English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113392/144379 (79%)
Visitors : 51210910      Online Users : 898
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Category

    Loading community tree, please wait....

    Year

    Loading year class tree, please wait....

    Items for Author "呂欣澤"  

    Return to Browse by Author

    Showing 15 items.

    Collection Date Title Authors Bitstream
    [創國學士班] 期刊論文 2024-11 A Seq2Seq transformation strategy for generalizing a pre-trained model in anomaly detection of rolling element bearings 呂欣澤; Lu, Owen H.T.
    [創國學士班] 期刊論文 2023-08 Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review 呂欣澤; Lu, Owen H. T.; Lin, Chien-Chang; Huang, Anna Y. Q.
    [創國學士班] 期刊論文 2023-07 AI and Big Data in Education: Learning Patterns Identification and Intervention Leads to Performance Enhancement 呂欣澤; Lu, Owen H.T; Yang, Stephen J.H.; Lin, Chien-Chang; Huang, Anna Y.Q.; Hou, Chia-Chen; Ogata, Hiroaki
    [創國學士班] 期刊論文 2023-03 Effects of artificial Intelligence–Enabled personalized recommendations on learners’ learning engagement, motivation, and outcomes in a flipped classroom 呂欣澤; Lu, Owen H.T.; Huang, Anna Y.Q.; Yang, Stephen J.H.
    [創國學士班] 期刊論文 2023-03 Applying Learning Analytics in Programming Courses: A Feasibility Analysis on VisCode 呂欣澤; Lu, Owen H.T; Bobea, Matthew
    [創國學士班] 會議論文 2024-06 Predicting Student Learning Performance Using a Dataset of Learning Behavior and Strategies 呂欣澤; Lu, Hsin-Tse
    [創國學士班] 會議論文 2024-03 Explore the Explanation and Consistency of Explainable AI in the LBLS Data Set 呂欣澤; Lu, Owen H.T.; Hsu, Tiffany T.Y.
    [創國學士班] 會議論文 2024-03 The Feasibility of Utilizing ChatGPT in Learning Analytics for the Identification of At-Risk Students 呂欣澤; Lu, Owen H.T.; Liu, Zhi Qi; Tseng, Hsiao-Ting
    [創國學士班] 會議論文 2024-03 透過教育大數據開放策略推進學習分析研究:2023-2024 呂欣澤; Lu, Owen; Hsu, Tiffany T.Y.; Liu, Zhi Qi; Huang, Anna
    [創國學士班] 會議論文 2023-03 Analyzing Student Programming Propensity with SHAP to Classify Future Performance 呂欣澤; Lu, Owen H.T.; Li, Adrian Li; Li, Min-Jia; Bobea, Matthew; Huang, Anna Y.Q.; Yang, Stephen J.H.
    [創國學士班] 會議論文 2023-03 Improving the Prediction Accuracy of Student Performance in a Cross-Semester Scenario Utilizing a Domain Adaptation Approach 呂欣澤; Lu, Hsin Tse; Bobea, Matthew; Park, Soyeong; Flanagan, Brendan
    [創國學士班] 會議論文 2023-03 透過教育大數據開放策略推進學習分析研究:2022-2023 呂欣澤
    [創國學士班] 會議論文 2023-03 應用人工智慧內容生成技術增進程式課程學習成效 呂欣澤; 林承妍; 黃鈺晴
    [創國學士班] 會議論文 2022-11 A Quality Data Set for Data Challenge: Featuring 160 Students` Learning Behaviors and Learning Strategies in a Programming Course 呂欣澤; Lu, Owen H.T.
    [創國學士班] 會議論文 2022-10 Learnings from an EMI “Artificial Intelligence” Course Co-taught by an Academic and a Professional from Industry 呂欣澤

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback