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A Study of Expansions of Posterior Distributions

RUBY C. WENG AND CHENG-HUNG HSU

National Chenghai University, Taipei, Taiwan

Johnson (1970) obtained expansions for marginal posterior distributions through
Taylor expansions. Here, the posterior expansion is expressed in terms of the
likelihood and the prior together with their derivatives. Recently, Weng (2010) used
a version of Stein’s identity to derive a Bayesian Edgeworth expansion, expressed
by posterior moments. Since the pivots used in these two articles are the same, it
is of interest to compare these two expansions. We found that our O�t−1/2� term
agrees with Johnson’s arithmetically, but the O�t−1� term does not. The simulations
confirmed this finding and revealed that our O�t−1� term gives better performance
than Johnson’s.

Keywords Edgeworth expansion; Marginal posterior densities; Stein’s identity.

Mathematics Subject Classification 41; 62.

1. Introduction

Let g��� be a smooth function on the parameter space �. The calculation of the
posterior mean of g���, given a sample of observations xt, requires integration over
� of the form

Et
��g���� = E��g����xt� =

∫
�
g���exp��t��������d�∫
�
exp��t��������d�

	 (1)

where �t is the log-likelihood function and � the prior. Nowadays, modern
computing techniques like Markov chain Monte Carlo and importance sampling
have made many computations possible. Still, analytic approximations are simpler
to compute for some models, and are useful as a starting point for more exact
methods.

A conventional analytic approach to this problem (1) starts from a Taylor
series expansion at the maximum likelihood estimator (or at the modes of the
integrands), proceeds from there to develop expansions on both the numerator and
denominator, and then obtains approximations by formal division of the two series.
For example, Johnson (1967, 1970) derived expansions associated with posterior
distribution of some pivotal quantity Lindley (1961, 1980) and Mosteller and
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Expansions of Posterior Distributions 347

Wallace (1964) obtained second-order approximations for the integral by applying
standard Laplace method to both numerator and denominator and taking the ratio.
Tierney and Kadane (1986) renewed interest in Laplace method by assuming that
g is positive and expanding the integrand of the numerator in (1) at the mode of
the integrand itself, rather than at the posterior mode. In fact, this is a numerical
method, not requiring analytic expansions. This work was followed by Tierney et al.
(1989), who proposed a numerical device to approximate the posterior expectation
for a general function g (possibly non positive) and showed that this numerical
approach is arithmetic equivalent to second order expansions by the standard
Laplace method.

Recently, Weng (2010) used a version of Stein’s identity to derive an Edgeworth
series for posterior distribution of a normalized quantity Zt. Note that an
Edgeworth series is an expansion of a probability distribution in terms of its
moments. In contrast, the expansion in Johnson (1970) is expressed in terms of the
likelihood and the prior. Since the pivots used in these two articles are the same,
it is of interest to compare these two expansions. The goals of the present article
are to suitably approximate these posterior moments in terms of the likelihood
and the prior, and then substitute these approximations into the Edgeworth series
and compare with the result in Johnson (1970). We found that our O�t−1/2�
term is arithmetically equivalent to Johnson’s, but the O�t−1� term is not. Since
the derivation is tedious and difficult to detect errors, we conducted simulation
studies to further compare these expansions. The simulations confirmed that the
two expressions for O�t−1/2� term yield close results, and revealed that our O�t−1�
term gives better performance than Johnson’s. Note that the emphasis here is on
comparison of the two expansions, rather than the regularity conditions for the
expansions.

Section 2 introduces the model, and Stein’s Identity. Section 3 reviews
expansions of posterior distributions in Johnson (1970) and Weng (2010). Section 4
presents approximations for posterior moments of Zt and compare the expansions
in these two articles. Section 5 gives some remarks. The appendices contain some
proofs.

2. The Model and Stein’s Identity

2.1. The Model

Let Xt be a random vector distributed according to a family of probability densities
pt�xt � ��, where t is a discrete or continuous parameter and � ∈ � ⊂ �p. Consider
a Bayesian model in which � has a prior density � which is twice differentiable in
�p and vanishes off of �. Assume that the log-likelihood function �t��� is twice
differentiable with respect to �. Assume that maximum likelihood estimator �̂t exists
and satisfies 
�t��̂t� = 0 and −
2�t��̂t� being positive definite, where 
 indicates
differentiation with respect to �.

Throughout let �p denote the standard p-variate normal distribution and �p

the density; let � be the abbreviation of �1, and similarly for �. Define t and Zt as

T
t t = −
2�t��̂t� (2)

Zt = t��− �̂t�� (3)
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348 Weng and Hsu

Then the posterior density of � given data xt is �t��� ∝ exp��t��������, and the
posterior density of Zt is

�t�zt� ∝ �t���zt�� ∝ exp��t���− �t��̂t������	 (4)

where the relation of � and zt is given in (3). Now define

ut��� = �t���− �t��̂t�+
1
2
�zt�2� (5)

So, (4) can be rewritten as

�t�zt� ∝ �p�zt�ft�zt�	 (6)

where ft�zt� = ����zt��exp�ut����.
Let 
� and 
2� denote the gradient and Hessian of � with respect to �, 
ft

and 
2ft the gradient and Hessian of ft with respect to Zt, and Et
� and V t

� the
posterior expectation and variance given data xt. Some calculations are useful for
later reference.


