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Abstract

In this thesis, we provide a classification scheme for nonoscillatory solu-
tions of a class of two-dimensional dynamical systems in terms of their
asymptotic values. In addition, we find the sufficient and necessary

conditions for the existence of these solutions.
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1 Introduction

The study of dynamic equations on time scales has received a lot of attentions
since it not only can unify the calculation of difference and differential equations but
also has various applications. Recently, some researchers have focused on the estab-
lishment of the oscillation and nonoscillation criteria for two-dimensional dynamic

systems; see, for example, [2], [3], [6].

Based on the above works, in this thesis, we will provide classification schemes

for nonosicllatory solutions of the two-dimensional nonlinear dynamic system

(1) = p(t) Fy(), Vt € T, (1.1a)
yA (1) = —q(t)g(at), Wt € T, (L.1b)

where T is an arbitrary time scale (i.e., nonempty closed subset of R) which is
unbounded above. Here we assume that p,q : T — R are right-dense continuous
with p > 0 and ¢ > 0 on [ty, 00)r, and ¢ is not eventually zero. Moreover, we

assume that f, ¢ : T — R are nondecreasing continuous functions satisfying

sf(s) >0, sg(s) >0, for s #0. (1.2)

This thesis is organized as follows. Firstly, we review some basic definitions and
theorems on the theory of time scales in Section 2. Then, in Section 3, we present

several useful lemmas. Finally, we provide classification schemes for nonoscillatory

solutions of (|L.1)) in Section 4.



2 The Fundamental Theory of Time Scales

For completeness, we state some fundamental definitions and results concerning
dynamic equations on time scales that will be used in the sequel. More details can
be found in [1]. Throughout this thesis, we assume that to,¢; € T and ¢y < t;. For

convenience, we define the time-scale interval [to, t1]r:={t € T : tx <t < t1}.

Definition 2.1 Let T be a time scale. For t € T, we define the forward jump
operator o : T — T by
o(t) :=inf{s € T:s > t},

while the backward jump operator p: T — T is defined by
p(t):=sup{s € T : s < t}.

Ift <supT and o(t) =t, thent is called right-dense, and if t > inf T and p(t) =t,
then t is called left-dense. If o(t) > t, we say that t is right-scattered, while if
p(t) < t we say that t is left-scattered.

Definition 2.2 We define the set T which is derived from the time scale T as
follows: If T has a left-scattered mazimum m, then T = T — {m}. Otherwise,
T% =T. In summary,

- T \(p(supT),supT] if supT < o0

T if supT = oo.

Definition 2.3 Assume that h : T — R is a function and t € T", then we define
h2(t) to be a number (provided it exists) with the property that given any e > 0,
there exists a neighborhood U of t (i.e. U = (t — ,t + )1 for some 6 > 0), such
that

(o (t)) — h(s)] — h2(t)[o(t) — s]| < elo(t) — s, for all s € U.



We call h™(t) the delta (or Hilger) derivative of h at t.

Moreover, we say that h is delta (or Hilger) differentiable on T provided h*™(t)
exists for all t € T®. The function h™ : T* — R is called the (delta) derivative of h

on T*.

Theorem 2.4 Assume h : T — R is a function and let t € T", then we have the

following:

(1) If h is differentiable at t, then h is continuous at t.

(11) If h is continuous and t is right-scattered, then h is differentiable at t with

exists. In this case,

(iv) If h is differentiable at t, then h(o(t)) = h(t)+u(t)h2(t), where u(t) = o(t) —t

is the forward graininess function.

Definition 2.5 A function h : T — R is called right-dense continuous provided it
is continuous at all right-dense points in T and its left-sided limits exist (finite) at
all left-dense points in T. The set of all right-dense continuous functions from T to
R will be denote by

Criy = CraT) = Cpu(T, R).

Definition 2.6 A function H : T — R is called an antiderivative of a function
h:T — R if HX(t) = h(t), and we define / h(t)At = H(s) — H(r). Note that

every right-dense continuous function has an antiderivative.



