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Application of a Back-Propagation Artificial Neural Network
to Regional Grid-Based Geoid Model Generation
Using GPS and Leveling Data

Lao-Sheng Lin'

Abstract: The height difference between the ellipsoidal height /2 and the orthometric height H is called undulation N. The key issue in
transforming the global positioning system (GPS)-derived ellipsoidal height to the orthometric height is to determine the undulation value
accurately. If the undulation N for a point whose position is determined by a GPS receiver can be estimated in the field, then the
GPS-derived three-dimensional geocentric coordinate in WGS-84 can be transformed into a local coordinate system and the orthometric
height in real-time. In this paper, algorithms of applying a back-propagation artificial neural network (BP ANN) to develop a regional
grid-based geoid model using GPS data (e.g., ellipsoidal height) and geodetic leveling data (e.g., orthometric height) are proposed. In
brief, the proposed algorithms include the following steps: (1) establish the functional relationship between the point’s plane coordinates
and its undulation using the BP ANN according to the measured GPS data and leveling data; (2) develop a regional grid-based geoid
model using the imaginary grid plane coordinates with a fixed grid interval and the trained BP ANN; (3) develop an undulation
interpolation algorithm to estimate a specific point’s undulation using the generated grid-based geoid model; and (4) estimate the point’s
undulation in the field and transform the GPS ellipsoidal height into the orthometric height in real-time. Three data sets from the Taiwan
region are used to test the proposed algorithms. The test results show that the undulation interpolation estimation accuracy using the
generated grid-based geoid is in the order of 2—4 cm. The proposed algorithms and the detailed test results are presented in this paper.

DOI: 10.1061/(ASCE)0733-9453(2007)133:2(81)

CE Database subject headings: Geoid; Global positioning; Height; Neural networks; Surveys.

Introduction

The coordinate system of the global positioning system (GPS) is
the world geodetic system of 1984 (WGS-84). The positions de-
termined by GPS receivers are expressed in geocentric coordi-
nates or geodetic coordinates defined by a WGS-84 ellipsoid, but
in engineering applications, these coordinates need to be trans-
formed into a local plane coordinate system (such as Northing
and Easting), and ellipsoidal (geodetic) heights (h) need to be
transformed into physical heights, such as orthometric heights
(H). The height difference between the ellipsoidal height 4 and
the orthometric height H is called undulation (geoid height) N. If
a point’s position is determined by a GPS receiver and its undu-
lation N is available, then its three-dimensional geocentric coor-
dinate in WGS-84 can accordingly be transformed into a local
plane coordinate system and the orthometric height, since the
orthometric height H is the difference between its geodetic height
h and the undulation N (Hu et al. 2002, 2004; Kavzoglu and Saka
2005; Kuhar et al. 2001; Stopar et al. 2006; Yang and Chen 1999;
Zaletnyik et al. 2004).

In the Taiwan region, a new national vertical datum, Taiwan
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Vertical Datum 2001, was established between 2000 and 2003.
The datum was established using the observations of geodetic
leveling, the GPS, and gravity collected at 2,065 newly estab-
lished benchmarks within a network of 4,500 km first-order lev-
eling lines. These 2,065 benchmarks are well distributed around
Taiwan and their point-to-point distances are about 2 km. Hence,
each benchmark has two types of heights, namely orthometric
height H and ellipsoidal height 4. The orthometric height H ac-
curacies from geodetic leveling are at the level of +£8.8 mm and
the ellipsoidal height /& accuracies from GPS surveying are at the
level of £36 mm (Chen et al. 2004; Yang et al. 2003).

Nowadays, the gravimetric method is the most commonly used
technique for precise determination of the geoid. The necessary
condition for its use is existence of high resolution gravity data
set. With the lack of gravity data, the geoid determination is pos-
sible by means of various geometric methods, the astrogeodetic
method and the method of determining the undulations from GPS
in combination with geometric leveling (Stopar et al. 2006). As
the undulations of those 2,065 benchmarks of the Taiwan region
can be calculated from the observed GPS and leveling data, it is
possible to generate a regional geoid model using these calculated
undulations. Further, geodetic leveling work is time consuming,
whereas GPS surveying work is relatively time saving. Hence, if
a regional geoid model can be generated from these 2,065 bench-
marks with an adequate degree of accuracy, then by integrating
the generated geoid model and the GPS, it is possible to transform
the ellipsoidal height 4 from the GPS to the orthometric height H
in an office or in the field in real-time.

In general, the shape of the geoid is very complex and the task
of approximating the geoid surface by a relatively simple math-
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ematical expression is hardly easy. For the local geoid approxi-
mation various interpolation surfaces may be used, e.g., low-order
polynomials. Alternatively, artificial neural network (ANN) used
as a geoid approximator was introduced by Ambrozic et al. in
1999 (Stopar et al. 2006). Since then, there are many studies on
geoid approximation using ANN (Hu et al. 2002, 2004; Kavzoglu
and Saka 2005; Kuhar et al. 2001), or using ANN and least
squares collocation (Stopar et al. 2006). According to their study
results, ANNs may efficiently approximate real undulation on the
chosen area.

In order to fulfill the engineering application requirement for
the orthometric height and take advantage of GPS surveying,
algorithms to generate a Taiwan regional grid-based geoid model
using the GPS and leveling data were proposed by the writer. In
this paper, the concept and methodology of the proposed grid-
based geoid model generating algorithm are first introduced.
Then, test results from the data of (1) 2,065 benchmarks around
the Taiwan region; (2) 78 benchmarks in Taichung City (in the
central part of Taiwan); and (3) 9 check points over the campus of
National Chengchi University are presented to demonstrate the
performance of the proposed grid-based geoid model generating
algorithms.

