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研究計畫中英文摘要： 
 
關鍵詞：剖面導向程式設計，多型剖面，織入，多型型態系統，型態推理 
 

剖面導向程式設計(Aspect-Oriented Programming, AOP)是近年來繼物件導向程式設計

(OOP)後，所興起的一種新的程式設計方法。從 AOP 的觀點來看，應用程式除了功能邏輯

以外，還有許多像安全需求等的橫跨性關注(crosscutting concerns)；實現這些橫跨性關注

的程式碼應該要從功能模組中分離出來，自成一模組並稱之為剖面。剖面與功能模組之間

的界接點由所謂橫跨點(pointcut)來定義，並透過稱之為織入(weaving)的機制將剖面程式碼

整合入功能模組中，從而合成完整程式，滿足系統整體需求。這樣實現橫跨性關注的程式

碼就可以集中封裝於適當的模組中，避免掉程式碼糾結與重複的問題。 

 

近幾年來關於剖面程式設計的各項研究蓬勃發展，從剖面程式語言、開發工具、剖面

設計與分析，到剖面的理論基礎，都可見到了許多的研究成果陸續發表出來。這些研究成

果大多集中在探討像 AspectJ 這類以物件導向為基礎的剖面語言的各個面向，因這類語言

都不具備參數式多型(parametric polymorphism)的功能，所以關於多型剖面(Polymorphic 

aspects)的研究尚屬起步階段。不過去年推出的 Java 5 已提供多型(或稱泛型 Generics)的機

制，所以我們認為實有必要針對多型剖面所帶來的技術與理論的挑戰加以探討，好替下一

代的剖面語言奠定基礎。目前多型剖面的研究主要是以具備多型機制的函數式語言為基

礎，雖然已經有了一些重要的結果，但仍然有許多可以改善加強的地方。舉例而言，如何

適當整合高階函數與多型剖面就還是一個重要的研究課題。 

 

本計劃以型態導向的方法發展一套多型剖面的織入技術，並將其應用到多型程式設計

上。目前關於多型剖面的織入處理研究，雖然也會採用型態資訊，但是還是以語法結構為

基礎，以致於不能處理像高階函數的間接呼叫，也無法解決多個形態有重疊的剖面的織入

問題。我們提出所謂的諮詢型態(advised types)的概念，將剖面織入的需求內入型態之中，

透過型態推理(type inference)的過程，選擇出型態相容的剖面在適當的環境(context)下織入

功能程式模組。這樣以型態推演程序完成織入的作法，不僅可以避免單就語法結構來決定

織入剖面的缺點，並有機會可以替多型剖面奠定一個良好的理論基礎，並進而在多型程式

的設計上，導入剖面機制，改善多型程式的模組結構。 



研究計畫中英文摘要： 

Keywords: Aspect-Oriented Programming, Polymorphic Aspects, Weaving, Type Inference 

 
Aspect-oriented programming (AOP) aims at modularizing concerns such as profiling and 

security that crosscut the components of a software system. In AOP, a program consists of many 
functional modules and some aspects that encapsulate the crosscutting concerns. An aspect 
provides two specifications: A pointcut, comprising a set of functions, designate when and where 
to crosscut other modules; and an advice, which is a piece of code, that will be executed when a 
pointcut is reached. The complete program behaviour is derived by some novel ways of 
composing functional modules and aspects according to the specifications given within the 
aspects. This is called weaving in AOP. Weaving results in the behaviour of those functional 
modules impacted by aspects being modified accordingly. 

 

Introducing aspect orientation to a polymorphically typed functional language strengthens 

the importance of type-scoped advices, i.e., advices with their effects harnessed by type 

constraints. As types are typically treated as compile time entities, it is highly desirable to be able 

to perform static weaving to determine at compile time the chaining of type-scoped advices at 

their associated join points. In this paper, we describe a compilation model, as well as its 

implementation, that supports static type inference and static weaving of programs in an 

aspect-oriented polymorphically typed lazy functional language, AspectFun. We also introduce 

many advanced aspect features to AspectFun, and show how these features are handled by our 

compilation model. We present a type-directed weaving scheme that coherently weaves 

type-scoped advices into the base program at compile time. We provide the detailed proof of the 

correctness of the static weaving with respect to the operational semantics of AspectFun. We also 

demonstrate how control-flow based pointcuts (such as CFLOWBELOW) are compiled away, 

and highlight several type-directed optimization strategies that can improve the efficiency of 

woven code. 
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2 ·
1. INTRODUCTION

Aspect-oriented programming (AOP) aims at modularizing concerns such as profil-
ing and security that crosscut the components of a software system[Kiczales et al.
1997]. In AOP, a program consists of many functional modules and some aspects
that encapsulate the crosscutting concerns. An aspect provides two specifications:
A pointcut , comprising a set of functions, designates when and where to crosscut
other modules; and an advice, which is a piece of code, that will be executed when a
pointcut is reached. The complete program behaviour is derived by some novel ways
of composing functional modules and aspects according to the specifications given
within the aspects. This is called weaving in AOP. Weaving results in the behaviour
of those functional modules impacted by aspects being modified accordingly.

The effect of an aspect on a group of functions can be controlled by introducing
bounded scope to the aspect. Specifically, when the AOP paradigm is supported by a
strongly-type polymorphic functional language, such as Haskell or ML, it is natural
to limit the effect of an aspect on a function through declaration of the argument
type. For instance, the code shown in Figure 1 defines three aspects named n3, n4,
and n5 respectively; it also defines a main/base program consisting of declarations
of f and h and a main expression returning a triplet. These advices designate h
as pointcut . They differ in the type constraints of their first arguments. While n3
is triggered at all invocations of h, n4 limits the scope of its impact through type
scoping on its first argument; this is called a type-scoped advice. This means that
execution of n4 will be woven into only those invocations of h with arguments of list
type. Lastly, the type-scoped advice n5 will only be woven into those invocations
of h with their arguments being strings.

Example 1
// Aspects

n3@advice around {h} (arg) =

proceed arg ;

println "exiting from h" in

n4@advice around {h} (arg:[a]) =

println "entering with a list";

proceed arg in

n5@advice around {h} (arg:[Char]) =

print "entering with ";

println arg;

proceed arg in

// Base program

h x = x in

f x = h x in (f "c", f [1], h [2])

// Execution trace

entering with a list

entering with c

exiting from h

entering with a list

exiting from h

entering with a list

exiting from h

Fig. 1. An Example of Aspect-oriented program written in AspectFun

As with other AOP, we use proceed as a special keyword which may be called
inside the body of an around advice. It is bound to a function that represents “the
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rest of the computation at the advised function”; specifically, it enables the control
to revert to the advised function (ie., h).

Using type-scoped aspects enable us to have customized, type-dependent tracing
message. Note that String (a list of Char) is treated differently from ordinary lists.
Assuming a textual order of advice triggering, the corresponding trace messages
produced by executing the complete program is displayed to the right of the example
code.

In the setting of strongly-type polymorphic functional languages, types are treated
as compile-time entities. As their use in controlling advices can usually be deter-
mined at compile-time, it is desirable to perform static weaving of advices into base
program at compile time to produce an integrated code without explicit declaration
of aspects. Moreover, as pointed out by Sereni and de Moor [Sereni and de Moor
2003], the integrated woven code produced by static weaving can facilitate static
analysis of aspect-oriented programs.

Despite its benefits, static weaving is never a trivial task, especially in the pres-
ence of type-scoped advices. Specifically, it is not always possible to determine
locally at compile time if a particular advice should be woven. Consider Exam-
ple 1, from a syntactic viewpoint, function h can be called in the body of f. If we
were to naively infer that the argument x to function h in the RHS of f’s defini-
tion is of polymorphic type, we would be tempted to conclude that (1) advice n3
should be triggered at the call, and (2) advices n4 and n5 should not be called as
its type-scope is less general than a → a. As a result, only n3 would be statically
applied to the call to h.

Unfortunately, this approach would cause inconsistent behavior of h at run-time,
as only the third trace message “exiting from h” would be printed. This would
be incoherent because the invocations (h [1]) (indirectly called from (f [1]))
and (h [2]) would exhibit different behaviors even though they would receive
arguments of the same type.

Most of the work on aspect-oriented functional languages do not address this
issue of static and yet coherent weaving. In AspectML [Dantas et al. 2007] (a.k.a
PolyAML [Dantas et al. 2005]), dynamic type checking is employed to handle match-
ing of type-scoped pointcuts; on the other hand, Aspectual Caml [Masuhara et al.
2005] takes a lexical approach which sacrifices coherence1 for static weaving.

In this paper, we present a compilation model for AspectFun that ensures static
and coherent weaving. AspectFun is an aspect-oriented polymorphically typed func-
tional language with lazy semantics. The overall compilation process is illustrated
in Figure 2. Briefly, the model comprises the following three major steps: (1) Static
type inference of an aspect-oriented program; (2) Type-directed static weaving to
convert advices to functions and produce a piece of woven code; (3) Type-directed
optimization of the woven code.

This paper consolidates our past research in this field [Wang et al. 2006b; 2006a;
Chen et al. 2007] and makes significant revisions and extensions to several dimen-
sions of our research. Specifically, in this paper,

1Our notion of coherence admits semantic equivalence among different invocations of a function
with the same argument type. This is different from the coherence concept defined in quali-
fied types [Jones 1992] which states that different translations of an expression are semantically
equivalent.



4 ·

Fig. 2. Compilation Model for AspectFun

(1) Language features: We provide a complete treatment to several advanced fea-
tures in our aspect-oriented functional language, AspectFun. These include:
second-order advices, nested advices, complex pointcuts such as cflowbelow
and curried pointcuts.

(2) Semantics for AspectFun: We present a lazy operational semantics for the entire
AspectFun language, including that of control-flow based pointcuts, which has
not been fully published before.

(3) Correctness: For the first time, we provide our full formulation of the correct-
ness of static weaving wrt. the lazy operational semantics of AspectFun and its
proof.

(4) Systems: We provide a complete implementation of our compilation model
turning aspect-oriented functional programs into executable Haskell code, in-
corporating the analysis and optimisation of cflowbelow pointcuts. 2

Under our compilation scheme, the program in Example 1 is first translated through
static weaving to an expression in lambda-calculus with constants for execution.
The result is expressed using some meta-constructs as follows:

n3 = \arg -> (proceed arg ; println "exiting from h") in

n4 = \arg -> (print "entering h with a list" ; proceed arg) in

n5 = \arg -> (print "entering h with " ; println arg; proceed arg) in

2The prototype is available upon request.
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h x = x in

f dh x = dh x in

(f <h,{n3,n4,n5}> "c", f <h,{n3,n4}> [1], <h,{n3,n4}> [2])

Note that all advice declarations are translated into functions and then woven. A
meta-construct 〈 , {. . .}〉, called chain expression, is used to express the chaining
of advices and advised functions. For instance, 〈h , {n3, n4}〉 denotes the chaining
of advices n3 and n4 to advised function h. In the above example, the two invo-
cations of h, with integer-list arguments, in the original aspect program have been
translated to invocations of the chain expression 〈h , {n3, n4}〉. This shows that our
weaver respects the coherence property.

All the technically challenging stages in the compilation process are explained
in detail – in their respective sections – in the rest of this paper. We gather all
compilation processes pertaining to control-flow based pointcuts in Section 6.

The outline of the paper is as follows: Section 2 highlights various aspect-
oriented features through AspectFun. Section 3 defines a lazy semantics for As-
pectFun. In Section 4, we describe our type inference system and the corresponding
type-directed static weaving process. Next, we formulate the correctness of static
weaving with respect to the semantics of AspectFun. In section 6, we provide a
detailed description of how control-flow based pointcuts are handled in our com-
pilation model. We discuss related work in Section 7 and conclude in Section 8.
Appendix A provides the detailed proof of the correctness of static weaving.

2. ASPECTFUN: THE ASPECT LANGUAGE

In this section, we introduce the aspect-oriented lazy functional language, Aspect-
Fun, for our investigation. Next, we briefly introduce the concept of advised type
to capture the need for advice weaving based on type contexts. We also intro-
duce various features of aspects in our language. These include: curried pointcuts,
control-flow based pointcuts, second-order advices and nested advices.

Programs π ::= d in π | e
Declarations d ::= x = e | f x = e | n@advice around {pc} (arg) = e
Arguments arg ::= x | x :: t
Pointcuts pc ::= ppc | pc + cf | pc− cf

Primitive PC’s ppc ::= f x | any | any\[f ] | n
Cflows cf ::= cflow(f) | cflow(f( :: t)) | cflowbelow(f) | cflowbelow(f( :: t))
Expressions e ::= c | x | proceed | λx.e | e e | let x = e in e

Types t ::= Int | Bool | a | t → t | [t]
Advice Predicates p ::= (f : t)
Advised Types ρ ::= p.ρ | t
Type Schemes σ ::= ∀ā.ρ

Fig. 3. Syntax of the AspectFun Language

Figure 3 presents the language syntax. We write ō as an abbreviation for a
sequence of objects o1, ..., on (e.g. declarations, variables etc) and fv(o) as the set of
free variables in o. We assume that ō and o, when used together, denote unrelated
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objects. We write t1 ∼ t2 to specify unification. We write t D t′ iff there exists
a substitution S over type variables in t such that St = t′, and we write t ≡ t′ iff
t D t′ and t′ D t. To ease our presentation, complex syntax, such as if expressions
and sequencings (;), are omitted even though they are used in examples.

In AspectFun, top-level definitions include global variable and function definitions,
as well as aspects. An aspect is an advice declaration which includes a piece of advice
and its target pointcuts. An advice is a function-like expression that executes when
any of the functions designated at the pointcut are about to execute. The act of
triggering an advice during a function application is called weaving . Pointcuts are
denoted by {pc} (arg), where pc stands for either a primitive pointcut, represented
by ppc, or a composite pointcut. Pointcuts specify certain join points in the program
in which advices are woven when program execution reaches there. Here, we focus
on join points at function invocations. Thus a primitive pointcut, ppc, specifies a
function or advice name the invocations of which, either directly or indirectly via
functional arguments, will be advised.

Advice is a function-like expression that executes before, after , or around a join
point. An around advice is executed in place of the indicated join point, allowing
the advised pointcut to be replaced. A special keyword proceed may be used
inside the body of an around advice. It is bound to the function that represents
“the rest of the computation” at the advised pointcut. As both before advice and
after advice can be simulated by around advice that uses proceed, we only need
to consider around advice in this paper.

A primitive pointcut can also be a catch-all keyword any. When used, the cor-
responding advice will be triggered whenever a named function is invoked. For
example, the pointcut any\[f, g] will select all named functions except f and g.
Besides, since advices are also named, we allow advices to advice other advices. A
sequence of pointcuts, {pc}, indicates the union of all the sets of join points selected
by the pci’s. The argument variable arg is bound to the actual argument of the
named function call and it may contain a type scope. Alpha renaming is applied
to local declarations beforehand so as to avoid name clash.

Composite pointcuts are handled separately in our compilation model through
series of code transformation, analyses and optimizations. This is discussed in detail
in Section 6. Note that only global functions and advices are subject to advising;
and invocations of anonymous functions are not considered as join points, even
when any is used.

2.1 Advised Types

AspectFun is polymorphically and statically typed. Central to our approach is the
construct of advised types, ρ in Figure 3, inspired by the predicated types [Wadler and
Blott 1989] used in Haskell’s type classes. These advised types augment common
type schemes (as found in the Hindley-Milner type system) with advice predicates,
(f : t), which are used to capture the need of advice weaving based on type context.
We shall explain them in detail in Section 4.1.

In the subsequent subsections, we use examples to illustrate the major features
of AspectFun.

Essentially, the introduction of advised types enables us to perform static and
coherent weaving of type-scoped advices. For instance, in Example 1, the type
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scheme for f will be inferred to be ∀a.(h : a → a).a → a, which indicates that
whenever f is applied in a specific context, the advices on h may also be triggered.
Specifically, inside the main expression, all three function calls will carry some
proper sets of advices on h, even for the calls that are made to f. Then, when a
h-call is eventually invoked, the right advices to h will be triggered.

2.2 Curried Pointcuts

Higher-orderness naturally brings forth the notion of partial application of curried
functions. In typical applications of AOP such as tracing or profiling, it is important
to be able to advise on not only full applications of functions, but also partial
applications of curried functions to their arguments other than the first one. In our
system, we allow type-scoped advices with curried-function pointcuts, as shown
below:

Example 2
n1@advice around {f x} (arg::Int) = e1 in
n2@advice around {f} (arg::Int) = e2 in
n3@advice around {f x} (arg) = e3 in
let f x y = x + 1 in
f 1 2

We use meta-variables (in italic font) such as e1, e2 and so on to represent expres-
sions with omitted details. Through out this paper, without special mentioning, we
assume expressions represented by meta-variables are not advised. Note that be-
cause of well-typedness, we insist that the advice body of n2, e2, to be of a function
type · → ·, while the advice bodies e1 and e3 are of non-function types.

There have been some recommmendation for defining operational semantics of
aspect-oriented programs for higher-order functions and partial function applica-
tions, scuh as [Tucker and Krishnamurthi 2003]. Nevertheless, there is still not yet
any unanimous and unambiguous agreement on it. In this work, we adopt the view-
point that functions are identified by names at pointcuts, and advices are triggered
whenever their partial applications matches that of the pointcuts [Masuhara et al.
2005]. This differs from the recommendation by [Tucker and Krishnamurthi 2003]
which triggers advices based on matching of run-time closures.

Back to Example 2, using a similar technique as in [Masuhara et al. 2005], we
simplify curried advices into non-curried ones as follows:

n1 = \x.\arg -> let proceed’ = proceed x in [proceed’/proceed]e1 in
n2 = \arg -> e2 in
n3 = \x.\arg -> let proceed’ = proceed x in [proceed’/proceed]e3 in
f x y = x in
<f,{n1,n2,n3}> 1 2

We refer the readers to Section 4.6 for detail.

2.3 Control-flow Based Pointcuts

The composite pointcuts in AspectFun are those related to the control flow of a
program. Specifically, we can write a pointcut which identifies a subset of invoca-
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tions of a specific function based on whether they occur in the dynamic context of
other functions. For example, the pointcut f + cflow(g) selects those invocations
of f which are made when the function g is still executing (i.e. invoked but not
returned yet). On the other hand, if the operator before the cflow designator is a
minus sign (eg. f − cflow(g)), it means the opposite, namely only invocations of
f which are not under the dynamic context of g will be selected.

Following AspectJ, our aspect langauge also provides two kinds of pointcut desig-
nators for specifying control flow restrictions. The first one is expressed as cflow(f),
and it captures all the join points in the control flow from the the specific application
to function f , including that specific f -application. The second one is expressed
as cflowbelow(f), and it captures all the join points in the control flow from the
specific application to f , but excluding that specific f -application. Their difference
is best illustrated by the case when the function specified is recursive. For exam-
ple, in the following simple aspect program, we intend to use advice n to advise
the recursive fac function only once, when it is first executed, via the pointcut
fac-cflowbelow(fac). Had we used fac-cflow(fac), the advice would not be
executed at all.

n@advice around {fac - cflowbelow(fac)} (arg) =
println "Entering fac";
proceed arg in

fac x = if x==0 then 1 else x * fac (x-1) in fac 3

The ability of control-flow based pointcuts to inspect the run-time stack is impor-
tant to many security applications. Suppose a function f’s access to some sensitive
code is only enabled by being called from a highly trusted function g, failing which
f would have to be executed only as partially trusted. This policy can be enforced
by an aspect.

Example 3
n@advice around {f + cflow(g)} (arg) = e in //fully trusted execution
f = e′ // partially trusted execution

The above aspect effectively performs a stack walk when f is executed and only
grants fully trusted execution when g is in the dynamic context.

In addition to unscoped control-flow based pointcuts, AspectFun allows us to
specify fine grained ones by augmenting the arguments with type scopes. The ad-
vice n in the above example can be refined to

// fully trusted execution
n@advice around {f + cflow(g( ::[Bool]))} (arg) = e

In this case, the cflow pointcut is only matched when a g-call with input of type
[Bool] is found inside the dynamic context. Note that we use to indicate that no
value binding is allowed in control-flow based pointcuts.

However, deriving an efficient static weaving scheme for advices with control-flow
based pointcuts is not straightforward, particularly in a statically typed functional
language . We employ an implementation scheme similar to that of AspectJ [Ma-
suhara et al. 2003], which uses a stack counter to spare the efforts of maintaining
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a run-time stack with the aspects. Furthermore, we also perform some static anal-
ysis to reduce the runtime overhead of executing control-flow based advices. The
detailed scheme will be presented in Section 6.

2.4 Second-Order Advices and Nested Advices

In AspectFun, advice names can also be primitive pointcuts. As such, we allow
advices to be developed to advise other advices. We refer to such advices as second-
order advices. In contrast, the two-layered design of AspectJ like languages only
allow advices to advise other advices in a very restricted way. The loss of expres-
siveness of such an approach has been well argued in [Rajan and Sullivan 2005].

The following code fragment shows a use of second-order advice to compute the
total amount of a customer order and apply discount rates according to certain
business rules.

Example 4
n3@advice around {n1,n2} (arg) = let finalRate = proceed arg

in if (finalRate < 0.5) then 0.5
else finalRate in

n1@advice around {getRate} (arg) =
(getHolidayRate arg) * (proceed arg) in

n2@advice around {getRate} (arg) =
(getAnnivRate arg) * (proceed arg) in

discount item = (getRate item) * (getPrice item) in
calcPrice cart = sum (map discount cart) in e

In addition to the regular discount rules, ad-hoc sale discounts such as holiday-
sales, anniversary sales etc., can be introduced through aspect declarations, thus
achieving separation of concerns. This is shown in the n1 and n2 declarations.
Furthermore, there may be a rule stipulating the maximum discount rate that is
applicable to any product item, regardless of the multiple discounts it qualifies.
Such a business rule can be realized using a second-order aspect, as in n3. It calls
proceed to compute the combined discount rate and ensures that the rate does not
exceed 50%.

In addition to direct advising, we can also write advice that advises other advice
indirectly. Specifically, inside the body of an advice definition, there may be calls to
other functions that are advised by other advices. We call the latter nested advices.
This is particularly useful in security applications. Consider a different attempt to
invoke the restricted function f from Example 3.

Example 5
n@advice around {f + cflow(g)} (arg) = e1 // fully trusted execution
n1@advice around {w} (arg) = f arg in
f x = e2 // partially trusted execution
w x = e3 in
h x y = x y in
g x = h w x in
g 1
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In the main expression, the application of g invokes the execution of w which
indirectly calls f through application of advice n1. In a secure system, this silent
execution of f must be observed and advice n is triggered.

There is a special kind of nested advices that apply to the execution of their
own bodies, directly or indirectly. These are identified as circular advice execution
applications. Such applications “are very rare, and usually pathological and a
symptom of an error in the program” [Avgustinov et al. 2005]. Our system does
not allow such nested advices for the reason that circular around advices advising
potentially recursive functions may form a scenario similar to polymorphic mutual
recursion which threatens the decidability of type inference. We leave this to future
investigation.

