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Object Description Using Extended Local Ternary Pattern

Abstract

Robust feature descriptor is essential in developing effective computer vision applications. In
this report, we present an extension to the well-known local binary pattern (LBP) feature
descriptor. The newly defined descriptor known as extended local ternary pattern (ELTP)
exhibits better noise resistivity than the original LBP, while maintaining computational
simplicity. We further investigate the presence of uniform patterns in ELTP. With a slight
modification of the definition of uniformity, it is found experimentally that uniform ELTPs
account for 80% of all patterns in texture images. The proposed ELTP and uniform ELTP are
applied to object classification tasks, including texture analysis and face recognition.

Experimental results validate the superiority of ELTP over conventional LBP approaches.

Keywords : local binary pattern, extended local ternary patterns, uniform pattern, texture

classification
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1. mE ¥Rz p 0

$= 1 725 (object recognition) s k £ T FRAL K AR B ¢ HE & FA Bawa o ErERRE 2
R ELBE R SRR 4] > AR H0F (visual search) + 4 47 (visual object class - VOC) ~ 3
AN F AT s X 2E Y N ERORY o Ra P RIRRA RE PR DES “,f T A TR B R
ECE NG TP AT - ﬁr&?;}%,{{(ﬁ%mﬁ TR RFPARETN 0 BF - MR R :T‘ﬁ»{—&r
PR S ER Y BEF G F EY P ITE RS RO e EE MRS EREEE S
Wt oo EFY G éﬂé,,;%—il\ ﬁ; e T Apicture is worth a thousand words | » &3} — 3R Bl 7 M 256+ 3
;E!J'%I&hw’%di v AR B R ABFERRATE I R 4 Ar5 Y el R s KR Rk R A S 0 - %%;@‘{ﬁ

g H > i4p R (1 million pixels » 24-bit color) 7 & 3 7 & B =~ e (byte) k £ 7 > ~ ffw‘?\ "A
plcture is worth a thousand ‘words'. Yet it takes millions of 'bytes' to store a picture.”

mARE PR F O ITERIE G R4 1 et B TR RArREEE R 4 AR R Ik o 4 ?u
B3 g Emb a3 o @ ARE g ik 0 E*»"’L—ﬁ e o AP - T E B A e Ik d A
T Ao M E e tRE B g R T Rowm ol e o 3 TR W] ande 2 PR s 4o A %% 1 p](face detection)[1] ~
{7 A 1 ;p](pedestrian detection)[2] ~ = F y¥zs(text recognition)[3] % > F 7 & B g > WA H T e
BHEBATREIFEANFHT S 40 Qe B U'J‘iif'ﬁx Google f& ) 51 Google Goggles
PRAA[A] - g AU S dpdRene Y o BRI AEE 0 3 L H R S P2 E N L0 oo F e w B R
BNFARBE A 0§ AR ’?IE JRIFBE T BRI > 22 2L 3 @ 2 WAHE R EgN o ¥
CREB B LR it C FHRIEEFERGC AL AP EEamS et B g o
T A ER

fdr R R RSO T o5 0 BB Y74 32 0 PASCAL (Network of Excellence on Pattern Analysis,
Statistical Modeling and Computational Learning) f£_2005 = & ﬁ;ﬁhif ¥% Visual Objects Classes (VOC)
Challenge » % ## 1 2010 # 2 2= - L3a s & FHLE[S] > ¢ 7

e Person: person

e Animal: bird, cat, cow, dog, horse, sheep

e Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

e Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

;zﬁ%A EERGI L BRAE R L aT ] B fE T30 ICCV%#Workshop’f E % (R
11 2010 # S RTE MRS 0 & RS B yERaT iﬂ}ﬁ—, (average precision)¥_30-80% 7 % > 1 &z @
gty L By oz oo

- B s U ¥ ZEG SBRE ¢ 3 ¥ o cde i > 5 (feature descriptor) o 12
EHEsRR B ML EMRRTEE c AP B RE S G o TR Y AR Y B kT Harr-like
features[1] ~ Scale-Invariant Feature Transform (SIFT)[6] -~ Histogram of Oriented Gradients (HoG)[2] -~ Edge
Histogram (EH)[7] ~ Local Binary Pattern (LBP)[8] % - izt ity it 4 ~ Fimk bzt Bsagy b 25 #
BB @ A FERT R EINA R S B EE Y 2 75 4o Support Vector Machine(SVM)[9] - AdaBoost ~
K-Nearest Neighbor(KNN) ~ Local Sensitivity Hashing (LSH)[10] & - #5:iF F it 38 2o =~ £ ehle & $Ee
BEEAR O B A BRI H o