Theorem 2.7 Ifh € C,q andt € T", then

Theorem 2.8 Ifh € C,4 and h® >0, then h is nondecreasing.
b
Theorem 2.9 Ifh(t) >0 for alla <t <b, then / h(t)At > 0.

Theorem 2.10 Let a, b € T and h,h* € C,q. If |h(t)| < h*(t) on [a,b), then

/abh(t)At‘ < /ab Bt () At

Definition 2.11 Ifa € T, supT = oo, and h is right-dense continuous on [a,o0),

then we define the improper integral by

/00 h(t)At = bli_}m b h(t)At. (2.1)

If the limit on the right-hand side of exists, then we say that the improper
integral/ h(t)At converges. Otherwise, we say that it diverges.



3 Preparatory Lemmas

In this section, we will introduce some useful lemmas for proving the main

theorems.

Definition 3.1

(1) A solution (x(t),y(t)) of is said to be oscillatory if both component func-
tions z(t) and y(t) are oscillatory (i.e., neither eventually positive nor even-

tually negative); otherwise it is called nonoscillatory.

(11)) We say that the nonlinear system is oscillatory if all its solutions are

oscillatory.

Lemma 3.2 The component functions x(t) and y(t) of a nonoscillatory solution

(x(t),y(t)) of are nonoscillatory.

Proof. For contradiction, we assume that x(t) is oscillatory but y(¢) is eventually
positive. Then, we have 22 (t) = p(t) f(y(t)) > 0 eventually, which holds according
to p(t) > 0 and (|1.2). Hence z(t) > 0 or z(t) < 0 for all large t € T, which is
a contradiction. The proof for the other case where y(t) is eventually negative is
similar. Likewise, we assume that y(t) is oscillatory while x(t) is eventually positive

or eventually negative leads to comparable contradictions. a

Lemma 3.3 Suppose that / p(r)Ar < oo and (x(t),y(t)) is a nonoscillatory

to

solution of , then 1tlirn x(t) exists.
—00

Proof. Applying Lemma [3.2] we know that x(¢) is nonoscillatory. Without loss of
generality, we may assume that z(¢) > 0 for all ¢ > to. Using ((1.2]) and assumption
q > 0, we deduce from (1.1b)) that y*(t) = —q(t)g(z(t)) < 0 on [tg, 00)r, which



implies that y(¢) is nonincreasing for ¢ € [tg,00)r. By Lemma we know that
y(t) is nonoscillatory, which implies that y(t) is eventually one sign. Hence, there
exists t; > tg such that

y(t) < 0 on [t,00)T (3.1)

or

y(t) > 0 on [ty,00)r. (3.2)

Suppose that holds. Using and , we have
fy(t)) < 0on [ty,00)T, (3.3)
which, together with the assumption p > 0, gives that
z2(t) = p(t) f(y(t)) < 0 on [t1, 00)r. (3.4)

This implies x(t) is nonincreasing on [t;,00)y. Since z(t) is nonincreasing and

x(t) > 0 on [t1,00)r, it follows that tlim x(t) exists.
—00

Suppose that holds. Using , , and assumption p > 0, we get
z2(t) = p(t) f(y(t)) > 0 on [t1, co)r. (3.5)
On the other hand, since y(t) is nonincreasing, it follows that
0 < y(t) <wy(ty) on [t1,00)r. (3.6)
Then, using , and the assumption that f is nondecreasing, we obtain

z2(t) = p(t) f(y(1)) < p(t) f(y(tr)). (3.7)

<o) + £lul0) [ plr)an (35)



where we have used f(y(¢;)) > 0 and the assumption / p(r)Ar < co. Therefore,

t1
using 1) and 1} we obtain tliglo x(t) exists.