ft�Zt�

ft�Zt�
= �T

t �
−1

[

����

����
+ 
ut���

]
	 (7)


2ft�Zt�

ft�Zt�
= �T

t �
−1

[

2�

�
+ 
�

�

uT

t + 
ut


�T

�
+ 
2ut + 
ut
u

T
t

]
−1

t 	 (8)

where by (5) we can derive


ut��� = 
�t���− 
2�t��̂t���− �̂t�	 (9)


2ut��� = 
2�t���− 
2�t��̂t�� (10)

2.2. Stein’s Identity

Write �ph = ∫
hd�p for functions h for which the integral is finite. For s > 0,

denote Hs as the collection of all measurable functions h � �p → � for which
�h�z��/b ≤ 1+ �z�s for some b > 0. Given h ∈ Hs, let h0 = �ph, hp = h,

hk�y1	 � � � 	 yk� =
∫
�p−k

h�y1	 � � � 	 yk	 w��p−k�dw�	 (11)

gk�y1	 � � � 	 yp� = e
1
2 y

2
k

∫ 	

yk

�hk�y1	 � � � 	 yk−1	 w�− hk−1�y1	 � � � 	 yk−1��e
− 1

2w
2
dw	 (12)

for −	 < y1	 � � � 	 yp < 	 and k = 1	 � � � 	 p. Then let Uh = �g1	 � � � 	 gp�
T and Vh =

�U 2h+ U 2hT�/2, where U 2h is the p× p matrix whose kth column is Ugk and gk
is as in (12). For example, for z = �z1	 � � � 	 zp�

T ∈ �p, if h�z� = z1, then Uh�z� =
�1	 0	 � � � 	 0�T . Simple calculations by taking f�z� in Lemma 2.1 below as zi

�p�Uh� =
∫
�p

zh�z��p�dz�� (13)
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Expansions of Posterior Distributions 349

Lemma 2.1 (Stein’s Identity). Let r be a nonnegative integer. Suppose that f � �p →
� is continuously differentiable on �p, and

∫
�p

�f�z���p�dz�+
∫
�p

�1+ �z�r ��
f�z���p�dz� < 	�

Then,

�p�fh� = �pf ·�ph+
∫
�p

�Uh�z��T
f�z��p�dz�	

for all h ∈ Hr . If �f/�zj , j = 1	 � � � 	 p, are continuously differentiable, and

∫
�p

�1+ �z�r ��
2f�z���p�dz� < 		

then

�p�fh� = �pf ·�ph+ ��pUh�
T
∫
�p


f�z��p�dz�+
∫
�p

tr��Vh�z��
2f�z���p�dz�	

for all h ∈ Hr�

The proof of Lemma 2.1 is in Woodroofe (1989, Proposition 1); see also Weng
and Woodroofe (2000). Observe from (6) that the posterior distribution of Zt is of
a form suitable for Stein’s Identity. So, by Lemma 2.1,

Et
��h�Zt�� = �ph+ Et

�

{
�Uh�Zt��

T 
ft�Zt�

ft�Zt�

}
	 (14)

Et
��h�Zt�� = �ph+ ��pUh�

TEt
�

[

ft�Zt�

ft�Zt�

]
+ Et

�

{
tr
[
Vh�Zt�


2ft�Zt�

ft�Zt�

]}
� (15)

Moreover, if h�z� � �p → � is a function of zp alone (that is, h�z� = h∗�zp�,
where h∗ � � → �), then by repeatedly applying this identity, Weng (2010) obtains
the following equation:

��fh� = �f ·�h∗ +
s−1∑
k=1

��Ukh∗�
∫
�p

�kf�z�

�zkp
�p�dz�+

∫
�p

U sh∗�z�
�sf�z�

�zsp
�p�dz�	

provided all the integrals exist. Applying this equation to posterior distributions
yield

Et
��h

∗�Ztp�� = �h∗ +
s−1∑
k=1

��Ukh∗�Et
�

[
�kft/�z

k
tp

ft
�Zt�

]
+ Et

�

{
�U sh∗�Ztp��

�sft/�z
s
tp

ft
�Zt�

}
�

(16)

Equation (16) will be used in the proofs of Lemmas 4.7 and 4.9 below to obtain
expressions for Et

�Z
4
tp and Et

�Z
6
tp.
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350 Weng and Hsu

3. Review of Posterior Expansions

Johnson (1970) considered the posterior distribution of a centered and scaled
variable (see his Eq. (2.1), p. 853) in 1-dimensional case:

� = ��− �̂t�b��̂t�	 (17)

where t is the sample size and

b��̂t� =
[
− 1

t

t∑
i=1

�2

��2
log p�xi	 ����=�̂t

]1/2

�

Denote the posterior cumulative distribution function (cdf) of t1/2� by Ft. He
showed that the posterior distribution of Ft possesses an asymptotic expansion in
powers of t−1/2 (see his Theorem 2.1):

�Ft�w�−��w�−
K∑
j=1

�j�w	 x�t
−j/2� ≤ D1t

− 1
2 �K+1�� (18)

The forms of �1 and �2 are given in Johnson’s is Sec. 2.4 (see Eq. (2.25) and (2.26),
p. 858):