AL P AR D G s B RS 0 A A & eniFR R EF ST R R g 2



=

FAEA T AP E AT R A ARE Y R AT B J(Iocal binary patterns, LBP) » 3 ! 4 & 5% e &
= = i* B3] # 5% (extended local ternary patterns, ELTP) » I 4-%F H Foefe 4 ~ fy it 4 223+ 5 2 &2 LBP &
7l R o KT I dp it 4 B hek M s 3F E Ty 4 {:L&,‘E,i@p%{ﬁmi;ﬁ %1% 5 LBP i”r,'lﬁjx’:% }ﬁ»r,} , 4}5
e RFIEFIZEEARE MRS 4Rt W F4s LBP ehad it » T EFTOEAE SN 0 L B FEER
Hb B g e R o LB L B o
AT S - Tt AP 2Ty 2 AR AL B =
patterns > ¥ w & 5 Firk 4 Byt 4 2 :;55;%%

3= i B4 2 2 ¢ o uniform

2. WBMEE

21 % - 2B

¥ 48 =~ i B3 (local binary patterns, LBP)&_¢ %~ ¢h Oulu ~ ¥ Ojala %7 3 & § #7#& 1 «0[8] > A_
- BRIB R NE A S N o R4 LBP i 8 2 £ A - B 3B R AR ’%’%d PosBher 4Bl
% xg_mwsn, BREN G BRI A A TS R L E o LBP 4t ¥ imfede Figure 1 9%
TR AKX B SEBAGFER IR E F BN BT DG B TR ERE > P ESE B
BEX e 00 F2ZRlRa 1o 2B R REEHEEEL *“‘%1@*1‘%:@‘_ » T B R Y gLy LBP
EodmEfH- BREERBF MNERSPN T BEFLBPEY - R AT A R R - Ak
© > B](LBP Histogram) » i% 5 B] i ficds i+ o

Thresholding | |
by central pixel Multiply - 09 ¢
vl 9 o] 9 o1
. 0 @0 o e @ o [ @ [ |®
85 |98 | 2 B 1]1]o ? o @ b'@' __CL J)__
53 | sa|le [ o 1 L) f;‘i‘:,‘,,ﬂlw \f‘ﬁ'ﬁ]}
57 | 12|13 rjeje P=4 R=1 P=8R=2 P=12,R=3
(a) (b)
Figure 1 (@Q) A AHLBP & 22:85 > X 5 (O)¥ 4 e LBP(P,R) > 2 ¢ ®H3F LT Ry 4 8L P
P AR PR R S AT R DR B E - B 33 R AP BRI 0 2T
FHEE g it Lk R IE ‘J”]‘ﬁ » 7]yt Ojala 2 %‘? ¢ | BP e g at o> it W 2 K LBP P oo ¥t &Y
B S R ST BEEC K P 3X3 bi“ ’T%’**—“Ff?iﬁ?ﬁ?.-]‘iiézéc%ki”ﬁﬂ‘& S L m R R
4 Bhigcchgbge(Figure 1(b)) - Bk ¥ o BEenE iR 5 (0,0) > RISF BEehER G PR S ®REF LT P 5 5T

#i o

LBP fic & 4% i * 044 B A 47 (texture analysis) » 2 6 B4 & A S 38as ~ 2 a8 ~ F B ieE - F
FEF B ELITE S 5 05 405 7 g0k o d 20 LBP { Loond e gt cnfr gk o« Fpt EE wE
Foeat WA L R A 0 Blde T B2 4 B & B e LBP (rotation-invariant LBP)[8] ~ % £ 247 B
LBP(multi-scale LBP) [11] ~ p 7 # I F 3t <7 Bayesian LBP[12] & -

BELELBP gt Bz W OUF IS BRI ¥ - LMY HREA SRR R > £ H TR (b

hot % G AR ) e 3 LR B F] 5 LBPaE S 2 B E vk & TR ) en A PE BB R IT end e o
B3k Figure 2(a) ¥ B ik = ek B2 3|7 et 4f @ 3 0 ety 0% it (Figure 2(b)) > & fe LBP e & >
B3 e ARt 5 11001011 0 e/ 3% <09 Hamming distance % 1 fe it 5 Ligi=prirg 4p§ < hL §E
(75vs.203) » iz» A F AE S BEFTICHEHPF > A K g gL S A e R .
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85 | 99 | 21 111 o0 85 | 99 | 21 1110
Binary: Binary:
11001011 01001011
: - )
54 | 54 | e6 ::> 1 Decimal: 53| 54 | g6 Z> 0 1 Decimal
203 75

57 12 13 1 0 0 57 12 13 1 0 0

Figure 2 LBP efrrfe 4 iRk M

P2 BRI EN DB RS A FE S N U H o LBPBL) k0 B B AEAKD S RE
3 256 B bin> @ LBP(16,2)sn% & = ~ s pcd > B A 4H 5 65536 bin’%ﬂ%@‘l' I B < /] 5 32x32
EE R I ¥ 4R frominigd > LT Efitd 2R LR EEFN  BRRGNORET NG
i uniform pattern sPE & e 35 > R A GRS OEFE IR D RAE I A R A PR AR R -

22. Bz AW

G4 LBP 33 R IR B N J AL EE
LTP)[13] » LTP e & %% » B8P o fff & @ < Bhijc
LoD frd (R L 0) % = ke R