3. THE SEMANTICS OF ASPECTFUN

This section presents an operational semantics for AspectFun. As type information
is required at the triggering of advices for weaving, the semantics of AspectFun
is best defined in a language that allows dynamic manipulation of types: type
abstractions and type applications. Thus, we convert AspectFun into a System-F
like intermediate language, FIL. After a brief overview of FIL, we shall present a set
of type-directed conversion rules for transforming an AspectFun program to an FIL
program, followed by presenting the operational semantics of FIL and an example.

Program πI ::= (Adv, eI)
Advice Adv ::= (n : ς, pc, τ, eI)
Join points jp ::= f : τ | ε
Expressions eI ::= vI | x | proceed | eI eI | eI{τ} | LET x = eI IN eI

Values vI ::= c | λjpx : τx. eI | Λα. eI

Types τ ::= Int | Bool | α | τ → τ | [τ ]
Type schemes ς ::= ∀α. τ | τ
Type Substitution S ::= [τ/α]

Fig. 4. Syntax of FIL

Figure 4 displays the syntactic constructs of FIL. An FIL program consists of
a separate store of all advices and a main expression with function declarations.
Each advice in FIL is represented as a tuple of four elements: (1) the name of the
advice (n) with its type (ς); (2) the pointcuts (pc) the advice selects; (3) the type
scope (τ), and (4) the body (eI) of the advice. Expressions in FIL, denoted by
eI , are extensions of those in AspectFun to include join-point-annotated lambda
(λjpx : τx.eI), type abstraction (Λα.eI) and type application (eI{τ}). As to type
structures, FIL employs the same standard type scheme of the Hindley-Milner type
system. Hence, except for the advice predicate part, FIL and AspectFun share the
same type structures.
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3.1 FIL conversion

We provide three sets of conversion rules to transform an AspectFun program into
an FIL program, namely declaration conversion, expression conversion and type
conversion, listed in figures 5, 6 and 7. The conversion process is led by the step
π

prog½ (A, eI) in the declaration conversion rule, (
prog½). The judgement ∆ `D π :

τ ½ eI ;A asserts that an AspectFun program, π, under a type environment (also
called conversion environment) ∆ of structure x : ς, having type τ is converted to an
FIL program, consisting of an expression eI , and an advice store A which is a set of
advice tuples. Another major conversion is expression conversion. The judgement
∆ ` e : τ ½ eI asserts that an AspectFun expression e having a type τ under ∆
is converted to an FIL expression eI . Lastly, the type conversion

type½ simply strips
away the advice predicate part of a type scheme in AspectFun and map the latter
to an isomorphic type scheme in FIL. Here, the function fresh(a) takes a sequence
of type variables and returns the same number of new type variables in sequence.

(
prog½)

∅ `D π : τ ½ eI ;A
π

prog½ (A, eI)
(Decl:MainExpr)

∆ ` e : τ ½ eI

∆ `D e : τ ½ eI ; ∅

(Decl:Var)
∆ ` e : τx ½ eI

x α = fv(τx) \ fv(∆) ∆.x : ∀α. τx `D π : τ ½ eI ;A
∆ `D x = e in π : τ ½ LET x = Λα. eI

x IN eI ;A

(Decl:Func)

∆ ` λx.e : τx → τf ½ λx : τx.eI
f α = fv(τx → τf ) \ fv(∆)

∆.f : ∀α. τx → τf `D π : τ ½ eI ;A
∆ `D f x = e in π : τ ½ LET f = Λα. λf :τx→τf x : τx. eI

f IN eI ;A

(Decl:Adv)
∆ `D n@advice around {pc} (x :: a) = e in π : τ ½ eI ;A

∆ `D n@advice around {pc} (x) = e in π : τ ½ eI ;A

(Decl:Adv-An)

tx
type½ τx ∆.proceed : τ1 → τ2 ` λx.e : τ1 → τ2 ½ λx : τ1.e

I
n

α = fv(τ1 → τ2) \ fv(∆) ∆.n : ∀α.τ1 → τ2 `D π : τ ½ eI ;A
∆ `D n@advice around {pc} (x :: tx) = e in π : τ ½ eI ;

A.(n : ∀α.τ1 → τ2, pc, τx u τ1, Λα. λn:τ1→τ2x : τ1. eI
n)

τ1 u τ2 = let S = mgu(τ1, τ2) in Sτ1

Fig. 5. FIL declaration conversion rules

Since most of the conversion rules follow the standard Hindley-Milner style, we
only highlight the distinguished parts here. First, the (Decl:Func) rule converts
top-level functions to let-bound ones having annotated lambda λf :τx : τx.eI ; the
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annotation λ(f :τ) highlights the fact that the function defines a join point of name
and type f : τ . The semantics of FIL uses these annotations to select the set
of advices to be triggered. The conversion also introduces type abstraction Λα
into the definition bodies. Rule (Expr:Ty-App) instantiates type variables to
concrete types enabling advices with matching types to be triggered in the context
of polymorphic functions.

Second, the (Decl:Adv) rule simply delegates the conversion to the (Decl:Adv-An)
rule, making non-type-scoped advice a special case of type-scoped advice with the
widest polymorphic scope. The (Decl:Adv-An) rule performs the real work of
advice conversion and appends the converted advice to the advice store A. Since
the user-specific type scope, tx, may be more specific or general than the inferred
type for an advice’s parameter, τ1, the (Decl:Adv-An) rule computes the greatest
lower bound of τ1 and τx (corresponding to tx), and makes it the final type-scope
of the underlying advice. Moreover, we shall prove later that in a well-typed As-
pectFun program, either τ1 D τx or τx D τ1, and hence τx u τ1 is either τx or
τ1.

Third, the (Decl:Var) rule works in the same way as the rule (Decl:Func),
except that it does not add the join point annotation, thus avoiding unwanted
advice triggering.

(Expr:Var)
τ = ∆(x)

∆ ` x : τ ½ x
(Expr:Ty-App)

∀α. τ = ∆(x) τx = [τ ′/α]τ
∆ ` x : τx ½ x{τ ′}

(Expr:Abs)
∆.x : τx ` e : τ ½ eI

∆ ` λx. e : τx → τ ½ λx : τx. eI
(Expr:App)

∆ ` e1 : τ ′ → τ ½ eI
1

∆ ` e2 : τ ′ ½ eI
2

∆ ` e1 e2 : τ ½ eI
1 eI

2

(Expr:Let)
∆.f : τf ` ef : τf ½ eI

f α = fv(τf ) \ fv(∆) ∆.f : ∀α. τf ` e : τ ½ eI

∆ ` let f = ef in e : τ ½ LET f = Λα. eI
f IN eI

Fig. 6. FIL expression conversion rules

3.2 Operational Semantics for FIL

We describe the operational semantics for AspectFun in terms of that for FIL. For
ease of presentation, we leave the semantics for handling cflow-based pointcut to
section 6.1. The reduction-based big-step operational semantics, written as ⇓A, is
defined in Figure 8. Note that the advice store A is implicitly carried by all the
rules, and it is omitted to avoid cluttering of symbols. Except advice triggering,
these reduction rules follow the standard ones for a typed lambda calculus with
constants.

Also shown in Figure 8 are the definitions of four auxiliary functions used for
advice triggering and weaving. Triggering and weaving of advices are performed
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(
type½)

b = fv(t) \ a α = fresh(a) β = fresh(b) a : α.b : β ` t
type½ τ

∀a.p.t
type½ ∀α.τ

(Type:Base) V ` Int
type½ Int V ` Bool

type½ Bool V.a : α ` a
type½ α

(Type:Inferred)
V ` t

type½ τ

V ` [t]
type½ [τ ]

V ` t1
type½ τ1 V ` t2

type½ τ2

V ` t1 → t2
type½ τ1 → τ2

Fig. 7. FIL type conversion rules between AspectFun and FIL

Expressions:

(OS:Value) c ⇓ c λjpx : τx. eI ⇓ λjpx : τx. eI Λα. eI ⇓ Λα. eI

(OS:App)
eI
1 ⇓ λjpx : τx. eI

3 Trigger(λx : τx. eI
3, jp) = λx : τx. eI

4 [eI
2/x]eI

4 ⇓ vI

eI
1 eI

2 ⇓ vI

(OS:Ty-App)
eI
1 ⇓ Λα. eI

2 [τ/α]eI
2 ⇓ vI

eI
1{τ} ⇓ vI

(OS:Let)
[eI

1/x]eI
2 ⇓ vI

LET x = eI
1 IN eI

2 ⇓ vI

Auxiliary Functions:

Trigger : eI × jp → eI

Trigger(eI , ε) = eI

Trigger(λx : τx. eI , f : τf ) = Weave(λx : τx. eI , τf ,Choose(f, τx))

Weave : eI × τ ×Adv → eI

Weave(eI , τf , []) = eI

Weave(eI
f , τf , a : advs) = Let (n : ∀α. τn, pc, τ, Λα. eI) = a

τ be types such that [τ/α]τn = τf

eI
p = Weave(eI

f , τf , advs)
eI
a = (Λα. eI){τ}

λn:τnx : τx. eI
n = [eI

p/proceed]eI
a

In Trigger(λx : τx. eI
n, n : τn)

Choose(f, τ) = {(ni : ςi, pci, τi, e
I
i ) | (ni : ςi, pci, τi, e

I
i ) ∈ A, τi D τ,

∃pc ∈ pci s.t. JPMatch(f, pc)}
JPMatch(f, pc) = (f ≡ pc) ∨ (pc ≡ any) ∨ (pc ≡ any \ [h] ∧ f 6∈ h)

Fig. 8. Operational Semantics for FIL

during function applications, as shown in rule (OS:App). The advice triggering
operation first chooses eligible advices based on argument type, and weaves them
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into the function invocation – through a series of substitutions of advice bodies – for
execution. Three points worth mentioning here. First, in the main body of Weave
function, the function Trigger is invoked again to handle any possible triggering of
second-order advice. Second, among the advices matched by JPMatch, the function
Choose keeps all the advices whose type scope is more general than the type passed
to it, regardless of their return types. Consequently, it is likely that, during the
subsequent execution of the woven advice, a runtime type error may occur and
the reduction fails (unless, of course, the program has been analyzed to be safe
by our type system). Third, advices selected by Choose are kept in a set, rather
than an ordered sequence. While it is understood that advices are to be chained
in a specific order during execution, we believe that the issue of chaining order is
orthogonal to our study here. Consequently, we do not explicitly fix the order in
our semantics definition, neither do we choose a specific advice chaining order in the
static translation of AspectFun programs. Instead, we assume that the order chosen
during static translation is consistent with that arranged by the Choose function
in the operational semantics.

3.3 Example

We use a contrived example to demonstrate how the semantics of AspectFun works.
The AspectFun program listed in Example 6 includes three kinds of advices, namely
type-scoped advice, polymorphic advice and second-order advice. They will be
triggered according to the type context at different join points during the execution
of the program.

Example 6
nscope@advice around {f} (arg::[a]) = proceed (tail arg) in
n @advice around {g} (arg) = proceed arg in
n2nd @advice around {n} (arg) = proceed arg in
f x = x in
g x = (f x, f (x, x), f [x]) in
h x = g [x] in
k x = g x in
(h 1, k 2)

After applying the rules in figures 5 and 6 to the above AspectFun program, we
get the following FIL-converted expression:

LET f = Λα.λf:α→αx : α.x IN
LET g = Λα.λg:τgx : α.(f{α}x, f{(α, α)}(x, x), f{[α]}[x]) IN
LET h = Λα.λh:τhx : α.g{[α]}x IN
LET k = Λα.λk:τgx : α.g{ α }x IN
(h {Int} 1, k {Int} 2)

where τg and τh are abbreviations for α → (α, (α, α), [α]) and α → ([α], ([α], [α]), [[α]]),
respectively. Besides, the advice store A thus produced contains the following three
tuples:
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(nscope : ∀α.[α] → [α], f, [α], Λα.λnscope:[α]→[α]arg : [α]. proceed (tail arg)),
(n : ∀αβ.α → β, g, α, Λα.Λβ.λn:α→βarg : α. proceed arg),
(n2nd : ∀αβ.α → β, n, α, Λα.Λβ.λn2nd:α→βarg : α. proceed arg)

When evaluating the converted program, the application of h {Int} 1 in the
main expression will result in the invocation of g {[Int]} 1, which will then lead
to the weaving of advices n and n2nd. During the evaluation of g’s body, f will
be applied to three different types of arguments: [Int], ([Int], [Int]), and [[Int]].
The advice nscope will be triggered, except for the second one, since the call
Choose(f, ([Int], [Int])) returns an empty set. The case for the application of
(k {Int} 2) is also similar. The notable difference is that, during the evaluation of
the three function calls to f, only the last one of f {[Int]} will trigger the advice
nscope. Finally, the result of executing the FIL program is

(([], ([1], [1]), []), (2, (2, 2), []))

4. STATIC WEAVING

In our compilation model, aspects are woven statically (Step 5 in Figure 2). Specif-
ically, we present in this section a type inference system which guarantees type
safety and, at the same time, weaves the aspects through a type-directed trans-
lation. Note that, for composite pointcuts such as f+cflowbelow(g), our static
weaving system simply ignores the control-flow part and only considers the asso-
ciated primitive pointcuts (ie., f). Treatment of control-flow based pointcuts is
presented in Section 6.

4.1 Type directed weaving

As introduced in Section 2, advised type denoted as ρ is used to capture function
names and their types that may be required for advice resolution. We further
illustrate this concept with our tracing example given in Section 1.

For instance, function f possesses the advised type ∀a.(h : a → a).a → a, in
which (h : a → a) is called an advice predicate. It signifies that the execution of
any application of f may require triggering of those advices on h whose types can
be instantiated to t′ → t′, where t′ is an instantiation of type variable a.

The notion of more general is formally defined as:

Definition 1 We say a type t is more general than or equivalent to a type t′, if
t D t′. When t D t′ but t 6≡ t′, we say t is more general than t′. Similarly, we say
a type t is more specific than a type t′ if t′ D t and t 6≡ t′.

Note that advised types are used to indicate the existence of some advices inde-
terminable at compile time. If a function contains only applications whose advices
are completely determined, then the function will not be associated with an advised
type; it will be associated with a normal (and possibly polymorphic) type. As an
example, the type of the advised function h in Example 1 is ∀a.a → a since it does
not contain any application of advised functions in its definition.

We begin with the following set of auxiliary functions that assists type inference:
(Gen) is a generalization procedure turning a type into a type scheme by quanti-
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(Gen) gen(Γ, ρ) = ∀ā.ρ where ā = fv(ρ)\fv(Γ) (Card) |o1...ok| = k

Fig. 9. Auxiliary Definitions

fying type variables that do not appear free in the type environment. The function
| · | returns the cardinality of a sequence of objects.

The main set of type inference rules, as described in Figure 10, is an extension
to the Hindley-Milner system. We introduce a judgment Γ ` e : ρ ; e′ to denote
that expression e has type ρ under type environment Γ and it is translated to e′.
We assume that the advice declarations are preprocessed and all the names which
appear in any of the pointcuts are recorded in an initial global store A. Note that
locally defined functions are not subject to being advised and not listed in A. We
also assume that the base program is well typed in Hindley-Milner and the type
information of all the functions are stored in Γbase.

The typing environment Γ contains not only the usual type bindings (of the form
x : σ ; e) but also advice bindings of the form n : σ ./ x̄. This states that an
advice with name n of type σ is defined on a set of functions x̄. We may drop
the ./ x̄ part if found irrelevant. This type σ is inferred from the body and type
scope of the advice described in rules (Adv) and (Adv-an); and it is used to guard
advice application in rule (Var-A). When a bound function name is advised (i.e.
x ∈ A), we use a different binding :∗ to distinguish it from the non-advised ones
so that the former may appear in an advice predicate as in rule (Pred). We also
use the notation :(∗) to represent a binding which is either : or :∗. When there are
multiple bindings of the same variable in a typing environment, the newly added
one always shadows previous ones.

4.2 Predicating and Releasing

Before illustrating the main typing rules, we introduce a weavable constraint of the
form wv(f : t) which indicates that applicable advices to be triggered at the call to
f instantiated with type t. It is formally defined as:

Definition 2 Given a function f and its type t1 → t2, the predicate wv(f : t1 → t2)
holds iff the following implication holds:

((∀n.n :(∗) ∀ā.p̄.t′1 → t′2 ./ f) ∈ Γ ∧ t1 ∼ t′1) ⇒ (t′1 → t′2 D t1 → t2).

This condition basically means that under a given typing environment, a function’s
type is no more general than any of its advices. For instance, under the environment
{n1 : ∀a.[a] → [a] ./ f, n2 : Int → Int ./ f}, wv(f : b → b) is false because the
type is not specific enough to determine whether n1 and n2 should apply whereas
wv(f : Bool → Bool) is vacuously true and, in this case, no advice applies. Note
that since unification and matching are defined on types instead of type schemes,
quantified variables are freshly instantiated to avoid name capturing.

There are two rules for variable lookups. Rule (Var) is standard. In the case
that variable x is advised, rule (Var-A) will create a fresh instance t′ of the type
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Expressions:

(Var)
x : ∀ā.p̄.t ; e ∈ Γ

Γ ` x : [t̄/ā]p̄.t ; e
(Var-A)

x :∗ ∀ā.p̄.tx ∈ Γ t′ = [t̄/ā]tx
wv(x : t′) Γ ` ni : t′ ; ei |ȳ| = |p̄|

n̄ : ∀b̄.q̄.tn ./ x ; n̄ ∈ Γ {ni | ti D t′}
Γ ` x : [t̄/ā]p̄.tx ; λȳ.〈x ȳ , {ei}〉

(App)

Γ ` e1 : t1 → t2 ; e′1
Γ ` e2 : t1 ; e′2

Γ ` e1 e2 : t2 ; (e′1 e′2)
(Abs)

Γ.x : t1 ; x ` e : t2 ; e′

Γ ` λx.e : t1 → t2 ; λx.e′

(Let)
Γ ` e1 : ρ ; e′1 σ = gen(Γ, ρ) Γ.f : σ ; f ` e2 : t ; e′2

Γ ` let f = e1 in e2 : t ; let f = e′1 in e′2

(Pred)

x :∗ ∀ā.p̄.tx ∈ Γ [t̄/ā]tx D t

Γ.x : t ; xt ` e : ρ ; e′t
Γ ` e : (x : t).ρ ; λxt.e

′
t

(Rel)

Γ ` e : (x : t).ρ ; e′

Γ ` x : t ; e′′ x 6= e

Γ ` e : ρ ; e′ e′′

Declarations:

(Global)
Γ ` e : ρ ; e′ σ = gen(Γ, ρ) Γ.id :(∗) σ ; id ` π : t ; π′

Γ ` id = e in π : t ; id = e′ in π′

(Adv)

Γ.proceed : t ` λx.ea : p̄.t ; e′a fi : ∀ā.ti ∈ Γbase

t D [t̄/ā]ti Γ.n : σ ./ f̄ ; n ` π : t′ ; π′ σ = gen(Γ, p̄.t)
Γ ` n@advice around {f̄} (x) = eain π : t′ ; n = e′a in π′

(Adv-an)

Γ.proceed : tx → t ` λx.ea : p̄.tx → t ; e′a σ = gen(Γ, p̄.tx → t)
fi : ∀ā.ti → t′i ∈ Γbase S = [t̄/ā]ti D tx

t D S[t̄/ā]t′i Γ.n : σ ./ f̄ ; n ` π : t′ ; π′

Γ ` n@advice around {f̄} (x :: tx) = eain π : t′ ; n = e′a in π′

Fig. 10. Static Typing and Weaving rules

scheme bound to x in the environment. Then we check weavable condition of (x : t′).
If the check succeeds (i.e., x’s input type is more general or equivalent to those of
the advices with unifiable types), x will be chained with the translated forms of
all those advices defined on it, having equivalent or more general types than x has
(the selection is done by {ni|ti D t′}). We coerce all these selected advices to have
non-advised type during their translation Γ ` ni : t′ ; ei. This ensures correct
weaving of nested advices advising the bodies of the selected advices. The detail
will be elaborated in Section 4.4. Finally, the translated expression is normalized
by bringing all the advice abstractions of x outside the chain 〈. . .〉. This ensures
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type compatibility between the advised call and its advices.

If the weavable condition check fails, there must exist some advices for x with
more specific types, and rule (Var-A) fails to apply. Since x ∈ A still holds,
rule (Pred) can be applied, which adds an advice predicate to a type. (Note
that we only allow sensible choices of t constrained by tx D t.) Correspondingly,
its translation yields a lambda abstraction with an advice parameter. This advice
parameter enables concrete advice-chained functions to be passed in at a later stage,
called releasing, through the application of rule (Rel).

We illustrate the application of rules (Pred) and (Rel) by deriving the type and
the woven code for the program shown in Example 1. We use C as an abbreviation
for Char. During the derivation of the definition of f , we have:

Γ = { h :∗ ∀a.a → a ; h, n3 : ∀a.a → a ./ h ; n3, n4 : ∀a.[a] → [a] ./ h ; n4,
n5 : ∀b.[C] → [C] ./ h ; n5}

h : t → t ; dh ∈ Γ2
(Var)

Γ2 ` h : t → t ; dh

x : t ; x ∈ Γ2
(Var)

Γ2 ` x : t ; x
(App)

Γ2 = Γ1, x : t ; x ` (h x) : t ; (dh x)
(Abs)

Γ1 = Γ, h : t → t ; dh ` λx.(h x) : t → t ; λx.(dh x)
(Pred)

Γ ` λx.(h x) : (h : t → t).t → t ; λdh.λx.(dh x)

Next, for the derivation of the first element of the main expression, we have:

Γ3 = { h :∗ ∀a.a → a ; h, n3 : ∀a.a → a ./ h ; n3, n4 : ∀a.[a] → [a] ./ h ; n4,
n5 : ∀b.[C] → [C] ./ h ; n5, f : ∀a.(h : a → a).a → a ; f}

f : ∀a.(h : a → a).a → a ; f ∈ Γ3
(Var)

Γ3 ` f : (h : [C] → [C]).[C] → [C] ; f

h :∗ ∀a.a → a ; h ∈ Γ3 ...
(Var-A)

Γ3 ` h : [C] → [C] ; 〈h , {n3, n4, n5}〉
(Rel)

Γ3 ` f : [C] → [C] ; (f 〈h , {n3, n4, n5}〉)
...

(App)
Γ3 ` (f ”c”) : [C] ; (f 〈h , {n3, n4, n5}〉 ”c”)

We note that rules (Abs),(Let) and (App) are rather standard. Rule (Let)
only binds f with : (instead of with :∗)which signalizes locally defined functions are
not subject to advising.

Rules (Pred) and (Rel) introduce and eliminate advice predicates respectively.
Rule (Pred) adds an advice predicate to a type. Correspondingly, its translation
yields a lambda abstraction with an advice parameter. At a later stage, rule (Rel)
is applied to release (i.e.,remove) an advice predicate from a type. Its translation
generates a function application with an advised expression as argument.

4.3 Handling Advices

Declarations define top-level bindings including advices. We use a judgement
Γ ` π : ρ ; π′ which closely reassembles the one for expressions.

Rule (Global) is very similar to rule (Let) with the tiny difference that (Global)
will bind id with : when it is not in A; and with :∗ otherwise.

There are two type-inference rules for handling advices. Rule (Adv) handles non-
type-scoped advices, whereas rule (Adv-An) handles type-scoped advices. In rule
(Adv), we firstly infer the (possibly advised) type of the advice as a function λx.ea
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under the type environment extended with proceed. The advice body is therefore
translated. Note that this translation does not necessarily complete all the chaining
because the weavable condition may not hold. In this case, just like functions, the
advice is parameterized. At the same time, an advised type is assigned to it and
only released when it is chained in rule (Var-A).

After type inference of the advice, we ensure that the advice’s type is more
general than or equivalent to all functions’ in the pointcut. Note that the type
information of all the functions is stored in Γbase. Then, this advice is added to
the environment. It does not appear in the translated program, however, as it is
translated into a function awaiting for participation in advice chaining.

In rule (Adv-An), variable x can only be bound to a value of type tx such
that tx is no more general than the input type of those functions in the pointcut.
This constraint is similar to the subsumption rule used for type annotations which
requires the annotated type to be no more general than the inferred one. For each
function in the pointcut, we match a freshly instantiation of the input type ti to tx
which results in a substitution S. The output type of the advice t is expected to be
more general or equivalent to the type of each functions under the substitution S.

In passing, we note that these two rules can be merged but it makes the rule
rather complicated. Hence we keep them separated. In addition, as all the advices
are of function types, attempts to advise a non-function type expression will be
rejected by the type system.

4.4 Advising Advice Bodies

As mentioned in the previous (sub)section, the rules (Adv) and (Adv-an) make
an attempt to translate advice bodies. However, just like the translation of function
bodies, the local type contexts may not be specific enough to satisfy the weavable
condition. Consider a variant of Example 5, in which the control-flow based point-
cut is removed and a type scope is added for illustration purpose.

n@advice around {f} (arg::Int) = e1 in // fully trusted execution
n1@advice around {w} (arg) = f arg in
f x = e2 in
w x = e3 in
h x y = x y in
h w 1

Here, advice n1 calls f which will then be advised. The goal of our translation
is to enable correct chaining of advices even within some advice body, such as that
of n1. Concretely, when a call to w is chained with advice n1, the body of n1 must
also be advised. Moreover, the choice of advices must be coherent.

At the time when the declaration of n1 is translated, the body of the advice is
translated. An advised type is given to it since the weavable condition wv(f : a → a)
from the current context is not satisfied.

When the translation attempts to chain an advice in rule (Var-A), the judgment
Γ ` ni : t′ ; ei in the premise forces the advice to have a non-advised type. This
ensures that all the advice abstractions are fully released so that chaining can take
effect.
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In the case that this derivation fails, it signifies that the current context is not

sufficiently specific for advising some of the calls in this advice’s body, and chaining
has to be delayed. This is the case, in the above program, for the call (f arg) in
the body of n1. Chaining is thus delayed by introducing an advice parameter df
into the (translated) declaration of n1. Then, at the base program, when w is called
indirectly from h with the specific calling context (type of the argument Int), the
call to f inside the body of n1 is inferred to have argument of type Int. Thus, the
weavable condition, wv(f : Int → Int), is satisfied, and the program is translated
as follows.”

n = \arg. e′1 in //fully trusted execution
n1 df = \arg. df arg in
f x = e′2 in
w x = e′3 in
h x y = x y in
h <w,{n1 <f,{n}>}> 1

Advice n is only chained in the main expression where the context is sufficiently
specific for both the calls to w and f.

To handle second-order advices, we slightly adapt the rules (Adv) and (Adv-an)
by allowing them to introduce :∗-binding for advices that are advised and to replace
condition fi : ∀ā.t′ ∈ Γbase by ni :∗ ∀ā.q̄.t′ ∈ Γ to make up the fact that type
information of advices is not stored in Γbase. By doing this, we assume advised
advices are translated before the advices defined on them. This is valid because
circular cases are precluded, as mentioned in Section 2.4.

The translation of candidate advices Γ ` ni : t′ ; ei in rule (Var-A)’s premise
not only translates bodies of advices but also takes care of chainings of second-order
advices. However, we do not allow advices to be used as advice predicates because
it causes complications without adding expressiveness: any predication of advises
can be replaced by predication of the function calls that trigger the advices.

With the newly adapted rules, example 4 is translated into

n1 = \arg.(getHolidayRate arg)*(proceed arg) in
n2 = \arg.(getAnniversaryRate arg)*(proceed arg) in
n3 = \arg.let finalRate = proceed arg

in if (finalRate < 0.5)
then 0.5 else finalRate in

calcPrice cart = sum (map discount cart) in
discount item = (<getRate,{<n1,{n3}>,<n2,{n3}>}> item)

* (getPrice item)

Note that advices n1 and n2 are chained with n3 before the chaining to getRate.

4.5 Advising Recursive Functions

We have seen our predicating/releasing system working well for non-recursive func-
tion. However, if we apply rule (Rel) to a call of an advised recursive function, it
may end up looping indefinitely.

Let’s illustrate this with an example of advising tail recursive functions. Many list
manipulation functions, such as reverse, append, and mergeSort, can be written
in a tail recursive pattern in which their accumulating parameter is simply returned
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when their input parameter is empty. We can capture this pattern using an advice
as follows.

n@advice {reverse, append, mergesort} (arg::[a]) =
\x . if arg == [] then x else (proceed arg) x in

reverse x accum = reverse (tail x) (cons (head x) accum) in
reverse [1,2] []

Here we focus on the reverse function to show our scheme. After the type
inference of advice n and function reverse, we get the following result (we omit
the irrelevant translation part for the moment). We write tr as an abbreviation of
[a] → [a] → [a].

Γ = { n : ∀ab.[a] → b → b, reverse :∗ ∀a.(reverse : tr).tr}

looping
(Rel)

Γ ` reverse : [Int] → [Int] → [Int]
...

(Rel)

Γ ` reverse : [Int] → [Int] → [Int] ...
(App)

Γ ` (reverse [1, 2]) : [Int] → [Int]
(App)

Γ ` (reverse [1, 2] []) : [Int]

The above derivation clearly shows that rule (Rel) will repeatedly apply on the
same judgement when an advised type has a predicate that is the same as the base
type.

Our solution is to break the loop by devising a different releasing rule for recursive
functions which predicate on themselves.

(Rel-F)
Γ ` f : (f : t).ρ ; e′ F fresh

Γ ` f : ρ ; let F = (e′ F ) in F

Rule (Rel-F) uses a fixed point combinator as the translation result. Note that
it only releases the recursive predicate (f : t). Should there be any predicates of
other functions, rule (Rel) is applied.

As a result, the main expression in the above program is translated to

let F = \y.<reverse y,{n}> F
in F [1,2] []

4.6 Curried Pointcuts

In [Masuhara et al. 2005], Masuhara et al. proposed a technique to simplify a
curried pointcut by iteratively removing the last parameter in it. Unfortunately,
their weaving strategy does not support type-scoped curried pointcuts.

In our approach, we also simplify curried pointcuts into uncurried pointcuts, but
we maintain the type constraints of type-scoped curried advices in the environment.
Furthermore, the special function proceed is redefined locally to effect the currying
of function arguments. Because function calls are not handled syntactically (i.e.,
they are not handled according to their textual appearances), our approach can deal
with type-scoped curried pointcuts straightforwardly: What we need is to introduce
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a slight variant of the (Adv-an) rule. For the sake of simplicity, this variant rule
only deals with curried functions with two parameters. It can be straightforwardly
extended to handle curried functions with arbitrary number of parameters.

(Adv-C)

Γ.proceed : t → ty → ta ` λx.λy.ea : p̄.t → ty → ta ; e′a
fi : ∀ā.t1 → t2 → t3 ∈ Γbase σ = gen(Γ, p̄.t → ty → ta) S = [t̄/ā]t2 D ty

t D S[t̄/ā]t1 ta D S[t̄/ā]t3 Γ.n : σ ./ f̄ ; n ` π : t′ ; π′

Γ ` n@advice around {f̄ x} (y :: ty) = eain π : t′ ;

n = λx.λy.let proceed′ = proceed x in [proceed′/proceed]e′a in π′

Given the code displayed in Example 2 involving partial applications of curried
functions, our rule translates it to the following:

n1 = \x.\arg -> let proceed’ = proceed x in [proceed’/proceed]e1 in
n2 = \arg -> e2 in
n3 = \x.\arg -> let proceed’ = proceed x in [proceed’/proceed]e3 in
f x y = x in
<f,{n1,n2,n3}> 1 2

As e2 is ensured by the typing rules to be a function type, the types of the three
advices n1, n2 and n3 are unifiable with f’s. Our translation is general enough to
handle curried functions even with type annotations on arguments other than the
first one.

4.7 Translating Chain Expressions

The last step of AspectFun compilation is to expand meta-constructs produced af-
ter static weaving, such as chain-expressions, to standard expressions in AspectFun,
which are called expanded expressions. It is in fact separated into two steps: ad-
dProceed and chain expansion, as shown in Figure 11. Function addProceed turns
the keyword proceed into a parameter of all advices representing the rest of com-
putation (i.e., continuation). Expansion of meta-construct (chains) is defined by an
expansion operator [[·]]. It is applied compositionally on expressions, with the help
of an auxiliary function proceedApply to substitute proper function as the proceed
parameter. Moreover, proceedApply also handles expansion of second-order advices.

Admittedly, the chain expansion step is rather straightforward. One may suggest
that the step should be integrated into the weaving step, thus eliminating the need
of generating programs in the intermediate form. However, we argue that a staged
translation process with chain expression as an intermediate form opens a wide
scope of opportunities for optimizing the translated code. For instance, it is obvious
that some advices will never invoke proceed. For these advices, all other advices
chained after any of them are considered dead code and should be eliminated. We
can therefore prune such chains by performing dead-code elimination analysis on
the woven code. In section 6, we show yet another optimization of control-flow
based pointcuts which take advantage of the explicit intermediate form.

To close this section, we apply the static weaving and chain expansion steps to
the AspectFun program in Example 6. The intermediate result produced by static
weaving is as follows:

nscope arg = proceed (tail arg) in
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eM : Expressions containing meta-constructs
addProceed : eM −→ eM

addProceed (n df arg = e1 in e2) = if (n is an advice) then
n df proceed arg = e1

in addProceed(e2)
else n df arg = e1 in addProceed(e2)

addProceed (e) = e

[[·]] : eM −→ Expanded expression
[[x = e1 in e2]] = x = [[e1]] in [[e2]]
[[let x = e1 in e2]] = let x = [[e1]] in [[e2]]
[[λx.e]] = λx.[[e]]
[[e1 e2]] = [[e1]] [[e2]]
[[x]] = x
[[proceed]] = proceed

[[e1 e2]] = [[e1]] [[e2]]
[[〈f e , {}〉]] = [[f e]]
[[〈f e , {ea, eadvs}〉]] = proceedApply(ea, 〈f e , {eadvs}〉)

proceedApply(n e, k) = [[n e k]] if rank(n) = 0
proceedApply(〈n e , {ns}〉, k) = [[〈n e k , {ns}〉]] otherwise

rank(x) =





1 if x ≡ 〈f e , {}〉
1 + maxi rank(eai) if x ≡ 〈f e , {ea}〉
0 otherwise

Fig. 11. Definition of Chain Expansion with proceed Lifting

n arg = proceed arg in
n2nd arg = proceed arg in
f x = x in
g df x = (df x, f (x, x), <f, {nscope}> [x]) in
h x = (\df. <g df, {<n, {n2nd}>}>) <f, {nscope}> [x] in
k df x = (\df. <g df, {<n, {n2nd}>}>) df x in
(h 1, k f 2)

After applying addProceed and chain expansion, the final result is the following
expanded expression:

n proceed arg = proceed arg in
nscope proceed arg = proceed (tail arg) in
n2nd proceed arg = proceed arg in
f x = x in
g df x = (df x, f (x, x), nscope f [x]) in
h x = (\df. n2nd (n (g df))) (nscope f) [x] in
k df x = (\df. n2nd (n (g df))) df x in
(h 1, k f 2)
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4.8 Unresolved Advice Predicates

A problem inherent with our advised type approach to static weaving is the possibil-
ity of unresolved advice predicates . For example, consider the following AspectFun
program:

n@advice around {f} (arg::[Char]) = proceed (tail arg) in
f l = length l in
g i = i + f [] in
g 5

After static weaving, the function g has type scheme ∀a.(f : [a] → Int).Int → Int,
and is translated to the following intermediate result:

g df i = i + df []

As the type-scope of f’s advice n is more specific than [a], the static weaver cannot
resolve the advice predicate (f : [a] → Int). Hence, subsequently when g is ap-
plied (g 5 above), the static weaver will be forced to resolve this advice predicate
arbitrarily. In particular, depending on what the type variable a is instantiated to,
advice n may or may not be applied.

Obviously this is unacceptable. Thus we should consider such programs as ill-
typed and reject them statically. Similar to Haskell’s type classes, such an unre-
solved advice predicate, p, manifest itself in an advised type, p̄.t, as there are some
type variables in p, but not in the type body t. Hence we can easily detect it during
typing a definition. Specificaly, we refine the gen(Γ, p̄.t) function used in the typing
rules so that if fv(p̄) 6⊆ fv(t), then gen will return an error to reject the expression
under typing.

5. CORRECTNESS OF STATIC WEAVING

The correctness of static weaving is proven by relating it to the operational seman-
tics of AspectFun. Specifically, given an AspectFun program, we prove that if it is
well-typed by our static typing and weaving rules, then the resulting woven pro-
gram, after chain expansion, is equivalent to the FIL-converted program according
to the operational semantics of AspectFun. The detail of the correctness proof is
available in Appendix A. In this section, we outline and explain the structure of
our proof.

Figure 12 depicts the structure of our main proof steps. The basis for our proof
is the definition of “equivalence” between terms from AspectFun and FIL. We shall
employ three related definitions of equivalence to develop our proof. First, we
define an equivalence relation, denoted by ∼∼, between a closed and expanded
expression e′′ of AspectFun, and an FIL expression eI in a program context. This
is the ultimate equivalence result we aim to achieve in our proof. Second, as an
intermediate step, we extend the equivalence relation to open terms based on a
form of body substitution and denote this open equivalence relation by '. Third,
based on open equivalence, we define the notion of respect of expressions, denoted
by ∝ to relate a woven AspectFun expression, e′, to an FIL-expression, eI , under a
specific type context. The main theorems are derived in reverse order. We shall
first prove that, any intermediate expression obtained during static weaving of an
AspectFun program respects its corresponding FIL-converted expression, and then
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go on to prove the closed-equivalence between the whole expanded expression of an
AspectFun program and the whole FIL-converted expression of the same program.
Note that since an expanded expression e′′ is basically an AspectFun expression e
without those advice-related constructs, to avoid notation cluttering, we shall use
e and e′′ interchangeably in the following discussion when the context is clear.

Fig. 12. Relationship between expressions and equivalences

We begin with the definition of the equivalence between closed terms of AspectFun
expressions and FIL expressions. As the operational semantics of AspectFun is
reduction-based, we define the equivalence relation using the proper reduction rules.

Definition 3 (∼∼) A closed expanded expression e is said to be equivalent to a
closed FIL expression eI under an advice store A, written as e ∼∼ eI , if the following
holds:

e 7−→∗
β v iff eI ⇓A vI

where vI is not a type abstraction and v ∼∼v vI .
In the above, v ∼∼v vI is defined by:

c ∼∼v c
v ∼∼v λjpx : τ.eI iff ∀e1 ∼∼ eI

1, (v e1) ∼∼ ((λjpx : τ.eI) eI
1)

when the RHS is well-typed

We shall omit the advice store A when it is obvious from the context.

Next, we extend the equivalence relation to open terms of expanded AspectFun
expressions and FIL expressions. The free variables which may occur in them,
directly or indirectly, are those introduced via top-level bindings, local let-bindings
and lambda-bound parameters.3 They are subjected to static weaving and FIL-
conversion. (However, these have no effect on lambda parameters.) Hence we

3Note that, after static weaving, advice names, indicated by n, may appear as free variables in an
expanded AspectFun expression. In addition, proceed is treated as a lambda parameter.
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introduce some notations for referring to the intermediate results derivable from
static weaving and FIL-converting a declaration body, as shown in Figure 10 and
Figure 5 respectively. For example, based on the (GLOBAL) rule, we have the
following static typing and weaving result for a global variable declaration:

Γ ` ex : p̄.t ; λdp.e′x σ = gen(Γ, p̄.t) Γ.x : σ ; x ` π : t ; π′

Γ ` x = ex in π : t ; x = λdp.e′x in π′

Note that the woven code may be a lambda abstraction with advice parameters.
Notation-wise, given the AspectFun expression x = ex shown in the above global
variable declaration, we write Body(x) to denote the entire woven code resulting
from the declaration body; ie., λdp.e′x. We also use body(x) to denote the main
part – without advice parameters – of the woven code; ie., e′x. Similarly, we write
BodyI(x) for the entire result of FIL-converting a variable declaration body; ie.,
Λα.eI

x. We write bodyI(x) for the main part of the conversion; ie., eI
x.

Moreover, the notations for the body results of a function or an advice declaration
will be different from that of a variable declaration. Hence, in the following we
categorise these body notations by the forms of the declarations; namely variable,
function and advice.

—For a top-level or a let-bound variable declaration of x with body ex, which will
be FIL-converted to Λα.eI

x, we have

Body(x) = λdp.e′x
body(x) = e′x
BodyI(x) = Λα.eI

x

bodyI(x) = eI
x

—For a top-level or a let-bound function declaration of g with body λx.eg, which
will be FIL-converted to Λα.λg:τgx : τx.eI

g, we have

Body(g) = λdp.λx.e′g
body(g) = e′g
BodyI(g) = Λα.λg:τgx : τx.eI

g

bodyI(g) = eI
g

—For a top-level advice n with body λx.en, which will be FIL-converted to Λα.λn:τx→τnx :
τx.eI

n, we have

Body(n) = λdp.λx.e′n
body(n) = e′n
BodyI(n) = Λα.λn:τx→τnx : τx.eI

n

bodyI(n) = eI
n

In subsequent discussion, we also write Body(x̄) for Body(x), and similarly for other
body notations.

As to the lambda-bound parameters, we shall denote them by y to distinguish
them from the other categories of declared entities. With these notations, we can
now define the open equivalence in terms of the closed equivalence, ∼∼, and sub-
stitutions of body expressions as follows.
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Definition 4 (') Let e be an expanded expression typed under environment Γ and
eI an FIL expression to be woven dynamically using the advice store A. We define
an open equivalence between e and eI under Γ and A, written as e ' eI , if for all
ev ∼∼ eI

v such that [eI
v/y]eI is well-typed, then

[ev/y][Body′(x)/x]e ∼∼ [eI
v/y][BodyI(x)/x]eI under A

where

Body′(x) =
{

[[Body(x)]] if x is not an advice
[[λdp.λproceed.λz.body(x)]] if x is an advice

We shall omit Γ and A when they are obvious from the context.

As an example of the open equivalence relation, consider the definition of g in
Example 6 (Section 3.3): g x = (f x, f(x, x), f [x]). In particular, we focus
on the part in which function f is applied to a list argument [x]. As described
in Section 4.7, after static weaving, this occurrence of function f is woven with
advice nscope as <f, {nscope}> and is subsequently expanded to nscope f. By
contrast, on the FIL side, it will be converted to f {[α]}. Then, according to the
definition of open equivalence, we apply the body substitutions to (nscope f)
and (f {[α]}), and get \arg.((\x.x)(tail arg)) and λ xf:[α]→[α] : [α].x, re-
spectively. Clearly, when the substituted FIL expression is invoked with an ar-
gument of type [α], the advice nscope will be triggered and executed. Hence,
\arg.((\x.x)(tail arg))) ∼∼ λxf:[α]→[α] : [α].x. It then follows that (nscope f) '
f {[α]}.

Note that FIL expressions do not contain advice; advices only take effect when
advised functions are invoked. Hence, the open equivalence relation above does
not consider the case when eI involves advice. However, due to nested advice and
second-order advice, static weaving will treat such advices as advised functions
and transform any occurrence of such advice into an intermediate expression that
should be related to its corresponding FIL expression, which is simply advice with
type application.4 Hence we need to enhance the definition of open equivalence
to handle the cases when the FIL expression under equivalence test is an advice
expression.

As an example, consider the function k in Example 6 (Section 3.3): k x = g
x. After static weaving, the function g inside k is translated to \df.<g df, {<n,
{n2nd}>}> and then expanded to \df.(n2nd n (g df)) In other words, the invo-
cation of g will trigger advice n, which in turn will trigger the second-order advice
n2nd. Here, although (n2nd n) is not a complete expanded expression, we still
need to relate it to its FIL-corresponding part: n{α}, which, when applied, will also
trigger advice n2nd.

To handle such intermediate expressions produced by static weaving in the pres-
ence of second-order advices, the definition of open equivalence needs to consider
the case when eI ≡ n{τ}. Specifically, the definition of Body′(x) is extended to:

Body′(x) =
{

[[Body(x)]] if x is not an advice or x ≡ n

[[λdp.λproceed.λz.body(x)]] if x is an advice and x 6≡ n

4Recall the premise Γ ` ni : t′ ; ei in the (Var-A) rule of static weaving.
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In other words, when advice n is the FIL expression under the equivalence test,
we treat it like an advised function and do not wrap its body with proceed. Now,
applying the enhanced open equivalence with this modified Body′(x) to (n2nd n)
and n{α}, we get (\arg.(\arg’.proceed arg’) arg) and (Λα.Λβ.λn:α→βarg :
α. proceed arg){γ}, respectively. When the substituted FIL expreesion is applied
with an argument of proper type, advice n2nd will be triggered, too. Therefore,
when the proceed in both intermediate expressions are replaced with equivalent
values, the two body-substituted expressions will be equivalent, too.

To be applicable to an AspectFun program, the open equivalence relation has
to be built on some kind of mutual agreement between the environment of static
weaving and the FIL-conversion environment and the advice store. We begin with
a definition which ensures that the type bindings in both systems are isomorphic
instances and the pointcuts and type scopes of all advices agree.

Definition 5 (Respect of Environment) A static weaving environment Γ is said
to respect an FIL-conversion environment, ∆, and an advice store A, written as
Γ ∝ (∆,A), if

(1 ) x :(∗) σ ∈ Γ ⇔ x : ς ∈ ∆ where σ
type½ ς ′ and ς ′ is an instance of ς.

(2 ) n : ∀a.p.ty → tn ./ f ∈ Γ ⇔ (n : ς, pc, τy, eI
n) ∈ A where ty

type½ τy, (∀a.ty →
tn)

type½ ς and JPMatch(f, pci) ≡ true for some i.

Next, we need to define the mutual agreement between the binding definitions
found in the static weaving environment and those kept by the FIL-conversion en-
vironment and the advice store. As advice predicates may appear in the binding
definitions produced by static weaving, we cannot apply the ' and chain expansion
directly to relate them to those in the FIL-conversion environment. Hence, we need
to provide conditional form of equivalence which matches an AspectFun expression
with advice predicates to an FIL expression in a way that is compliant with the '
relation and satisfies the underlying advice predicates. First, we notice that the
predicates created during static weaving can be realized at run-time through func-
tions – and their associated advice – of appropriate types. This is captured by the
notion of feasibility .

Definition 6 (Feasibility to predicates) Given Γ, ∆, and A with Γ ∝ (∆,A),
an expanded expression e is said to be feasible to a predicate g : tg, written as
e m g : tg, if wv(g : tg) and e ' g{τ} where ∀α.τg = ∆(g) and types τ satisfies

tg
type½ [τ/α]τg.