�1�w	 x� = −��w�c−1
00 �c10�w

2 + 2�+ c01�	 (19)

�2�w	 x� = −��w�c−1
00 �c20w

5 + �5c20 + c11�w
3 + �15c20 + 3c11 + c02�w�� (20)

Here, the clm involves the prior � and the likelihood together with their derivatives:

c00 = ���̂t�� c01 = b−1��1���̂t�� c02 = b−2��2���̂t��

c10 = b−3a3t��̂t����̂t�� c11 = b−4a4t��̂t����̂t�+ b−4a3t��̂t��
�1���̂t��

c20 = 2−1b−6a2
3t��̂t����̂t�	

where

akt��� =
1
t

(
1
k!
) t∑

i=1

�k

��k
log p�xi	 ��� (21)

To compare with Weng (2010), let Zt = �Zt1	 � � � 	 Ztp�
T be as in (3). Define

J1 = �1	 3� and Ji = �3i− 4	 3i− 2	 3i� for i > 1; for example, J2 = �2	 4	 6�, J3 =
�5	 7	 9�. Weng (2010, Sec. 3) showed that the marginal posterior distribution of Ztp

can be expanded as

Pt
��Ztp ≤ w� = ��w�+

m∑
i=1

Rit�w���w�+ O
(
t−

m+1
2
)
	 (22)

where

Rit�w� =
∑
j∈Ji

1
j!qj−1�w���w�E

t
��qj�Ztp�� = O

(
t−

i
2
)
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Expansions of Posterior Distributions 351

with qi being Hermite polynomials, given by qk�z���z� = �−d/dz�k��z�. For
instance, for k = 0	 1	 2	 3 we have q0�z� = 1, q1�z� = z, q2�z� = z2 − 1, q3�z� = z3 −
3z. Moreover, the marginal posterior density for �p is

�tp�a� = �t�pp

{
��w�+

m∑
i=1

Qit�w���w�+ O�t−
m+1
2 �

}
	 (23)

where

Qit�w� =
∑
j∈Ji

1
j!qj�w���w�E

t
��qj�Ztp�� = O�t−

i
2 ��

In particular, if m = 2, then we have

∣∣Pt
��Ztp ≤ w�−��w�− ��w��R1t�w�+ R2t�w��

∣∣ = O�t−3/2�	 (24)

where

R1t�w� = q0�w�E
t
��q1�Ztp��+

1
3!q2�w�E

t
��q3�Ztp�� = O�t−1/2�	 (25)

R2t�w� =
1
2!q1�w�E

t
��q2�Ztp��+

1
4!q3�w�E

t
��q4�Ztp��+

1
6!q5�w�E

t
��q6�Ztp��

= O�t−1�� (26)

Since the normalized quantity Zt in (3) is the multivariate version of � in (17),
it is of interest to compare the O�t−1/2� and O�t−1� terms in (18) and (24); that is,
the terms −�R1t	−�R2t in (24) and �1t

−1/2, �2t
−1 in (18). To proceed further, first

one needs to approximate the moments Et
��qk�Ztp��, k = 1	 2	 3	 4	 6 in terms of the

likelihood and the prior. Then, we plug these approximations into (25) and (26) and
compare with (19) and (20). The results are in the next section.

4. Main Results

We shall first obtain approximations of posterior moments of Zt. Some notations
are needed. First, denote ��k�t and �̂

�k�
t as the kth partial derivative and its value at �̂t;

and denote as ��k�i1···ik and �̂
�k�
i1···ik to emphasize that the derivatives are with respect to

�i1	 � � � 	 �ik . We denote similarly for derivatives of �. Then, for a given matrix A, its
ith row is denoted as �A�i· and its �i	 j�-component is written as �A�ij . Some matrices
and vectors involving higher order derivatives of �t are needed. We denote minus
the inverse Hessian of �t at �̂t as either �−
2�̂t�

−1 or H . For k	 l	 i	 j = 1	 � � � 	 p, let
Dk and Dkl denote the p× p matrices with �Dk�ij = �̂

�3�
kij and �Dkl�ij = �̂

�4�
klij . Moreover,

define Vk = �T
t �

−1Dk
−1
t . It is easy to see that H , Dk, Dkl, and Vk are all symmetric

matrices. Now define

S = �tr�V1�	 � � � 	 tr�Vp��
T = �tr�D1H�	 · · · 	 tr�DpH��T 	 (27)

Wij = �Di�j�H

(

�̂

�̂
+ 1

2
S

)
+ 1

2
tr�HDiHDj�+

1
2
tr�DijH�� (28)
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352 Weng and Hsu

Note that for simplicity of notation, the dependency of these matrices and vectors
on t will be suppressed when this leads to no ambiguity. When p = 1, they have
simpler forms:

Dk = �̂
�3�
t 	 Dkl = �̂

�4�
t 	 H = �−�̂

�2�
t �−1	

S = Vk =
�̂
�3�
t

−�̂
�2�
t

	 W =
(

�̂
�3�
t

−�̂
�2�
t

)
�
�̂�1�

�̂
�+

(
�̂
�3�
t

−�̂
�2�
t

)2

+ 1
2

(
�̂
�4�
t

−�̂
�2�
t

)
	 (29)

4.1. Moments of Zt

Recall that Xt is a random vector from pt�xt � ��, where � is chosen according to the
prior density �. Let �0 denote the true underlying parameter. The lemma below is
well known under some regularity conditions and we state it here for later use. The
proof is in, for instance, Johnson (1970).

