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Abstract

In this thesis, we define the tropical derivatives and anti-derivatives. When we differ-
entiate two identical tropical polynomials, we might get two different functions. In order
to overcome the difficulties, we restrict the polynomials to largest coefficient polynomials
to avoid unpredictable results when taking derivatives. The definitiion of the tropical
derivatives is quite different from the definition of classical derivatives. In particular, we

d
have 2 an ®z®" = q, @ 1
x

. To extend it linearly, we obtain dilx[a" OB a,_1®
"G LD 0r®a) = a, @2 T Dap, @2 Da OB —oo. We will
explain why we use this kind of definition. The derivatives are helpful in understanding
more about tropical geometry, and it carries out some information similar to classical
derivatives. Finally, we discuss how to define and find tropical anti-derivatives for tropi-

cal polynomials.

Keywords : Tropical derivatives, tropical anti-derivatives, tropical polynomials.
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Chapter 1

Introduction

Tropical geometry is developed by the Brazilian mathematician and computer scien-
tists Imre Simon, who pioneered the min-plus algebra in 1980. From that day, many
mathematicians put into research of combinations, algebraic geometry, statistics, and
other sciences such as biology. It has become a new division of mathematics. And the
adjective “tropical“ is given in honor of the Brazilian mathematician Imre Simon.[1]

Along the short, tropical geometry is piecewise linear algebraic geometry and study
the image of classical geometry, so we can develop some important properties as in clas-
sical geometry. In fact, it has had many corresponding versions of classical theorems in
algebraic geometry.

In this thesis, we define the tropical derivatives and the tropical anti-derivatives. The
derivative is useful to understand more about tropical geometry. In chapter two, we men-
tion of the largest coefficient polynomials, which appear frequently in tropical derivatives.
For example, f(z) = 2®? ® 2 ® 4 and g(z) = 2°? ® 2 ® 2 @ 4 are functionally equivalent,
and g(z) = x*> ® 2z @ 4 is the largest coefficient polynomial. We draw some gragh about
these polynomials in order to understand more about the largest coefficient polynomial.
Further more, we try to judge whether it is the largest coefficient polynomial or not.

In chapter three, we differentiate the Puiseux series which is known as an algebraically
closed field and define the tropical derivatives. It is amazed that some properties of the
tropical derivatives are satisfied in tropical derivatives as in classical derivatives, such as

the product rule and the chain rule.



In chapter four, we integrate tropical polynomials, and we define the tropical anti-
derivatives. It has some difference between classical and tropical anti-derivatives. We
might restrict some conditions to obtain a largest coefficient polynomial when integrating

tropical polynomials.



Chapter 2

Arithmetic of the Max-plus Semiring

In tropical geometry, we deal with the semiring (R J {-oo}, @, (). As we see, it is
a semiring over the union of real numbers and -co equipped with two binary operations,

maximum and additions. We will denote the semiring by T.

Definition 2.1 Let a and b be scalars. Then we redefine the basic arithmetic operations

of addition and multiplication for this scalars as follows:

a®b = max{a,b}
a®b = a+b
In words, the tropical sum of two numbers is their maximum, and the tropical prod-
uct of two numbers is their sum. These two operations also satisfy the commmutative law,

associative law, and distributive law. We will introduce these properties in the preceding

article. Here are some examples of how to arithemetric in this number system.

Example 2.1

205 = max{2,5} =5

205 = 245=7



We find many of the familiar axioms of arithmetic remain valid in tropical mathematics:

e associativity:

(a®b)®c

(a®b)®c

e commutativity:

a®b

a®b

e distributivity:

a® (b®c)

(adb)®c

Here are some numerical examples to show
Example 2.2

20 (5a9)

2050209

a® (bdc)

a®(boc)

max{a,b} =bda

at+b=b+ta=b0a

a ® max{b, c}
max{a + b,a + c}
a®b®a®c
max{a, b} © ¢
max{a + ¢,b + c}

a®chboOe

distributivity:

209=11

Te1l =11



Example 2.3

(7T®13)®8 = 1308=21

TO8G1308 = 16021 =21

Besides, we can easily find out the additive identity for & and the multiplicative identity
for ©.

e Neutral element of tropical addition:

The additive identity for & is —oo, which is called O = —oo. The reason is for any a
€ R, max{a,—oo }= a if and only if a & — co= a.

e Neutral element of tropical multiplication:

The multiplicative identity for ® is 0, which is called 1t = 0. The reason is for any a € R,
a®0=a+0=a.