Application of a Back-Propagation Artificial Neural
Network to Regional Grid-Based Geoid Model
Generation Using GPS and Leveling Data

Undulation Calculation Using GPS and Leveling Data

Let h and H denote, respectively, the GPS-derived ellipsoidal
height and the geodetic leveling derived orthometric height at a
specific point. It should be noted that the ellipsoidal height /4 is
referred to as the surface of the WGS-84 ellipsoid, while the
orthometric height H is referred to as the surface of the local
geoid (the mean sea level). Usually, these two surfaces do not
coincide from point to point due to the fact that the physical earth
is different from the mathematical earth (ellipsoid). Hence, the
height difference between the ellipsoidal height /2 and the ortho-
metric height H is called undulation N. The following equation
establishes the relationship between h and H (Hu et al. 2004,
Kavzoglu and Saka 2005; Kuhar et al. 2001; Stopar et al. 2006;
Yang and Chen 1999; Zaletnyik et al. 2004):

h=H+N (1)

The undulation at this point can be calculated by the following
equation:

N=h-H (2)

Artificial Neural Networks

ANNs are composed of simple elements operating in parallel.
These elements are inspired by biological nervous systems. As in
nature, the network function is determined largely by the connec-
tions between elements. The network is adjusted, based on a com-
parison of the output and the target, until the network output
matches the target. Typically, many such input/target pairs are
used, in this supervised learning, to train a network (Demuth and
Beale 2002; Hu et al. 2004; Kavzoglu and Saka 2005; Kuhar et al.
2001; Stopar et al. 2006; Zaletnyik et al. 2004).

A neuron with a single scalar input p and a scalar bias b is
shown in Fig. 1. The scalar input p is transmitted through a con-
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Fig. 1. A neuron with a single input p and a scalar bias b

nection that multiplies its strength by the scalar weight w to form
the product wp. Then, the bias b is added to the product wp as
shown by the summing junction. The bias is much like a weight.
The transfer function net input n, again a scalar, is the sum of the
weighted input wp and the bias b. The sum is the argument of the
transfer function f. The scalar output of f is a, a=f(wp+b). The
central idea of ANN is that such parameters, w and b, can be
adjusted so that the network exhibits some desired or interesting
behavior (Demuth and Beale 2002).

There are many transfer functions used in ANN. Two of the
most commonly used transfer functions for back-propagation
ANN are tan-sigmoid transfer function (tansig) and linear transfer
function (purelin) (Demuth and Beale 2002). In back-propagation
it is important to be able to calculate the derivatives of any trans-
fer functions used. Each of the transfer functions, tansig and pure-
lin, can be called to calculate its own derivative.

Two or more of the neurons can be combined in a neuron
layer, and a particular network could contain one or more such
layers. There are no connections among neurons in the same
layer, whereas every two neurons in neighboring layers are con-
nected. The neuron layer includes the weight matrix, the multipli-
cation operations, the bias vector b, the summer, and the transfer
functions.

A three-layer network with input layer, one hidden layer, and
output layer is shown in Fig. 2. The network shown in Fig. 2 has
two-element input, two neurons in the hidden layer, and one neu-
ron in the output layer. It is common for different layers to have a
different number of neurons. The weight matrices being con-
nected to inputs are defined as input weights, such as IW. And the
weight matrices coming from neuron layer outputs are defined as
layer matrices, such as LW. Further, superscripts are used to iden-

Hidden layer

— AN A )

Output layer

Fig. 2. A three-layer network with two input elements, two neurons,
and one output
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tify the source (second index) and the destination (first index) for
the various weights and other elements of the network. Note that
the outputs of each intermediate layer are the inputs to the fol-
lowing layer. Thus the output layer can be analyzed as a two-layer
network with two inputs (i.e. a| and @j), one neuron, and a
1 X2 weight matrix LW. The output of hidden layer is:
a'=f!OW"p+b"). And the output of output layer is:
a?=f2LW>'a' +b?) = LW A OIW p+b1) +b?).

Neural network training can be made more efficient if certain
preprocessing steps are performed on the inputs and targets of
network. Before training, it is often useful to scale the inputs and
targets so that they always fall within a specific range. The func-
tion premnmx can be used to scale inputs and targets so that they
fall in the range [—1,1]. If premnmx is used to scale the inputs
and targets, then the output of the network will be trained to
produce outputs in the range [—1, 1]. If one wants to convert these
outputs back into the same units that were used for the original
target, then one should use the routine postmnmx (Demuth and
Beale 2002).

ANN used as a geoid approximator was introduced by Am-
brozic et al. in 1999 (Stopar et al. 2006). Since then, there are
many studies on geoid approximation using ANN (Hu et al. 2002,
2004; Kavzoglu and Saka 2005; Kuhar et al. 2001; Stopar et al.
2006; Zaletnyik et al. 2004). According to their study results,
ANNSs may efficiently approximate real undulation (geoid height)
on the chosen area. According to Kavzoglu and Saka (2005), the
ANN-based (geoid) surfaces seem to be the low deviations from
the GPS/leveling data surface. Hence, in this paper, a method
using ANN for approximation of the Taiwan geoid surface is
employed. On the other hand, the use of ANNs is complicated,
basically due to problems encountered in their design and imple-
mentation. From the design perspective, the specification of the
number and size of the hidden layer(s) is critical for the network’s
capability to learn and generalize. A further difficulty in the use of
ANNS is the choice of appropriate values for network parameters
that have a major influence on the performance of the learning
algorithm. It is often the case that a number of experiments are
required to ascertain the selection of the parameter values that
give the highest accuracy. A trial-and-error strategy is frequently
used to determine appropriate values for these parameters (Kav-
zoglu and Saka 2005; Kuhar et al. 2001; Stopar et al. 2006).