Lemma 4.2. Let Mt�r� r1	 � � � 	 rp� denote rth joint posterior moments of Zt with 0 <
r ≤ 6; that is, Mt�r� r1	 � � � 	 rp� = Et

�h�Zt�, where h�z� = ∏p
i=1 z

ri
i with

∑
ri = r. Then

(i) Et
�h�Zt� = O�t−1/2� for odd r;

(ii) Et
�h�Zt� = �h+ O�t−1� for even r.

Next we refine approximations for the first two moments of Zt. Remember that
if h�z� = zi, Uh�z� = ei, and if h�z� = zizj and i < j, Uh�z� = ziej . So, (14) and (15)
give

Et
�Zt = Et

�

(

ft�Zt�

ft�Zt�

)
	 (30)

Et
��ZtiZtj� = �ij + Et

�

[

2ft�Zt�

ft�Zt�

]
ij

� (31)

Note that if � is smooth, then by Lemma 4.2(i) we have

Et
�

(

�

�

)
= 
�̂

�̂
+ O�t−1� and Et

�

(

2�

�

)
= 
2�̂

�̂
+ O�t−1�� (32)

The proofs of the next two results are in Appendices A.1 and A.2, respectively.

Lemma 4.3. Let 
ut and 
2ut be as in (9) and (10). Then:

(i) Et
��
ut���� = 1

2S + O�t−1�;

(ii) Et
��


2ut����ij = 1
2 �Di�j�H�
�̂

�̂
+ 1

2S�+ 1
2 tr�DijH�+ O�t−1�;

(iii) �Et
��
ut
u

T
t ��ij − �Et

��
ut�E
t
��
u

T
t ��ij = 1

2 tr�HDkHDl�+ O�t−1�.

Lemma 4.4. Let S and W be as in (27) and (28). Then:

(i) Et
�Zt = �T

t �
−1� 
�̂

�̂
+ 1

2S�+ O�t−3/2�;

(ii) V t
�Zt = Ip + �T

t �
−1�� 


2 �̂

�̂
�− � 
�̂

�̂
�� 
�̂

T

�̂
�+W�−1

t + O�t−2�.
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Expansions of Posterior Distributions 353

Approximations to some higher order posterior moments of Zt are also
required, and are given in Lemmas 4.5–4.9. Let �e1	 � � � 	 ep� denote the standard
orthonormal basis of �p.

Lemma 4.5. Let 1 ≤ i < p and 1 ≤ s	 l ≤ p.

(i) If h�z� = z3p, then Uh�z� = �z2p + 2�ep and �Vh�z��sl = zp1��s	l�=�p	p��.
(ii) If h�z� = ziz

2
p, then Uh�z� = ei + zizpep and �Vh�z��sl = zi1��s	l�=�p	p��.

(iii) Et
�Z

3
tp = 3Et

�Ztp + Et
��Ztp�


2ft�Zt�

ft�Zt�
�pp�.

(iv) Et
��Z

2
tpZti� = Et

�Zti + Et
��Zti�


2ft�Zt�

ft�Zt�
�pp�.

Proof. (i) and (ii) follow from (11) and (12); (iii) and (iv) follow from (i), (ii),
and (15). �

The proof of Lemma 4.6 is in Appendix A.3. With Lemmas 4.5(iii) and 4.6 we
can express Et

��q3�Ztp�� in terms of the likelihood and prior.

Lemma 4.6. Let 1 ≤ i	 j	 k ≤ p. Then,

Et
�

(
Zti

[

2ft�Zt�

ft�Zt�

]
jk

)
=

p∑
l=1

��−1
t �li�Vl�jk�+ O�t−3/2��

The proof of Lemma 4.7 below is in Appendix A.4.

Lemma 4.7. Let Q be a p-dimensional vector defined by Qr = tr�Vr�+ 2�Vr�pp; and
let J , B1, B2, and A be p× p matrices defined by

�J�rs = �−1
t �rp�

−1
t �sp	

�B1�rs = �Dr�s·
−1
t Et

��Z
2
tpZt�+

1
2
tr�DrsH�+ tr�DrsJ�	

�B2�rs =
1
2
tr�VrVs�+

1
4
tr�Vr�tr�Vs�+

1
2
�Vr�pptr�Vs�

+ 1
2
�Vs�pptr�Vr�+ 2

p∑
i=1

��Vr�ip�Vs�ip�	

A = �T
t �

−1

[

2�̂

�̂
+ 1

2

(

�̂

�̂
QT +Q


�̂T

�̂

)
+ B1 + B2

]
−1

t �

Then,

Et
�Z

4
tp = 3+ �A�pp + 5Et

��Z
2
tp − 1�+ O�t−2�� (33)

Note that the term Et
��Z

2
tpZt� (a p× 1 vector) in B1 can be approximated using

Lemma 4.5(iii)–(iv) and Lemma 4.6.
The next two lemmas are necessary for approximating Et