As an example of predicate feasibility, consider the definition of h in Exam-
ple 6 (Section 3.3): h x = g [x]. According to the static weaving described
in Section 4.7, function g is typed with a predicate f:a->a. When it is ap-
plied to an argument of type [b] inside h, we get a more instantiated predicate
f:[b]->[b]. As the type scope of the advice nscope for f matches the application
context, wv(f : [b] → [b]) holds. Hence, in this context, f can be statically wo-
ven with advice nscope. Besides, as stated above, (nscope f) ' f{[β]}, and thus
(nscope f) m (f : [b] → [b]).
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Next, we define the conditional form of equivalence, called respect of expressions,
based on the definition of feasibility and the ' relation. It specifies that an As-
pectFun expression with advice predicates respects a corresponding FIL expression
under a type-constrained context if they are equivalent (') after the advice predi-
cates involved are properly realized by feasible expressions.

Definition 7 (Respect of Expressions) Given an AspectFun program π, let e
be an expression of π and A be the advice store derived from π. Suppose that
Γ ` e : p.t ; e′, fv(p̄) ⊆ fv(t), and the environment Γ contains the set of predi-
cates (g : tg ; dg) introduced via the (Pred) rule. We say that e′ respects an FIL

expression, eI , under the pair of types (p.t, τ), written as (p.t, τ) ` e′ ∝ eI , if for all
type substitutions S, S′, and expressions ep, eg, such that ep m Sp, eg m S(g : tg),

and St
type½ S′τ , then [[[eg/dg]e′ ep]] ' (S′eI) under Γ and A holds.

Now we can define the mutual agreement between the binding definitions in the
static weaving environment and those in the FIL-environment and the advice store.
It is specified in terms of the “respect of expression” relation for each form of binding
declarations which may occur in an AspectFun program, such as global functions,
global advices, and local functions.

Definition 8 (Respect of Bindings) Given an AspectFun program π, bindings
derived from π in a static weaving environment Γ is said to respect those in an

FIL-converting environment, ∆, and an advice store, A, written as Γ
π

∝ (∆,A), if

(1 ) Γ ∝ (∆,A),

(2 ) for all x : ∀a.p.t ; x ∈ Γ introduced via (Global) as a global variable and
x : ∀α.τx ∈ ∆, we have (p.t, τx) ` Body(x) ∝ bodyI(x),

(3 ) for all g : ∀a.p.t ; g ∈ Γ introduced via (Global) as a global function and
g : ∀α.τx → τg ∈ ∆, we have (p.t, τx → τg) ` Body(g) ∝ λx : τx.bodyI(g),

(4 ) for all advice n : ∀a.p.t ./ f ∈ Γ and (n : ∀α.τx → τn, pc, τx,BodyI(n)) ∈ A,
we have (p.t, τx → τn) ` Body(n) ∝ λx : τx.bodyI(n),

(5 ) for all x : ∀a.p.t ; x ∈ Γ introduced via (Let) and x : σx ∈ ∆, we have
(p.t, τx) ` Body(x) ∝ bodyI(x),

(6 ) there are no constraints on those bindings introduced via (Abs) or (Pred).

Based on the above definitions, we can proceed to develop the intermediate results
that will lead the the correctness of static weaving. The first result is that there
is a direct correspondence between the static weaving derivations and the FIL-
conversions. In particular, the types derived in the two systems follow the type
conversion defined in Section 3. Indeed, ignoring the code emitting part, the FIL
conversion rules listed in figures 5 and 6 are simply a conservative extension of the
Hindley-Milner type inference rules with explicit type abstraction and application.

We present the result as two theorems. The first theorem concerns the corre-
spondence of expression types in two systems under proper program environments.
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Theorem 1 (Correspondence of Expression Types) If Γ ∝ (∆,A) and Γ `
e : ρ ; e′, then we can obtain a corresponding FIL-conversion ∆ ` e : τ ½ eI such
that ρ

type½ τ .

The second theorem further extends the correspondence to the types of an As-
pectFun program, including top-level declarations.

Theorem 2 (Correspondence of Program Types) If ` π : t ; e′, then there
is a derivation ∅ `D π : τ ½ eI ;A and t

type½ τ

Next, we investigate the correspondence between the expressions produced by
static weaving and those by the FIL-conversion. Essentially, the main target here
is the chain expressions, which are the other core products of our static weaving
scheme besides advice predicates. In particular, a key step towards proving the
correctness of our static weaving scheme is that the chain expression assembled
by (Var-A) rule “respects” the FIL expression of applying the underlying advised
function (associated with the variable expression operated by (Var-A)) to the
types in context. We accomplished this step via the following two lemmas about
advice chaining and chain expansion. Before stating the lemmas, we define some
auxiliary functions to specify advice names and type substitutions involved in a
chain expression.

Definition 9 (AdviceName and AdviceSet)

AdviceSet(λy.〈f y , {e}〉) = {AdviceName(ei) | ei ∈ e}
AdviceName(e) = case e of

n dg → n

〈n dg , {adv}〉 → n
AdviceUnifiers(e, τ) = let (AdviceName(e) : ∀α.τn, ...) ∈ A

[τ/α]τn = τ
in τ

The first lemma shows that the set of advices selected by (Var-A) rule is the
same as those returned by Choose function of the FIL operational semantics.

Lemma 1 (Advice Selection) If Γ ∝ (∆,A) and Γ ` e0 : p.t ; λdp.〈f dp , {e}〉
then

(1 ) there exist some types τ1, τ2 and τ such that ∆ ` e0 : τ1 → τ2 ½ f{τ}
(2 ) for any type substitutions S and S′ that satisfy St

type½ S′(τ1 → τ2), we have
AdviceSet(λdp.〈f dp , {e}〉) = Names(Choose(f, S′τ1)) where Names(s) = {n |
(n : ςn, · · · ) ∈ s}.

The second lemma shows that the chain expression assembled by (Var-A) rule
respects the corresponding FIL-converted expression under the program context.

Lemma 2 (Respect of Chain Expressions ) Suppose that Γ
π

∝ (∆,A). Let f
be an advised function or advice that ∆(f) = ∀α.τf . If Γ ` f : p.t ; λdp.〈f dp , {e}〉,
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fv(p̄) ⊆ fv(t), and (t,Sτf ) ` ei ∝ AdviceName(ei){AdviceUnifiers(ei,Sτf )}, then

(p.t, Sτf ) ` λdp.〈f dp , {e}〉 ∝ f{τ} where S = [τ/α] and t
type½ Sτf .

The following theorem shows that, given an AspectFun program π with respectful
binding environments, any expressions of π transformed by static weaving will also
respect the corresponding FIL-converted expressions.

Theorem 3 (Soundness of Expression Weaving) If Γ
π

∝ (∆,A), Γ ` e : p.t ;

e′, and fv(p) ⊆ fv(t), then there exists an eI such that ∆ ` e : τ ½ eI and
(p.t, τ) ` e′ ∝ eI

Finally, the correctness of our static weaving scheme is established by the follow-
ing theorem.

Theorem 4 (Soundness of Static Weaving) Let π0 be an AspectFun program.
If ∅ ` π0 : t ; e′, then there exists an FIL-converted program, πI = (A, eI), such
that π0

prog½ πI and [[e′]] ∼∼ eI .

6. COMPILING CONTROL-FLOW BASED POINTCUTS

In this section, we present our compilation model for composite pointcuts – control-
flow based pointcuts. Despite the fact that control-flow information are only avail-
able fully during run-time, we strive to discover as much information as possible
during compilation. In particular, we transform type scopes within such pointcuts
and then compile these type scopes away using our static type-directed weaver.
When a pointcut designator depends on the dynamic state of the join point, we
insert a dynamic test to capture such dependency. These dynamic tests are imple-
mented in a state-based fashion without the need to maintain call stacks, and is
similar to that used in AspectJ as well as that used by Masuhara et al. [Masuhara
et al. 2003]. We also consider the strategy to eliminate such tests at compile time.
Our compilation process for composite pointcuts thus involves three steps:

(1) Pre-processing source code to eliminate uses of a variant of control flow keyword
– cflow– and type-scoped control flow (eg. cflow(f( :: Int))).

(2) Installing state-based mechanism in woven code, including insertion of dynamic
tests.

(3) Analyzing and optimizing woven code produced at step (2) to compile away as
many dynamic tests as possible.

After presenting the formal semantics of control-flow based pointcut, we shall
describe these steps in more detail in the rest of this section.

6.1 Semantics of control-flow based pointcut

The semantics of control-flow based pointcut is defined by modifying the opera-
tional semantics for FIL introduced in section 2. The modification is so small that
existing conditions or proofs based on the new definitions are all valid with minor
modification.

First, We modify the reduction-based big-step operational semantics function ⇓A
to carry a stack S, written as ⇓SA, denoting that the progress is done under stack
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environment S. S is a list of function names capturing the stack of nested calls
(represented by the corresponding function names) that have been invoked but not
yet returned at the point of reduction.

Second, two intermediate expression constructions, stack closure and stack frame
are added. Stack closure is written as (|e,S|), it means that e should be evaluated
under the stack S, ignoring the currently active stack. This is needed since we
adopt lazy semantics for AspectFun. Note that applying a substitution ([e′/x]) on
a stack closure affects only the expression associated with the closure, leaving the
stack unchanged: [e′/x](|e,S|) = (|[e′/x]e,S|). Stack frame, written as λfx : τx.eI ,
is updated in (OS:App) and used in Trigger. It enables eI to be evaluated under
current stack with f pushed. The difference between annotated lambda and stack
frame is that type information is not carried in a stack frame. Thus, Stack frame
is also a value:

Values vI ::= c | λjpx : τx. eI | λfx : τx. eI | Λα. eI

Most rules remain unchanged except that all occurrences of ⇓’s are replaced by
⇓S ’s. Rule (OS:App) is changed into two rules, the invocations of which depend
on the wether the function applied is an advised function.

(OS:App’)

eI
1 ⇓S λf :τf x : τx. eI

3 Trigger′(λfx : τx. eI
3, f : τf ,S) = λgx : τx. eI

4

S ′ = cons(g,S) [(|eI
2,S|)/x]eI

4 ⇓S
′
vI

eI
1 eI

2 ⇓SA vI

(OS:AppStk)
eI
1 ⇓S λfx : τx. eI

3 S ′ = cons(f,S) [(|eI
2,S|)/x]eI

3 ⇓S
′
vI

eI
1 eI

2 ⇓SA vI

Rule (OS:Let), which is often thought of as a syntactic sugar for the underlying
lambda application, changes in similar fashion as (OS:App):

(OS:Let’)
[(|eI

1,S|)/x]eI
2 ⇓S vI

LET x = eI
1 IN eI

2 ⇓S vI

Finally a new rule for closure evaluation is needed:

(OS:Clos)
eI ⇓S vI

(|eI ,S|) ⇓S′ vI

As (OS:App) is changed, the auxiliary functions Trigger, Weave, Choose and
JPMatch are changed accordingly. Specifically, they now need to look up for the
join points existing the stack S when selecting the appropriate advices to be woven.



· 33

Trigger′ : eI × jp× stack → eI

Trigger′(eI , ε,S) = eI

Trigger′(λf :τf x : τx. eI , f : τf ,S) = Weave′(λf :τf x : τx. eI , τf ,S,Choose′(f, τx,S))

Weave′ : eI × τ × stack×Adv → eI

Weave′(eI , τf ,S, []) = eI

Weave′(eI
f , τf ,S, a : advs) = Let (n : ∀α. τn, pc, τ, Λα. eI) = a

In If ¬(τn D τf ) Then Weave(eI
f , τf , advs)

Else Let τ be types such that [τ/α]τn = τf

(eI
p, eI

a) = (Weave′(eI
f , τf ,S, advs), (Λα. eI){τ})

λn:τnx : τx. eI
n = [eI

p/proceed]eI
a

In Trigger′(λnx : τx. eI
n, n : τn,S)

Choose′(f, τ,S) = {(ni : ςi, pci, τi, e
I
i ) | (ni : ςi, pci, τi, e

I
i ) ∈ A, τi D τ,

∃pc ∈ pci s.t. JPMatch′(f, pc,S)}
JPMatch′(f, pc + cflowbelow(g),S) = JPMatch′(f, pc,S) ∧ g ∈ S
JPMatch′(f, pc− cflowbelow(g),S) = JPMatch′(f, pc,S) ∧ g 6∈ S
JPMatch′(f, pc,S) = JPMatch(f, pc)

6.2 De-sugaring

This step aims to transform source programs into ones that are amenable to static
type inference and weaving. Specifically, type-scoped control flow (eg. cflow(f(
:: Int))) and cflow can be considered as syntactic sugar in our source language.
They are therefore translated away before we conduct static analysis on the source
code.

Type-scoped control-flow based pointcuts can be replaced by ones without type
scopes. For instance,

n@advice around {k + cflow(f(_::Int))} (arg) = ...

is translated into

n’@advice around {f} (arg :: Int) = proceed arg in
n@advice around {k + cflow(n’)} (arg) = ...

Note that, with the help of second-order advice, cflow(f( ::Int)) has been trans-
lated into cflow(n’), where n’ is a newly defined type-scoped advice on f which
simply passes the argument to proceed. As a language design decision, we only
allow the introduction of advice name as argument to cflow as part of compiler
internal; it is not part of the source language.

In addition, we translate all cflow-pointcuts into pointcuts involving cflowbelow.
Doing so reduces the number of cases to be considered during compilation. The
rules for cflow translation are listed below. They are applied repetitively on point-
cuts until there is no more change. The notation +o refers to other pointcuts which
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are not the target of the current iteration of translation.

Original Translated

f + cflow(f)+o f+o

f + cflow(g)+o f + cflowbelow(g)+o when f 6= g

any + cflow(f)+o any + cflowbelow(f)+o and f+o

f − cflow(f)+o FALSE

f − cflow(g)+o f − cflowbelow(g)+o when f 6= g

any− cflow(f)+o any\[f ]− cflowbelow(f)+o

Note that the pointcut any + cflow(f)+o is translated to two pointcuts: any +
cflowbelow(f)+o and f+o. Also, the pointcut f − cflow(f)+o does not refer to
any feasible join points, and will be omitted from the translated code.

6.3 State-based Implementation

Information pertaining to cflowbelow pointcuts is ignored during static weaving.
It is instead captured by an internal data structure, called IFAdvice, which will be
used in the latter stages of compilation. An example of a woven code after static
weaving is show here (in pseudo-code format):

Example 7

// meta-data: IFAdvice [k+cflowbelow(g)] (n,...)
n proceed arg = arg+123 in
k x = x + 1 in
g x = <k, {n}> x in
f x = if x == 0 then g x else <k, {n}> x in
(f 0, f 1)

The first (comment) line in the code above displays a meta-data structure capturing
the association of the advice n with the cflowbelow pointcut k+cflowbelow(g).5

This implies that dynamic testing is needed at calls to function k to determine if n
should be invoked; ie., whether k is called in the context of a call to g. We call g
the “cflowbelow advised function”, while k is simply called an “advised function”.

In general, in order to enable matching of cflowbelow pointcuts dynamically, we
maintain a global state of function invocations, and insert state-update and state-
lookup operations at proper places in the woven code. Specifically, the encoding is
done at two kinds of locations: At the definitions of cflowbelow advised functions
and at the uses of cflowbelow advices.

At the definition of a cflowbelow advised function, such as g in Example 7, we
set up a global state to record the entry into and exit from the advised function.
These are encoded in the body of the advised function. In the spirit of pure func-
tional language, we implement this encoding using a reader monad [Jones 1995].
In pseudo-code format, the encoding of g will be as follows:6

5During static weaving, advice n is assumed to have k as its pointcut, instead of k+cflowbelow(g).
6This technique does not work satisfactorily when the cflow-advised functions are built-in func-
tions, and will require additional function wrapping. We shall omit the detail in this paper.
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g x = enter "g";
<k, {n}> x;
restore_state

Here, enter records into the global state the entry into function g, and restore state
erases this record from the global state.

Next, uses of cflowbelow advices appear in various chain expressions; eg., <k,{n}>
occurs in two places in Example 7. For these uses, we insert code to perform lookups
for the presence of the respective pointcuts in the global state. The encoding is a
form of guarded expression denoted by <| guard, n |>. Semantically, the advice n
will be executed only if guard evaluates to True. The translated (pseudo) code for
Example 7 is as follows:

Example 7a

// meta-data: IFAdvice [k+cflowbelow(g)] (n,...)
n proceed arg = arg+123 in
k x = x + 1 in
g x = enter "g";

<k, { <| isIn "g", n|> } > x;
restore_state in

f x = if x == 0 then g x
else <k, { <| isIn "g", n |> } > x in

(f 0, f 1)

The guard (isIn "g") determines if g has been invoked and not yet returned. If
so, advice n is executed. In this case, n is not triggered when evaluating f 1, but
it is when evaluating f 0.

6.4 Control-Flow Pointcut Analysis and Optimization

From Example 7a, we note that the guard occurring in the definition of g is always
true, and can thus be eliminated. Similarly, the guard occurring in the definition
of f is always false, and the associated advice n can be removed from the code.
Indeed, many of such guards can be eliminated during compile time, thus speeding
up the execution of the woven code.

We share the sentiment with Avgustino et al. [Avgustinov et al. 2005] that such
optimization and its associated analysis can be more effectively performed on the
woven code. In our system, we employ two interprocedural analyses to determine
the opportunity for optimizing guarded expressions. These are mayCflow and
mustCflow analysis (cf. [Avgustinov et al. 2005]).

Since the subject language is polymorphically typed and higher-order, we adopt
an annotated-type and effect system for our analyses. This approach has been
described in detail in [Nielson et al. 1999]. Judgments for both mayCflow and
mustCflow analyses are of the form

Γ̂ ` e : τ̂1
ϕ′−→τ̂2 & ϕ

For mayCflow analysis (resp. mustCflow analysis), this means that under an

annotated-type environment Γ̂, an expression e has an annotated type τ̂1
ϕ′−→τ̂2 and
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a context ϕ comprising the names of those functions which may be (resp. must
be) invoked and not yet returned during the execution of e. The annotation ϕ′

above the arrow → is the context in which the function e will be invoked. It is the
union (resp. intersection) of all possible invocation contexts of e. Thus, ϕ and ϕ′

both represent contexts, but the former captures all contexts in which e may be
evaluated, whereas the latter captures those in which e must be invoked.

6.4.1 Lazy Semantics. The lazy semantics of AspectFun may appear to entail a
different analysis than those with strict semantics. A plausible argument for this is
that calls are only invoked on demand. Consider the following code:

// meta-data: IFAdvice [f+cflowbelow(g)] (n,...)
n proceed arg = e in
f x = x in
g x = x + 1 in
g (f 3)

Under the lazy semantics, (f 3) will be executed within the body of g. This
gives the impression that f is called within the calling context of g. Thence, advice
n will be triggered at the f-call.

However, upon closer examination, we find this argument fallacious. Specifi-
cally, during the evaluation of g (f 3), according to the revised semantic rules
(OS:App’) and (OS:Clos), the sub-expression (f 3) is first converted into a
thunk, which captures the current calling context to be used for future evalua-
tion. This calling context, which is the actual context in which f-call is evaluated,
does not contain g. As such, n will not be triggered.

In summary, while lazy semantics delays the execution of a call until it is needed,
it does not induce a different calling context for the call from its strict semantics
counterpart. Therefore, our control-flow pointcut analyses are oblivious to the call
semantics of the language.

6.4.2 The Analysis and Optimization Details. Figure 13 presents our type-and-
effect system for mayCflow analysis. Subtyping of annotated type is defined as

τ̂ ≤ τ̂
τ̂ ′1 ≤ τ̂1 τ̂2 ≤ τ̂ ′2 ϕ′ ⊆ ϕ

τ̂1
ϕ−→τ̂2 ≤ τ̂ ′1

ϕ′−→τ̂ ′2

The second rule above indicates that a function f of the LHS type can replace
another function f ′ of the RHS type if:

(1) f accepts all arguments that f ′ can accept (τ̂ ′1 ≤ τ̂1),
(2) Results produced by f can be used in the context of f ′ (τ̂2 ≤ τ̂ ′2), and
(3) f can be used in all the possible contexts of f ′, and possibly more (ϕ′ ⊆ ϕ).

Note that the rules specified in Figure 13 together yield a set of constraints over
context variables ϕ. The least solution of the constraints is the one containing the
most information.

In mustCflow analysis, the directions of set inclusions in rule (App) and (Subt1)
are inversed and the solution of the constraints which contains the most information
is the greatest one.
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(Const) Γ̂ `may c : τ̂c & ϕ (Var) Γ̂ `may x : Γ(x) & ϕ

(Lambda)
Γ̂.x : τ̂x `may e : τ̂e & ϕ

Γ̂ `may λx.e : τ̂x
ϕ′−→τ̂e & ϕ

(App)

Γ̂ `may e1 : τ̂2
ϕF−→τ̂ & ϕ ¬guarded(e1)

Γ̂ `may e2 : τ̂2 & ϕ ϕ ⊆ ϕF

Γ̂ `may (e1 e2) : τ̂ & ϕ

(Let)

Γ̂.x : τ̂1 `may e1 : τ̂1 & ϕ

Γ̂.x : τ̂1 `may e2 : τ̂ & ϕ

Γ̂ `may let x = e1 in e2 : τ̂ & ϕ

(If)

Γ̂ `may e1 : Bool & ϕ

Γ̂ `may e2 : τ̂ & ϕ Γ̂ `may e3 : τ̂ & ϕ

Γ̂ `may if e1 then e2 else e3 : τ̂ & ϕ

(Decl)

Γ̂.(f : τ̂x
ϕF−→τ̂ ′).(x : τ̂x) `may ef : τ̂ ′ & ϕF ∪ {f}
Γ̂.(f : τ̂x

ϕF−→τ̂ ′) `may p : τ̂ & ∅
Γ̂ `may f x = ef in p : τ̂ & ∅

(Gd-app)
Γ̂ `may e1 : Bool & ϕ Γ̂ `may e3 : τ̂ & ϕ Γ̂ `may (e2 e3) : τ̂ & ϕ

Γ̂ `may <|e1, e2|> e3 : τ̂ & ϕ

(Chain)
Γ̂ `may [[〈e , {e1, . . . , en}〉]] : τ̂ & ϕ

Γ̂ `may 〈e , {e1, . . . , en}〉 : τ̂ & ϕ
(Subs)

Γ̂ `may e : τ̂ & ϕ

Γ̂ `may e : τ̂ ′ & ϕ
if τ̂ ≤ τ̂ ′

(Subt1)
τ̂ ′1 ≤ τ̂1 τ̂2 ≤ τ̂ ′2 ϕ′ ⊆ ϕ

τ̂1
ϕ−→τ̂2 ≤ τ̂ ′1

ϕ′−→τ̂ ′2
(Subt2) τ̂ ≤ τ̂

Fig. 13. mayCflow inference rules

Applying the analysis over the woven code given in Example 7a, we obtain the
following contexts for the body of each of the functions:

ϕ
may
k = {f, g} May-context for body of k

ϕmay
g = {f} May-context for body of g

ϕmay
f = ∅ May-context for body of f

Since the type-and-effect system for mustCflow analysis is similar to that for may-
Cflow analysis, we omit the detail in this paper, but simply point out the resulting
contexts produced by performing mustCflow analysis over the same example:

ϕmust
k = ∅ Must-context for body of k

ϕmust
g = {f} Must-context for body of g

ϕmust
f = ∅ Must-context for body of f



38 ·
After collecting all the mayCflowand mustCflow information, we perform op-

timization over the woven code by eliminating guarded expressions. The basic
principles for optimization are:

Given a guarded expression of the form <| isIn f , e |> occurring in a
program:
(1) If the mayCflow analysis yields a context ϕmay for the expression

such that f 6∈ ϕmay, then the guard always fails, and the guarded
expression will be eliminated from the program.

