aqy;)

which can be used to order the observations as well as to flag out the possible outliers.



3.2 Simulation data

In this subsections, we use a simulated data set to illustrate the procedure. Firstly,
all the covariates in the simulated data, X, X5, and X3, are generated from N (0, 1).
Then, let p; = x1; + x9; + x3;, where ¢ = 1,2,---,300, and the response value y; is
generated from a negative binomial distribution with mean exp(u;) and dispersion
parameter o = 3.33. Finally, the first 30 observations (10% of the data) are shifted
to be outliers by adding 50 to those values of y;’s (i = 1,2, -+, 30).

Parts (a) and (b) of Figure 1 show the deviance residual plots based on the classical
method and the proposed approach for the simulated data, respectively. There is no
any outlier being revealed by MLE, while MTLE successfully identifies most of the

first 30 cases as outliers.

3.3 Simulation study

we conduct a simulation study to evaluate the performance of the proposed approach.
Consider the similar simulation design for the covariates and response variable as the
previous subsection. There are 10% of the data assigned to be outlying cases Figures 2
and 3 present the simulation results for the sample sizes (n) 200 and 400, respectively.
Each panel shows the boxplot for the resulting estimates of 300 replicates based on
MLE, MTLE, and LTD (least trimmed deviance estimator). The vertical line in each
panel indicates the true value. It is clear to see that MLE is spoiled by outliers.
There is a clear departure between the center of the boxplot based on MLE and the
true vertical line. Although LTD provides a better result than MLE, it seems more
spreading than MTLE. MTLE outperforms both MLE and LTD in terms of both the

width of the boxplot and its corresponding center being closer to the true value.

3.4 Ischemic heart disease

In this subsection a real data example is used to illustrate the MTLE approach. The-
ses data were collected by a health insurance plan and provide information concerning
788 subscribers who had made claims resulting from ischemic (coronary) heart disease

(Kutner, Nachtsheim, and Neter 2008, pages 683-4). The description of the variables
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is shown in Table 1. Figure 4 presents the frequency distribution of the response
variable Duration. There is a peak at the value of zero in this plot, which indicates

the possible zero-inflation situation. We here consider the following model

Duration ~ Age + Gender + Intervention + Drug
+Emergency + Complication + Comorbidity

to illustrate the proposed approach.

Figure 5 shows the resulting deviance plots based on MLE and MTLE. There are
two functions, glm.nb and ml.nb2, for computing MLE for NB regression model in
R. Both glm.nb and ml.nb2 produce quite similar (or the same) results in almost all
examples. However, there exist quite different conclusions when use both functions
to analyze these data. glm.nb yields a quite weird result in Figure 5 (a), which
unreasonably appear too many outliers. Both ml.nb2 and MLTE lead to a quite
similar pattern in deviance residuals as shown in parts (b) and (c) of Figure 5. MTLE
identifies more outliers than ml.nb2 does.

To confirm the difference, Table 3 presents the estimation results. The estimate
for o obtained by glm.nb is zero, which may be the main reason why we obtain the
different deviance residual plot in Figure 5 (a). Both ml.nb2 and MLTE yield quite

different estimates in terms of magnitude and sign for some covariates.

Variable | Description

Total cost | Total cost claims by subscriber (dollars)
Age | Age of subscriber (years)
Gender | Gender of subscriber: 1 if male; 0 female
Intervention | Total number of interventions or procedures carried out
Drug | Number of tracked drugs prescribed
Emergency | Number of emergency room visits
Complication | Number of other complications arose during heart disease treatment
Comorbidity | Number of other diseases that the subscriber had during period
Duration | Number of days of duration of treatment condition

Table 1. Ischemic heart disease: variable description

10



Frequency

o

g

N Mmh.um .Illlm.lmumlhll.tmHJMM.M.M.L\MMIMM .

012 26 40 5 68 82 97 112 129 146 164 183 200 207 234 252 210 287 304 321 338 305 312

Number of days of duration of treatment conditon

Figure 4: Ischemic heart disease: distribution of the response Duration

11



Deviance residual Deviance residual

Deviance residual

Ischemic heart disea}s)elz Dbeviance residual plot
a)gimn

o |
]
o1 L AL GG R O OB OO AL el DL ({0 (AT i LT LA i [l LY~
0 [N _[ll TR SN TRRET ST [T IR TV T [TLANIAT [ IE TP b OO R P (UL (A (g T U N R U - (NER MOnE -
(o}
24
|
o}
(IV]_
T T T T
0 200 400 600 800
Index
(b) ml.nb2
o 4
i e
a4
0
N
| oI ] ! A Lo 1 ] S 1 L AR 1 L 1 L L L DL | L) O L
T T T T
0 200 400 600 800
Index
() MTLE
q_
I e el B | R e e (TR Ry
0
N
r1 oL |l IR R ~ ot BRI RN R L (R L.
T T T T
0 200 400 600 800
Index