�Z
6
tp. The term B∗

1

in Lemma 4.9 requires Et
��Z

4
tpZt� (a p× 1 vector), which by Lemma 4.8 can

be approximated using Lemma 4.5(iii)(iv) and Lemma 4.6. Since the proofs of
Lemmas 4.8 and 4.9 are similar to that of Lemmas 4.5 and 4.7, we omit it.
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354 Weng and Hsu

Lemma 4.8. Let 1 ≤ i < p. Then:

Et
��Z

4
tpZti� = 3Et

��Zti�+ 6Et
�

(
Zti

[

2ft�Zt�

ft�Zt�

]
pp

)
+ O�t−3/2�	

Et
��Z

5
tp� = 15Et

��Ztp�+ 10Et
�

(
Ztp

[

2ft�Zt�

ft�Zt�

]
pp

)
+ O�t−3/2��

Lemma 4.9. Let Q∗ be a p-dimensional vector defined by Q∗
r = 3tr�Vr�+ 12�Vr�pp;

and let J , B∗
1 , B

∗
2 , and A∗ be p× p matrices defined by

�J�rs = �−1
t �rp�

−1
t �sp	

�B∗
1�rs = �Dr�s·

−1
t Et

��Z
4
tpZt�+

3
2
tr�DrsH�+ 6tr�DrsJ�	

�B∗
2�rs =

3
2
tr�VrVs�+

3
4
tr�Vr�tr�Vs�+ 3�Vr�pptr�Vs�

+ 3�Vs�pptr�Vr�+ 12
p∑

i=1

��Vr�ip�Vs�ip�+ 6�Vr�pp�Vs�pp	

A∗ = �T
t �

−1

[
3

2�̂

�̂
+ 1

2

(

�̂

�̂
�Q∗�T +Q∗
�̂

T

�̂

)
+ B∗

1 + B∗
2

]
−1

t �

Then,

Et
�Z

6
tp = 15+ �A∗�pp + 9�A�pp + 33Et

��Z
2
tp − 1�+ O�t−2�� (34)

4.2. Comparing �i and rit

Since the notation in Johnson (1970) is 1-dimensional, we take p = 1 and so our Zt

is 1-dimensional. When specializing Lemmas 4.4(i), 4.5, and 4.6 to p = 1, we have

Et
��q1�Zt�� = Et

�Zt =
(
�−�̂

�2�
t �−

1
2

)(
�̂�1�

�̂
+ 1

2
�̂
�3�
t

�−�̂
�2�
t �

)
+ O�t−

3
2 �	

Et
��q3�Zt�� = Et

�Z
3
t − 3Et

�Zt =
(
�−�̂

�2�
t �−

3
2

)
�̂
�3�
t + O�t−

3
2 ��

Plugging these approximations into (25) gives

R1t�w� = q0�w�E
t
��q1�Ztp��+

1
3!q2�w�E

t
��q3�Ztp��

=
(
�−�̂

�2�
t �−

1
2

)
�̂�1�

�̂
+ w2 + 2

6

(
�−�̂

�2�
t �−

3
2

)
�̂
�3�
t �

On the other hand, �1�w	 x� in (19) can be written as

�1�w	 x� = −��w�

(
�w2 + 2�b−3a3t��̂�+ b−1 �̂

�1�

�̂

)
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Expansions of Posterior Distributions 355

noting that akt��� in (21) is �1/t��1/k!���k�t ��� in our notation. Therefore, the O�t−1/2�
terms in both expansions (i.e., −��w�R1t�w� in (24) and �1�w	 x�t

−1/2 in (18)) are
equivalent.

The comparison of the O�t−1� terms can be done similarly. First, we obtain
Et

��qk�Zt��, k = 2	 4	 6 from Lemmas 4.4(ii), 4.7, 4.9. For example, by Lemma 4.4
and S and W in (29) we have:

Et
��q2�Zt�� = Et

��Z
2
t − 1� = �Et

�Zt�
2 + V t

�Zt − 1

= �−�̂
�2�
t �−1

[
�̂�2�

�̂
+ 2

�̂�1�

�̂

(
�̂
�3�
t

−�̂
�2�
t

)
+ 5

4

(
�̂
�3�
t

−�̂
�2�
t

)2

+ 1
2

(
�̂
�4�
t

−�̂
�2�
t

)]

+ O�t−2�	 (35)

where the leading terms are O�t−1�; and simple algebra gives

Et
��q4�Zt�� = Et

��Z
4
t − 6Z2

t + 3� = Et
��Z

4
t − 5�Z2

t − 1�− 3�− Et
��Z

2
t − 1�	

which can be approximated to O�t−2� by (33) and (35); and similarly, simple algebra
gives

Et
��q6�Zt�� = Et

��Z
6
t − 33�Z2

t − 1�− 15�− 15Et
��q4�Zt��− 12Et

��q2�Zt��	

where the first term on the right side can be approximated to O�t−2� by (34).
Then, we can plug these approximations into (26) and compare with �2�w	 x� in
(20). We omit details of the derivations. Unfortunately, we found that the two
approximations do not agree arithmetically; in fact, our (26) gives much more terms
than �2�w	 x� in (20). Since the derivation is tedious and difficult to detect errors, in
the next section we conduct simulations to further compare these two expansions.