1=~ it % 5 > 74(Local Ternary Pattern -

#
BN G A SN DR

1 p(i) - p(0) >0
LTP@i)=4 0 if |p(i)-p(0)<@
-1 p(@i)-p0)<-0

Equation 1 LTP %% = ;\

Ho P(i)5 B owffd @ PO)% ¢ < BECE @ 0 B 5 3E R AnP T » 075 & ik 5 d 35 (-1, 0,1)
ZHEPEL TUARE LR REZ BT

v Figure 2 5 b FARIT R 5 50 BT # 34 Figure 3(@)cn& 7 S 5 0 EEA L OEE AR
Bud 4o EF e £ ¢ BBLTP ehid % > #7020 LTP X A2 b AJ2 1 fesn + 3 enf 48

85 | 99 | 21 g5 | 99 | 21 1 1] - 1 1] - 1 1 0 o | o | 1
—\

54 | 54 | 86 | °* | 53 | 54 | 86 }—/] © 1 0 1| = 0 1 |+ o 0

57 | 12| 13 57 | 12 ] 13 o || -1 ol 1] o lo]o o | 1 1

(a) (b)
Figure 3 (a)Local ternary pattern 4% ;% $5 i = ;% ( =5) (b)#- Local ternary pattern 47 % = = = LBP

BRm RS 5 € A AT R G R A LBP(8,1)F 256 f & 0@ LTP (8,1)R]+ 6561 78
LTP (16,2),m+;—z F (% i£43,046,721 48 % it LBP 2 > BIffn ik 30 A S BAS > T R § L 5 KT
mETHREBRA Ree LTP =il €47/25 3 2 LBP- # ¢ - R g+l kst > ¥ - 2p)
Bg -1 kst o dopt - ki E e fBAfE T § 256 48 IR OB GAR N RTE o 0 BB
¥ens s RS L T aE k& o (Figure 3(b))

LTP g2 2% 4c 5 0 Bl A chdnfe 4 >t o pfe A4 0 FF R AAPP A 7 L L P EEEE S 3
FENFHEES 2 - BF302 0 63 FhFmT > @& OFIEES 2 240k > & S0 " R
T oav § ok 4474 > F AR ¥ T 45 (texture-free region) shitit 3 S T 8 5% e(adaptive) UK
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G LTP 472z BI% § 4 BB F S PE L - Hhamed o - k- B2 Fef# L3 6
LAFHR APBAPAH T RDEE S BELFRT R 0 REDLTP ARG A P o b
LBP > 5]t boip i LTP it R & ed it > & LA HER P HF o & ts L3 = P anp 40
8 LTP # &ﬁmﬁgﬁﬂﬁﬁmﬁLW“@¥ﬂﬁ“iy%ﬁﬁ P ATATfR N LB E 8 ¥ E 2
BIAFEs el 40 » B > BB fan cnB AL & LTP ¥ 2 202 @ 51 fBk o & T 50 345 1 s gk e
Bk b3 b B RN Pk S D B R F B AR -

3. wENF®RFP=AMEIA

AP PP RAE RS S AR R RS YR S E AR R
Ty B o AP RITR D i+ T e L5 BN R = i B A (Extended Local Ternary
Patterns, ELTP) » &% & ELTPPF > 3 BB R A AR > & 7 = ~ 1 ik - ternary pattern ¥ 5 3 -+
i fF en 38 s ternary pattern f e v A (T v 2 F ELTP BAp i B et B 3 2 & o b oh > ik 5
Z A dkor 2 R S~ £ 54 (LBP(8,1)7 256 ® patterns > LTP(8,1)R|5 6561 i patterns) » 4v
GRS xSt o Pl E_ELTP S prenhi4d » 0T N -2 B A B B RE A T A e 0T E o
31 = At R T

ELTP ehz &P » #P WEBLAAGTELG Z Bl A S Z T2 B F4py 2% 0~ ﬁf‘ui/’a\ e
SRR SUE IR o0 RN B AN R SR R 'ra,é}ﬁnﬂﬁﬁiﬁﬂﬁ

C AW PEEONER B FR L H KK o RIURRNE R A T O e
F OB AT R SRS RO hiE (dra x o) o AR ah7 2§ 424% local statistics k% =g
AhF - BRILhfy FRPFENFAY BB LT BRI L > LR L B et bR I
F#-E (L Equation 2) o 13450t > 2 > AP R-ELTP endhsl = sV 2 k4™ @ 5 1 e P EE > AP iy
DMFHHP P BB LT BRI 5 B R R N RBEL Lo BN HET L PR I R

IE"_‘_E:IF"‘! ZEl &

B3] - &= g (ternary code) - F]pt 12 Equation 2 ELTP %48 = 3¢ Figure 4 %
b 0 P HEE 5 25.94x0.3=7.7 (@ 5 0.3) ©
2 )= p(0 78199 | 50 212 | | Ternary code:
. . p(l) p( ) >0 54| 54149 || Thrcsho[ld 1 1 | 22110011
LTP(i) =1 1 if |p(i)-p(0)<O® O=a*oc [57[12]13 o [0
0  p(i)-p(0)<-0 [54-1, 54+, 1=2594%03=77
Equation 2 ELTP %5 = 3¢ Figure 4 ELTP F® £ 18 3% T_

32 RSB E N

EHRFEPN FEE L AATES T - B AB 0 FEH/YTES AB RN R e B
B> ¢A2E > REEHEianP 3L o 1 ELTP(8,1) % &) » »71H 3| eh= ~k3V ¢ B 6561 f4 > 5 7 @A
tEy N 5\ P42 BN enbins BAEH kEME Bl E cEF 0 FTAFEMLEME  BAR
1 N & 3L B e 4p AR bins & B o w3k 24 g 4p #8400 bin = hamming distance B 2 5 B - %=
PR ARHRI Z 4G WS AR T o R miRE BBinsEH: ABeadcE P DAl
2" .