Remark 2.1 Note that there is no tropical subtraction, which is why T is a semi-ring.
Because for a # —o0, there does not exist be T such that a & b = —oo. For example,
the equation 2 @& x = 1 has no solutions x at all. However, there do exist multiplicative

inverse in T. We shall define the tropical division a @ b = a — .

Above all, we also can define the tropical semiring in different ways. For examples,
a ® b = min{a, b}, which is called the min-plus tropical semiring. In this paper, we will
focus on the max-plus semiring.

And we can discuss the tropical monomial in one variable :

n times
A tropical polynomial is the tropical sum of a collection of tropical monomials.

Definition 2.2 [3/(Tropical Polynomials).A tropical polynomial f(z) is of the form

f@)=a®a0r®an0r®d . ... ®a @2 G a, O,

where n is a positive integer, and ag,...a, € T



Eveluate f(z), we obtain

f(z) = max{ap,a; + x,a2 + 2z, .....,ap—1 + (n — 1)z, a, + nx}
Remark 2.2 In classical polynomials, x means 1t - x, but 1t =0, so x =0 .
Example 2.4
flz) = 290402070205

= max{0+ 3z,4+ 22,7+ z,5}

The graph of f(z) is drawn as Figure2.1.

.
.
’

y=5

Figure 2.1: The graph of f(z) =2 @402z G705



2.1 Largest Coefficient Polynomials

In classical algebra, we all understand two distinct polynomials are certainly differ-
ent, that is, if f(z) # g(z), f(z) — g(x) # 0. However, in tropical algebra, two distinct
tropical polynomials may define the same function . We say them functionally equivalent

under the idea of largest coefficients.

Definition 2.3 [3] Let f(x) and g(x) are two tropical polynomials. If f(x) and g(z)

define the same function, we say that f(x) and g(x) are functionally equivalent.

We refer to [2] and consider two one-variable polynomials as follows :

Example 2.5 f(z) = 2@ x4 and g(x) = 222 ® 20 x D4 are functionally equivalent.
when © > 2,
flz) = z220ad4
= max{2x,x 40,4}
= 2z
= O
glz) = 2°@20204
= max{2z,r + 2,4}
= 2z

= 0O

when ¢ < 2,
flz) = 2*®2z04
= max{2x,x + 0,4}
= 4



g(z) = 2°©20xd4

= max{2x,x + 2,4}

= 4

o
N S
NG -=--m--to—o

Figure 2.2: The graph of f(z) = 2“2 @2 ® 4

From figure 2.2, we observe the line y = z is under the graph of f(z). So we can move
the line y = = up to intersect the graph of f(x) at exactly one point. This point is the
intersection of 22 and 4. And the slope of the line y = x is less than y = 2x and greater
than y = 4. We recognize f(z) and g(x)are functionally equivalent. Now we are going to
use such ideas of largest coefficient polynomials to simply the work in tropical derivative.
At the same time, we find that f(z) = 22@®a©r®4, a <2 and g(z) = 2> GO v B4,

b < 2 are functionally equivalent.

Lemma 2.1 Two tropical polynomials are functionally equivalent if and only if they rep-

resent the same under the idea of largest coefficients.



Next, we are going to introduce the coefficient of 2®? term is not 0.

Example 2.6 f(z) =202 ®30x®4 and g(x) =201 dx d 4,

when x > 1,

flz) = 22°°@30204
= max{2z+ 2,2 + 3,4}
= 2042
— 20 2®2

g(z) = 202" ®rd4
= max{2r + 2,z + 0,4}
= 2242

= 20z

when ¢ < 1,

flz) = 2022030 r04
= max{2z+ 2,z + 3,4}
= 4

g(z) = 20220204
= max{2r + 2,2+ 0,4}
= 4



e

/3 2 /1 0 2 3 : 5 B 7 8 B
K

Figure 2.3: The graph of f(z) =20 2? ®30r® 4

As example 2.6, to graph f(z)(see figure 2.3), we draw three lines in the (x,y)
plane : y = 2x + 2, y = x + 3, and the horizontal line y = 4. The value of f(x) is
the largest y-value such that (x,y) is one of these three lines, i.e., the graph of f(x) is
the higher envelop of the lines. So we can judge that f(x) = 202 ®& 3 ©® z @ 4 is the
largest coefficient polynomial. At the same time, we find the coefficients of these three
terms 222, 3 ® z and 4 satisfying 4-3 = 3-2. It encourges us to investigate how to judge

whether the tropical polynomials is the largest coefficient one or not.