Figure 5: Ischemic heart disease: deviance residual plot

12



13

glm.nb ml.nb2 MTLE (75%)

Variable 5 StdErr t 5 StdErr t 5 StdErr t
Intercept | 4.095  0.026 155.84 0.151 0.336  0.45 -0.324  0.431 -0.75
Age | 0.011 0.000  26.08 0.073  0.006 12.42 0.072  0.007  9.90
Gender | 0.053  0.007 7.94 0.262  0.118 2.22 -0.031 0.122 -0.25
Intervention | 0.016  0.000  33.10 0.035  0.010 3.38 0.037  0.010 3.75
Drug | 0.002  0.003 0.55 0.230  0.068  3.306 0.098  0.053 1.84
Emergency | 0.017  0.001  12.91 0.003  0.023 0.15 0.059  0.023 2.59
Complication | 0.081 0.010 7.7 0.888  0.317  2.80 -0.273 0.251  -1.09
Comorbiditiy | 0.037  0.000 118.84 0.073  0.010 7.10 0.109  0.012 9.38
a | 0.000 1.728  0.092 18.77 1.421 0.086 16.57

Table 2. Ischemic heart disease: estimation results
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“Surprises, sentiments, and the expectations hypothesis of the |"Reunification and the Real Estate Market" "Firing Taxes, Unemployment Insurance and Aggregate
term structure of interest rates" Fluctuations: The Role of Monetary Policy”
Discussant: George Milunovich (Gast) Discussant: Martin Odening (C11) Discussant: Lars Winkelmann (C14)

12:30 - 14:00 Lunch (Restaurant)

14:00 - 15:00 Dietmar Fehr (A6) Frank Heinemann (C10) Alexander Meyer-Gohde (C7)
"Talking about others: Gossip as a means to increase trust and |"Central Bank Reputation, Transparency and Cheap Talk as "Risk Adjusted Linear Approximations: Long Run Risk In Risk-
cooperation” Substitutes for Commitment: Experimental Evidence" Sensitive Real Business Cycle Models"
Discussant: Markus Reif3 (C12) Discussant: Dorothea Kiibler (A6) Discussant: Jens Kolbe (B3)

15:00 - 15:30 Coffee break (Foyer)

15:30 - 16:30 Jin-Lung Henry Lin (Gast) Li Ma (A13) Petra Burdejova (B1)
"Comparisons of Forecasting Methods with Many Predictors"  |"Mutual funds' credit default swap strategies" "DYTEC - DYnamic Tail Event Curves"
Discussant: Lei Fang (IRTG) Discussant: Vladimir Spokoiny (B5) Discussant: Matthias Ritter (C11)

16:30 - 17:30 Aleksei Netsunajev (C15) Franziska Schulz (C11) Piotr Majer (Wolfgang Hardle, Hauke Heekeren) (B1)
“Is There a Technology Shock? Confronting Sign Restrictions |"The impact of renewable energy production on tail events of  |"Portfolio Decisions and Brain Reactions via the CEAD method"
with the Properties of the Data" electricity spot price indices"
Discussant: Axel Werwatz (B3) Discussant: Cathy Chen (Gast) Discussant: Helmut Lutkepohl (C15)
Sports activities

17:30 - 19:30 Swimming, football, etc. (Andrija Mihoci)

from 19:30 Dinner (Barbecue buffet on the terrace)
Workshop 45 minutes presentation, 15 minutes discussion, Q&A
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CRC 649 "Economic Risk" Conference in Motzen
10.07 - 12.07.2014

SFB 649
OKONOMISCHES

RISIKO

Time Saturday, 12. July 2014
Room A (Brandenburg) Room B (Potsdam) Room C (Berlin) Room D (Back Office)
from 6:30 Breakfast (Restaurant)
10:00 - 11:00 Tsung-Chi Cheng (George) (Gast) Weining Wang (2) Simon Voigts (C7)
“Robust diagnostics for count regression models" "Discontinuous Dynamic Semiparametric Factor models" "The design of the funding scheme of social security systems
and its role in macroeconomic stabilization"
Discussant: Philipp Pfeiffer (C10) Discussant: Andrija Mihoci (B1) Discussant: Alexander Ristig (B10)
11:00 - 11:45 Mentoring session Meeting of CRC project leaders
"Further development in science”
(including coffee) (including coffee)
Post-Docs: Alexander Meyer-Gohde (C7), Markus Bibinger (C12), Andrija Mihoci (B1), Weining Wang (2) Project leaders
12:00 Gruppenfoto
Abreise
Workshop 45 minutes presentation, 15 minutes discussion, Q&A

07.07.14
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