4.3. Examples

Since Johnson’s formulas are for the 1-dimensional case, in the first two
examples we use one-parameter models to compare his results with ours. Since an
approximation that includes O�t−1/2� term has an error of order O�t−1�, throughout
this section we refer to an approximation that includes O�t−1/2� term as an
approximation to O�t−1�; similarly, an approximation that includes O�t−1� term is
said to be an approximation to O�t−3/2�. The simulations show that the two analytic
approximations to O�t−1� are fairly close, and for O�t−3/2� ours performs better
than Johnson’s. In the third example, we assess the accuracy of our analytic
approximations for a two-parameter logistic model.

All computations here are done in R Development Core Team (2009) and
available at http://www3.nccu.edu.tw/˜chweng/publication.htm

4.3.1. Beta-Binomial Example. Consider a binomial variable X ∼ Bin�t	 ��, where
the prior of � is assumed to be Beta(a	 b). Suppose that a = 0�5, b = 4, t = 5, x = 2.
Thus, the sample size is small and the posterior distribution of �, Beta(2.5,7), is
skewed.

We compare the approximate posterior density of � by Johnson’s formulas and
our (23) with m = 1	 2 and posterior moments replaced by approximations derived
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356 Weng and Hsu

Figure 1. Marginal posterior pdf of �. Beta-Binomial model. (a) Solid: Exact distribution;
Dashed: Our O�t−1�; Dotted: Our O�t−3/2�. (b) Solid: Exact distribution; Dashed: Johnson’s
O�t−1�; Dotted: Johnson’s O�t−3/2�. (c) Solid: Our O�t−1�; Dashed: Johnson’s O�t−1�. (color
figure available online)

in Sec. 4.1. Here, Johnson’s approximation to O�t−1� is obtained by taking K = 1
in (18):

pt�w� ≡
dFt�w�

dw
= ��w�+ d�j�w	 x�

dw
t−1/2 + O�t−1��

and the approximation to O�t−3/2� is by taking K = 2 in (18). Fig. 1(a) gives the
true density and our approximations to O�t−1� and O�t−3/2�; Fig. 1(b) gives the true
density and Johnson’s approximations to O�t−1� and O�t−3/2�; and Fig. 1(c) contains
the two O�t−1� approximations.

We have some observations. First, Fig. 1(c) shows that the two O�t−1�
approximations are quite close, which agrees with our theoretical finding. Secondly,
Fig. 1(a) shows that our approximation to O�t−3/2� is closer to the true density than
approximation to O�t−1�, but Fig. 1(b) reveals that Johnson’s formula to O�t−3/2�
does not improve upon O�t−1�.

4.3.2. Gamma-Poisson Example. To further assess the accuracy of our
approximations and Johnson’s formulas, we consider an i.i.d. sample y1	 � � � 	 yn
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Expansions of Posterior Distributions 357

Figure 2. Marginal posterior pdf of �. Poisson model with prior Gamma(30,5). (a) Solid:
Exact distribution; Dashed: Our O�t−1�; Dotted: Our O�t−3/2�. (b) Solid: Exact distribution;
Dashed: Johnson’s O�t−1�; Dotted: Johnson’s O�t−3/2�. (c) Solid: Our O�t−1�; Dashed:
Johnson’s O�t−1�. (color figure available online)

from Poisson���, where the prior of � is assumed to be Gamma(a	 b). Suppose
that �y1	 y2	 y3	 y4	 y5� = �3	 5	 7	 10	 3� and that �a	 b� = �30	 5�. Thus, the MLE
of � is 5.6, the prior mean of � is 6 and the posterior distribution of � follows
Gamma�a+∑n

i=1 yi	 b + n� = Gamma�58	 10�. We have similar observations as in
Sec. 4.3.1: First, Fig. 2(c) indicates that the two O�t−1� approximations are fairly
close. Secondly, Fig. 2(a) shows that our approximation to O�t−3/2� improves upon
O�t−1�, but Fig. 2(b) shows that Johnson’s does not.

Now we change the prior distribution to see its effect on the analytic
approximations. Suppose that �a	 b� = �15	 5�. So, the prior mean of � is 3 and ��y ∼
Gamma�43	 10�. The results are in Fig. 3. As before, Fig. 3(c) indicates that the two
O�t−1� approximations are close. However, possibly due to the fact that the prior
mean of � is farther from the MLE, we found from Figs. 3(a) and 3(b) that both
O�t−3/2� approximations are worse than O�t−1�. A closer look at these two O�t−3/2�
curves show that Johnson’s approximation (ranges between −2 and 1.5) fluctuates
more widely than ours (ranges between −1 and 1).

4.3.3. Logistic Example. We consider a data taken from Mendenhall et al. (1989);
see also Tanner (1996). The explanatory variable is the number of days of
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358 Weng and Hsu

Figure 3. Marginal posterior pdf of �. Poisson model with prior Gamma(15,5). (a) Solid:
Exact distribution; Dashed: Our O�t−1�; Dotted: Our O�t−3/2�. (b) Solid: Exact distribution;
Dashed: Johnson’s O�t−1�; Dotted: Johnson’s O�t−3/2�. (c) Solid: Our O�t−1�; Dashed:
Johnson’s O�t−1�. (color figure available online)

radiotherapy received by each of 24 patients, and the response variable is the
absence (1) and presence (0) of disease at a site three years after treatment. A
problem of interest is to use the covariate (days) to predict outcome.