Bfe— a7 VR0 * bin §2 bin chB kg EH o L i}{iﬂ B a@rabinils b— 3o iR
Faagmcdk o d 3E - B bin & - B= < > ¥ bin nm\ﬁﬂ*&i Btz A iTA o F Al =

7



- = ~#5AR 5 — 1 pattern> i J5 pattern &2 pattern ¥ cidp i & K s 30 @ o F i P ﬁ!ﬁ»{}“ [l
R e R EAS N RS HA PR € F T o A A D keEL TG ET R
e ] o TG B A1 pattern B edp v R R & ® bins @ 37 & efEfR o

d 3T A 7 2 2 sk > T AFEY F * o k-means & mean-shift ¥ ;7 52 7 2§ * 3 ¢
WESE» i h o - BEHNFEABDTH > LBz B Dk Flet P graph
representation i ;% (Figure 5) » #-% — F B 4L 5 graph } en&gh @ S8 S L g 2% B > P E.F
BRAp LR o FIL NP % £ 74 ﬁ‘zﬁr_‘é“ﬁi;T‘!i’\?‘ i {7 & ¥ epspectral clustering 4p B JF & 2 18 {7 4 ¥ o

Figure 5 12 graph = ;% % 77 % 3% & eroRf 72 [14]

B ELTP eh= = %45 pF - 1345 local statistics %3k 2 P> 7@ & g X D+ a B B %5

%k s FEAE G LGB L RN A e B % o » ¥ 5 d spectral clustering g4
HEA PRI FREALIN IR ARBA R - RO LR PSRRI X
o

3.3. Spectral Clustering

Spectral Clustering &_* Bl (Graph Theory)shd & k5 2 ¥ > v 3 & A HOFTHRS - B LD
# » B (Undirected weight graph) » - B & gbit & - £ T B e A2 FTHRFap g > » %ﬁh{
L3 WA = BB A 4p 2 0+ Bl(Figure 6(a)) > RIF - F BIM 7 FRFDRLEE > 7 2 FFRF L
B R o

Figure 6 (a) B2~ 2]3% X B];(b) B &> 2] 38 = &L
% B125*7 2] (Graph Cut)enR® 42 ¢ » AP & BB A ch- B B8 %> SRR A4~ 3] & BB b = B
3 ] 0 FA IR AU i g E R fest A2 S Cut B oo
ABl V,ACB=/

cut(4,B) = é w;

il 4,/1 B

Equation 3 Cut &



PR ST AT S HeiR S B £ & Ao B 0 CUt ] o $PE A B0l AT
B CUt @ 0 @ £k T 7 2] T g ek o) ﬁép i 2 Figure 6(b)enfi) >+ 2% 2 ghehl
R IR RE S ApEIBES > TR * hp R 5 ic(Objective function) 3 RatioCut £2
NormallzeCut © BEAR b IR A R S0 HCE @ LI 2 BRenR AT (e L& g 1 v i gr AU 2 NP-hard R AE
P T gk d g (Relax)dp 7+ £ (Indicator Vector) » ¢ 18 % B 2]*7 2l 508 1 5 fic F4 i RS ATH 1 &
7 Rayleigh Quotient F4& ig 7R* 3% -

P b e 4 gl s o S 00 f2 3 Spectral Clustering § #5it & % 28 (Figure 7) -
1t 9 2 > AP w o i 3] Spectral Clustering i i ¢t -

[ Data ]—>[Afﬁnity matrix]—»[ Graph ]——[Laplacian
° o

e® o L=D-W
Qo0
o
A
(-] ]
.. ]

o | Postprocessing |<——| Eigenvectors ]4—[Spectrum

Figure 7 Spectral Clustering ';i“x A2 7]
T m f_ = g ¥ 4 ¢ * v Spectral Clustering ;& & ;# - 4 % £ Un-normalized Spectral
Clustering(Figure 8) ~ Normalized Spectral Clustering(Figure 9)2 NJW algorithm(Figure 10)[15] -

e *?*t
.:_H

Unnormalized spectral clustering

Input: Similarity matrix S € R™", number k of clusters to construct.

e Construct a similarity graph by one of the ways described in Section 2.
Let W be its weighted adjacency matrix.

e Compute the unnormalized Laplacian L.

e Compute the first k eigenvectors uy, ..., wy of L.

e Let U € R"** be the matrix containing the wvectors uy,...,ur as columns.

e Fori = 1,...,n, let y; € R¥ be the vector corresponding tc the i—th row of
U.

e Cluster the points (Yi)i=1...n in R* with the k-means algorithm into
clusters C4,...,Ck.