Back-Propagation Artificial Neural Networks

Back-propagation (BP) was created by generalizing the Widrow-
Hoff learning rule to multiple-layer networks and nonlinear
differentiable transfer functions. The architecture of back-
propagation artificial neural network (BP ANN) is the multilayer
feedforward network such as Fig. 2. Feedforward networks often
have one input layer, one or more hidden layers of sigmoid neu-
rons followed by an output layer of linear neurons.

Once the BP ANN weights and biases are initialized, the net-
work is ready for training. The training process requires a set of
examples of proper network behavior—network inputs p and
target outputs ¢. During training the weights and biases of the
network are iteratively adjusted to minimize the network perfor-
mance function. The default performance function for feedfor-
ward networks is mean square error—the average squared error
between the network outputs a and target outputs t. There are
many variations of the back-propagation algorithm. All these al-
gorithms use the gradient of the performance function to deter-
mine how to adjust the weights to minimize performance. The
gradient is determined using a technique called back-propagation,

which involves performing computations backward through the
network. The back-propagation computation is derived using the
chain rule of calculus (Demuth and Beale 2002; Hu et al. 2002,
2004; Kavzoglu and Saka 2005; Kuhar et al. 2001; Stopar et al.
2006).

According to Demuth and Beale (2002), a three-layer back-
propagation artificial neural network (BP ANN), i.e., input layer,
hidden layer, and output layer, can be used as a general approxi-
mator. It can approximate any function with a finite number of
discontinuities arbitrarily, given sufficient neurons in the hidden
layer. From Kavzoglu and Saka (2005), the BP learning algorithm
has been used in about 70% of all ANN applications. Besides, the
BP learning algorithm has been used in recent studies on geoid
approximation using ANN (Hu et al. 2002, 2004; Kavzoglu and
Saka 2005; Kuhar et al. 2001; Stopar et al. 2006). Hence, in this
paper the BP ANN was selected to model Taiwan geoid.

MATLAB Artificial Neural Network Toolbox

MATLAB (The Mathworks Inc., Natick, Mass.) is a high-
performance language for technical computing. It integrates
computation, visualization, and programming in an easy-to-use
environment where problems and solutions are expressed in
familiar mathematical notation. Of great importance to most users
of MATLAB, toolboxes allow one to learn and apply specialized
technology. Toolboxes are comprehensive collections of
MATLAB functions (M-files) that extend the MATLAB environ-
ment to solve particular classes of problems. Areas in which tool-
boxes are available include signal processing, control systems,
neural networks, fuzzy logic, wavelets, simulation, and many oth-
ers. There are generally four steps in the training process using
the back-propagation artificial neural network toolbox: (1) as-
semble the training data; (2) create the network object; (3) train
the network; and (4) simulate the network response to new inputs
(Demuth and Beale 2002). It should be noted that the artificial
neural network toolbox is applied in the development of the pro-
posed algorithms.

Application of a Back-Propagation Artificial Neural
Network to Undulation Estimation

If a point’s coordinates are determined by the GPS, then its ellip-
soidal height 7 can be computed accordingly. Also, its orthomet-
ric height H is determined by the geodetic leveling method, so its
undulation N can be calculated by Eq. (2). The points with known
ellipsoidal height & and orthometric height H are defined as ref-
erence points.

Suppose there are n reference points in a region of interest. We
can use the calculated undulations from those reference points to
generate a local geoid model, applying some kinds of geoid
model generating algorithms, such as the curve fitting method or
artificial neural networks. The undulations at any other points can
be predicted from the generated geoid model using an interpola-
tion technique.

Taking the curve fitting method as an example, suppose there
are n reference points with known undulations in one area. A
polynomial surface can be used to fit these known undulations,
and the coefficient terms of the polynomial can be found by the
least squares adjustment method. The following equation is an
example of the curve fitting method (Hu et al. 2002, 2004):
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N(x,Y) = ag + aix + ary + a;x> + axy + asy? 3)

where (x,y)=plane coordinates of a point; N(x,y)=corresponding
undulation to point (x,y); and a, *-as=polynomial coefficients.
For a new point p(x,y) determined by the GPS, its undulation N
can be determined by Eq. (3) if these polynomial coefficients are
known. Then, its orthometric height H can be computed by the
following equation:

H=h-N (4)

On the other hand, an artificial neural network can also be
applied to regional geoid model generation (Hu et al. 2002; 2004;
Kavzoglu and Saka 2005; Kuhar et al. 2001; Stopar et al. 2006;
Zaletnyik et al. 2004). Suppose there are n reference points in a
specific region. The reference point set P={P,,P,,...,P,} can be
used to train the BP ANN

Pi=(x,yuN), i=12,...n ®)

where (x;,y;)=plane coordinates of reference point i; N;
=corresponding undulation to reference point (x;,y,); and i indi-
cates the reference point number. It should be noted that a three-
layer BP ANN, with one input layer, one hidden layer, and one
output layer, was adopted in this paper to generate a regional
geoid model. Hence, the input vector of the BP ANN consists of
(x;,y;) and the output vector consists of N;.

After being trained by the reference point set
P={P,,P,,...,P,}, the BP ANN establishes the functional
relationship between input layer (x;,y;) and output layer N;

N;=F(x;,y;), i=12,...,n (6)

where F=function, which associates input vectors (x;,y;) with
specific output vectors N;.