Definition 2.4 f(z) = a, © 2°" D a,_1 @ 2" 1 @ .....a; © T & ag is the largest coeffi-

cient polynomial, if for all a;,0 < i < n, there doesn’t exist any functionally equivalent

polynomials whose coefficients can replace a; with larger numbers.

Two distinct largest coefficient polynomails are certainly not functionally equivalent.

Example 2.7 f(2) =00z @50 r@® 7 and g(x) =30 122 9401 ® 5,

10



See Figure2.4 and 2.5 as bellows.
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Figure 2.5: The graph of f(z) =30 2?2 ®40x®5

Lemma 2.2 [5/[Another definition of largest coefficient/Let f(x) = a, ® 2" @ a,—1 ©
2O . Da,©x®" be a tropical polynomial, where a; # —00,i = r,r+1,...,n. Then a; is a

largest coefficient of f(x) if and only if there exists some 2o € R such that f(xg) = a;®x5".

11



Moreover, how do we determine if a largest coefficient polynomial is a largest coef-

ficient one or not? We refer to[5] and solve this problem by the following theorem.

Theorem 2.1 [5] Let f(z) = a, ® 2" @ a,_1 © 2" & ... & a, ® 2" be a tropical
polynomial, then g(x) = b, © 2" ® b,_1 © 2" L ® ... B b, © 2" is the largest coefficient
polynomial of f(x), where

(k —1) +@k(i—j)

b; = max{{a;} U {aj ra—

|r<j<i<k<n}}

Example 2.8 Let f(z) = 50 2% & a2®2 @ 1. By theorem2.1, we get the corresponding
largest coefficient polynomial g(z) =50 2 P40 P ®30 22 P20 @ 1

Example 2.9 Let f(2) =402 @50 z2STOx® 5, the largest coefficient polynomial
of f(x) is g(x) =4© 2 B55012 PTOx & 5.

12



Chapter 3

Tropical Derivatives

3.1 Differentiating the Puiseux Series

Let KL = C(t) be the algebraic closure of the field of rational functions with coefficients
from the field of complex numbers. An element a(t) in IC can be expressed as a Puiseux

series.

Definition 3.1 [2/(Puiseuz series)

A Puiseux series a(t) is of the form :
S Citn, k€Z, neN, CyeC
we define the field of Puiseux series K to be the collection of all Puiseux series.

—1
Example 3.1 a(t) = 3t 2 +¢ 145t € K.

Definition 3.2 /5] Define a order

Ord: £ +— Q

13



as followings. Let a be a nonzero element in IC, for all a = >";°, Cizw € K

3|

1
Ord(a) := min{—} =
rd(a) mm{n
If a =0,

Ord(a) := —o0.
—1 _1
Example 3.2 a=3t2 +t ' +5t% € K, Ord(a) = min{T, —1,-3} = -3.

Definition 3.3 Let f € K[z], f = anz™ + ap12™ ' + ... + a1z + ag, we define the
tropicalization of f to be the tropical polynomial f, such that

f=ord(a) ®y°" @ ord(a,—1) @ y°" ' @ ... @ ord(ar) ® y ® ord(ap)

Remark 3.1 For any tropical polynomial g € T[y], there exists at least one f € Klx]

such that g = f.

Example 3.3
—1
a = 5t 2 +t 2451 €k, Ordla) =—4

b = 842 +51 € K,0rd(b) = -1
c = t2+tek,0rd(c) =1
f(x) = ar® +b2’ +cx
f(z) = Ord(a) ® 2 ® Ord(b) ® 2% ® Ord(c) ® =

= 402 (-erPo(l)ox

Definition 3.4 [2] Let ¢ © y®" be a tropical monomial, we define the tropical derivative
of ¢ ®y®" as the following :

—q Oy =qoy"

14



On

Remark 3.2 We explain the reason we give this definition. Soppose q © y“" is the trop-

icalization of f(x) = a(t)z™. That is ¢ = Ord(a(t)).
da(t)z™

fr= i na(t)z"

The tropicalization of f' is Ord(na(t)) ® 2"~ which is just Ord(a(t)) ® "', Because

n 1s a constant, it will have no effect on the order of derivative.

Obviously, the tropical derivative is quite different from the classical derivative.

To extend it linearly, we will have the next section.