(2) If the mustCflow analysis yields a context ϕmust for the expres-
sion such that f ∈ ϕmust, then the guard always succeeds, and the
guarded expression will be replaced by the subexpression e.

In both cases, the guarded expression is successfully eliminated. In the
grey area that f ∈ ϕmay but f /∈ ϕmust, it takes no advantage of our
analyses. The guard is still necessary. This happens when a function
is called from different paths and some of them make the control flow
condition satisfied but some do not.

Going back to Example 7a, we are thus able to eliminate all the guarded expres-
sions, yielding the following woven code:

Example 7b

// meta-data: IFAdvice [k+cflowbelow(g)] (n,...)
n proceed arg = arg+123 in
k x = x + 1 in
g x = enter "g";

<k, {n}> x;
restore_state in

f x = if x == 0 then g x else <k, {}> x in
(f 0, f 1)

ut
The expression <k, {}> indicates that no advice is chained; thus k will be called

as usual.
As a final example, consider a program that uses higher order functions:

Example 8

// meta-data: IFAdvice [k+cflowbelow(f)] (n,...)
n proceed arg = proceed (arg + 1) in
f x = enter "f"; x 1 ;

restore_state in
g y = y 2 in
k z = z * 2 in
(f <k, {<| isIn "f", n|>}>, g <k, {<| isIn "f",n |>}>)

The resulting annotated type of k used as an argument to f is Int
{f}−→Int in mustCflow

analysis, making n to be statically woven into it. Furthermore, the one used as an

argument of g has annotated type Int
{g}−→Int in mayCflow analysis, indicating that
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f is not in the context when the call to g is invoked; this results in the full removal
of the associated advice. The final code is thus:

n proceed arg = proceed (arg + 1) in
f x = enter "f"; x 1 ;

restore_state in
g y = y 2 in
k z = z * 2 in
(f <k,{n}>, g <k,{}>)

7. RELATED WORK

7.1 Aspect-Oriented Languages

Recently, researchers in functional languages have started to study various issues of
adding aspects to strongly typed functional languages. Two notable works in this
area, AspectML [Dantas et al. 2007; 2005] and Aspectual Caml [Masuhara et al.
2005], have made many significant results in supporting polymorphic pointcuts
and advices in strongly typed functional languages such as ML. While these works
have introduced some expressive aspect mechanisms into the underlying functional
languages, they have not successfully reconciled coherent and static weaving – two
essential features of a compiler for an aspect-oriented functional language.

AspectML [Dantas et al. 2007; 2005] advocates first-class join points for con-
structing generic aspect libraries. In order to support non-parametric polymorphic
advice, AspectML includes case-advices which are subsumed by our type-scoped
advices. Its type system is a conservative extension to the Hindley-Milner type
inference algorithm with a form of local type inference based on some required
annotations. During execution, advices are looked-up through the labels and run-
time type analysis is performed to handle the matching of type-scoped pointcuts.
This completely dynamic mechanism gives additional expressiveness by allowing
run-time advice introduction. However, many optimization opportunities are lost
as advice application information is not present during compilation. Lastly, ad-
vices are anonymous in AspectML and apparently not intended to be the targets
of advising, i.e. no second-order advices.

Aspectual Caml [Masuhara et al. 2005], on the other hand, carries out type
inference on advices without consulting the types of the functions designated by
the pointcuts. Similar to AspectML, it allows a restricted form of type-scoped
advices. Static weaving is achieved by traversing type-annotated base program
ASTs to insert advices at matched joint points. The types of the applied advices
must be more general than those of the joint points, through which, type safety
is guaranteed. This design has the advantage of clean separate compilation as
aspects can be compiled completely independently from the base program. In our
case, we value correctness and understandability of program more than the ease of
compilation.

Aspectual Caml’s lexical approach also makes it easy to advise anonymous func-
tions. However, for polymorphic functions invoked indirectly through aliases or
functional arguments, this approach cannot achieve coherent weaving results. It is
also not clear how to extend the lexical weaving scheme to handle nested advices,
second-order advices or control flow based pointcuts such as cflow.
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7.2 Type-Scoped Programming

Our type-directed translation was originally inspired by the dictionary translation
of Haskell type classes [Wadler and Blott 1989]. A number of subsequent appli-
cations of type classes [Lewis et al. 2000; Jones 1999] also share some similarities.
However, the issues discussed in this paper are unique, which make our translation
substantially different from the others.

There has been some recent effort in encoding core features of aspect-oriented
functional languages with Haskell type classes [Sulzmann and Wang 2007]. The
encoding is light-weight and allows easy integration with existing advanced language
features such as type classes and GADTs [Peyton Jones et al. 2005]. In that work,
all candidate advices are piled up at function calls and correct advice chainings are
done implicitly by type class resolution. This approach does not allow AOP specific
static optimizers to take advantage of the chaining information, which defies one of
the main thrusts of our compilation model. Moreover, there is also no clue on how
control-flow based pointcuts and second-order advices can be incorporated.

In another dimension, Washburn and Weirich demonstrate type-directed pro-
gramming in AspectML [Washburn and Weirich 2006]. They show that, with a
run-time type check mechanism, aspects can be used as an alternative of type
classes and this alternative approach can even perform better in cases where type
classes struggle.

7.3 Static Optimization

The implementation and optimization of AspectFun took inspirations from the As-
pectBench Compiler for AspectJ (ABC) [Avgustinov et al. 2005]. ABC implements
a series of optimizations which significantly improve AspectJ’s run-time perfor-
mance. Despite having a similar aim, the differences between object-oriented and
functional paradigms do not allow most existing techniques to be shared. For ex-
ample, the concerns of closures and inlining can be more straightforwardly encoded
with higher-order functions and function calls in AspectFun, whereas the complex
control flow of higher-order functional languages makes the cflow analysis much
more challenging. As a result, our typed cflow analysis has little resemblance with
the one in ABC which was based on call graph of an imperative language.

It is also worth mentioning that even though a number of optimizations have
been done for AspectFun, the main purpose of this paper is to present a com-
pilation model which supports static weaving and optimization for a polymorphic
functional language. We leave further enhancements and empirical results to future
investigation.

In [Masuhara et al. 2003], Masuhara, Kiczales and Dutchyn propose a compilation
and optimization model for aspect-oriented programs. Their approach employs par-
tial evaluation to optimize an evaluator for aspect-oriented languages implemented
in Scheme. The limited power of their partial evaluator makes their work differ
from ours in at least three ways: 1. Dynamic execution pointcuts are not statically
determined. 2. The dealing of type scopes relies on dynamic type testing. 3. There
is no mention of ways to reduce dynamic cflow checks.
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8. CONCLUSION

Static typing, static and coherent weaving are our main concerns in constructing a
compilation model for functional languages with higher-order functions and para-
metric polymorphism. This paper consolidates our previous research results [Wang
et al. 2006b; 2006a; Chen et al. 2007], and makes several significant revisions and ex-
tensions to multiple dimensions of our research. Not only do we provide a complete
treatment to several advanced features in AspectFun, we also present the compila-
tion process in full detail. Above all, we provide a formal account of the correctness
of our static typing and weaving rules with respect to the operational semantics of
AspectFun.

Moving ahead, we intend to continue this line of investigation in a few directions.
Currently, the type system bans mutual recursion and circular around advice ex-
ecution. It will be interesting to see how these limitations can be removed. Since
one of the major advantages of static weaving is the ease of static analysis and op-
timization, we will also investigate additional optimization techniques and conduct
empirical experiments of performance gain.

We also would like to investigate the use of aspects to capture side-effecting
computation for AspectFun. This is particularly promising, as our compilation
model automatically converts the base program to monadic form.

On another frontier, we plan to explore the possibility of applying our static
weaving system to other language paradigms. Java 1.5 has been extend with para-
metric polymorphism by the introduction of generics. The following example is
taken from [Jagadeesan et al. 2006]

class List<T extends Comparable<T>> {
T[] contents; ...
List<T> max(List<T> x) {

// general code for general types
} }

This class implements a list with a method max. When the input is an Boolean list,
we may want to use bit operations for a more efficient implementation. This can
be done with a type-scoped aspect.

aspect BooleanMax {
List<Boolean> around(List<Boolean> x): args(x) &&

execution(List<Boolean> List<Boolean>.max(List<Boolean>)) {
// special code for boolean arguments

} }

However, as mentioned in [Jagadeesan et al. 2006], the above aspect cannot be
handled by their aspect language because the type-erasure semantics of Java pro-
hibits any dynamic type test to be performed. We speculate that our type-directed
weaving could be a key to the solution of the problem.
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A. PROOF OF CORRECTNESS OF STATIC WEAVING

In this appendix, we detail the proof of the correctness of static weaving. After
presenting a few straightforward propositions, we shall prove the key lemmas and
theorems stated in Section 5. Note that, as in the main text, e is used to stand
for both an AspectFun source expression and an expanded expression, eI for an FIL
expression, and e′ for an intermediate expression produced by static weaving.

We begin by listing down some properties about FIL conversion and basic prop-
erties about open and close equivalence.

Proposition 1 If ∀a.p.t
type½ ∀α.τ , then ∀S, ∃S′ such that St

type½ S′τ

Proposition 2 Given an expanded expression e and an FIL annotated lambda ex-
pression λf :τf x : τx.eI , if e ∼∼ Trigger(λx : τx.eI , f : τf ), then e ∼∼ λf :τf x : τx.eI .

Proposition 2a Given an expanded expression e and an FIL annotated lambda
expression λf :τf x : τx.eI , if e ' Trigger(λx : τx.eI , f : τf ), then e ' λf :τf x : τx.eI .

Proposition 3 Suppose Γ
π

∝ (∆,A). If x is a non-lambda-bound identifier in Γ,
then

e ' eIunder Γ and A ⇔ [Body′(x)/x]e ' [BodyI(x)/x]eIunder Γx and A
where Body′(x) is the same as the one defined in Definition 4 and Γx is Γ with the
binding of x removed.

Proposition 4 If e1 ' eI
1 then [e1/proceed]e ' [eI

1/proceed]e
I ⇔ e ' eI .

Theorem 1 (Correspondence of Expression Types) If Γ ∝ (∆,A) and Γ `
e : ρ ; e′, then there exists a corresponding FIL-conversion ∆ ` e : τ ½ eI such
that ρ

type½ τ .

Proof. By induction on the height of the derivation tree for Γ ` e : ρ ; e′.

Theorem 2 (Correspondence of Program Types) If ` π : t ; e′, then there
is an FIL-conversion ∅ `D π : τ ½ eI ;A such that t

type½ τ

Proof. This can be proved by induction on the length of declarations in π using
a stronger hypothesis which is detailed in the proof of Theorem 4.

Lemma 1 (Advice Selection) If Γ ∝ (∆,A) and Γ ` e0 : p.t ; λdp.〈f dp , {e}〉,
then

(1 ) there exist some types τ1, τ2 and τ such that ∆ ` e0 : τ1 → τ2 ½ f{τ}
(2 ) for any type substitutions S and S’ that satisfy St

type½ S′(τ1 → τ2), we have
AdviceSet(λdp.〈f dp , {e}〉) = Names(Choose(f, S′τ1)) where Names(s) = {n |
(n : ςn, · · · ) ∈ s}.
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Proof.

(1) We prove the first part by showing that the translation in the lemma is derived
via (Var-A) rule and e0 is simply an advised function, f . This is proved by
induction on number of predicates in p as follows.
If p is empty, then clearly the translation is just an instance of (Var-A) rule
due to the presence of advice chain. Suppose that when p contains n predicates,
it is still an instance of (Var-A). Now assume that there are n + 1 predicates
in p. If the outermost predicate is generated by applying the (Pred) rule, then
we have the derivation, Γ.x : t ; xt ` e : ρ ; e′t where ρ has n predicates and
t is an instance of the type scheme of x. Obviously, Γ.x : t ∝ (∆,A). Thus,
by the induction hypothesis, this translation is derived via (Var-A) rule and
e ≡ x is an advised function. This contradicts the condition of the (Pred) rule.
Since no other rule produces a translation with the given form of predicated
typed and chain expression except (Var-A), the translation in the lemma is
indeed an instance of (Var-A), and e0 is simply an advised function, f .

(2) We prove the second part in two steps:
(a) if Γ ` f : p.t ; ec and Γ ` f : S(p.t) ; e′c, then AdviceSet(ec) =
AdviceSet(e′c).
(b) if Γ ` f : S(p.t) ; λdp.〈f dp , {e′}〉 and St

type½ S′(τ1 → τ2), then
Names(Choose(f, S′τ1)) = AdviceSet(λdp.〈f dp , {e′}〉)
Combining these two steps yields the set equality in the lemma.
(a) According to the premise of (VAR-A), it is obvious that AdviceSet(ec) ⊆

AdviceSet(e′c). Hence we only show that AdviceSet(e′c) ⊆ AdviceSet(ec).
This is done by contradiction.
Assume that there exists an advice binding n : ∀b.q.tn ./ f such that
tn D St but tn 6D t. Let t1 → t2 = t and tk → tnk

= tn. By tn D St,
we have tk D St1, which in turn implies that tk and t1 are unifiable. So,
by the condition wv(f : t1 → t2), we have tn D t. This contradicts the
assumption.
Since no such advice exists, we conclude that AdviceSet(e′c) ⊆ AdviceSet(ec).

(b) Let Aset = AdviceSet(λdp.〈f dp , {e′}〉), Cset = Names(Choose(f, S′τ1)),
t′1 → t′2 = St and τ ′1 → τ ′2 = S′(τ1 → τ2). By Γ ∝ (∆,A),

ni : ∀b.q.ti → tni ./ f ∈ Γ ⇔
(ni : ∀α.τx → τni , pci, τi, e

I
i ) ∈ A ∧ ∃pc ∈ pci. JPMatch(f, pc) ≡ true

Let us consider the advice selection criteria for both Aset and Cset. For
advice ni to be selected in Aset, (Var-A) requires that ti → tni D t′1 → t′2.
By contrast, Cset requires that τi D τ ′1 according to Choose(f, τ ′1).
First, it is easy to see that Aset ⊆ Cset. By Γ ∝ (∆,A), we have ti

type½ τi.
Given ti → tni D t′1 → t′2 and t′1 → t′2

type½ τ ′1 → τ ′2, it is obvious that
ti D t′1 ⇔ τi D τ ′1. Thus, Aset ⊆ Cset.
Second, we show that Cset ⊆ Aset by assuming otherwise and get a contra-
diction due to Γ ∝ (∆,A). If there exists an advice nk such that nk ∈ Cset

but not Aset. Then, τk D τ ′1 and tk D t′1 since tk
type½ τk, but S1tnk

6D S1t
′
2
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where t′1 = S1tk. Let ∀a.p.tf1 → tf2 = Γ(f). Consider the kinds of advice
binding for nk.
(i) (Adv): By the condition of (Adv), tk → tnk

D tf1 → tf2 , which in
turn implies that tnk

D t′2 since tf1 → tf2 D St. This contradicts the
assumption.
(ii) (Adv-An): By the condition of (Adv-An), there exists a substitution
S0 such that

tk = S0tf1 (1)
and tnk

D S0tf2 (2)

Then t′1 = S1S0tf1 . Now, since tf1 → tf2 D t′1 → t′2, there exists a
substitution S2 such that t′2 = S2S1S0tf2 . Hence by (2),

S1tnk
D S1S0tf2 D S2S1S0tf2 = t′2

This contradicts the assumption.
Since no such advice exists, we conclude that Cset ⊆ Aset.

Lemma 2 (Respect of Chain Expressions ) Suppose that Γ
π

∝ (∆,A). Let f
be an advised function or advice that ∆(f) = ∀α.τf . If Γ ` f : p.t ; λdp.〈f dp , {e}〉,
fv(p̄) ⊆ fv(t), and (t,Sτf ) ` ei ∝ AdviceName(ei) {AdviceUnifiers(ei, Sτf )} for all

ei ∈ e, then (p.t, Sτf ) ` λdp.〈f dp , {e}〉 ∝ f{τ} where S = [τ/α] and t
type½ Sτf .

Proof. Let ∀a.pf .tf = Γ(f) and S0tf = t. Then, by Γ ∝ (∆,A) and Proposition
1, such S exists.

Next, we proceed to prove the lemma according to the requirements stated in
Definition 7 (respect of expressions). Specifically, given S, S′, ep, and eg such that

St
type½ S′Sτf , ep m Sp and eg m S(g : tg ; dg) as in Definition 7, we need to prove

that

[eg/dg][[(λdp.〈f dp , {e}〉) ep]] ' S′(f{τ})
By Proposition 3 and definition of BodyI(f), it is equivalent to show that

[[[Body(f)]]/f ][eg/dg][[(λdp.〈f dp , {e}〉) ep]] ' S′S(λf :τf x : τx.bodyI(f))

Let S′′ = S′ ◦ S. By applying Proposition 2a on the RHS, it suffices to show that

[[[Body(f)]]/f ][eg/dg][[(λdp.〈f dp , {e}〉) ep]] ' Trigger(λx : S′′τx.S′′(bodyI(f)), f : S′′τf )

By the definition of Trigger(·), we can rewrite the RHS of the above equation to

Weave(λx : S′′τx.S′′(bodyI(f)),S′′τf ,Choose(f, S′′τx))

According to Lemma 1, AdviceSet(λdp.〈f dp , {e}〉) = Names(Choose(f, S′′τx)).
Thus, it suffices to show that

[[[Body(f)]]/f ][eg/dg][[(λdp.〈f dp , {e}〉) ep]] '
Weave(λx : S′′τx.S′′(bodyI(f)), S′′τf , {A(ni) | ni ← AdviceSet(ec)}) (3)
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where ec ≡ λdp.〈f dp , {e}〉. We prove the above open equation (3) by mathematical
induction on the rank of ec and then the length of e.

Induction basis for the rank rank(ec) = 1:
When rank(ec) = 1, every expression in e has rank zero. We do induction again

on the length of ē.
Induction basis for the length: |e| = 0
In this case, ec ≡ λdp.〈f dp , {}〉. We proceed by reducing both sides of (3).

LHS ≡ [eg/dg][[[Body(f)]]/f ][[(λdp.〈f dp , {}〉) ep]]
= [eg/dg][[[Body(f)]]/f ](λdp.f dp) ep

→∗
β [eg/dg][[Body(f) ep]]

= [eg/dg][[(Body(f) ep)]]

RHS ≡ Weave(λx : S′′τx.S′′(bodyI(f)), S′′τf , {})
= S′′(λx : τx.bodyI(f))

By Γ
π

∝ (∆,A), (pf .tf , τf ) ` Body(f) ∝ λx : τx.bodyI(f). As the substitutions S

and S′ satisfy the condition in Definition 7, SS0tf
type½ S′Sτf , the LHS is thus open

equivalent to the RHS. Hence (3) holds in this case.
Induction step for the length (|e| = m):
Suppose that (3) holds for |e| = m−1. Now let e = e1, e2, · · · , em and e1 = n1 e1

′.
We reduce the LHS of (3) as follows:

[eg/dg][[[Body(f)]]/f ][[(λdp.〈f dp , {e1, e2, · · · , em}〉) ep]]
= [eg/dg][[〈Body(f) ep , {e1, e2, · · · , em}〉]]

rank(ei) = 0, by chain expansion
= [eg/dg]proceedApply(e1, 〈Body(f) ep , {e2, · · · , em}〉)
= [eg/dg][[n1 e1

′ 〈Body(f) ep , {e2, · · · , em}〉]]
to continue, we apply Proposition 3 and replace n1 with [[λdq.λproceed.λy.body(n1)]]

= [eg/dg][[(λproceed.λy.[e1
′/dq]body(n1)) 〈Body(f) ep , {e2, · · · , em}〉]]

by substitution and β − reduction

= [eg/dg][[[〈Body(f) ep , {e2, · · · , em}〉]]/proceed][[(λy.[e1
′/dq]body(n1))]]

Let Λβ.λn1:τn1 y : τy0 .e
I
0 = BodyI(n1). We reduce the RHS of (3) according to the

definitions of Weave (in Figure 8), BodyI and bodyI , and get

[τ1/β]τn1 = S′′τf ≡ S′(Sτf )

eI
p = Weave(λx : S′′τx.S′′(bodyI(f)),S′′τf , {A(n2), · · · ,A(nm)})

eI
a = BodyI(n1){τ1}

eI
n1

= [eI
p/proceed][τ1/β]bodyI(n1)

Hence, RHS = Trigger(λy : τy.eI
n1

, n1 : [τ1/β]τn1) = Weave(λy : τy.eI
n1

, τn1 , {})
= λy : τy.eI

n1
= λy : τy.[eI

p/proceed][τ1/β]bodyI(n1)
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Thus, we need to show that

[eg/dg][[[〈Body(f) ep , {e2, · · · , em}〉]]/proceed][[(λy.[e1
′/dq]body(n1))]]

' [eI
p/proceed](λy : τy.[τ1/β]bodyI(n1))

By the induction hypothesis for the length (|e| = m− 1):

[eg/dg][[〈Body(f) ep , {e2, · · · , em}〉]] ' eI
p

Hence, by Proposition 4, we in turns need to show that

[eg/dg]([[(λy.[e1
′/dq]body(n1))]] ' λy : τy.[τ1/β]bodyI(n1) (∗)

Finally, by the assumption of the Lemma,

(t,Sτf ) ` (n1 e1
′) ∝ n1 {AdviceUnifiers(e1, Sτf )}

Hence, given St
type½ S′Sτf , by Proposition 3 and Definition 7, we have

[eg/dg]([[Body′(n1) e1
′]]) ' BodyI(n1) {τ1}

Note that, since the above respect assumption holds with no advice predicates,
if there are any advice parameters in e1

′, they must belong to dg. Then, by the
enhanced definition of Body′(x) and rank(e1) = 0, we have

[eg/dg][[(λy.[e1
′/dq]body(n1))]] ' (λy : τy.[τ1/β]bodyI(n1))

Thus the open equivalence to show (*) holds. This concludes the case for rank(ec) =
1.