It should be noted that the main function of F is similar to that
of the polynomial coefficients of Eq. (3). However, the main
function of F is described implicitly by the neurons in the hidden
layer of the BP ANN. Hence, the better way would be “to store”
the “trained BP ANN” and to compute the undulation of any point
directly from the trained BP ANN. On the other hand, an alterna-
tive approach is to apply the generated regional grid-based geoid
model using the following proposed algorithms.

Regional Grid-Based Geoid Model Generation
Procedure

In order to fulfill the engineering application requirement for the
orthometric height and take advantage of GPS surveying, algo-
rithms to generate a Taiwan regional grid-based geoid model
using GPS and leveling data were proposed. The procedure of the
proposed algorithms is summarized in the following.

Step 1: Establish the functional relationship between the
point’s plane coordinates and its undulation using a back-
propagation artificial neural network according to the observed
GPS and leveling data. The observed GPS and leveling data of the
2,065 benchmarks, i.e., the reference points, are used to calculate
their undulations using Eq. (2). The plane coordinates (x;,y;) and
the calculated undulations N; of the 2,065 reference points are
treated as input vectors and output vectors, respectively. A three-
layer back-propagation artificial neural network is trained using
the above-mentioned input vectors and output vectors. The trans-
fer functions for the hidden layer and the output layer are tansig
(hyperbolic tangent sigmoid transfer function) and purelin (linear
transfer function) respectively (Demuth and Beale 2002). After
the back-propagation artificial neural network is trained success-
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fully, the functional relationship between the point’s plane coor-
dinates and its undulation, such as Eq. (6), is established.

Step 2: Develop a regional grid-based geoid model using the
imaginary grid plane coordinates with a fixed grid interval and the
trained back-propagation artificial neural network. At this step, an
imaginary fixed grid (e.g., 1,000 m in Easting and Northing) on
the surface of the ellipsoid over the Taiwan region is generated.
Assuming that the grid interval and the plane coordinates of the
left-bottom point of the imaginary grid are given, the plane coor-
dinates (x;,y;) of the imaginary grid nodes can be calculated and
stored in a file. Once, the back-propagation artificial neural net-
work has been trained using the reference points of the input and
output vectors, the plane coordinates of the imaginary grid nodes
will be treated as input vectors. The undulations of all grid nodes
will be estimated using Eq. (6) via the trained back-propagation
artificial neural network. Then, the results of this step are included
in a file consisting of the plane coordinates (x;,y;) and the esti-
mated undulations N, of all grid nodes. Finally, the regional grid-
based geoid model is generated.

Undulation Interpolation Procedure

Once the regional grid-based geoid model is generated, it can be
used to interpolate a specific point’s undulation if the point’s
plane coordinates are given. The procedure is summarized in the
following.

Step 1: Develop an undulation interpolation algorithm to esti-
mate a specific point’s undulation using the generated grid-based
geoid model. If the grid-based geoid model has been generated,
then the undulation of any specific point can be computed using
the following weighting function approach (Junkins et al. 1973;
Lin 1998)

4
NP(x,,3,) = 2, Wi(8x,,8y,)N' (7)
i=1

where (x,,y,)=plane coordinates of any specific point p;
NP=estimated undulation of a point with coordinates (x[,,y[,);
i=1,2,3,4 represents the sequence of four nodes of the cell,
including the point with coordinates (x,,y,), starting from the
right-top node, and in the counterclockwise direction; and
Ni=estimated undulation value of node i from the trained
BP ANN. The general equation for the weighing function is
(Junkins et al. 1973)

W(8x,.8y,) = 8x78y2(9 — 63x, — 63y, + 45x,8y,)  (8)

The other quantities are

W,(8x,,8y,) = W(8x,,8y,) )
W,(3x,,8y,) = W(1 - 8x,,5y,) (10)
W;3(8x,,8y,) = W(1 - 8x,,1 - 8y,) (11)
Wy(3x,,8y,) = W(dx,,1 - dy,) (12)
Ax,=x,-Xx (13)

Ay, =y, =y (14)

dx, = % (15)
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Ay,
By, = L (16)
Y2a—21

where the plane coordinates of any specific point p are (x,,y,);
(x;,y1)=coordinates of the left-bottom node of the cell, namely
Node 3; and (x,,y,)=coordinates of the right-top node of the cell,
namely Node 1.

Step 2: Estimate the undulation in the field of the point of
interest and transform the GPS ellipsoidal height into the ortho-
metric height in real time. According to Step 1, the undulation
interpolation algorithm can be developed into a computer pro-
gram using certain kinds of computer languages, such as C++
(Microsoft Corporation, Redmond, WA), MATLAB, and BASIC
(Microsoft Corporation, Redmond, WA). Then, after installing the
developed interpolation program and the generated grid-based
geoid model on a computer, such as a desktop personal computer
(PC) or a notebook, it is easy to estimate the undulation of the
point of interest. However, if a pocket PC is used together with a
GPS receiver in the field, then the interpolation program will
develop differently since the operation system of a pocket PC is
different from that of a PC. Further, the hard disk capacity of a
pocket PC is much smaller than that of a PC. Therefore, a PC-
based program is not executable on a pocket PC system. One of
the solutions to this problem is to develop the interpolation pro-
gram using a program developing package, such as Microsoft
(Microsoft Corporation, Redmond, Wash.) Studio Net 2003, and
then transform the interpolation program into one suitable for a
pocket PC (Deitel et al. 2004).

Test Results and Discussion
Test Data

Three data sets were used to test the proposed algorithms in this
paper. The first data set, which included the GPS and leveling
data of the 2,065 benchmarks of the Taiwan region, was collected
between 2000 and 2003 by the Satellite Survey Center, Depart-
ment of Land Administration, Ministry of Interior, Taiwan. The
test region size is about 373 km (north-south) by 140 km (east—
west). The distance between two consecutive benchmarks is about
2 km. The GPS data were collected by the static GPS surveying
method in an observation session lasting from 2 to 3 h, whereas
the leveling data were collected by the first-order geodetic level-
ing method. The orthometric height H accuracies from the geo-
detic leveling are at the level of +8.8 mm and the ellipsoidal
height h accuracies from the GPS surveying are at the level of
+36 mm (Chen et al. 2004; Yang et al. 2003).

The point distribution map of the 2,065 benchmarks (Data Set
1) is shown in Fig. 3. From Fig. 3, it can be seen that there were
several areas with no benchmarks. The main reason for this is that
Taiwan is an island with small plains in the west and east, and
mountains in the central region. Therefore, in the central moun-
tain region, the geodetic leveling surveying was carried out only
on several highways going from east to west. According to the
observed ellipsoidal heights & and the orthometric heights H of
the 2,065 benchmarks, the undulations of these 2,065 benchmarks
could be calculated using Eq. (2). The maximum, minimum, and
average calculated undulations of the 2,065 benchmarks were
+27.891, +18.776, and +21.841 m, respectively. The contour map
of the calculated undulations of the 2,065 benchmarks is shown in
Fig. 4. From Fig. 4, it can be seen that the minimum calculated
undulation appeared in the west part of Taiwan, and the maximum
calculated undulation appeared in the central mountain region.
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Fig. 3. Point distribution map of the 2,065 benchmarks of the Taiwan
region, “+” represents the location of the benchmark

The second data set, including GPS and leveling data of 78
benchmarks, was collected by Taichung City government in 2004.
The test region size is about 14 km (north—-south) by 25 km (east—
west). The distance between two consecutive benchmarks is about
0.3-2 km. The GPS data were collected by the static GPS sur-
veying method in an observation session lasting from 2 to 3 h,
whereas the leveling data were collected by the first-order geo-
detic leveling method. The maximum, minimum, and average
calculated undulations of the 78 benchmarks +20.818, +19.213,
+19.798 m, respectively.

The third data set, including nine check points, was collected
from the campus of National Chengchi University (NCCU). The
NCCU test region is about 400 m by 850 m. The ellipsoidal
heights of these check points were derived from the Real Time
Kinematics (RTK) GPS Survey, whereas the orthometric heights
of these check points were observed by a three-order geodetic
leveling survey.

28 x 10
g //20
2.75¢ : J/f~ 217 4
2.7+ o ; § // 4\\‘ \ B
foa / /] 26> 28 50
265 A 3»{ & L 757 fﬁ??/ _
=
s L 24 _
g 2 (5\“\\
2.55 Y \\/f .
25
2.5} s Ny ]
L e
N
245} 223 |
24 L 1 1 Il ) " 1 ] ]
16 18 2 22 24 26 28 3 32 34 36
EM) x 10°

Fig. 4. Contour map of the calculated undulations (m) of the 2,065
benchmarks of the Taiwan region
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Data Processing

In order to test the proposed grid-based geoid model generating
algorithms, a set of software was developed and revised based on
the above-mentioned procedure. The artificial neural network pro-
gram was developed using the MATLAB artificial neural network
toolbox. A three-layer BP ANN, with one input layer, one hidden
layer, and one output layer, was adopted to establish the func-
tional relationship between the reference points’ plane coordinates
and their calculated undulations. The input vector consisted of
plane coordinates (x;,y;) of each reference point, while the output
vector consisted of each reference point’s undulation (N;). The
transfer functions for the hidden layer and the output layer were
tansig (hyperbolic tangent sigmoid transfer function) and purelin
(linear transfer function) respectively (Demuth and Beale 2002).

The undulation interpolation programs were developed using
different computer languages. For the desktop PC, C++ was
used and for the pocket PC, Microsoft Studio Net 2003 (Deitel
et al. 2004) was used.

In order to test the accuracies of the proposed algorithms,
some points were used to train the artificial neural network, and
others were used to evaluate the performance of the proposed
algorithms. The points used to train the artificial neural network
were defined as reference points, while the other points used to
evaluate the performance of the proposed algorithms were defined
as check points. The ellipsoidal height h and the orthometric
height H of both the reference points and the check points were
known.

The term “AN” shown in Tables 1-6 is defined as:

ANi — N}:alculated _ N?stimated’ i= 1’2’ ) (17)

where N¢°¢d=calculated undulation N of check point i from its
known ellipsoidal height 4 and orthometric height H; Neimated
=either estimated undulation N using the trained BP ANN or
interpolated undulation using the generated grid-based geoid
model; and AN;=undulation difference between the calculated
undulation and the estimated undulation. “o,,” indicates the stan-
dard deviation of all AN;. “Maximum AN denotes the maximum
value of all AN values. “Minimum AN” denotes the minimum
value of all AN values. “Iteration number” indicates the epochs
taken when the ANN is trained successfully (Demuth and Beale
2002).

Performance Evaluation of the Application
of a Back-Propagation Artificial Neural Network to
Undulation Estimation Using GPS and Leveling Data

In order to evaluate the performance of undulation estimation
when applying a BP ANN, a series of data on 283 benchmarks—
part of Data Set 1—was used to test the developed MATLAB BP
ANN program. The tested items included: (1) the undulation es-
timation accuracies versus the training algorithms adopted in the
BP ANN program; (2) the undulation estimation accuracies versus
the amount of neurons in the hidden layer chosen in the BP ANN
program; and (3) the undulation estimation accuracy comparisons
with other undulation estimation approaches. The test data, in-
cluding the 283 benchmarks, were collected from the central part
of Taiwan. The test region is about 116 km (east-west) by
103 km (north—south). The distance between two consecutive
benchmarks is about 2 km. These 283 benchmarks were divided
into two groups. One group, which included 142 points, were
treated as reference points to train the BP ANN, whereas the other
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Table 1. Performance Statistics of the BP ANN with Varied Training
Algorithms

Iteration
Training number OAN Maximum AN~ Minimum AN
algorithm (epochs) (cm) (cm) (cm)
TRAINBR 1,606 +4.00 21.42 -10.49
TRAINLM 17,785 +5.28 8.94 —-48.03
TRAINCGF 489 +5.58 16.22 -17.43
TRAINGDX 50,000 +4.18 9.58 -9.00

group, which included 141 points, were treated as check points to
evaluate the estimation accuracy of the BP ANN.

In order to test Item 1, first, the amount of neurons in the
hidden layer was fixed to 15, and the training algorithms were
changed accordingly. The test results are shown in Table 1. The
“training algorithm” indicates the adopted BP ANN training
algorithm. Four different training algorithms were tested:
“trainbr” (Bayesian regularization back-propagation), “trainlm”
(Levenberg-Marquardt back-propagation), “traincgf” (conjugate
gradient back-propagation with Fletcher-Reeves updates), and
“traingdx” (gradient descent with momentum and adaptive learn-
ing rate back-propagation) (Demuth and Beale 2002). From Table
1, it can be seen that the accuracy,o,y, when using the “trainbr”
algorithm is +4.00 cm, the minimal value of all cases, and its
iteration number is 1,606. Hence, after considering the accuracy
of the BP ANN, the training algorithm trainbr was adopted in the
following tests.

In order to test Item 2, the amount of neurons in the hidden
layer was changed from 5 to 50. The test results are summarized
in Table 2. From Table 2, it can be seen that the value of o,y
decreases from +5.08 to £3.60 cm when the amount of neurons
increases from 5 to 35. If the amount of neurons in the hidden
layer is larger than 35, then the values of o,y increase again.
Hence, the best number of neurons in the hidden layer is 35 in
this case.

In order to test Item 3, the same data set was tested on other
undulation estimation approaches, such as (1) the curve fitting
method that simulates the undulation surface using a quadratic
polynomial; and (2) the undulation estimation model of the
Ministry of Interior, Taiwan. The test results are summarized in
Table 3. “BP ANN” denotes that BP ANN, with the trainbr train-
ing algorithm and 35 neurons in the hidden layer, was used to
estimate the check point’s undulation. “Curve fitting” indicates

Table 2. Performance Statistics of the BP ANN with the Varied Amount
of Neurons in the Hidden Layer

Amount Iteration

of number OaAN Maximum AN Minimum AN
neurons (epochs) (cm) (cm) (cm)
5 161 +5.08 11.30 -15.70
10 948 +4.13 23.53 -10.82
15 1,606 +4.00 21.42 -10.49
20 487 +4.42 11.79 -16.44
25 3,628 +4.22 20.08 —15.35
30 1,459 +3.85 9.67 -13.40
35 667 +3.60 12.94 -10.39
40 1,494 +5.44 12.58 -13.33
45 541 +5.08 11.89 -16.84
50 548 +5.08 11.89 -16.84
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Table 3. BP ANN Accuracy Comparisons with Other Undulation
Estimation Methods

Table 4. Performance Statistics of the BP ANN and Grid Model with the
Varied Amount of Neurons in the Hidden Layer of the BP ANN

Estimation Maximum AN Minimum AN
method oy (cm) (cm) (cm)

BP ANN +3.60 12.94 -10.39
Curve fitting +19.88 82.86 —-60.33
MOI model +20.07 34.70 -47.10

that a polynomial of Eq. (3) was used to fit the calculated undu-
lations of the reference points, and that the computed polynomial
coefficients of Eq. (3) were used to estimate the check point’s
undulation. “MOI model” denotes that a local geoid model of
Taiwan, determined by least-squares collocation using observa-
tions of sea surface gradients derived from satellite altimetry, land
gravity anomalies, ship gravity anomalies, and the Earth Gravita-
tional Model 1996 (EGM96) (Hwang 1997), was used to estimate
the undulations of those check points. From Table 3, it can be
seen that the performance of the undulation estimation using the
BP ANN was better than those of the other two estimation meth-
ods. The o,y values for BP ANN, curve fitting, and MOI model
are £3.60, £19.89, and +20.07 cm, respectively.

Performance Evaluation of the Application

of a Back-Propagation Artificial Neural Network
to Regional Grid-Based Geoid Model Generation
Using GPS and Leveling Data

According to the abovementioned “regional grid-based geoid
model generation procedure,” the grid-based geoid model of the
Taiwan region was generated accordingly. Hence, the tests de-
scribed in the following concentrated on the issues of perfor-
mance evaluation of the generated Taiwan grid-based geoid
model, such as the grid interval selected, the amount of used
reference points, and so on. The test items included: (1) the inter-
polation accuracies of the grid-based geoid model versus the var-
ied amount of neurons in the hidden layer of the BP ANN if the
grid interval was fixed; (2) the interpolation accuracies of the
grid-based geoid model versus the varied amount of reference
points if the grid interval was fixed; and (3) the interpolation
accuracies of the grid-based geoid model versus varied grid inter-
vals if the amount of reference points was fixed.