Output: Clusters Ay,...,A; with A; ={j|y; € Ci}.

Figure 8 Un-normalized Spectral Clustering i# & /#

Normalized spectral clustering according to Shi and Malik (2000)

Input: Similarity matrix S € R™", number k of clusters to construct.

e Construct a similarity graph by one of the ways described in Secticn 2.
Let W be its weighted adjacency matrix.

e Compute the unnormalized Laplacian L.

e Compute the first k eigenvectors uq, ..., uy, of the generalized eigenproblem Lu = ADu.

e Let U e R e the matrix containing the wvectors uj,...,u; as columns.

erfori = 1,...,n, let 3 € RF be the vector corresponding to the i-th row of
U.

e Cluster the points (¥i)iz1..n in R* with the k-means algorithm into
clusters C4,...,Ck.

Output: Clusters Ay,...,A; with A; = {j|y; € Ci}.

Figure 9 Normalized Spectral Clustering % & ;*



Normalized spectral clustering according to Ng, Jordan, and Weiss (2002)

Input: Similarity matrix S €R™", number k of clusters to construct.

e Construct a similarity graph by one of the ways described in Section 2.

Let W be its weighted adjacency matrix.

Compute the normalized Laplacian LSY:‘.

Compute the first k eigenvectors uy, . ... wp, Of Lym.

Let Uz R"™k be the matrix containing the vectors uj,...,ur as columns.

Form the matrix T € R™** from U by normalizing the rows to norm 1,

that is set ti; =u; /(X ud)Y2.

For i=1,..., n, let y; € R¥ be the vector corresponding to the i-th row of T.

e Cluster the points (¥;)i=1,..n with the k-means algorithm into clusters
.. Cy..

Output: Clusters Ap,...,: Ar with A; ={j|y; € Ci}.

Figure 10 NJW 3% & ;2

Table 1 A %% %

gl1-128 | g1-256 | ¢2-128 | ¢2-256 | h2-128 | h2-256 h2.5-128 h2.5-256
Mean
. 3.134 2.615 3.17 2.667 3.459 2.94 3.389 2.65
Distance
Max
Cluster 68 38 70 37 73 38 69 48
Size
Min
Cluster 39 14 33 15 38 14 36 17
Size
Standard
o 5.66 4.41 7.16 4.28 6.45 4.6 6.04 453
Deviation
Tablel 5 v o A ER S cndkdp g £ @ * 3AHA TR NUR DL EREE S AR AP arg

# ehjp "1)32“*5'”%\%;%* » TISFEgE § kA - FPN T SRR K H«%—g/’a\ HEE Ao R
MR L kypE - FP) pattern chBHECREE > N A FAER S IR o AL Fw pattern [ ch-L 35
FEAE S 7.1 A = 256 FpEL 3aE FN 5 25.62 B pattern o 4 = 128 ¥ pEp] 3 51.26 1 pattern o

KPP PRED O FERY PR NAEATAERAAE  HEOLSELEETRFEADLE - %
BK T b oo PIV LRI Y g BioE ARG Ao S pattern P Ap R RA R PIATE I A B R L €
ALF o

Spectral Clustering 3+ & 4§ 3¢ & %) 5 Eigensystem 4c + k-means s+ 5 452 » £ A=t ¥k i 1 R
MR 9 % OeN)+O(NK) » ¢ & dxN éhF f}J»rE“ﬁ;t‘ Tiag T2 R K G orfeanAh Hilico d 33t g
LI FP AT A EES Y FARI T gL A AP L ELTPRFEF L EE S -

4. ELTP ¢ ¢ Uniform Patterns

Uniform Pattern #_LBP ¢ - & & & c2 5> { {% ;‘iﬁ—hié * 42F 5 LBP gt oo 2 i d Y ELTP
H i@ = s o pattern #icrt = A A LBP 4 F2F 5 ¥ LBP ¢ 7% & g uniform pattern o S e
eti4eie 2 2 & > ELTP «huniform pattern » & & ¢ 315—#;’1'3’;\ TR E LR

10



4.1. LBP # & Uniform Pattern
Uniform pattern 7% & 5_Ojala & & # ** 2002 # #73% 2 e0[8] - i i* 4 o & LBP < pattern # > 5 F
2 AN g pattern F A RIE m%} o 154t pattern 2. =72 &M]L,? uniform pattern > ¥ %] 5 v
Py FrE - B AR BT kR SR 2R 03 18130 g 5]4-:0000011+11001111
= 11111111 % $8 >+ uniform pattern -

BT IR R R % 1s 0 Ojala %+ # % * LBP(8,1) > uniform pattern £ % ¥ &5 90% > & &_
& * LBP(16,2)> % % Rl 70%-° 2 LBP(8,1)® > 3% £ 5 256 f& pattern> # ¢ 58 #& pattern £_/ >+ uniform
pattern> it 23%- 3 & * uniform pattern % ®4F g £ - B] 33 % 4 58 & uniform pattern & H ¢ 2t uniform
pattern ene = B i 5 $Fics £ > @ Fhce £ oA 5 59 &> 22 X & * uniform pattern 57256 f4p it 2.
ToRREEES

< §
4

4.2. ELTP # & Uniform Pattern

% ELTP(8,1)¢ 4+ 7 6561 #4 pattern> 2% if* & j& iz pattern ¢ #5 &1 384 4F T hpattern 2 < & 1131
R o g L% 3oy LBP ¢ uniform pattern s & k < & ELTP ¢ ouniform pattern o 24 i -2
IR 27— AL R 1T 22 ) o S (Figure 11) - & & B ¥ uniform pattern #7 ik vl &) > 12 S ZE i
#7 %_& o uniform pattern £_F < £ 7% AN B P o

Flgure 11 R E] lgf*" S rﬁ‘] %
% & - (UELTPL): &3k ik en= ~ 4G @ o 4pardigit & 7 © 3 2=k eh% 3 (transition) - &) 4-: 00022000~
21122222~ 12111111(Figure 12(a)) - & 6561 i pattern ¥ 7 171 i pattern 4>+ 2 _%& - uniform pattern o

% % = (UELTP2): &gk cn= < %78 ¢ - 4p #84 B digit FF Hamming distance %, f- 7 {84z i 2(Figure
12(b)) - i 4r:11112111~21112222~12111111- % 6561 & pattern ® # 115 B pattern >t 2 & = « uniform
pattern o

% 3% = (UELTP3) @ &fgken=z ~ % ¢ > & % 7 3 4 = digit &% 3 (transition)(Figure 12(c)) © i

o 122001222 ~ 22212112 -

Z & w (UELTP4): &gk cn= < %78 ¢ - 4p#83 B digit F Hamming distance %, f- 7 {4z i 4(Figure
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Table 2 12 [ (§% % % % LBP £ ELTP ¢ uniform pattern 7 4

A B C D E F G H
ULBP 0.78 0.68 0.85 0.82 0.83 0.75 0.82 0.81
UELTP1 0.25 0.26 0.23 0.28 0.33 0.28 0.33 0.28
UELTP2 0.21 0.22 0.18 0.23 0.29 0.24 0.3 0.25
UELTP3 0.79 0.71 0.86 0.83 0.87 0.77 0.88 0.83
UELTP4 0.72 0.62 0.81 0.78 0.82 0.72 0.84 0.79
I J K L M N O P
ULBP 0.76 0.8 0.85 0.82 0.84 0.77 0.67 0.76
UELTP1 0.39 0.39 0.45 0.34 0.48 0.26 0.25 0.31
UELTP2 0.35 0.35 0.43 0.31 0.45 0.23 0.21 0.27
UELTP3 0.84 0.9 0.89 0.87 0.9 0.78 0.74 0.8
UELTP4 0.8 0.86 0.86 0.83 0.88 0.72 0.66 0.73

d Table 2 54 i 7 g% 3] » AP #7 % % 0 ELTP shuniform pattern 28] 4@ 25 + £ el |
Bo%% 73t 3] 48% > ¥ LBP huniform pattern Apdiz. T b 1 3F oo ¥ b 7K = ¥ %% 11 ¢ uniform
pattern 14 iR M ! o 3 B3 7 ip3) 0% - vt} £ 6561 46 pattern @ § 1767 46 pattern
At 2 & = enuniform pattern > ik 27% > @ >t 2 & = o uniform pattern B3 1067 4& 0 i 16% o 4p
2T o % &k = %1 700 B pattern o fe IUILeE A 4R £ 4%-11% 0 F)P & & 2 478 en uniform
patterns J& i s ehdk o7 2 iE o

AR gt LBP ¢ ehuniform pattern i #c 58 @ - w6 #7 Z_& 3 f& uniform pattern & 383 E - + &
v FEE R Rl pattern (hE R Fake B BAV R 6 2 BFE N Tl AR

B-AT - HHhE OB R A g oo

4.3. Uniform Pattern «7*% &

# uniform pattern fe4 # %" 4 > v S L & % = F A7% Dl hpattern & FE M2 X R 7 oo SR
& 1§ bin & ¥ - B pattern - @ pattern ¥ ehpEdE - 2 3 * hamming distance % % & - &
B engedis > A ¢ 1% pE4 k3 B pattern P endp iz B o AR IR SHEE AT