Induction step for the rank (rank(ec)):
Suppose that the equivalence (3) holds for all ec with rank(ec) < r. When

rank(ec) = r, we do induction on the length of |e|.
If |e| = 0, then ec actually has rank one, and the equivalence holds by the

induction base. Suppose it holds for |e| = m− 1.
Now consider the case |e| = m. Let e = e1, e2, · · · , em. If rank(e1) = 0, then the

proof is the same as the one for the case of rank(ec) = 1. Otherwise, assume that
0 < rank(e1) < r, and let e1 = (λdr.〈n1 dr , {en}〉) e′. Consider the open equation
3 that we need to prove:

LHS = [eg/dg][[[Body(f)]]/f ][[(λdp.〈f dp , {e1, e2, · · · , em}〉) ep]]
= [eg/dg][[[Body(f)]]/f ](λdp.proceedApply(e1, 〈f dp , {e2, · · · , em}〉)) ep

= [eg/dg][[[Body(f)]]/f ](λdp.[[〈n1 e′ 〈f dp , {e2, · · · , em}〉 , {en}〉]]) ep

= [eg/dg][[[Body(f)]]/f ]
(λdp.[[〈(λdq.λproceed.λy.body(n1)) e′ 〈f dp , {e2, · · · , em}〉 , {en}〉]]) ep

= [eg/dg][[〈(λdq.λproceed.λy.body(n1)) e′ 〈Body(f) ep , {e2, · · · , em}〉 , {en}〉]]
→∗

β [eg/dg][[〈[[[〈Body(f) ep , {e2, · · · , em}〉]]/proceed](λy.[e′/dq]body(n1)) , {en}〉]]
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As to the RHS, applying the definition of Weave, we have:

[τ1/β]τn1 = S′′τf

eI
p = Weave(λx : S′′τx.S′′(bodyI(f)), S′′τf , {n2, · · · , nm})

eI
a = BodyI(n1){τ1}

eI
n1

= [eI
p/proceed][τ1/β]bodyI(n1)

So, RHS ≡ Trigger(λy : τy.[eI
p/proceed][τ1/β]bodyI(n1), n1 : [τ1/β]τn)

= Weave(λy : τy.[eI
p/proceed][τ1/β]bodyI(n1), [τ1/β]τn1 ,Choose(n1, [τ1/β]τn1))

By Lemma 1, AdviceSet(λdr.〈n1 dr , {en}〉) = Names(Choose(n1, [τ1/β]τn1)). Thus,
we need to show that

[eg/dg][[〈[[[〈Body(f) ep , {e2, · · · , em}〉]]/proceed](λy.[e′/dq]body(n1)) , {en}〉]]
' Weave(λy : τy.[eI

p/proceed][τ1/β]bodyI(n1), [τ1/β]τn1 , {A(ni) | ni ← en}) (∗)
The open equation above can be proved by induction and Proposition 4 as follows.
By the induction hypothesis for the length of eI

P ({e2, · · · , em}), we have

[eg/dg][[(λdp.〈Body(f) dp , {e2, · · · , em}〉) ep]] ' eI
p (4)

Besides, since rank(e1) < r, by the induction hypothesis of the rank, we have

[[[Body(n1)]]/n1][eg/dg][[(λdr.〈n1 dr , {en}〉) e′]]
= [eg/dg][[〈λy.[e′/dq]body(n1)) , {en}〉]]
' Weave(λy : τy.[τ1/β]bodyI(n1), [τ1/β]τn1 , {A(ni) | ni ← en}))

(5)

Finally, comparing the open equivalence to show (*) and (5), we see that (*) can
be constructed by replacing the proceeds in both sides of (5) with the terms on the
same sides of (4), respectively. By Proposition 4, the open equivalence of (*) holds
for |e| = m and rank(ec) = r. Hence the lemma follows by induction.

Theorem 3 (Soundness of Expression Weaving) If Γ
π

∝ (∆,A), Γ ` e : p.t ;

e′, and fv(p) ⊆ fv(t), then there exists an eI such that ∆ ` e : τ ½ eI and
(p.t, τ) ` e′ ∝ eI

Proof. By Theorem 1, ∆ ` e : τ ½ eI holds with t
type½ τ . We prove the second

part, (p.t, τ) ` e′ ∝ eI , by induction on the height (h) of the derivation tree for
Γ ` e : p.t ; e′.

Induction basis (h = 1):
There is only one case, namely (Var), and e ≡ x for some variable x that

x : σ ; e′ ∈ Γ. We prove the basis case by considering the kinds of bindings which
introduce x into Γ:

case (Abs) :
Here e′ ≡ x and x is monomorphic, i.e., σ ≡ tx for some type tx. Hence p is
empty, t = tx. Consequently, by Γ ∝ (∆,A) and (Expr:Var), eI ≡ x. The
result holds obviously.
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case (Pred) :
In this case, x is advised and x :∗ ∀ā.p̄x.tx ∈ Γ, p is empty, t = [t̄/ā]tx, and
e′ ≡ xt, a variable. Moreover, If ∆(x) = ∀α. τx, then, by Γ ∝ (∆,A) and
Proposition 1, there are types τ that t

type½ [τ/α]τx. Hence, by (Expr:Ty-App),
τ = [τ/α]τx and eI ≡ x{τ}. We need to prove that (t, τ) ` xt ∝ x{τ}.
According to Definition 7, given S, S′, with St

type½ S′τ and eg feasible to S(g : tg),
we must show that [eg/dg]e′ ' S′x{τ}. Obviously, x belongs to g and thus xt

belongs to dg. Hence there is an ex ∈ eg such that ex m S(x : t). Therefore,
[eg/dg]e′ = ex ' S′(x{τ}) by the definition of feasibility. Consequently, (t, τ) `
e′ ∝ eI .

case (Global), (Let), (Adv), (Adv-an) :
In all these cases, e′ ≡ x and p.t is an generic instance of σ(≡ ∀ā.p̄x.tx),
p.t = [t̄/ā]p̄x.tx. If ∆(x) = ∀α. τx, then, by Γ ∝ (∆,A), Proposition 1 and
(Expr:Ty-App), τ = [τ/α]τx, eI ≡ x{τ}, and t

type½ τ . We need to prove that
(p.t, τ) ` x ∝ x{τ}.
According to Definition 7, given S, S′, ep, and eg with (S ◦ [t̄/ā])tx

type½ (S′ ◦
[τ/α])τx, we need to show that

[eg/dg]x ep ' (S′x{τ})
By proposition 3, it suffices to show that

[eg/dg][[Body′(x)]] ep ' S′(BodyI(x){τ}) (6)

We show it on a case by case basis.
subcase Global variable, (Let) :

Here Body′(x) = Body(x) and BodyI(x){τ} = [τ/α]bodyI(x). Besides, (S ◦
[t̄/ā])tx

type½ (S′ ◦ [τ/α])τx. By Γ
π

∝ (∆,A), (p̄x.tx, τx) ` Body(x) ∝ bodyI(x).
Hence the open equation (6) follows by applying to this respect condition with
S ◦ [t̄/ā], S′ ◦ [τ/α], ep, and eg, according to Definition 7.

subcase Global function :
Let S′′ = S′◦[τ/α] and we can rewrite the RHS of (6) as S′′(λx:τxy : τy.bodyI(x)).
By proposition 2a, the open equation (6) can be verified by proving:

[eg/dg][[Body(x)]] ep ' Trigger(S′′(λy : τy.bodyI(x)), x : S′′τx)

= Weave(S′′(λy : τy.bodyI(x)), S′′τx,Choose(x, S′′τx))

= Weave(S′′(λy : τy.bodyI(x)), S′′τx, {}) (7)

= S′′(λy : τy.bodyI(x)) (8)

Equality (7) holds because any x’s typed by the (Var) rule is not advised (i.e.,

Choose(x, S′′τx)) = {}). Moreover, by Γ
π

∝ (∆,A), (p̄x.tx, τx) ` Body(x) ∝
λy : τy.body(x). Similar to the previous case, equality (8) follows by applying
to this respect condition with S ◦ [t̄/ā], S′′, ep, and eg, according to definition
7.
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subcase (Adv), (Adv-an) : Similar to the subcase of global function except

that we use the enhanced version of Body′(x).

Induction step:
Suppose that the respect condition hold for all derivation trees of height less then

h. We prove that, for an expression e with a derivation tree, (p.t, τ) ` e′ ∝ eI , of
height h. Consider the last step of the derivation:

case (Pred) :
We have a derivation of the form:

x :∗ ∀ā.p̄x.tx ∈ Γ [t̄/ā]tx D t1

Γ.x : t1 ; xt ` e : q.t ; e′t
Γ ` e : (x : t1).q.t ; λxt.e

′
t

Hence, p ≡ (x : t1).q and e′ ≡ λxt.e
′
t.

Since Γ
π

∝ (∆,A) and t1 is an instance of tx, Γ.x : t1 ; xt

π

∝ (∆,A). By the
induction hypothesis, there exist τ1 and eI

1 such that t
type½ τ1 and (q.t, τ1) ` e′t ∝

eI
1. Moreover, since (Pred) has no corresponding rule in FIL, eI ≡ eI

1 and τ ≡ τ1.
Now to finish the proof of this case, we need to show that

(p, τ) ` λxt.e
′
t ∝ eI

In other words, given S, S′, ep, and eg with St = S′τ as in Definition 7,

[[[eg/dg](λxt.e
′
t) ep]] ' S′eI

Since p ≡ (x : t1).q, we can write ep as ex.eq such that ex ∈ ep and ex m (x : t1).
Then, by the induction hypothesis and Definition 7, we have

[[[eg.ex/dg.xt]e′t eq]] ' S′eI

Since

LHS = [[[eg.ex/dg.xt]e′t eq]]
= [[[eg/dg][ex/xt]e′t eq]]
= [[[eg/dg](λxt.e

′
t) ex eq]]

= [[[eg/dg](λxt.e
′
t) ex.eq]],

we get [[[eg/dg](λxt.e
′
t) ep]] ' S′eI .

case (Rel) :
We have a derivation of the form:

Γ ` e : (x : t1).ρ ; e′1
Γ ` x : t1 ; e′2 x 6= e

Γ ` e : ρ ; e′1 e′2

Hence p.t ≡ ρ and e′ ≡ e′1 e′2. By the induction hypothesis on the first derivation,
there exists an τ1 and eI

1 such that (x : t1.ρ, τ1) ` e′1 ∝ eI
1 where ρ ≡ p.t.
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Moreover, let τ be τ1 and eI be eI
1, then we need to show that (ρ, τ) ` e′1e

′
2 ∝ eI .

In other words, given S, S′, ep, and eg with St = S′τ as in Definition 7,

[[[eg/dg](e′1e
′
2) ep]] ' S′eI

Let ∀α.τx = ∆(x), then, by the induction hypothesis on the second derivation,
we get (t1, τ ′x) ` e′2 ∝ x{τ} where τ ′x = [τ/α]τx and t1

type½ τ ′x. By Definition 7 and
a reasoning similar to the previous case, it suffices to show that e′2 m S(x : t1).
Now, since (t1, τ ′x) ` e′2 ∝ x{τ}, we have [[[eg/dg]e′2]] ' S′x{τ}, which proves that
e′2 m S(x : t1).

case (Var-A) :
In this case, x must be an advised function or advice. We can prove it by applying
Lemma 2 as follows.
Let ∀ā.p̄x.tx = Γ(x) and ∀α.τx = ∆(x). Then, p = [t̄/ā]px and t = [t̄/ā]tx.
eI ≡ x{τ}. By Γ ∝ (∆,A) and Proposition 1, there exists an S = [τ/α] such
that t

type½ Sτx, as required by Lemma 2.
Finally, from the premise of the rule, we have Γ ` ni : t ; ei. By the induction
hypotheses of these sub-derivations, there exist eI

i such that ∆ ` ni : τ ½ eI
i

and (t,Sτx) ` ei ∝ eI
i . Moreover, let ∀βi.τni = ∆(ni). Then, by Theorem 1,

t
type½ [AdviceUnifiers(ei, Sτx)/βi]τni . Hence, by (Expr:Ty-App) it is obvious

that (ni {AdviceUnifiers(ei, Sτx)}) are such eI
i . This case then follows directly

from Lemma 2.
case (Let) We have a derivation of the form:

Γ ` e1 : ρ ; e′1 σ = gen(Γ, ρ) Γ.f : σ ; f ` e2 : t ; e′2
Γ ` let f = e1 in e2 : t ; let f = e′1 in e′2

Here e′ ≡ let f = e′1 in e′2 and f can be either a variable or a function. We present
only the proof for the case of variable since the case of function is similar.
Suppose ρ ≡ q.t′. By the induction hypothesis of the first sub-derivation, there
is an τf and eI

f such that ∆ ` e : τ ½ eI , t′
type½ τf” and (ρ, τf ) ` e′1 ∝ eI

f .

Since e′1 = Body(f) and eI
f = bodyI(f), by Definition 8 and Γ

π

∝ (∆,A), Γ.f :

∀a.ρ ; f
π

∝ (∆.f : ∀α.τf ,A). Hence, by the induction hypothesis of the second

sub-derivation, there exist an type τ and eI
2 such that t

type½ τ and

(t, τ) ` e′2 ∝ eI
2 Under Γ.f : σ ; f

Now, applying the substitution S′ and eg derived from Definition 7 to the above
respect condition, we get

[[[eg/dg]e′2]] ' S′eI
2 Under Γ.f : σ ; f

Given Body(f) = e′1, and BodyI(f) = Λα.eI
f , by Proposition 3 we have

[[[eg/dg][e′1/f ]e′2]] ' S′[Λα.eI
f/f ]eI

2 Under Γ

By β-reduction, the open equation above is equivalent to

[[[eg/dg](let f = e′1 in e′2)]] ' S′(LET f = Λα. eI
f IN eI

2)
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Therefore, the FIL expression LET f = Λα. eI

f IN eI
2 is the eI for this case.

case (Abs) :
We have a derivation of the form:

Γ.x : t1 ; x ` eb : t2 ; e′b
Γ ` λx.eb : t1 → t2 ; λx.e′b

Pick a τx such that t1
type½ τx. Then, by Γ

π

∝ (∆,A) and Definition 8, we have

Γ.x : t1 ; x
π

∝ (∆.x : τx,A). Then, by the induction hypothesis on the first
sub-derivation we have τb and eI

b with which we can apply (Expr:Abs) and get

∆.x : τx ` eb : τb ½ eI
b

∆ ` λx. eb : τx → τb ½ λx : τx. eI
b

where t2
type½ τb, and (t2, τb) ` e′b ∝ eI

b . Thus, p̄ is empty, t ≡ t1 → t2, τ ≡ τx → τb,
e ≡ λx.eb and e′ ≡ λx.e′b and eI ≡ λεx : τx.eI

b .
We need to prove that (t, τ) ` e′ ∝ eI . By Definition 7, given S, S′, and eg, we
must show

[[[eg/dg](λx.e′b)]] ' S′(λεx : τx.eI
b) (9)

By the induction hypothesis, we have

[[[eg/dg]e′b]] ' S′eI
b under Γ.x : t1

According to Definition 4, given ev ∼∼ eI
v, we have

[Body′(f)/f ][ev/x][[[eg/dg]e′b]] ∼∼ [BodyI(f)/f ][eI
v/x]S′eI

b under A
By Definition 3,

[Body′(f)/f ][[[eg/dg]λx.e′b]] ∼∼ [BodyI(f)/f ]S′(λx : τx.eI
b) under A

By Definition 4,

[[[eg/dg]λx.e′b]] ' S′(λx : τx.eI
b) under Γ and A

which proves the case.
case (App) :

By straightforward induction on e1 and e2 of (e1 e2).

A special case of Definition 7 occurs when there is no binding in Γ which is
introduced via (Pred). For example, after translating the body of a top level
definition, such bindings do not exist. In such a case, we do not have to consider
eg in Definition 7 and we add a superscript T on the judgement to distinguish it
from the general respect of expressions, written as

(p.t, τ) `T e′ ∝ eI

Proposition 5 If (p.t, τ) `T e ∝ eI and p is empty, then [[e]] ' SeI for any type
substitution S.
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Theorem 4 (Soundness of Static Weaving) Let π0 be an AspectFun program.
If ∅ ` π0 : t ; e′, then there exists an FIL-converted program, πI = (A, eI), such
that π0

prog½ πI and [[e′]] ∼∼ eI under A.

Proof. It is equivalent to show that if ` π0 : t ; e′ then `D π0 : τ ½ eI ;A
and [[e′]] ' eI under ∅ and A. We use a stronger proposition to prove it. Suppose

Γ
π0

∝ (∆,A) and all bindings in Γ are introduced only via (Global), (Adv), or
(Adv-An). If Γ ` π : t ; e′ for a sub-program π of π0, i.e. π0 ≡ d0.π, then there
exists an FIL-conversion ∆ `D π : τ ½ eI ;A1 such that [[e′]] ' eI under Γ and
A∪A1. Afterwards, the original result of the theorem can be obtained by assigning
∅ to Γ, ∆, A and d0.

Let π ≡ d.e. We prove the above proposition by induction on the length of
declarations of π, |d|.
Induction basis:

d = 0: we have π ≡ e0. Since no binding in Γ is introduced via (Pred), this case
is a direct consequence of Theorem 3 and Proposition 5.

Induction step:
When the proposition holds for π with length(d) = k, we shall prove it for π1

with length(d) = k + 1. Let π1 ≡ d.π. The Induction step to prove is that if

Γ1

π0

∝ (∆1,A1) and Γ1 ` π1 : t1 ; e′1 then ∆1 `D π1 : τ1 ½ eI
1;A2 and [[e′1]] ' eI

1

under Γ1 and A2 ∪ A1. We prove it by a case analysis on d and induction on the
derivation for Γ1 ` d.π : t1 ; e′1:

case (GLOBAL variable) :
We have a derivation of the form:

Γ1 ` ex : ρx ; e′x σ = gen(Γ1, ρx) Γ1.x : σ ; x ` π : t1 ; e′

Γ1 ` x = ex in π : t1 ; x = e′x in e′

Given Γ1 ` ex : ρx ; e′x, by Theorem 3, ∆1 ` ex : τx ½ eI
x, ρx

type½ τx (1) and
(ρx, τx) ` e′x ∝ eI

x. Besides, since no binding in Γ is introduced via (Pred), we

have (ρx, τx) `T Body(x) ≡ e′x ∝ eI
x ≡ bodyI(x). So, by Γ1

π0

∝ (∆1,A1) and
Definition 8,

Γ ≡ Γ1.x : gen(Γ1, ρx) ; x
π0

∝ (∆1.x : gen(∆, τx),A1) ≡ (∆,A1)

Thus, by the induction hypothesis of the second derivation, Γ ` π : t1 ; e′, we
have

∆ `D π : τ ½ eI ;A (2) and [[e′]] ' eI under Γ and A ∪A1

Then, by (1) and (2), we can apply the (Decl:Var) rule and get

∆1 `D π1 : τ1 ½ eI
1;A1

where τ1 ≡ τ

eI
1 ≡ LET x = BodyI(x) IN eI

A2 ≡ A
and [[e′]] ' eI under Γ and A2 ∪ A1
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Applying Proposition 3, we get

[[[Body(x)/x]e′]] ' [BodyI(x)/x]eI under Γ1 and A2 ∪ A1

and finally

[[e′1]] ≡ [[x = e′x in e′]] ' eI
1 under Γ1 and A2 ∪ A1

by β-reduction.

case (GLOBAL function) :
We have a derivation of the form:

Γ ` ef : ρ ; e′f σ = gen(Γ, ρ) Γ.f :(∗) σ ; f ` π : t ; e′

Γ ` f = ef in π : t ; f = e′f in e′

Similar to the case of global variables, except that the respect of expression is
(ρf , τf ) `T (Body(f) ≡ e′f ) ∝ (λx : τx.bodyI(f) ≡ eI

f ), and we should apply the
(Decl:Func) rule to construct eI

1.

case (Adv) :
We have a derivation of the form:

Γ1.proceed : tp ` λx.ea : ρn(≡ p̄.tp) ; e′a fi : ∀ā.ti ∈ Γbase

tp D [t̄/ā]ti Γ.n : σ ./ f̄ ; n ` π : t1 ; e′ σ = gen(Γ1, ρn)
Γ1 ` n@advice around {f̄} (x) = eain π : t1 ; n = e′a in e′

First, we show that we can apply the FIL conversion rule, (Decl:Adv-An), via
the (Decl:Adv) rule, to this advice and obtain the required FIL derivation.

Pick a τp such that tp
type½ τp. Then, by Theorem 3 there exist τn ≡ τ1 → τ2 and

eI
n that

∆1.proceed : τp ` λx.ea : τn ½ λx : τ1.e
I
n, ρn

type½ τn, and (ρn, τn) ` e′a ∝ λx : τ1.e
I
n

Moreover, by tp
type½ τn, we can choose τp so that τp ≡ τn. Thus,

∆1.proceed : τp ` λx.ea : τp ½ λx : τ1.e
I
n

Since no binding is Γ is introduced via (Pred), we have

(ρn, τn) `T Body(n) ≡ e′a ∝ λx : τ1.bodyI(n) ≡ λx : τ1.e
I
n

To apply the (Decl:Adv-An) rule, the (Decl:Adv) rule adds the type scope,
a, to the advice. Obviously, a

type½ α and hence α u τ1 = τ1. Thus the third
element in the Adv tuple is τ1 and we have t1

type½ τ1 where t1 is the parameter
part of ρn. Combining the above results, we have

Γ ≡ Γ1.n : gen(Γ, ρn) ./ f ; n
π0

∝ (∆1,A1.(n : gen(∆, τn), f , τ1,BodyI(n))) ≡ (∆,A0)

Second, by the induction hypothesis of Γ ` π : t ; e′, we have

∆ `D π : τ ½ eI ;A and [[e′]] ' eI under Γ and A0 ∪ A



· 55

Thus we get all the premises of (Decl:Adv-An) fulfilled. Hence

∆1 `D π1 : τ1 ½ eI
1;A2

where τ1 ≡ τ
eI
1 ≡ eI

A2 = A.(n : gen(∆, τn), f , τ1, BodyI(n))
and [[e′]] ' eI under Γ and A0 ∪ A

As the last step, we need to show that [[e′1]] ' eI
1 under Γ1 and A2 ∪ A1 where

e′1 ≡ n = e′a in e′. Clearly A2 ∪ A1 = A0 ∪ A. Now applying Proposition 3 to
[[e′]] ' eI under Γ and A0 ∪ A, we get

[[[e′a/n]e′]] ' [BodyI(n)/n]eI
1 under Γ1 and A2 ∪ A1

Thus

[[e′1]] ≡ [[n = e′a in e′]] ' eI
1 under Γ1 and A2 ∪ A1

by β-reduction and that advice names never appear in eI
1.

case (Adv-An) : We have a derivation of the form:

Γ.proceed : tx → t ` λx.ea : p̄.tx → t ; e′a σ = gen(Γ, p̄.tx → t)
fi : ∀ā.ti → t′i ∈ Γbase S = [t̄/ā]ti D tx

t D S[t̄/ā]t′i Γ.n : σ ./ f̄ ; n ` π : t′ ; π′

Γ ` n@advice around {f̄} (x :: tx) = eain π : t′ ; n = e′a in π′

Pick τ1 and τ2 such that tx → t
type½ τ1 → τ2. The rest of the proof is very similar

to the previous case, except the part for the third element (i.e., τx u τ1) in the
Adv tuple, to be included in the advice store by (Decl:Adv-An). As required
by (Decl:Adv-An), the τx must satisfy tx

type½ τx, hence we can choose τx ≡ τ1.
This gives us τx u τ1 = τx, which is still the parameter part of the FIL converted
type of n, τ1 → τ2.
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在這方面，must cflow 的分析結果，要比 may cflow 的分析結果對程式效能的影

響大，所以他建議我們可針對這一點再進行更廣泛的實證性探討。 
 
此外，由於我們的編譯器中使用到 reader monad，並實作了部分的 monad 式的程

式轉換，在這個基礎上，也有學者建議我們可以進一步去探討 monadification

轉換的技術，並將它應用到 AspectFun 語言的編譯器上。我們就此思考後，認為

可以就 side-effect 運算以 monad 方式納入 AspectFun 作為未來研究的一個主題。

一般說來，使用純粹函數式語言時，所有牽涉到共用狀態(shared state)的函數通

通要改寫，將狀態當成一額外的參數，在彼此之間相互傳遞(threaded with a state 
parameter)。近來 Haskell 引進 monad 的機制，可以將狀態處理封裝在 monad 之

內，大幅簡化狀態處理的程式撰寫，但是一旦使用 monad，程式所有相關部分都

要改成 monadic 的寫法，因此也是一種橫跨式的大幅變動。偏偏 aspect 常用來實

現的 profiling 與 tracing 等工作，都是需要有狀態處理功能的，所以即便我們可

以將狀態處理部分限縮在 aspect 內，以 monad 實現模組化狀態處理的需求，但

是原本是單純的函數構成的程式本體，卻也必須跟著改寫成 monadic 方式，如此

一來，大大減損了使用 aspect 模組化的優勢。所以未來一個重點就是要探討如何

在 AspectFun 直接提供具備狀態處理功能的剖面 (side-effecting aspects)，透過編

譯技術將其與程式本體自動轉換成 monadic 方式，以提高純粹函數程式的處理狀

態的模組化程度。 
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Abstract. Introducing aspect orientation to a polymorphically typed
functional language strengthens the importance of type-scoped advices;
i.e., advices with their effects harnessed by type constraints. As types are
typically treated as compile time entities, it is highly desirable to be able
to perform static weaving to determine at compile time the chaining of
type-scoped advices to their associated join points. In this paper, we de-
scribe a compilation model, as well as its implementation, that supports
static type inference and static weaving of programs in an aspect-oriented
polymorphically typed lazy functional language, AspectFun. We present
a type-directed weaving scheme that coherently weaves type-scoped ad-
vices into the base program at compile time. We state the correctness
of the static weaving with respect to the operational semantics of As-
pectFun. We also demonstrate how control-flow based pointcuts (such
as cflowbelow) are compiled away, and highlight several type-directed
optimization strategies that can improve the efficiency of woven code.