In order to test Item 1, the data from the 2,065 benchmarks
were used. The 2,065 benchmarks were divided into two groups:
1,033 points were treated as reference points to train the BP ANN,
and the other 1,032 points were treated as check points to evalu-
ate the undulation estimation/interpolation accuracy. One type of
grid-based geoid model was generated with fixed 1,000 m grid
interval. The total amount of grid nodes of the generated geoid
models with grid intervals of 1,000 m are 56,347 nodes. First, the
1,033 reference points were used to train the BP ANN with the
varied amount of neurons (from 5 to 50) in the hidden layer; then
the plane coordinates of all imaginary grid nodes were entered
into the BP ANN to generate the grid-based geoid model; and
finally, the 1032 check points were used to evaluate: (1) the un-
dulation estimation accuracy directly of the trained BP ANN and
(2) the corresponding undulation interpolation accuracy of the
grid-based geoid model. The test results are shown in Table 4.
“BP ANN” denotes that the test results of undulations were esti-
mated from the trained BP ANN directly. “Grid model” indicates
that the test results of undulations were interpolated from the
generated grid-based geoid model with fixed grid interval (e.g.,
1,000 m in this test). The contour map of the differences (cm)

Amount

of Estimation oAy Maximum AN ~ Minimum AN
neurons method (cm) (cm) (cm)
5 BP ANN +27.62 76.96 -79.78
5 Grid Model — +27.64 87.99 —-76.95
10 BP ANN +12.41 37.48 -32.17
10 Grid Model ~— +12.43 32.42 -37.47
20 BP ANN +5.65 25.47 -26.21
20 Grid Model ~ +5.66 26.22 -25.47
30 BP ANN +4.37 22.92 -22.17
30 Grid Model +4.38 22.20 -22.92
40 BP ANN +4.10 22.11 -30.00
40 Grid Model +4.17 37.24 -22.11
50 BP ANN +3.96 21.57 -38.31
50 Grid Model ~ +3.98 38.56 -21.50

between the interpolated undulations from generated grid-based
geoid model (with 1,000 m grid interval and 50 neurons in the
hidden layer) and the original undulations of 1,032 check points,
AN’s, is shown in Fig. 5. From Table 4 and Fig. 5, it can be seen
that: (1) the accuracies of grid model are as accurate as those of
BP ANN in all cases, i.e., the generated regional grid-based geoid
model could be an alternative approach to the “trained BP ANN;”
(2) if the amount of neurons in the BP ANN is larger, then the
interpolation accuracy is better; and (3) when the amount of neu-
rons is 50, then the interpolation accuracy, o,y was about
+3.98 cm for a grid interval of 1,000 m.

In order to test Item 2, the data from the 2,065 benchmarks of
the Taiwan region and the 78 benchmarks of Taichung City were
used. The 2,065 benchmarks, which were all treated as reference
points, were divided into two groups: the whole Taiwan region
case (including all 2,065 points) and the central Taiwan region
case (including only 283 points). In each case, if the BP ANN
(with 50 neurons in the hidden layer) was trained successfully
with the varied amount of reference points, then the grid-based

N(M)

1 L

w |-

1.6 1.8 2 22 24 2.6 2.8 3.2 34 3.6
EM) x 10°
Fig. 5. Contour map of the differences (cm) between the interpolated
undulations from grid-based geoid model and the original undulations
of 1,032 check points of the Taiwan region
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Table 5. Performance Statistics of the BP ANN and Grid Model with the Varied Amount of Reference Points, in the Cases of Whole Taiwan Region

(Case A) and Central Part of Taiwan (Case B)

Amount Amount Maximum Minimum

of reference of check Estimation OAN AN AN
Case points points method (cm) (cm) (cm)
A 2,065 78 BP ANN +5.22 16.04 -6.38
A 2,065 78 Grid model +5.22 6.35 -16.07
A 2,091 52 BP ANN +3.52 10.27 -3.74
A 2,091 52 Grid model +3.53 3.73 -10.32
A 2,104 39 BP ANN +3.37 10.00 -3.48
A 2,104 39 Grid model +3.38 3.47 -10.06
B 283 78 BP ANN +4.27 14.83 -4.42
B 283 78 Grid model +4.28 441 —-14.86
B 309 52 BP ANN +3.13 7.98 -7.58
B 309 52 Grid model +3.14 7.55 -7.98
B 322 39 BP ANN +2.16 6.81 -13.5
B 322 39 Grid model +2.17 2.17 —6.88

geoid model with a grid interval of 1,000 m was generated. Then
the check points were used to evaluate: (1) the undulation estima-
tion accuracy of the trained BP ANN; and (2) the interpolation
accuracy of the grid-based geoid model. The test results of the
whole Taiwan region case and the central Taiwan region case are
shown in Table 5. It should be noted that the 78 benchmarks of
Taichung City were divided into two groups: Reference points
and check points. For example, from Table 5, it can be seen that
if the amount of check points was 78, then all 78 benchmarks
were used as check points. However, if the amount of check
points was 52, then only 52 points from the 78 benchmarks were
used as check points and the remaining 26 points were treated as
reference points. Therefore, the corresponding amount of refer-
ence points became 2,091; that is, 2,065+26=2,091. From Table
5, the following can be seen: (1) the accuracies of grid model are
as accurate as those of BP ANN in all cases; (2) if the amount of
reference points increases, for example, from 2,065 to 2,104, then
the o,y value decreases, e.g., from +5.22 to +3.38 cm, respec-
tively, for the whole Taiwan region case (i.e., case A in Table 5).
The same conclusion can be made about the central Taiwan re-
gion case. The smallest o,y values were +3.37 and +2.16 cm for
the whole Taiwan region case and the central Taiwan region case
respectively; and (3) if the conditions, such as the grid interval
and the amount of check points, were the same, then if the smaller
region of the geoid model was generated, the interpolation accu-
racy was better. In other words, the interpolation accuracy of the
central Taiwan region case was better than that of the whole
Taiwan region case.