Q

Theorem 3.4 If/ r)Ar = oo and/ q(r)Ar = oo, then each solution of
t
(-) 15 oscillatory. ’

Proof. For contradiction, we assume that (z(t),y(t)) is a nonoscillatory solution
of (1.1)). Without loss of generality, we assume that z(t) > 0 on [t*, c0)r, for some
t* > to. Then, using (1.2) and the assumption that ¢ > 0, we have

y2(t) = —a(t)g(x(t)) < 0, Vt € [t*,00)r,

which implies that y is nonincreasing on [t*, c0)r. By lemma[3.2] we know that y(t)

is nonoscillatory. This implies that there exists t; > ¢* such that
y(t) < 0 on [t;,00)r (3.9)

or

y(t) > 0 on [ty,00)r. (3.10)

Suppose that (3.9)) holds. Since y is nonincreasing, it follows that y(t) < y(¢;)
for all t € [t1,00)r. Then the monotonicity of f gives that

Fly(t) < fy(tr)) <0, Vit € [t,00)7 (3.11)
where we used . Together with the assumption that p > 0, we get
z2(t) = p(t) f(y(t)) <0, (3.12)
for all t € [t1, 00)r. Integrating from t; to ¢, we have

£(t) = x(ty) + / p(5)F (y(s))As. (3.13)



Taking limits on both sides of (3.13]), using (3.11]), and the assumption that / p(r)Ar

to

oo, we obtain that

lim z(t) = z(t;) + /oo p(s)f(y(s))As

t—o00 t

which contradicts the fact that x(t) > 0.

For the case (3.10)), since y(t) > 0 on [t,00)T, (1.2)) implies that f(y(t)) > 0
on [t;,00)r. Together with the assumption that p(t) > 0, we deduce from (|I.1al)

that 22(t) > 0 for all ¢ € [t;,00)r, which implies that x(t) is increasing. Hence
x(t) > x(t;) > 0 for t € [t;,00)r. Together with (1.2) and the fact that g is

nondecreasing, we have
g(z(t)) > g(x(t1)) > 0,Vt € [t1,00)r. (3.14)
Integrating ((1.1b]) from ¢; to ¢ and rearranging the resulting equation, we obtain

y%%w@+/ﬂ%@@ﬁs

t1

Zyw+gmm»/q@As (3.15)

t1

Zgum»/q@As

t1

where we have used (3.14]) and y(¢) > 0. Taking limits on both sides of (3.15]) and
noting that g(x(t1)) > 0, we get

g(z(t1)) /OO q(s)As < y(ty) < oo,

t1

which contradicts the assumption / q(s)As = 0. Q
t1



4 The Main Results

For a,b € [—00,00], we denote the collection of all nonoscillatory solution

(x(t),y(t)) of such that

t—o00

lim z(t) = a and tlggo y(t) =10
by C*(a,b).

Later, we will apply the Knaster’s fixed-point theorem [4] to prove our main

result. For readers’ convenience, we state this theorem in the following.

Lemma 4.1 (Knaster’s fixed-point theorem) Let X be a partially ordered Ba-
nach space with ordering <. Let M be a subset of X with the following properties:
The infimum and supermum of M belong to X, as well as every nonempty subset
of M has the infimum and supermum which belong to M. Let T : M — M be an

increasing mapping. i.e., x <y implies Tx < Ty. Then T has a fixed point in M.
4.1 The Case / p(r)Ar = oo
to

Theorem 4.2 Suppose that

/OO p)Ar = 00 and /Oo o(r)Ar < 0.

to to
Then has a nonoscillatory solution (x(t),y(t)) which belongs to C* (0o, m) for

some m > 0 if and only if

[ ate (e /t:pmm)) As < oo,

for some ¢ > 0.

Proof. Suppose (x(t),y(t)) is a nonoscillatory solution of ((1.1)) such that

tllglo z(t) = oo and tliglo y(t) =m > 0.