15



3.2 The Definition of Tropical Derivatives

Since we get the conclusion in last section, we extend a tropical monomial linearly

and this will be the definition of the tropical derivative for the rest of the paper.

Definition 3.5
Given f(y) = ap, O Y D a1 @YD .z O YP? D ay Oy D ag a largest coefficient

polynomial, where a; € IC, 0 <1 < n

Example 3.4

-3
a = 3t2 ++ 245t 5K, Ord(a) = —6

b = 52+t +5t 1 € K,0rd(b) = —1
c = 6t°+4t? € K,0rd(c) =2
flx) = ax* +b2* +cx
() = 4daz®+3b2* +c
f(z) = ord(a) ®2® @ord(b) ® z°? @ ord(c) ®

= (-6) oz (-1)ezr®e202

f(r) = ord(4a) © 22 @ ord(3b) © 2% @ ord(c)

= (=602 d (1) 0z a2

Since we restrict our polynomials to largest coefficient polynomials, the derivative of
a largrst coefficient polynomial must be a largest coefficient polynomial. We refer to [2]

and use a lemma from it.

Lemma 3.1 Let f(z) = a, ©2°" ® a,_ 1 © 2" ' & ... ® ag. Let d; = a;_1 — a;, then
d; > d;iq jie. aj1 —a; > a9 —a;_1, forall 1 <1 <n <= f(z)is a largest coefficient

polynomial.

Example 3.5 f(z) =2 ®30 2?0501 d6

16



(-3.57, 13.38)

(8.82,3.51)

Figure 3.1: The graph of f(z) = 22 ®30x?®50x®6 is a largest coefficient polynomial

Corollary 3.1 /2] Let f(x) = a,©x°"Ba, 10z ' &...6ay©OxDag. If f(x) is a largest
d

coefficient polynomial, then d—f(:v) =3,z ' Pa,_ 10" 2. . DaOrPa B —00
T

1s a largest coefficient polynomial.

Proof. By Lemma2.1, d; > d; 1, for all 1 <4 < n. The derivative of f(x) is a, ® 2" ! ®
Up1 OO 2. Day®xDay, trivial, we can get d; > d;_1,V1 < i < n—1. The derivative

is also in largest coefficients.

Example 3.6 Letf(z) = 2% ® 3 ® x & 6 is the largest coefficient polynomial, then

d
d—f(:c) = 2”1 @ 3 is also in largest coefficients.
T

17



3.3 Properties of the Tropical Derivatives

In classical derivative, the product rule is the quite fundamental property. Refer-

ing to[2], as below, we will show that the product rule are also hold in tropical derivatives.

3.3.1 Product Rule

Let f(x) and g(x) be tropical polynomials of degree n and m respectively.

f(z):@0@a1®$®a2®x®2...@an®x®”
g(z)=by ®b, OT B by @ z%%. .. P by, © O™

Now, before we start to check the product rule, we must confirm that the product of

these two largest coefficient polynomials is still a largest coefficient polynomial.

Lemma 3.2

The product of f(x) and g(z) is a largest coefficient polynomial.

Proof. Without loss of generality, we assume that the degree of f(x) is greater than
n+m

the degree of g(x), f(z) ® g(x) = Z( Z a; ® bjz®%) the coefficient of the " term is
k=0 i+j=k

max{a’i © bj}7
1+j=r

Suppose iy +j, = r—1

iv+jv = r

tw+Jjw = T+1

18



a;, ®bj, —a;, ©b;, = a;, +0bj, —a; —bj,

u

= @i, —a;, +bj, — by,

Z a;, — 44, + bjw — bj'u

= a;, +b;, —ai, —b

v v

= a;, ©bj, —a;, ©bj,

We get max{a;b;} — max {a;b;} > max {a;b;} — max{a;b;}, by Lemma 3.1, we get
i+j=r i+j=r—1 i+j=r+1 i+j=r

f(z) ® g(x) is a largest coefficient polynomial.