_D*(xy)
S=e 2 OR

Equation 4 Hamming Distance 4p 07 & T_&

A {8 pattern «4p i 28 (similarity matrix) {s > 2% i @ * spectral clustering % i& {7 &4 ¥ o ¥$3b7Ru
7 &>+ uniform pattern <o pattern » S iR v R o & B Ft AN g v ;ma‘ﬁ,g e - Fpen
pattern > e £ v i ¥ 7 57 pattern "% (> F]pt e € R ¢ 5 uniform pattern #7¢F I iR +
1o
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LBP ~ ULTP ~ UniformLBP ~ DLTP) £ A 3% c11% s e ELTP(Gaussian % - * & 21407 % & 4p 12 &
Hamming # 7= * AP p (7 2 & cfp iR > JeF 30 R & 97 3 R ) &2 % = #& 2 & 0 ELTP uniform
pattern(UELTP3 > G & 7 * B 21 A 2 & pm A " H A 7% AP p 7% r‘ﬁ}fp R)e B RwfE T A
ELTP uniform pattern(UELTP4 » G 4 7+ * % #7fcA] T & 4p R » H & 77 * & 1]” g m L;& AR LR e

frigk 4 F (- )t BETREA T RSB E

2 A 43 A S

#iE+\p iR | Chi-Square | E* W4p2 Chi-Square ESWARR
LBP 0.451 0.585 0.391 0.604
ULTP 0.853 0.388 0.579 0.497
UniformLBP 0.418 0.594 0.336 0.649
DLTP 0.701 0.452 0.582 0.499
Gaussian64 0.238 0.702 0.270 0.693
Gaussian128 0.312 0.675 0.305 0.675
Gaussian256 0.368 0.633 0.351 0.628
Hamming64 0.258 0.718 0.255 0.705
Hamming128 0.245 0.713 0.244 0.714
Hamming256 0.328 0.659 0.333 0.641
UELTP3-G58 0.361 0.63 0.319 0.659
UELTP3-G128 0.387 0.616 0.362 0.626
UELTP3-G256 0.412 0.599 0.366 0.603
UELTP3-H58 0.341 0.639 0.290 0.672
UELTP3-H128 0.362 0.637 0.342 0.638
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UELTP3-H256 0.397 0.607 0.353 0.607
UELTP4-G58 0.378 0.628 0.321 0.659
UELTP4G128 0.4 0.605 0.327 0.634
UELTP4-G256 0.426 0.59 0.315 0.613
UELTP4-H58 0.391 0.612 0.325 0.651
UELTP4-H128 0.395 0.609 0.331 0.634
UELTP4-H256 0.433 0.588 0.341 0.602

bek 4 B (=) S T R > 82 LBP 4 LTP 4+t » ELTP 4 it m#nﬂﬁﬁui 4o hRM I
SR EE 0 F T 256 ApFFUR4 TG R R0 kA ek (58,128) % 1 4 & chfuk 4 o

5.2. firkd FEk(= ):eppn

i RRA(C )T HRR A B RpR ARG B - Ry XFRP TR R EL DT
PR AT IEH s £33 Fo £ * Chi-Square d|stance BECRAALRPEIFENE TR
LR oo FEF B S Bk RIRE(- )R -

P4 F%(C )R BRI IHRLE

PR REHRR

}#iE+\p iR | Chi-Square | E* W4p2 Chi-Square EFRAR
LBP 0.189 0.732 0.318 0.631
ULTP 0.139 0.773 0.553 0.476
UniformLBP 0.141 0.761 0.296 0.678
DLTP 0.13 0.777 0.582 0.458
Gaussian64 0.083 0.831 0.172 0.767
Gaussian128 0.099 0.828 0.225 0.719
Gaussian256 0.16 0.767 0.237 0.685
Hamming64 0.084 0.829 0.154 0.766
Hamming128 0.106 0.812 0.182 0.747
Hamming256 0.158 0.771 0.218 0.698
UELTP3-G58 0.129 0.787 0.202 0.731
UELTP3-G128 0.156 0.754 0.228 0.707
UELTP3-G256 0.182 0.731 0.242 0.683
UELTP3-H58 0.111 0.782 0.206 0.72
UELTP3-H128 0.155 0.76 0.223 0.718
UELTP3-H256 0.179 0.74 0.236 0.673
UELTP4-G58 0.134 0.773 0.195 0.736
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UELTP4G128 0.167 0.751 0.221 0.721
UELTP4-G256 0.182 0.733 0.252 0.682
UELTP4-H58 0.138 0.763 0.186 0.75
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Abstract

The local binary pattern (LBP) operator is a
computationally efficient local texture descriptor and
has found many useful applications. However, its
sensitivity to noise and the high dimensionality of
histogram  associated with a mediocre size
neighborhood have raised some concerns. In this
paper, we attempt to improve the original LBP by
proposing a novel extension named extended local
ternary pattern (ELTP). We will investigate the
characteristics of ELTP in terms of noise sensitivity,
discriminability  and  computational  efficiency.
Preliminary experimental results have shown better
efficacy of ELTP over the original LBP.