Then there exist a positive constant ¢; and t; > ty such that
x(t) > ¢ on [ty, 00)T, (4.1)
which, together with and the assumption that f is nondecreasing, follows that
f(z(t)) > f(c1) >0, Vt € [t1,00)r. (4.2)
Integrating from ¢, to ¢t and using , we have

t

z(t) = z(ty) —|—/ p(s)f(z(s))As > x(ty) +/ p(s)f(c1)As, Vt € [t,00)r. (4.3)

t1 t1
On the other hand, integrating the equation ((1.1b]) from ¢; to co, and using (4.2)),
(4.3), y(c0) = m, and the assumption that g is nondecreasing, we obtain

y(ts) —m = /j a(5)9(a(s))As
> [ atss (wtt+ [ pr)stenar ) as

t1

Z/t q(s)g <c/t p(r)Ar) As,
where ¢ = f(c1). Hence,

/: q(s)g <c/t:p(7‘)Ar> As < oo.

Conversely, suppose

/: q(s)g <c /t:p(r)m) As < o0, (4.4)

for some ¢ > 0. Pick t; > tg such that

/t  4(9)g <c /t p(r)Ar) As < m*, V> 1, (4.5)

where m* = f7'(c)/2. Let B = C,q(T,R) be a Banach space of all right-dense

continuous functions on T with the norm

[z]] = sup [z(t)|
t>t1

10



and the usual pointwise ordering ”<”. Define a subset 2 of B as follows:
t

Q= {z€B | f(m*)/tp(r)Ar < a(t) < f(2m*)/ p(R)Ar, Vit € [t1, 00)1).

t1 t1

It is easy to see that inf Q2 € B and sup{) € B. Moreover, for any subset () of €2,
we have inf ) € 2 and sup Q) € Q2. Define an operator L : 2 — B by

w0 = [ ps)s (' [ dtdatalr)ar ) B, € 00

t1

We claim that L) C ). Let z € Q. Since f, g are nondecreasing and p > 0,

q > 0, we have

for all ¢ € [t;,00)r. Here we have used (1.2)). On the other hand, using (4.5, we

obtain

(La)(t) = /tltp(s)f (et [ atrrgtetryar ) o

< [ wtr (et [ atoig (2 [ stwran) ar) as
_ /tp(s)f (m* + /:O 4(r)g (c/t:p(u)Au) AT) As

p(s)f(2m")As
2m A

IN

=f<1 ) [ ploas

for all t € [t1,00)r. Hence LQ C Q.

2
t
1

Furthermore, L is increasing since if x,x €  with > x, then

(La)(t) = /tjp(s)f (0 [ atiatatrar) as

< /tfp<s>f ([ atg(@rar) as

— (LF)(t).

11



Here we have used the assumption that f and g are nondecreasing. By Lemme
we can conclude that there exists © € () such that £ = Lz.

Now we set
§(t) = m* + / 4(r)g(@(r)) Ar, (4.6)

for all ¢ € [t1, 00)r, then we have
and

Taking limits on both sides of the equation ¥ = Lz, we get
t 00
im0 = i [ o0)f (4 [ atriatatear) as
= 7o (s [ atnigatrar) as
t1 s

for all t € [t1, 00)r, where we have used the assumption / p(r)Ar = co. Therefore,
to

1tlirn Z(t) = o0o. Since ¢ € €, it follows that
—00

t
(t) < c/ p(r)Ar, Yt € [ty, 00)T.
t1
Together with the monotonicity of ¢ and the assumption (4.4)), we get

/too q(r)g(z(r))Ar < /too q(r)g (c /trp(s)As) Ar < oo, Vt € [t1,00). (4.7

1

Taking limits on both sides of (4.6 and using (4.7)), we get

i () = Jim (" + [ atr)ate)r ) =

t—00

Hence (2(t),y(t)) is a nonoscillatory solution of (|1.1)) which belongs to C* (oo, m").
Q

12



4.2 The Case/ p(r)Ar < oo

to

Theorem 4.3 has a nonoscillatory solution (x(t), y(t)) which belongs to C* (¢, k)

for some 0 < {, k < oo if and only if

/ (A < 00 and / T Ar < oo (4.8)

to to
Proof. Suppose (z(t),y(t)) is a nonoscillatory solution of (1.1)) such that

lim z(t) = ¢ and tlim y(t) =k, for some 0 < £,k < 0.
— 00

t—o00

Then there exist four positive constants piq, uo, V1, v, and t; > ty such that

and

for all t > ¢;.