Now, we begin to check the product rule is also hold in tropical derivatives.
Theorem 3.1 (f(z) © g(z)) = f'(z) © g(z) & f(x) © ¢'(x)

Proof. By induction on m, m =0
f@)oglx) = (a®a a0z ... ®a,©2) O b
= aObyPa Qb OTrBay O by OB ... Da,®by® "
(f(z) ©g(@)) = —c0®a1Oby@a;®ObyOrd...da,O by® "
= O (M®a0r®...Ha,os" 1)
= by O f(x)
= —000 f(z) b © f'(z)
= ¢(2) 0 f(z) ®g(z)© f'(z)

= fi2) ©g(z)® f(x) ©g'(x)

Suppose this is true for m =k

When m = k+1, deg(g(z)) = k+1,

_ ®2 Ok Ok+1
o .. _l’_
f@)oglr) = f@)Oobi@b Oxdb 0z d... &b ©z%%)® f(2) Obpy O
= f@)O @b or®bor?a... 0b oo

(a0 @a O ®as®x? ... 0 ay, ®2°") O bpyy © xF

19



= f@) by @b Oz Dby @2 D ... b ®2%) ®ag ® bzt

PBa; © b1 © 2 P ay © b1 © "B ®a,® b1 © Rl
(f(x)og@) = f@obiebhord.. @b e f() (@b Ox... &b © 1)

®ag © b1 © 2% B a; O by © 2 B ay © by © 22
B...®a, O by © 2O

= @O0 ®hord..0boz e f(@)(bhdb ... ®b o sk
Obprr © 2% (ap D a1 O B ay © 1™, D a, ©2°") B by © 2, B ay O
D a, ®z"h

= f@)b®bord.. Obor N f(z)(by®b Ox... &b ® 1)
Dbyy1 @ 2% O f(2) @ by © 2 ()

= fi(z)ogl@)e f(z) ©g'(z)

Example 3.7 Let f(z) =x® 4 and g(z) = x S 6,

f@)©gz) = 20178206040 20406
(fz)©g(x)) = 20080066004
— max{z,6,4}
f@)og@) e fr)og) = 002@00622r0004060
= maz{r,6,4)
(f(x)©g(@)) = [flz)©g(z) flz) © g (z)

In tropical derivatives, the derivative of the sum of two tropical polynomials is the

sum of their derivatives. We can check this as follows :
Theorem 3.2 (The Sum Rules) (f(z) ® g(x)) = f'(z) ® ¢'(z)

Proof. (f(z) @ g(x)) = (a0@ a1 OrPa 01D ... 00, 02" Dby® b Oz ® ... Dby, ®z™)
= WP WOTD.. 00,0z e dbor... Db, ® "}
= (MPwOrd.. 00, 02" N (bLi®bhor...®b, ®2°" 1)
= f(z) &g ()

20



Example 3.8 Let f(z) =2? @30 ®2 and g(z) =2 @20z 1

(fr)@g(x)) = @@30202)® (@?020rd1)
= 2203010202 020101
(f(x)®g(x)) = 2@362
= @3
f)eg@) = @a3)e(xe2)
= 103
(f(x) @ g(x) = f(z)Dg(2)

3.3.2 Chain Rule

We have yet to discuss one of the most powerful differentiation rules : the chain rule.

The rule deals with composite functions, and is also hold in tropical derivatives.

Theorem 3.3 (f(g(x))) = f'(9(x)) © ¢'(x)

Proof. f(g(z)) = ay® a1 ®g(x)®az® (g(x)*® ... &a, o (g9(x))"
(g(2)*") = ¢'(x) © (9(x)*" " @ g'(x) O (g(x)" " @ ...
= g'(x) O (g(x))" "
(flg(@)) = a1 ©g (@)@ a®g(x)®g(r)®az©g'(z) @ (g9(z)*. ..
®a, © g'(x) © (g(x))""
= (@ ®a©g(r) B az® (9(2)*... ®a, @ (g(x)" g (x)
= [(9(@) ©g'(z)

21



Chapter 4

Tropical Anti-derivatives

4.1 Integrating Tropical Polynomials

In classical calculus, intergration is the inverse of differentiation. Given a function f
to find a F such that F'(x) = f(x). If such a function exists, it is called an anti-derivative
function of f. In tropical anti-derivatives, we have the motivate to see the property of it.

In Section 2.2, we mentioned f(z) = 2?2 @2z ® 4 and g(z) = 22 ® x P 4 are
functionally equivalent. When we differentiate them, f'(z) =z @ 2 and ¢'(z) = = @ 0.

When x>2, f(v) = &2
= max{z, 2}
=
gx) = z®0

= max{z,0}

When <2, f(z) = &2

= max{zx,2}

22



g(@) = 280
= max{z,0}

= 2

We find f'(z) = ¢/(z). That’s why we use the idea of the largest-coefficient polyno-
mials. Because if we wouldn’t use it, we will get unpredictable results.