In order to test Item 3, the data from the 283 benchmarks of
the central Taiwan region and the 78 benchmarks of Taichung
City were used. Three kinds of tests were carried out. In the first
test, the amounts of reference points and check points were 283
and 78, respectively, and the grid intervals varied from 500,
through 1,000 to 1500 m. In the second test, the amounts of ref-
erence points and check points were 309 and 52, respectively, and
the grid intervals varied from 500, through 1,000 to 1500 m. In
the third test, the amounts of reference points and check points
were 322 and 39, respectively, and the grid intervals varied from
500, through 1,000 to 1500 m. The test results are shown in Table
6. Grid model (N m) denotes that the test results of grid-based
geoid model with grid interval N m (e.g., 500 m). From Table 6,
it can be seen that: (1) the accuracies of Grid model (N m) are
almost as accurate as those of BP ANN in all cases; (2) if the
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amount of reference points was fixed, then the interpolation ac-
curacies of varied grid intervals (e.g. 500, 1,000, and 1,500 m in
this test) were almost the same; (3) If the grid intervals were the
same, then the larger the amount of reference points, the better the
interpolation accuracy; and (4) the best accuracy in this test is
+2.16 cm in case of 322 reference points fixed.

Performance Evaluation of Undulation Interpolation
Using a Pocket PC Program

In order to fulfill the requirement of transforming the GPS-
derived ellipsoidal height h to the orthometric height H in the
field, the undulation interpolation algorithm from the generated
regional grid-based geoid model was developed for a pocket PC
operation system by means of Microsoft Studio Net 2003 (Deitel
et al. 2004). Then, the interpolation program and the grid-based
geoid model were transformed into ones suitable for a pocket PC.
The interface of the interpolation program on a pocket PC is
shown in Fig. 6. The “open file” key denotes that the system is
waiting for the user to “open” a geoid model file. The “read file”
key indicates that the system is asked to read the opened file. The

Table 6. Performance Statistics of the BP ANN and Grid Model with the
Varied Grid Interval If the Amount of Reference Points Was Fixed

Amount Amount

of of Maximum Minimum
reference  check OAN AN AN
points points  Estimation method  (cm) (cm) (cm)
283 78 BP ANN +4.27 14.83 -4.42
283 78 Grid model (500 m) +4.27 4.42 -14.83
283 78 Grid model (1,000 m) +4.28 4.41 —-14.86
283 78 Grid model (1,500 m) =4.28 4.39 -14.83
309 52 BP ANN +3.13 7.98 -7.58
309 52 Grid model (500 m) +3.13 7.56 -7.98
309 52 Grid model (1,000 m) +3.14 7.55 -7.98
309 52 Grid model (1,500 m) =+3.14 7.49 -7.98
322 39 BP ANN +2.16 6.81 -1.35
322 39 Grid model (500 m) +2.16 2.16 —-6.84
322 39 Grid model (1,000 m) *2.17 2.17 -6.88
322 39  Grid model (1,500 m) +2.18 2.18 -7.02
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Open File Read File
N Coor: 2780019.75
E Coor: 333878.75
Undulation Est.
Estimated
20.7134
Undulation

Fig. 6. Interface of the undulation interpolation program on a pocket
PC

“N Coor.:” and “E Coor.:” keys indicate the entered plane coor-
dinates of a specific point from the user. Then, the “undulation
est.” key is pressed to run the undulation interpolation program,
and the estimated undulation is shown after the “estimated undu-
lation” key.

In order to test the performance of undulation interpolation
using the pocket PC program, nine control points collected from
the campus of NCCU were used as check points. The NCCU test
region is about 400 m by 850 m. The ellipsoidal heights of these
check points were derived from the RTK GPS survey, while the
orthometric heights of these check points were observed by the
three-order geodetic leveling survey. The grid-based geoid model
with a grid interval of 1000 m was generated by the data from the
2,065 benchmarks. The pocket PC with the developed interpola-
tion program was taken to those control points in the field with an
RTK GPS receiver. According to the test results, the o, value,
maximum AN, and minimum AN, of these nine check points were
+2.72, +2.79, and —4.31 cm, respectively.

Conclusions

In order to fulfill the requirement of transforming the GPS-
derived ellipsoidal height h to the orthometric height H and take
advantage of GPS surveying, algorithms of applying a back-
propagation artificial neural network (BP ANN) to generate a Tai-
wan regional grid-based geoid model using GPS and leveling data
were proposed. Three data sets, including 2,065 benchmarks
around the Taiwan region, 78 benchmarks in Taichung City, and 9
check points in National Chengchi University, were used to test
the proposed algorithms.

Based on the test results, the following comments can be
made: (1) the training algorithm trainbr should be adopted in a BP
ANN program; (2) the undulation estimation accuracy using the
BP ANN is better than the other two estimation methods, namely
the curve fitting method and the MOI model; (3) the undulation
interpolation accuracies of the generated grid-based geoid model
are as accurate as those undulation estimation accuracies directly
from the trained BP ANN, i.e., the proposed grid-based geoid
model algorithm is an alternative approach to the trained BP
ANN; (4) the undulation interpolation accuracies of the generated
grid-based geoid model with a larger amount of reference points
are better than those of the grid-based geoid model with a smaller
amount of reference points, if the grid

interval is fixed; (5) the Taiwan region grid-based geoid model
and the undulation interpolation program were developed and
installed in a pocket PC; and (6) this paper presents a method
using BP ANN for approximation of the regional geoid surface,
however, further investigations should be done to refine the
approximation geoid surface, such as using the least squares
collocation, etc.
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