1 Introduction

Aspect-oriented programming (AOP) aims at modularizing concerns such as
profiling and security that crosscut the components of a software system[8]. In
AOP, a program consists of many functional modules and some aspects that
encapsulate the crosscutting concerns. An aspect provides two specifications: A
pointcut , comprising a set of functions, designates when and where to crosscut
other modules; and an advice, which is a piece of code, that will be executed when
a pointcut is reached. The complete program behaviour is derived by some novel
ways of composing functional modules and aspects according to the specifications
given within the aspects. This is called weaving in AOP. Weaving results in
the behaviour of those functional modules impacted by aspects being modified
accordingly.

The effect of an aspect on a group of functions can be controlled by introducing
bounded scope to the aspect. Specifically, when the AOP paradigm is supported
by a strongly-type polymorphic functional language, such as Haskell or ML, it
is natural to limit the effect of an aspect on a function through declaration
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of the argument type. For instance, the code shown in Figure 1 defines three
aspects named n3, n4, and n5 respectively; it also defines a main/base program
consisting of declarations of f and h and a main expression returning a triplet.
These advices designate h as pointcut . They differ in the type constraints of their
first arguments. While n3 is triggered at all invocations of h, n4 limits the scope
of its impact through type scoping on its first argument; this is called a type-
scoped advice. This means that execution of n4 will be woven into only those
invocations of h with arguments of list type. Lastly, the type-scoped advice n5
will only be woven into those invocations of h with their arguments being strings.

Example 1.
// Aspects
n3@advice around {h} (arg) =

proceed arg ;
println "exiting from h" in

n4@advice around {h} (arg:[a]) =
println "entering with a list";
proceed arg in

n5@advice around {h} (arg:[Char]) =
print "entering with ";
println arg;
proceed arg in

// Base program
h x = x in
f x = h x in (f "c", f [1], h [2])

// Execution trace
entering with a list
entering with c
exiting from h

entering with a list
exiting from h
entering with a list
exiting from h

Fig. 1. An Example of Aspect-oriented program written in AspectFun

As with other AOP, we use proceed as a special keyword which may be called
inside the body of an around advice. It is bound to a function that represents
“the rest of the computation at the advised function”; specifically, it enables the
control to revert to the advised function (ie., h).

Using type-scoped aspects enable us to have customized, type-dependent trac-
ing message. Note that String (a list of Char) is treated differently from ordinary
lists. Assuming a textual order of advice triggering, the corresponding trace mes-
sages produced by executing the complete program is displayed to the right of
the example code.

In the setting of strongly-type polymorphic functional languages, types are
treated as compile-time entities. As their use in controlling advices can usually
be determined at compile-time, it is desirable to perform static weaving of advices
into base program at compile time to produce an integrated code without explicit
declaration of aspects. As pointed out by Sereni and de Moor [13], the integrated
woven code produced by static weaving can facilitate static analysis of aspect-
oriented programs.

Despite its benefits, static weaving is never a trivial task, especially in the
presence of type-scoped advices. Specifically, it is not always possible to deter-
mine locally at compile time if a particular advice should be woven. Consider
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Example 1, from a syntactic viewpoint, function h can be called in the body of
f. If we were to naively infer that the argument x to function h in the RHS of
f’s definition is of polymorphic type, we would be tempted to conclude that (1)
advice n3 should be triggered at the call, and (2) advices n4 and n5 should not
be called as its type-scope is less general than a → a. As a result, only n3 would
be statically applied to the call to h.

Unfortunately, this approach would cause inconsistent behavior of h at run-
time, as only the third trace message “exiting from h” would be printed. This
would be incoherent because the invocations (h [1]) (indirectly called from (f
[1])) and (h [2]) would exhibit different behaviors even though they would
receive arguments of the same type.

Most of the work on aspect-oriented functional languages do not address this
issue of static and yet coherent weaving. In AspectML [4] (a.k.a PolyAML [3]),
dynamic type checking is employed to handle matching of type-scoped pointcuts;
on the other hand, Aspectual Caml [10] takes a lexical approach which sacrifices
coherence1 for static weaving.

Fig. 2. Compilation Model for AspectFun

In this paper, we present a compilation model for AspectFun that ensures
static and coherent weaving. AspectFun is an aspect-oriented polymorphically
typed functional language with lazy semantics. The overall compilation process
is illustrated in Figure 2. Briefly, the model comprises the following three major
steps: (1) Static type inference of an aspect-oriented program; (2) Type-directed
static weaving to convert advices to functions and produce a piece of woven code;
(3) Type-directed optimization of the woven code. In contrast with our earlier
work [15], this compilation model extends our research in three dimensions:

1. Language features: We have included a suite of features to our aspect-oriented
functional language, AspectFun. Presented in this paper are: second-order

1 Our notion of coherence admits semantic equivalence among different invocations of
a function with the same argument type. This is different from the coherence concept
defined in qualified types [6] which states that different translations of an expression
are semantically equivalent.
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advices , complex pointcuts such as cflowbelow, and an operational semantics
for AspectFun.

2. Algorithms: We have extended our type inference and static weaving strategy
to handle the language extension.2 We have formulated the correctness of
static weaving wrt. the operational semantics of AspectFun, and provided a
strategy for analysing and optimizing the use of cflowbelow pointcuts.

3. Systems: We have provided a complete implementation of our compilation
model turning aspect-oriented functional programs into executable Haskell
code.3

Under our compilation scheme, the program in Example 1 is first translated
through static weaving to an expression in lambda-calculus with constants for
execution. For presentation sake, the following result of static weaving is ex-
pressed using some meta-constructs:

n3 = \arg -> (proceed arg ; println "exiting from h") in
n4 = \arg -> (print "entering h with a list" ; proceed arg) in
n5 = \arg -> (print "entering h with " ; println arg; proceed arg) in
h x = x in
f dh x = dh x in (f <h,{n3,n4,n5}> "c", f <h,{n3,n4}> [1], <h,{n3,n4}> [2])

Note that all advice declarations are translated into functions and are woven
in. A meta-construct 〈 , {. . .}〉, called chain expression, is used to express the
chaining of advices and advised functions. For instance, 〈h , {n3, n4}〉 denotes the
chaining of advices n3 and n4 to advised function h. In the above example, the
two invocations of h, with integer-list arguments, in the original aspect program
have been translated to invocations of the chain expression 〈h , {n3, n4}〉. This
shows that our weaver respects the coherence property.

All the technically challenging stages in the compilation process are explained
in detail – in their respective sections – in the rest of this paper. For ease of
presentation, we gather all compilation processes pertaining to control-flow based
pointcuts in Section 4.

The outline of the paper is as follows: Section 2 highlights various Aspect-
oriented features through AspectFun and defines its semantics. In Section 3, we
describe our type inference system and the corresponding type-directed static
weaving process. Next, we formulate the correctness of static weaving with re-
spect to the semantics of AspectFun. In section 4, we provide a detailed descrip-
tion of how control-flow based pointcuts are handled in our compilation model.
We discuss related work in Section 5, before concluding in Section 6.

2 AspectFun: The Aspect Language

We introduce an aspect-oriented lazy functional language, AspectFun, for our in-
vestigation. Figure 3 presents the language syntax. We write ō as an abbreviation
2 Though not presented in this paper, we have devised a deterministic type-inference

algorithm to determine the well-typedness of aspect-oriented programs.
3 The prototype is available upon request.
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for a sequence of objects o1, ..., on (e.g. declarations, variables etc) and fv(o) as
the free variables in o. We assume that ō and o, when used together, denote un-
related objects. We write t1 ∼ t2 to specify unification. We write t � t′ iff there
exists a substitution S over type variables in t such that St = t′, and we write
t ≡ t′ iff t � t′ and t′ � t. To simplify our presentation, complex syntax, such
as if expressions and sequencings (;), are omitted even though they are used in
examples.

Programs π ::= d in π | e
Declarations d ::= x = e | f x = e | n@advice around {pc} (arg) = e
Arguments arg ::= x | x :: t
Pointcuts pc ::= ppc | pc + cf
Primitive PC’s ppc ::= f | n
Cflows cf ::= cflowbelow(f) | cflowbelow(f( :: t))
Expressions e ::= c | x | proceed | λx.e | e e | let x = e in e

Types t ::= Int | Bool | a | t → t | [t]
Advice Predicates p ::= (f : t)
Advised Types ρ ::= p.ρ | t
Type Schemes σ ::= ∀ā.ρ

Fig. 3. Syntax of the AspectFun Language

In AspectFun, top-level definitions include global variable and function def-
initions, as well as aspects. An aspect is an advice declaration which includes
a piece of advice and its target pointcuts. An advice is a function-like expres-
sion that executes when any of the functions designated at the pointcut are
about to execute. The act of triggering an advice during a function application
is called weaving. Pointcuts are denoted by {pc} (arg), where pc stands for ei-
ther a primitive pointcut, represented by ppc, or a composite pointcut. Pointcuts
specify certain join points in the program flow for advising. Here, we focus on
join points at function invocations. Thus a primitive pointcut, ppc, specifies a
function or advice name the invocations of which, either directly or indirectly
via functional arguments, will be advised.

Advice is a function-like expression that executes before, after , or around
a pointcut. An around advice is executed in place of the indicated pointcut,
allowing the advised pointcut to be replaced. A special keyword proceed may
be used inside the body of an around advice. It is bound to the function that
represents “the rest of the computation” at the advised pointcut. As both before
advice and after advice can be simulated by around advice that uses proceed,
we only need to consider around advice in this paper.

A sequence of pointcuts, {pc}, indicates the union of all the sets of join points
selected by the pci’s. The argument variable arg is bound to the actual argument
of the named function call and it may contain a type scope. Alpha renaming is
applied to local declarations beforehand so as to avoid name clash.
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A composite pointcut relates the triggering of advice to the program’s control
flow. Specifically, we can write pointcuts which identify a subset of function
invocations which occur in the dynamic context of other functions. For example,
the pointcut f + cflowbelow(g) selects those invocations of f which are made
when the function g is still executing (i.e. invoked but not returned yet).4 As an
example, in the following code, there are four invocations of fac, and advice n
will be triggered by all the fac invocations, except the first one (fac 3) due to
the pointcut specification “fac+cflowbelow(fac)”.
n@advice around {fac + cflowbelow(fac)} (arg) = println "fac";

proceed arg in
fac x = if x==0 then 1 else x * fac (x-1) in fac 3

Similarly, a type-scoped control-flow based pointcut such as (g+cflowbelow

(f( :t))) limits the call context to those invocations of f with arguments of
type t.

Composite pointcuts are handled separately in our compilation model through
series of code transformation, analyses and optimizations. This is discussed in
detail in Section 4.

In AspectFun, advice names can also be primitive pointcuts. As such, we al-
low advices to be developed to advice other advice. We refer to such advices
as second-order advices . In contrast, the two-layered design of AspectJ like lan-
guages only allow advices to advise other advices in a very restricted way, thus
a loss in expressivity [12].

The following code fragment shows a use of second-order advice to compute
the total amount of a customer order and apply discount rates according to
certain business rules.

Example 2. n3@advice around {n1,n2} (arg) = let finalRate = proceed arg
in if (finalRate < 0.5) then 0.5

else finalRate in
n1@advice around {getRate} (arg) = (getHolidayRate arg) * (proceed arg) in
n2@advice around {getRate} (arg) = (getAnnivRate arg) * (proceed arg) in
discount item = (getRate item) * (getPrice item) in
calcPrice cart = sum (map discount cart) in ...

In addition to the regular discount rules, ad-hoc sale discounts such as holiday-
sales, anniversary sales etc., can be introduced through aspect declarations, thus
achieving separation of concern. This is shown in the n1 and n2 declarations.
Furthermore, there may be a rule stipulating the maximum discount rate that is
applicable to any product item, regardless of the multiple discounts it qualifies.
Such a business rule can be realized using a second-order aspect, as in n3. It
calls proceed to compute the combined discount rate and ensures that the rate
do not exceed 50%.

AspectFun is polymorphic and statically typed. Central to our approach is the
construct of advised types, ρ in Figure 3, inspired by the predicated types [14] used
in Haskell’s type classes. These advised types augment common type schemes (as
4 The semantics of cflowbelow adheres to that provided in AspectJ. Conversion of

the popularly cflow pointcuts to cflowbelow pointcuts is available in [2].
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found in the Hindley-Milner type system) with advice predicates, (f : t), which
are used to capture the need of advice weaving based on type context. We shall
explain them in detail in Section 3.

We end our description of the syntax of AspectFun by referring interested
readers to the accompanied technical report [2] for detailed discussion of the
complete features of AspectFun, which include “catch-all” pointcut any and its
variants, a diversity of composite pointcuts, nested advices, as well as advices
over curried functions.

Semantics of AspectFun. As type information is required at the triggering of
advices for weaving, the semantics of AspectFun is best defined in a language that
allows dynamic manipulation of types: type abstractions and type applications.
Thus, we convert AspectFun into a System-F like intermediate language, FIL.

Program πI ::= (Adv, eI)
Advice Adv ::= (n : ς, pc, τ, eI)
Join points jp ::= f : τ | ε
Expressions eI ::= vI | x | proceed | eI eI | eI{τ} | LET x = eI IN eI

Values vI ::= c | λjpx : τx. eI | Λα. eI

Types τ ::= Int | Bool | α | τ → τ | [τ ]
Type schemes ς ::= ∀α. τ | τ

Fig. 4. Syntax of FIL

(

prog�)

∅ �D π : τ � eI ; A
π

prog
� (A, eI)

(Decl:MainExpr)

Δ � e : τ � eI

Δ �D e : τ � eI ; ∅

(Decl:Func)

Δ.x : τx � e : τf � eI
f α = fv(τx → τf ) \ fv(Δ)

Δ.f : ∀α. τx → τf �D π : τ � eI ; A
Δ �D f x=e in π : τ � LET f =Λα. λf :τx→τf x : τx. eI

f IN eI ; A

(Decl:Adv-An)

fv(tx) : fresh(fv(tx)) � tx

type
� τx

Δ.x : τx.proceed : τx → τn � e : τn � eI
n

α = fv(τx → τn) \ fv(Δ) Δ �D π : τ � eI ; A
Δ �D n@advice around {pc} (x :: tx) = e in π : τ � eI ;

A.(n : ∀α.τx → τn, pc, τx, Λα. λn:τx→τnx : τx. eI
n)

(Expr:Var)

τ = Δ(x)
Δ � x : τ � x

(Expr:Ty-App)

∀α. τ = Δ(x) τx = [τ ′/α]τ
Δ � x : τx � x{τ ′}

(Type:Base) σ � Int
type
� Int σ � Bool

type
� Bool σ.a : α � a

type
� α

(Type:Inferred)

σ � t
type
� τ

σ � [t]
type
� [τ ]

σ � t1
type
� τ1 σ � t2

type
� τ2

σ � t1 → t2
type
� τ1 → τ2

Fig. 5. Conversion Rules to FIL (interesting cases)
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Expressions:
(OS:Value) c ⇓ c λjpx : τx. eI ⇓ λjpx : τx. eI Λα. eI ⇓ Λα. eI

(OS:App)

eI
1 ⇓ λjpx : τx. eI

3 Trigger(λx : τx. eI
3, jp) = λx : τx. eI

4 [eI
2/x]eI

4 ⇓ vI

eI
1 eI

2 ⇓ vI

(OS:Ty-App)

eI
1 ⇓ Λα. eI

2 [τ/α]eI
2 ⇓ vI

eI
1{τ} ⇓ vI

(OS:Let)

[eI
1/x]eI

2 ⇓ vI

LET x = eI
1 IN eI

2 ⇓ vI

Auxiliary Functions:
Trigger : eI × jp → eI

Trigger(eI , ε) = eI

Trigger(λx : τx. eI , f : τf ) = Weave(λx : τx. eI , τf , Choose(f, τx))

Weave : eI × τ × Adv → eI

Weave(eI , τf , []) = eI

Weave(eI
f , τf , a : advs) = Let (n : ∀α. τn, pc, τ, Λα. eI) = a

In If ¬(τn � τf ) Then Weave(eI
f , τf , advs)

Else Let τ be types such that [τ/α]τn = τf

(eI
p, eI

a) = (Weave(eI
f , τf , advs), (Λα. eI){τ})

λn:τnx : τx. eI
n = [eI

p/proceed]eI
a

In Trigger(λx : τx. eI
n, n : τn)

Choose(f, τ ) = {(ni : ςi, pci, τi, e
I
i ) | (ni : ςi, pci, τi, e

I
i ) ∈ A, τi � τ,

∃pc ∈ pci s.t. JPMatch(f, pc)}
JPMatch(f, pc) = (f ≡ pc)

Fig. 6. Operational Semantics for FIL

FIL stores all the advices in a separated space leaving only function declara-
tions and the main expression in the program. Expressions in FIL, denoted by eI ,
are extensions of those in AspectFun to include annotated lambda (λjpx : τx.eI),
type abstraction (Λα.eI) and type application (eI{τ}) as listed in figure 4.

The conversion is led by rule π
prog
� (A, eI). A type environment, also called

conversion environment, Δ of the structure x : ς is employed. We write the judge-
ment Δ �D π : τ � eI ; A to mean that an AspectFun program having type τ is
converted to a FIL program, yielding an advice store A ∈ Adv. The judgement
Δ � e : τ � eI asserts that an AspectFun expression e having a type τ under Δ
is converted to a FIL expression eI . The nontrivial conversion rules are listed in
Figure 5. The full set of rules is available in [2].

Specifically, the rules (Decl:Func) and (Decl:Adv-An) convert top-level
function and advice declarations to ones having annotated lambda λf :τx : τx.eI ;
the annotation λ(f :τ) highlights its jointpoint. The semantics of FIL uses these
annotations to find the set of advices to be triggered. The conversion also in-
troduces type abstraction Λα into the definition bodies. Rule (Expr:Ty-App)

instantiates type variables to concrete types.
Each advice in AspectFun is converted to a tuple in A. The tuple contains the

advice’s name (n) with the advice’s type (ς), the pointcuts the advice selects
(pc), the type-scope constraint on argument (τ), and the advice body (eI).
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Operational Semantics for FIL. We describe the operational semantics for
AspectFun in terms of that for FIL. Due to space limitation, we leave the seman-
tics for handling cflow-based pointcut to [2].

The reduction-based big-step operational semantics, written as ⇓A, is defined
in Figure 6. Together with it are definitions of the auxiliary functions used. Note
that the advice store A is implicitly carried by all the rules, and it is omitted to
avoid cluttering of symbols.

Triggering and weaving of advices are performed during function applications,
as shown in rule (OS:App). Triggering operation first chooses eligible advices
based on argument type, and weaves them into the function invocation – through
a series of substitutions of advice bodies – for execution. Note that only those
advices the types of which are instantiable to the applied function’s type are
selected for chaining via the Weave function.

3 Static Weaving

In our compilation model, aspects are woven statically (Step 5 in Figure 2).
Specifically, we present in this section a type inference system which guarantees
type safety and, at the same time, weaves the aspects through a type-directed
translation. Note that, for composite pointcuts such as f+cflowbelow(g), our
static weaving system simply ignores the control-flow part and only considers the
associated primitive pointcuts (ie., f). Treatment of control-flow based pointcuts
is presented in Section 4.

Type directed weaving. As introduced in Section 2, advised type denoted as
ρ is used to capture function names and their types that may be required for
advice resolution. We further illustrate this concept with our tracing example
given in Section 1.

For instance, function f possesses the advised type ∀a.(h : a → a).a → a, in
which (h : a → a) is called an advice predicate. It signifies that the execution of
any application of f may require advices of h applied with a type which should be
no more general than a′ → a′ where a′ is a fresh instantiation of type variable
a. We say a type t is more general than type t′ iff t � t′ but t �≡ t′. Note
that advised types are used to indicate the existence of some indeterminate
advices . If a function contains only applications whose advices are completely
determined, then the function will not be associated with an advised type; it will
be associated with a normal (and possibly polymorphic) type. As an example,
the type of the advised function h in Example 1 is ∀a.a → a since it does not
contain any application of advised functions in its definition.