Now, if we use the integral symbol, [2 @2 = 2 @ 2Oz @ ¢, cis an arbitrary
constant. But only when 2 —0 > ¢ —2, 4 > ¢, 2°2® 2 ® 2 @ c is a largest coefficient

polynomial.

Definition 4.1 (Basic Intergration rules)

dF
d;x) = f(x). Let G(x) be another anti-

derivative, G(z) and F(x) differ by a constant c. Thus, we define [ f(z)dx = F(z) + c.

We say F(z) is an anti-derivative of f(x), if

Definition 4.2

Let f(x) be a tropical polynomial. We say a tropical polynomial F(x) is a tropical anti-

derivative of f(x), if dFd(xx) = f(x).

Remark 4.1 Let f(x) = a, © 2" @ ap_1 © 29" @ .....a; © & D ap, then

Fz)=a,02°" ' @ a,_1 ©2"....®a, 022 B ay O,

which is an anti-derivative of f(x).

Remark 4.2 Obviously, if F(x) is an anti-derivative, then F(x) @ c is also an anti-

derivative.

Definition 4.3 Let f(z) =a, © 2" ® a,_1 @ 2" 1 D .....a; ©® T D ay,

[ f@)dz =a, 2" @ a,_ @z Dag O DagOrDe,

where ¢ is a constant.

Theorem 4.1 Let f(z) = a,0x°"®a, 102" 1®...Da;Oxdag, wherea; € K,0 <i <n.

If f(x) is a largest coefficient polynomial, then
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[ fl@)de =a, ® 2" @ a1 @z D O DagOr D

s also a largest coefficient polynomial. And ¢ must satisfy ag — ay > ¢ — ay.

Proof. By Lemma2.1, let d; = a;_1 — a;, d; > d;_1, for all 1 < i < n. The anti-derivative
of f(x) is a, © 2" B a, 1 ©x"..... B a; ©r? D ag©x D e, trivial, we can get d; > d;_1,
forall 1 <i<n-—1and ayg—a; > c—ap is known. So the anti-derivative is also in largest

coeflicients.

Example 4.1 f(2) =502 06022 @70 x @8 is a largest coefficient polynomial,
then [ f(x)dz =502 D60 1rP T2 @80 rdc,
where ¢ is a constant satisfying 8 — 7 > ¢ — 8, i.e. ¢ < 9. It is a largest coefficient

polynomial.

Remark 4.3
o [kdx =k ®x @ c, where ¢ is a constant.
o [29"dx = 2" @ ¢, where ¢ is a constant.

o trivial, k ® z @ ¢ and x°" @ ¢ are largest coefficient polynomials.
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Chapter 5

Conclusion

In summary, tropical geometry is defined in the semiring T = (R {-00},, ).
As we see, it is a semiring over the union of real numbers and -co equipped with two
binary operations, maximum and additions. At the meantime, the commmutative law,
associative law, and distributive law are also hold under the basic arithmetic operations of
addition and multiplication. The additive identity for & is —oo, which is called O = —o0.
And the multiplicative identity for © is 0, which is called 17 = 0. There is no tropical
subtraction, which is why T is a semi-ring.

In proceeding, we discuss the tropical monomial in one variable. To extend it lin-
early, a tropical polynomial is the tropical sum of a collection of tropical monomials.
In tropical algebra, two distinct tropical polynomials may define the same function .
We say them functionally equivalent under the idea of largest coefficients. f(z) =
p © 2" D ap 1 © "B ..a; © x D ag is the largest coefficient polynomial, if for
all a;,0 < i < n, there doesn’t exist any functionally equivalent polynomials whose co-
efficients can replace a; with larger numbers. Another definition of largest coefficient is
let f(z) = ap, ©® 2" D a1 ©@ 2" 1D ... ® a, ® 2°" be a tropical polynomial, where
a; # —o0,i = r,r + 1,...,n. Then a; is a largest coefficient of f(x) if and only if there
exists some 7o € R such that f(zy) = a; ®zf". However, how do we determine if a largest
coefficient polynomial is a largest coefficient one or not? we refer to [5] and solve this

problem by theorem 2.1.
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In chapter three, we begin to differentiate the Puiseux series and obtain the defi-
nition of the tropical derivatives. In classical derivatives, the product rule is the quite
fundamental property. Refering to[2], we show that the product rule and the chain rule
are also hold in tropical derivatives.

In chapter four, we discuss the anti-derivatives by integrating tropical polynomials
and define the tropical anti-derivatives. It has some restriction when integrating tropical

polynomials.
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