We fit the data using the logistic regression model

log
(

pi

1− pi

)
= �1 + �2ci	

where ci is the covariate (days) for patient i and pi is the probability of no
disease. So, pi = exp��1 + �2ci�/�1+ exp��1 + �2ci��. The intercept �1 represents the
log-odds of success for zero days, while the slope �2 represents the change in
the log-odds of success (no disease) for every unit increase in the covariate. The
loglikelihood is

�t��� =
t∑

i=1

�yi log pi + �1− yi� log�1− pi��

=
t∑

i=1

�yi��1 + �2ci�− log�1+ exp��1 + �2ci����
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Expansions of Posterior Distributions 359

Figure 4. Marginal posterior pdf of �2. Logit2p-flat model. Solid line: Exact distribution
by numerical integration; Dashed line: Our approximation to O�t−3/2�; Dotted: Normal
approximation.

and the marginal posterior density of �2 involves two integrals:

p��2 � x� =
∫
���1	 �2�exp��t��1	 �2��d�1∫ ∫
���1	 �2�exp��t��1	 �2��d�1d�2

�

These two integrals are intractable for commonly used priors such as flat or normal.
Now we take flat priors on both �1 and �2, and use the expansion (23)

with m = 2 and approximate moments obtained in Sec. 4.1. Figure 4 provides
the approximate marginal posterior densities of �2 by normal approximation, our
approximation, and the exact density using numerical integration. Note that here
�̂t2 = −0�0853 and �t�22 = 23�25; and so the normal approximation says that the
posterior density of �2 given data is approximately N�−0�085	 �1/23�25�2�. The figure
shows that our approximation is quite close to the exact distribution.

To see whether the analytic approximation performs well or not with different
priors, we consider three normal priors: N�0	 1�, N�0	 3�, and N�0	 6�. Since the
posterior standard error of �2 is around 1/23�25 = 0�043, the prior mean 0 is about
two standard errors away from �̂t2. With such priors, Figure 5 showed that the less
informative the prior is (i.e. larger variance), the more accurate the approximate
density is.

5. Concluding Remarks

We showed how to use Stein’s identity to derive approximations of posterior
moments and compared our approximation with Johnson (1970). Our derivation
showed that the O�t−1/2� terms in both expressions are arithmetically equivalent;
however, the O�t−1� terms are not. Then we provided some examples to assess the
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360 Weng and Hsu

Figure 5. Marginal posterior pdf of �2. Logit2p-normal model. Solid line: Exact
distribution by numerical integration; Dashed line: Our approximation O�t−3/2�. (a) N�0	 1�
prior; (b) N�0	 3� prior; (c) N�0	 6� prior. (color figure available online)

accuracy of these approximations. The simulation study in Secs. 4.3.1 and 4.3.2
confirmed above findings and revealed that our O�t−1� term is slightly better than
Johnson’s. We also considered different priors in Sec. 4.3.3 and found that the
analytic approximations performs better when the prior is less informative.

Appendix

A.1 Proof of Lemma 4.3

It should always be remembered that the derivatives of ft are in (7) and (8), and

ut and 
2ut are in (9) and (10). First note that if h is a polynomial of order r, Uh
and Vh are of orders r − 1 and r − 2 (see Weng and Woodroofe, 2000, Lemma 8);
and that by (13), �pUh = 0 for even r. Denote �t = ��t1	 � � � 	 �tp�

T = �− �̂t. Then,
by Taylor expansions,

�
ut����i =
1
2
�Tt Di�t + �Rem1� =

1
2
ZT

t ViZt + �Rem1�	 (36)

�
2ut����ij = �Di�j�
−1
t Zt +

1
2

∑
k	s

�̂
�4�
ijks�Z

T
t �

T
t �

−1eke
T
s 

−1
t Zt�+ �Rem2�	 (37)
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Expansions of Posterior Distributions 361

where �Rem1� = �1/6�
∑

jks �̂
�4�
ijks�tj�tk�ts + �1/24�

∑
jksq �

�5�
ijksq��̃t��tj�tk�ts�tq, �̃t lies

between � and �̂t, and (Rem2) has a similar form. So, by Lemma 4.2(i), it can be
shown that Et

��Remi� = O�t−1� for i = 1	 2.
Now consider the quadratic terms in (36) and (37). By Lemma 4.2(ii) we have

Et
��Z

T
t ViZt� = tr�Vi�+ O�t−1� = Si + O�t−1�	

Et
��Z

T
t �

T
t �

−1eke
T
s 

−1
t Zt� = tr��T

t �
−1eke

T
s 

−1
t �+ O�t−2�

= ��−
2�̂t�
−1�ks + O�t−2�	 (38)

where the last line follows from (2). So, (i) follows. Next, (ii) follows by taking
posterior expectations on (37) and employing Lemma 4.3(i) and (38). Finally, some
algebra yields

�Et
��
ut�E

t
��
u

T
t ��ij =

1
4

∑
i

��Vk�ii�Vl�ii�+
1
2

∑
i<j

��Vk�ii�Vl�jj�+ O�t−1�	

Et
��
ut
u

T
t �ij =

3
4

∑
i

��Vk�ii�Vl�ii�+
1
2

∑
i<j

��Vk�ii�Vl�jj�+
∑
i<j

��Vk�ij�Vl�ij�+ O�t−1��

and together with the fact that tr�VkVl� = tr�HDkHDl�, (iii) follows.