Integrating (|L.1al) from ¢; to oo, using (4.10]), (1.2)), x(co) = ¢ and the mono-

tonicity of f, we have

o0

0 =a(t) + / ) A > a(t) + fn) / P A,

t1 t1

oo

which implies that / p(r)Ar < oo. Similarly, integrating (1.1b)) from ¢; to oo,
t1
using (4.9), (1.2), y(co) = k and the monotonicity of g and rearranging the resulting

equation, we obtain

o0

y(t) =k + / " (Mg Ar > k+ glm) / a(r)Ar,

t1 t1

which follows that / q(r)Ar < oco. Hence 1} holds.
t1

Conversely, suppose (4.8) holds. Then, for given positive constants ¢*, k*, we

set

M= (k +g20) [ q<s>As> |

to

13



which is a finite number since / q(r)Ar < oco. Note that / p(r)Ar < oco. It

to to

follows that there exists t; > ty such that / p(r)Ar < ¢*/M, ¥Vt > ty, which
t

together with the monotonicity of f, gives that

/ p(r)f (k*+92€*/ q(s ) r
¢
< D E* + g(207) / q(s >
| 07 (1ot (4.11)
= / p(r)Ar
A
for all t > ;. Let B be given as in the proof of Theorem Define a subset €2 of

B as follows:

Q={zeB|<z(t)<20* Vt€E[ty,00)r}.

It is easy to see that inf 2 € B and sup () € B. Moreover, for any subset () of €2,
we have inf () € 2 and sup @ € ). Define an operator L : {2 — B given by

Lo =+ [ o (1 + [T aogta(enas) ar v e fu.cope

t1

We claim that L C Q. Let x € . Since f, g are nondecreasing and p > 0,

q > 0, we have

(120 = ¢+ [ plr)s (4 [ alatetonas) arz ¢

t1

for all ¢ € [t1,00)r. On the other hand, using (4.11)), we obtain

w0 =+ [ pos (1 [ atsiatetonas) ar

t1

<0+ /tltp(r)f (k:* + /roo q(s)g(%*)As) Ar
—ry /t:p(r)f (1 +o20) [ ate)ns) o

<+ / Y. <k*+g(2€*) / N q<s)As> Ar

t1

<O =20,

14



for all t € [t1,00)r. Hence LQ C Q

Furthermore, L is increasing since if x,x €  with £ > x, then

w0 =+ [ ps (1 [ atelatetnas) ar

t1

<o+ [ o (k4 [ atoutaisnas) ar

t1

— (LF)(t).

Here we have used the assumption ¢ is nondecreasing. By Lemme (1.1, we can

conclude that there exists an Z € €2 such that Z = Lz. Now we set

§(t) = K+ / " d#gli(s)As, (4.12)

for all t € [t1, 00)T, then we have

and
#2(t) = (La)2(t) = p(t) f(§(1))-
Since z € , it follows that & < 2¢*. Together with the monotonicity of g and the

o0
assumption / q(r)Ar < oo, we get
to

/t " a(3)g(i(s) A5 < g(2f) / " 4(5)As < 0. (4.13)

Taking limits on both sides of (4.12) and using (4.13)), we get

t—o0

i 5(0) = Jim (1 + [ alala(e)as) =i

In addition, since p(r)Ar < oo, Lemme [3.3] asserts that ¢ := tlim Z(t) exists
t — 00
and ¢ > (* > 0. Hence (2(t),y(t)) is a nonoscillatory solution of (|1.1)) which belongs

to C* (0, k*).

15



Theorem 4.4 Suppose that

Oop(r)Ar < o0 and h q(r)Ar < oo.
J J

to to
Then has a nonoscillatory solution (x(t),y(t)) which belongs to C*(&,0) for
some & > 0 if and only if

/t:op(s)f </oo Q(T)g(f*)Ar> As < o0 (4.14)

for some £ > 0.

Proof. Suppose (x(t),y(t)) is a nonoscillatory solution of (1.1)) such that

lim z(t) = £ and tlim y(t) =0, for some & > 0.
—00

t—o00

Then there exist a positive constant g1 and t; > ty such that
x(t) > oy on [ty, 00)r,
which, together with the monotonicity of g, gives that
g(z(t)) > g(o1), Vt € [t1,00)T. (4.15)

Integrating the equation (|1.1b]) from ¢ to oo, and rearranging the resulting equation,

we have

y(t) = /too q(s)g(z(s))As > /too q(s)g(01)As, Yt € [t1, 00)r, (4.16)

where we have used (4.15) and the assumption that y(oo) = 0. Since f is nonde-
creasing, (4.16)) implies that

) = f ( I q<s>g<m>As) Yt € [t 00)r. (4.17)

Proceeding to integrate the equation ([1.1a)) from ¢; to oo, and using (4.17)) , we get

€= a(t) + / " () Fy(s)) As

t1

>att)+ [ a6 ([ aatoar) s

t1
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Hence (4.14)) holds with £* = o;.

Conversely, Suppose

/t :Op(s)f ( / ) Q(T)g(f*)Ar> As < oo,

for some £* > 0. Then there exists t; > to such that

[ ([ awaerar) as < s

where 7 = £*/2 > 0. Let B be given as in the proof of Theorem [4.2] Define a subset
Q) of B as follows:

Q={zeB| 7<) <21, Vt € [t1,00)r }.

It is easy to see that inf 2 € B and sup{2 € B. Moreover, for any subset () of €2,
we have inf ) € 2 and sup @ € 2. Define an operator L : 2 — B by

w0 =7+ [ ne)f ([T atatatrnar) as, v € oo

t1

we claim that L C Q). Let x € ). Since f, g are nondecreasing and p > 0,

q > 0, we have

Lt =7+ [ po)s ([ atstetonar) sz

t1

for all ¢ € [t1,00)r. On the other hand, using (4.18]), we obtain

w0 =7+ [ po)s ([ atnatetrnar) as

t1

- /t:p(S)f ([ atnstznar) as
- /t:p(s>f ([ atsterar) as

<7+7=2T,

IN

for all t € [t1,00)r. Hence LQ C Q.

17



Furthermore, L is increasing since if x,x € ) with > z, then

o)) =7+ [ oor ([ avatatrar) as

t1

<+ [ ([ ata@enar) as

t1

— (LF)(1).

Here we have used the assumption ¢ is nondecreasing. By Lemma [L.I we can

conclude that there exists & € ) such that £ = Lz. Now we set

o(t) = / " alr)g(a)Ar, (4.19)

for all t € [t1, 00)T, then we have

and
#2(t) = (L) (1) = plt) f (/ Q(T)g(i“(T))N) = p(t) f(9(1))-
t
Since z € (), it follows that & < 27. Together with the monotonicity of ¢ and the

assumption / q(r)Ar < 0o, we get

to
| a0 < [ as)genas < o (4.20)
t t
Taking limits on both sides of (4.19) and using (4.20)), we get

lim () = lim ( / q(s)g(:i:(s))As) — 0.
t—00 t—00 t

In addition, since p(r)Ar < oo, Lemma [3.3] asserts that £ := tlim Z(t) exists
t — 00

and £ > 7 > 0. Hence (Z(t),y(t) is a nonoscillatory solution of (1.1]) which belongs

to C*(&,0). Q
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