We begin with the following set of auxiliary functions that assists type
inference:

(Gen) gen(Γ,σ) = ∀ā.σ where ā = fv(σ)\fv(Γ ) (Card) |o1...ok | = k

The main set of type inference rules, as described in Figure 7, is an extension to
the Hindley-Milner system. We introduce a judgment Γ � e : σ � e′ to denote
that expression e has type σ under type environment Γ and it is translated to
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Expressions:

(Var)

x : ∀ā.p̄.t � e ∈ Γ

Γ � x : [t̄/ā]p̄.t � e
(Var-A)

x :∗ ∀ā.p̄.tx ∈ Γ t′ = [t̄/ā]tx

wv(x : t′) Γ � ni : t′ � ei

n̄ : ∀b̄.q̄.tn � x � n̄′ ∈ Γ {ni | ti � t′} |ȳ|=|p̄|
Γ � x : [t̄/ā]p̄.tx � λȳ.〈x ȳ , {ei}〉

(App)

Γ � e1 : t1 → t2 � e′
1 Γ � e2 : t1 � e′

2

Γ � e1 e2 : t2 � (e′
1 e′

2)
(Abs)

Γ.x : t1 � x � e : t2 � e′

Γ � λx.e : t1 → t2 � λx.e′

(Let)

Γ � e1 : ρ � e′
1 σ = gen(Γ, ρ) Γ.f : σ � f � e2 : t � e′

2

Γ � let f = e1 in e2 : t � let f = e′
1 in e′

2

(Pred)

x :∗ ∀ā.p̄.tx ∈ Γ [t̄/ā]tx � t

Γ.x : t � xt � e : ρ � e′
t x ∈ A

Γ � e : (x : t).ρ � λxt.e
′
t

(Rel)

Γ � e : (x : t).ρ � e′

Γ � x : t � e′′ x ∈ A x �= e

Γ � e : ρ � e′ e′′

Declarations:

(Global)

Γ � e : ρ � e′ σ = gen(Γ, ρ) Γ.id :(∗) σ � id � π : t � π′

Γ � id = e in π : t � id = e′ in π′

(Adv)

Γ.proceed : t1 → t2 � λx.ea : p̄.t1 → t2 � e′
a fi : ∀ā.ti ∈ Γbase

try(S = t1 � tx) S(t1 → t2) � ti

Γ.n : σ � f̄ � n � π : t′ � π′ σ = gen(Γ,S(p̄.t1 → t2))
Γ � n@advice around {f̄} (x :: ∀b̄.tx) = eain π : t′ � n = e′

a in π′

Fig. 7. Typing rules

e′. We assume that the advice declarations are preprocessed and all the names
which appear in any of the pointcuts are recorded in an initial global store A.
Note that locally defined functions are not subject to being advised and not listed
in A. We also assume that the base program is well typed in Hindley-Milner and
the type information of all the functions are stored in Γbase.

The typing environment Γ contains not only the usual type bindings (of the
form x : σ � e) but also advice bindings of the form n : σ � x̄. This states
that an advice with name n of type σ is defined on a set of functions x̄. We
may drop the � x̄ part if found irrelevant. When the bound function name is
advised (i.e. x ∈ A), we use a different binding :∗ to distinguish from the non-
advised case so that it may appear in a predicate as in rule (Pred). We also
use the notation :(∗) to represent a binding which is either : or :∗. When there
are multiple bindings of the same variable in a typing environment, the newly
added one shadows previous ones.

Predicating and Releasing. Before illustrating the main typing rules, we
introduce a weavable constraint of the form wv(f : t) which indicates that advice
application of the f -call of type t can be decided. It is formally defined as:
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Definition 1. Given a function f and its type t2 → t′2, if ((∀n.n :(∗) ∀ā.p̄.t1 →
t′1 � f) ∈ Γ ∧ t1 ∼ t2) ⇒ t1 � t2, then wv(f : t2 → t′2).

This condition basically means that under a given typing environment, a func-
tion’s type is no more general than any of its advices. For instance, under the
environment {n : ∀a.[a] → [a] � f, n1 : Int → Int � f}, wv(f : b → b) is
false because the type is not specific enough to determine whether n1 and n2
should apply whereas wv(f : Bool → Bool) is vacuously true and, in this case,
no advice applies. Note that since unification and matching are defined on types
instead of type schemes, quantified variables are freshly instantiated to avoid
name capturing.

There are two rules for variable lookups. Rule (Var) is standard. In the case
that variable x is advised, rule (Var-A) will create a fresh instance t′ of the
type scheme bound to x in the environment. Then we check weavable condition
of (x : t′). If the check succeeds (i.e., x’s input type is more general or equivalent
to any of the advice’s), x will be chained with the translated forms of all those
advices defined on it, having equivalent or more general types than x has (the
selection is done by {ni|ti � t′}). All these selected advices have corresponding
non-advised types guaranteed by the weavable condition. This ensures the bodies
of the selected advices are correctly woven. Finally, the translated expression is
normalized by bringing all the advice abstractions of x outside the chain 〈. . .〉.
This ensures type compatibility between the advised call and its advices.

If the weavable condition check fails, there must exist some advices for x with
more specific types, and rule (Var-A) fails to apply. Since x ∈ A still holds, rule
(Pred) can be applied, which adds an advice predicate to a type. (Note that
we only allow sensible choices of t constrained by tx � t.) Correspondingly, its
translation yields a lambda abstraction with an advice parameter. This advice
parameter enables concrete advice-chained functions to be passed in at a later
stage, called releasing, through application of rule (Rel). Specifically, rule (Rel)

is applied to release (i.e., remove) an advice predicate from a type. Its translation
generates a function application with an advised expression as argument.

Handling Advices. Declarations define top-level bindings including advices.
We use a judgement Γ � π : σ � π′ which reassembles the one for expressions.

Rule (Global) is very similar to rule (Let) with the tiny difference that rule
(Global) binds id which is not in A with :. It binds id with :∗ otherwise.

Rule (Adv) deals with advice declarations. We only consider type-scoped ad-
vices, and treat non-type-scoped ones as special cases having the most general
type scope ∀a.a. We first infer a (possibly advised) type of the advice as a func-
tion λx.ea under the type environment extended with proceed. The advice body
is therefore translated. Note that this translation does not necessarily complete
all the chaining because the weavable condition may not hold. Thus, as with
functions, the advice is parameterized, and an advised type is assigned to it and
only released when it is chained in rule (Var-A).

Next, we check whether the inferred input type is more general than the type-
scope: If so, the inferred type is specialized with the substitution S resulted from
the matching; otherwise, the type-scope is simply ignored. The function try acts
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as an exception handler. It attempts to match two types: If the matching suc-
ceeds, a resulting substitution is assigned to S; otherwise, an empty substitution
is returned. As a result, the inferred type t1 is not strictly required to subsume
the type scope tx. On the other hand, the advice’s type S(t1 → t2) is require
to be more general than or equivalent to all functions’ in the pointcut. Note
that the type information of all the functions is stored in Γbase. Finally, this ad-
vice is added to the environment. It does not appear in the translated program,
however, as it is translated into a function awaiting for participation in advice
chaining.

Correctness of Static Weaving. The correctness of static weaving is proven
by relating it to the operational semantics of AspectFun. Due to space limitation,
we refer readers to [2] for details.

Example. We illustrate the application of rules in Figure 7 by deriving the
type and the woven code for the program shown in Example 1. We use C as an
abbreviation for Char. During the derivation of the definition of f , we have:

Γ = { h :∗ ∀a.a → a � h, n3 : ∀a.a → a �� h � n3,
n4 : ∀a.[a] → [a] �� h � n4, n5 : ∀b.[C] → [C] �� h � n5}

h : t → t � dh ∈ Γ2
(Var)

Γ2 � h : t → t � dh

x : t � x ∈ Γ2
(Var)

Γ2 � x : t � x
(App)

Γ2 = Γ1, x : t � x � (h x) : t � (dh x)
(Abs)

Γ1 = Γ, h : t → t � dh � λx.(h x) : t → t � λx.(dh x)
(Pred)

Γ � λx.(h x) : (h : t → t).t → t � λdh.λx.(dh x)

Next, for the derivation of the first element of the main expression, we have:

Γ3 = { h :∗ ∀a.a → a � h, n3 : ∀a.a → a �� h � n3, n4 : ∀a.[a] → [a] �� h � n4,
n5 : ∀b.[C] → [C] �� h � n5, f : ∀a.(h : a → a).a → a � f}

f : ∀a.(h : a → a).a → a � f ∈ Γ3
(Var)

Γ3 � f : (h : [C] → [C]).[C] → [C] � f

h :∗ ∀a.a → a � h ∈ Γ3 ...
(Var-A)

Γ3 � h : [C] → [C] � 〈h , {n3, n4, n5}〉
(Rel)

Γ3 � f : [C] → [C] � (f 〈h , {n3, n4, n5}〉)
...

(App)

Γ3 � (f “c”) : [Char] � (f 〈h , {n3, n4, n5}〉 “c”)

We note that rules (Abs),(Let) and (App) are rather standard. Rule (Let)

only binds f with : which signalizes locally defined functions are not subject to
advising.

Final Translation and Chain Expansions. The last step of AspectFun com-
pilation is to expand meta-constructs produced after static weaving, such as
chain-expressions, to standard expressions in AspectFun, which are called ex-
panded expressions. It is in fact seperated into two steps: addProceed and chain
expansion. AddProceed turns the keyword proceed into a parameter of all ad-
vices. Expansion of meta-construct (chains) is defined (partly) below by an
expansion operator [[·]]. It is applied compositionally on expressions, with the
help of an auxiliary function ProceedApply to substitute proper function as the
proceed parameter. Moreover, ProceedApply also handles expansion of second-
order advices.
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eM : Expressions containing meta-constructs
addProceed : eM −→ eM

addProceed(let n df arg = e1 in e2) = if (n is an advice) then
let n df proceed arg = e1

in addProceed(e2)
else let n df arg = e1 in addProceed(e2)

addProceed(e) = e

[[·]] : eM −→ Expanded expression
[[e1 e2]] = [[e1]] [[e2]] ... trivial rules omitted
[[〈f e , {}〉]] = [[f e]]
[[〈f e , {ea, eadvs}〉]] = ProceedApply(ea, 〈f e , {eadvs}〉)

ProceedApply(n e, k) = [[n e k]] if rank(n) = 0
ProceedApply(〈n e , {ns}〉, k) = [[〈n e k , {ns}〉]] if rank(n) > 0

rank(x) =
{

1 + maxi rank(eai) if x ≡ 〈f e , {ea}〉
0 otherwise

4 Compiling Control-Flow Based Pointcuts

In this section, we present our compilation model for composite pointcuts –
control-flow based pointcuts. Despite the fact that control-flow information are
only available fully during run-time, we strive to discover as much information
as possible during compilation. Our strategy is as follows: In the early stage of
the compilation process (step 2 in Figure 2), we convert all control-flow based
pointcuts in the source to pointcuts involving only cflowbelow[2]. For example,

m@advice around {h+cflowbelow(d(_::Int))} (arg) = ...

will be translated, via introduction of second-order advice, into the following:

m’@advice around {d} (arg :: Int) = proceed arg in
m@advice around {h+cflowbelow(m’)} (arg) = ...

Next, the advice m will be further translated to

m@advice around {h} (arg) = ...

while the association of h+cflowbelow(m’) and m will be remembered for
future use.

After the static weaving and addProceed step, we reinstall the control-flow
based pointcuts in the woven code through guard insertion and monad transfor-
mation (steps 6 and 8 in Figure 2), following the semantics of control-flow based
pointcuts, and then subject the woven code to control-flow pointcut analysis
and code optimization. The description of these steps will be presented after
explaining the extension made to the FIL semantics.
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Semantics of control-flow based pointcuts. The semantics of control-flow
based pointcuts is defined by modifying the operational semantics for FIL intro-
duced in section 2.

Specifically, we modify the operational semantics function ⇓A, defined in Fig-
ure 6, to carry a stack S, written as ⇓S

A, denoting that the progress is done under
a stack environment S. S is a stack of function names capturing the stack of
nested calls that have been invoked but not returned at the point of reduction.

By replacing ⇓ by ⇓S , most of the rules remain unchanged except rules
(OS:App) and (OS:Let), which are refined with the introduction of (|e, S|):

(OS:App’)

eI
1 ⇓S λf :τf x : τx. eI

3 Trigger′(λfx : τx. eI
3, f : τf , S) = λgx : τx. eI

4

S ′ = cons(g, S) [(|eI
2, S|)/x]eI

4 ⇓S′
vI

eI
1 eI

2 ⇓S
A vI

(OS:Let’)

[(|eI
1, S|)/x]eI

2 ⇓S vI

LET x = eI
1 IN eI

2 ⇓S vI
(OS:Clos)

eI ⇓S vI

(|eI , S|) ⇓S′
vI

(|e, S|) is a stack closure, meaning that e should be evaluated under stack S
ignoring current stack, since we adopt lazy semantics for AspectFun. Detailed
discussion of the modification can be found in [2].

State-based implementation. As stated above, the only control-flow based
pointcut to implement is the cflowbelow pointcut. We use an example to illus-
trate our implementation scheme. The following is part of a woven code after
static weaving.

Example 3. // meta-data: IFAdvice [k+cflowbelow(g)] (n,...)
n proceed arg = arg+123 in
k x = x + 1 in
g x = <k, {n}> x in
f x = if x == 0 then g x else <k, {n}> x in (f 0, f 1)

This first (comment) line in the code above indicates that advice n is associated
with the pointcut k+cflowbelow(g). Hence, n should be triggered at a call to
k only if the k-call is made in the context of a g’s invocation. We call g the
cflowbelow advised function.

In order to support the dynamic nature of the cflowbelow pointcut efficiently,
our implementation maintains a global state of function invocations, and inserts
state-update and state-lookup operations at proper places in the woven code.
Specifically, the insertion is done at two kinds of locations: At the definitions of
cflowbelow advised functions, g here, and at the uses of cflowbelow advices.

For a cflowbelow advised function definition, we encode the updating of
the global state – to record the entry into and the exit from the function – in
the function body. In the spirit of pure functional language, we implement this
encoding using a reader monad [7]. In pseudo-code format, the encoding of g in
Example 3 will be as follows:5

g x = enter "g"; <k, n> x; restore_state

5 Further mechanism is required when the cflowbelow advised function is a built-in
function. The detail is omitted here.
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Here, enter "g" adds an entry record into the global state, and restore state
erases it.

Next, for each use occurrence of cflowbelow advices, we wrap it with a state-
lookup to determine the presence of the respective pointcuts. The wrapped code
is a form of guarded expression denoted by <|guard,n|> for advice n. It implies
that n will be executed only if the guard evaluates to True. The Example 3 with
wrapped code appears as follows:

Example 3a
// meta-data: IFAdvice [k+cflowbelow(g)] (n,...)
n proceed arg = arg+123 in
k x = x + 1 in
g x = enter "g"; <k, { <| isIn "g", n|> } > x; restore_state in
f x = if x == 0 then g x else <k, { <| isIn "g", n |> } > x in (f 0, f 1)

The guard (isIn "g") determines if g has been invoked and not yet returned.
If so, advice n is executed. In this case, n is not triggered when evaluating f 1,
but it is when evaluating f 0.

Control-Flow Pointcut Analysis and Optimization. From Example 3a, we
note that the guard occurring in the definition of g is always true, and can thus
be eliminated. Similarly, the guard occurring in the definition of f is always false,
and the associated advice n can be removed from the code. Indeed, many of such
guards can be eliminated during compile time, thus speeding up the execution
of the woven code. We thus employ two interprocedural analyses to determine
the opportunity for optimizing guarded expressions. They are mayCflow and
mustCflow analyses (cf. [1]).

Since the subject language is polymorphically typed and higher-order, we
adopt annotated-type and effect systems for our analysis (cf. [11]). We define
a context ϕ to be a set of function names. Judgments for both mayCflow and
mustCflow analyses are of the form

Γ̂ � e : τ̂1
ϕ′

−→τ̂2 & ϕ

For mayCflow analysis (resp. mustCflow analysis), this means that under an

annotated-type environment Γ̂ , an expression e has an annotated type τ̂1
ϕ′

−→τ̂2
and a context ϕ capturing the name of those functions which may be (resp. must
be) invoked and not yet returned during the execution of e. The annotation ϕ′

above the arrow → is the context in which the function resulted from evaluation
of e will be invoked.

This type-and-effect approach has been described in detail in [11]. As our
analyses follow this approach closely, we omit the detail here for space limita-
tion, and refer readers to [2] for explanation. Applying both mayCflow and
mustCflow analyses over the woven code given in Example 3a, we obtain the
following contexts for the body of each of the functions:

ϕmay
k = {f, g}, ϕmay

g = {f}, ϕmay
f = ∅

ϕmust
k = ∅, ϕmust

g = {f}, ϕmust
f = ∅
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The result of these analyses will be used to eliminate guarded expressions in the
woven code. The basic principles for optimization are:

Given a guarded expression egd of the form <| isIn f , e |>:
1. If the mayCflow analysis yields a context ϕmay for egd st. f �∈ ϕmay,

then the guard always fails, and egd will be eliminated.
2. If the mustCflow analysis yields a context ϕmust for egd st. f ∈ ϕmust,

then the guard always succeeds, and egd will be replaced by the
subexpression e.

Going back to Example 3a, we are thus able to eliminate all the guarded
expressions, yielding the following woven code:

// meta-data: IFAdvice [k+cflowbelow(g)] (n,...)
n proceed arg = arg+123 in
k x = x + 1 in
g x = enter "g"; <k, {n}> x; restore_state in
f x = if x == 0 then g x else <k, {}> x in (f 0, f 1)

The expression <k,{}> indicates that no advice is chained; thus k will be called
as usual.

5 Related Work

AspectML [4,3] and Aspectual Caml [10] are two other endeavors to support
polymorphic pointcuts and advices in a statically typed functional language.
While they have introduced some expressive aspect mechanisms into the under-
lying functional languages, they have not successfully reconciled coherent and
static weaving – two essential features of a compiler for an aspect-oriented func-
tional language.

AspectML [4,3] advocates first-class join points and employs the case-advice
mechanism to support type-scoped pointcuts based on runtime type analysis. It
enables programmers to reify calling contexts and change advice behavior based
on the context information found therein, thus achieving cflow based advising.
Such dynamic mechanisms gives AspectML additional expressiveness not found
in other works. However, many optimization opportunities are lost as advice
application information is not present during compilation.

Aspectual Caml [10] takes a lexical approach to static weaving. Its weaver
traverses type-annotated base program ASTs to insert advices at matched joint
points. The types of the applied advices must be more general than those of
the joint points, thus guaranteeing type safety. Unfortunately, the technique
fails to support coherent weaving of polymorphic functions which are invoked
indirectly. Moreover, there is no formal description of the type inference rules,
static weaving algorithm, or operational semantics.

The implementation and optimization of AspectFun took inspirations from
the AspectBench Compiler for AspectJ (ABC) [1]. Despite having a similar aim,
the differences between object-oriented and functional paradigms do not allow
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most existing techniques to be shared. The concerns of closures and inlining
can be more straightforwardly encoded with higher-order functions and function
calls in AspectFun; whereas the complex control flow of higher-order functional
languages makes the cflow analysis much more challenging. As a result, our typed
cflow analysis has little resemblance with the one in ABC which was based on
call graphs of an imperative language.

In [9], Masuhara et al. proposed a compilation and optimization model for
aspect-oriented programs. As their approach employs partial evaluation to op-
timize a dynamic weaver implemented in Scheme, the amount of optimization
is restricted by the ability of the partial evaluator. In contrast, our compilation
model is built upon a static weaving framework; residues are only inserted when
it is absolutely necessary (in case of some control-flow based pointcuts), which
keeps the dynamic impact of weaving to a minimum.

6 Conclusion and Future Work

Static typing, static and coherent weaving are our main concerns in constructing
a compilation model for functional languages with higher-order functions and
parametric polymorphism. As a sequel to our previous work, this paper has made
the following significant progress. Firstly, while the basic structure of our type
system remains the same, the typing and translation rules have been significantly
refined and extended beyond the two-layered model of functions and advices.
Consequently, advices and advice bodies can also be advised. Secondly, we proved
the soundness of our static weaving with respect to an operational semantics for
the underlying language, AspectFun. Thirdly, we seamlessly incorporated a wide
range of control-flow based pointcuts into our model and implemented some
novel optimization techniques which take advantage of the static nature of our
weaver. Lastly, we developed a compiler which follows our model to translate
AspectFun programs into executable Haskell code.

Moving ahead, we will investigate additional optimization techniques and con-
duct empirical experiments of performance gain. Besides, we plan to explore ways
of applying our static weaving system to other language paradigms. In particu-
lar, Java 1.5 has been extend with parametric polymorphism by the introduction
of generics. Yet, as mentioned in [5], the type-erasure semantics of Java prohibits
the use of dynamic type tests to handle type-scoped advices. We speculate our
static weaving scheme could be a key to the solution of the problem.

Acknowledgment

We would like to thank the anonymous referees for their insightful comments.
This research is partially supported by the National University of Singapore
under research grant “R-252-000-250-112”, and by the National Science Council,
Taiwan, R.O.C. under grant number “NSC 95-2221-E-004-004-MY2”.



Model for Aspect-Oriented Polymorphically Typed Functional Languages 51

References

1. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Optimising Aspect J. In:
PLDI ’05. Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, New York, NY, USA, pp. 117–128. ACM
Press, NewYork (2005)

2. Chen, K., Weng, S.-C., Wang, M., Khoo, S.-C., Chen, C.-H.: A compila-
tion model for AspectFun. Technical report, TR-03-07, National Chengchi Uni-
versity, Taiwan (March 2007) http://www.cs.nccu.edu.tw/∼chenk/AspectFun/
AspectFun-TR.pdf

3. Dantas, D.S., Walker, D., Washburn, G., Weirich, S.: PolyAML: A polymorphic
aspect-oriented functional programmming language. In: Proc. of ICFP’05. ACM
Press, NewYork (2005)

4. Dantas, D.S., Walker, D., Washburn, G., Weirich, S.: AspectML: A polymorphic
aspect-oriented functional programming language. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) (to appear, 2006)

5. Jagadeesan, R., Jeffrey, A., Riely, J.: Typed parametric polymorphism for aspects.
Science of Computer Programming (to appear, 2006)

6. Jones, M.P.: Qualified Types: Theory and Practice. D.phil. thesis, Oxford Univer-
sity (September 1992)

7. M.P. Jones.: Functional programming with overloading and higher-order polymor-
phism. In: Advanced Functional Programming, pp. 97–136 (1995)

8. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

9. Masuhara, H., Kiczales, G., Dutchyn, C.: A compilation and optimization model
for aspect-oriented programs. In: CC, pp. 46–60 (2003)

10. Masuhara, H., Tatsuzawa, H., Yonezawa, A.: Aspectual Caml: an aspect-oriented
functional language. In: Proc. of ICFP’05. ACM Press, NewYork (2005)

11. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag New York, Inc, Secaucus, NJ, USA (1999)

12. Rajan, H., Sullivan, K.J.: Classpects: unifying aspect- and object-oriented language
design. In: Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 59–68.
ACM Press, NewYork (2005)

13. Sereni, D., de Moor, O.: Static analysis of aspects. In: Aksit, M. (ed.) AOSD. 2nd
International Conference on Aspect-Oriented Software Development, pp. 30–39.
ACM Press, NewYork (2003)

14. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: Confer-
ence Record of the 16th Annual ACM Symposium on Principles of Programming
Languages, pp. 60–76. ACM, NewYork (1989)

15. Wang, M., Chen, K., Khoo, S.-C.: Type-directed weaving of aspects for higher-
order functional languages. In: PEPM ’06. Workshop on Partial Evaluation and
Program Manipulation, ACM Press, NewYork (2006)

http://www.cs.nccu.edu.tw/~chenk/AspectFun/AspectFun-TR.pdf
http://www.cs.nccu.edu.tw/~chenk/AspectFun/AspectFun-TR.pdf

	95結案報告.pdf
	ForNSC-96.pdf
	計畫成果自評.pdf
	97出席國際會議研究心得報告及發表論文.pdf
	SAS2007-LNCS4634.pdf
	Introduction
	AspectFun: The Aspect Language 
	Static Weaving
	Compiling Control-Flow Based Pointcuts
	Related Work
	Conclusion and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