A.2 Proof of Lemma 4.4

Assertion (i) follows from (7), (30), (32) and Lemma 4.3(i). For assertion (ii), first
write

�V t
�Zt�ij = Et

��ZtiZtj�− �Et
�Zti��E

t
�Ztj�

= �ij + ��T
t �

−1Et
�

[(

2�

�

)
+ 
2ut + 
ut
u

T
t

]
−1

t �ij

−
{
�T

t �
−1�Et

�

(

�

�

)
Et

�

(

�T

�

)
+ Et

��
ut�E
t
��
u

T
t ��

−1
t

}
ij

+ O�t−2�

= �ij +
{
�T

t �
−1Et

�

[(

2�

�

)
− Et

�

(

�

�

)
Et

�

(

�T

�

)]
−1

t

}
ij

+
{(

T
t �

−1�Et
��


2ut + 
ut
u
T
t �− Et

��
ut�E
t
��
u

T
t ��

−1
t

}
ij

+ O�t−2�	

where the first equality follows since Et
���
�/��
u

T
t � = O�t−1�. Then, together with

(32) and Lemma 4.3(ii)–(iii), we obtain (ii).

A.3 Proof of Lemma 4.6

From Lemma 4.2, (9), and some straightforward calculations, we have

Et
�

(
Zti

[

2ft
ft

]
jk

)
= Et

���
T
t �

−1�Zti

2ut�

−1
t �jk + O�t−3/2�	
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362 Weng and Hsu

where by (37) the posterior expectation of the �r	 s�-component of Zti

2ut is

Et
���Zti


2ut�rs� = Et
��Zti�Dr�s�

−1
t Zt�+ O�t−1/2� =

p∑
l=1

�̂
�3�
lrs �

−1
t �li + O�t−1/2��

So, and the desired result follows by writing

Et
��Zti


2ut� =
p∑

l=1

��−1
t �liDl�+ O�t−1/2�	

Et
���

T
t �

−1�Zti

2ut�

−1
t � =

p∑
l=1

��−1
t �li�

T
t �

−1Dl
−1
t �+ O�t−3/2�

=
p∑

l=1

��−1
t �liVl�+ O�t−3/2��

A.4 Proof of Lemma 4.7

If h∗�zp� = z4p, then �Uh∗ = 0 and U 2h∗�zp� = �z2p + 5�; and therefore, in (16) taking
h∗�zp� = z4p and s = 2 yields

Et
�Z

4
tp = 3+ Et

�

(
Z2

tp

[

2ft
ft

�Zt�

]
pp

)
+ 5Et

�

([

2ft
ft

�Zt�

]
pp

)
	

where Et
���


2ft/ft�Zt��pp� has been obtained from (31) and Lemma 4.4. So, it suffices
to evaluate Et

��Z
2
tp�


2ft/ft�Zt��pp�. First, taking Taylor’s expansions of 
�/� and

2�/� at �̂t and using Lemma 4.2 and (36) gives

Et
�

(
Z2

tp


2�

�

)
= 
2�̂

�̂
+ O�t−1�

Et
�

(
Z2

tp

[

�

�

uT

t

]
ij

)
= �̂

�1�
i

2�̂
�tr�Vj�+ 2�Vj�pp�+ O�t−1�

Et
�

(
Z2

tp

[

�

�

uT

t

])
= 
�̂

2�̂
QT + O�t−1�	

where Q = �Q1	 � � � 	 Qp�
T with Qj = diag�Vj�+ 2�Vj�pp. Next, by (37), we have

Et
��Z

2
tp�


2ut�rs� = Et
��Z

2
tp�Dr�s·

−1
t Zt +

1
2
Z2

tp

∑
i	j

�̂
�4�
rsij�i�j�+ O�t−1�

= �Dr�s·
−1
t Et

��Z
2
tpZt�+

1
2

∑
i	j

�̂
�4�
rsijE

t
��Z

2
tp�i�j�+ O�t−1�	

where straightforward calculations yield

Et
��Z

2
tp�i�j� = �H�ij + 2�−1

t �ip�
−1
t �jp + O�t−1��
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and hence, letting J be the p× p matrix defined by �J�ij = �−1
t �ip�

−1
t �jp, we have

1
2

∑
i	j

�̂
�4�
rsijE

t
��Z

2
tp�i�j� = tr

(
1
2
DrsH +DrsS

)
+ O�t−1��

Moreover, (36) and some calculations give

Et
��Z

2
tp�
ut
u

T
t �kl�

= 1
4
Et

�

{
Z2

tp

(∑
i

�Vk�iiZ
2
ti + 2

∑
i<j

�Vk�ijZtiZtj

)(∑
i

�Vl�iiZ
2
ti + 2

∑
i<j

�Vl�ijZtiZtj

)}
+ O�t−1�

= 1
2
tr�VkVl�+

1
4
tr�Vk�tr�Vl�+

1
2
�Vk�pptr�Vl�+

1
2
�Vl�pptr�Vk�

+ 2
∑
i=1

��Vk�ip�Vl�ip�+ O�t−1��

Then the desired results follows.
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