1. Introduction

Local binary pattern is a computationally efficient
local texture descriptor that has been applied
successfully to tasks such as texture classification, face
recognition, and background modeling [1]. However,
there exist several limitations of LBP that hinder its
capability in certain situations. For example, LBP is
quite sensitive to random noise in near-uniform image
regions. Moreover, LBP with mediocre size of sample
points will produce a feature representation with very
high dimension. The former issue is, to some extent,
resolved by the introduction of local ternary patterns
[2]. Yet LTP has a much larger histogram size than the
original LBP. The latter problem is generally settled
by merging or grouping patterns to reduce the size of
the histogram. Yet the dimensionality reduction
process usually casts a negative effect on LBP’s
capability to accurately describe a region. So far, no
proposed solution can address both issues
simultaneously and effectively.
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DOI 10.1109/ICPR.2010.251

1003

The objective of this research is to improve the
original LBP using a novel extension named extended
local ternary pattern. The proposed ELTP
accomplishes better tolerance to noise through the
incorporation of ternary representation, while at the
same time controls the histogram size by merging
patterns using a distance measure defined over the
ternary digit pattern space.

The rest of this paper is organized as follows. In
Section 2 we briefly reviewed previous work, focusing
on those directly related to local ternary patterns.
Section 3 describes the formulation of extended local
ternary patterns, along with some possible variations.
Basic properties of the newly proposed ELTPs are also
discussed. Section 4 presents some preliminary
experimental results and comparative analysis. Section
5 concludes this paper with a conclusion and outlook
on future work.

2. Related work

There are various extensions and modifications of
the original LBP following its first introduction by
Ojala et al. [3]. A good source of references can be
found in [4]. Since our investigation focuses on issues
regarding noise sensitivity and histogram bin size, we
will restrict our discussion of related work to these
subjects.

According to the original definition of LBP, pattern
with a mediocre size of sampling points (P in
LBP(P,R)) will generate a histogram of rather high
dimensionality. For example, LBP(16,2) will generate
a histogram of size 2'°=65536, which is not suitable
for region description. (A 32x32 image patch will have
at most 1024 distinct patterns, resulting in a very
sparse representation.) To address this issue, Méenpaa
et al. [5] proposed two approaches to select a subset of
LBP for texture classification. The first method starts
with a single pattern and iteratively expands the
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pattern collection using a training set. However, the
patterns thus chosen tend to depend on the training
data employed. The second approach reduces the
histogram size by dividing the patterns into uniform
and non-uniform ones. The size can be further reduced
to P+2 (P is the number of sample points) by
incorporating rotation-invariance. Such modifications
may prove effective for texture disambiguation, but
may face difficulties for tasks such as face or object
recognition [6].

The second critical issue regarding LBP is its
sensitivity to noise. Let us examine the 3x3 image in
Fig. 1. The corresponding LBP is 11001011, or 203. If
we change the intensity value of the center-left pixel
from 54 to 53, we will obtain a different LBP:
01001011, or 75 (shown in Fig. 2). Notice that these
two bit patterns are still quite similar, with their
Hamming distance equal to 1. But the values become
distinct when converting into decimal representation.

85 | 99 | 21 1 1 0 Binary:

54 | 54 | 86 Z> 1 1 Z>11001011
Decimal: 203

57 | 12 | 13 1]1ofo

Fig. 1 Calculation of the LBP.

85 | 99 | 21 1 1 0 Binary:

53 | 54 | e Z> 0 1 Z:) 01001011
Decimal: 75

57 | 12| 13 1 o] o

Fig.2 LBP obtained by modifying the value of
the center-left pixel from 53 to 53.

.There exist several methods to compute the
distance between two histograms. But either histogram
intersection (Eq.1) or y? distance (Eq. 2) considers
individual bins separately.

S@  TW

HI(S,T) = Zimin {5, =0

(1)

2 _ v SM-TE)?
X“(s,T) = Zi—s(i)+T(i)

)
As a result, the slight perturbation caused by replacing
a single pixel value yields a rather significant change
in pattern distribution and distance measure.

Local ternary pattern seems to be a natural
extension of the original LBP to deal with this
problem. In [2], Tan et al. proposed to use a base-3
pattern to represent the region. The LTP can be
calculated according to Eq. (3):
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1 ifP@) —PO)>6
0 if[P(iQ) —P(0)| <6
-1 ifP(i) — P(0) < -6
where P(0) is the intensity of the center pixel, and 8 is
a pre-defined threshold. Using this new representation,
the two image patches in Figs. 1 and 2 can both be

converted to the same ternary pattern shown in Fig.3.

LTP(i) = (3)

85 | 99 | 21 85 | 99 | 21 1 '
S\

54 | 54| s | |53]54] 8 p—] o0 1

57 | 12 | 13 57 | 12 | 13 o | 1] -

Fig. 3 LTP obtained by setting 6=5.

While this approach seems to have addressed the noise
sensitivity issue, it actually creates another problem
regarding the histogram dimensionality. For example,
LTP(8,1) will generate a histogram of size 3*=6551.
LTP(16,2) will create a histogram of size
3'9=43,046,72, which is deemed inappropriate for
practical implementation.

Dimensionality reduction is achieved in [2] by
decomposing the LTP into two LBPs (upper and
lower), as demonstrated in Fig. 4. The distance
between two LTP is calculated by combing the results
from upper and lower LBP, respectively.

1 1 -1 1 1 0 0

1 = 0 1 0

0 -1 -1 0 0 0 0 1 1

Fig. 4 Decomposing LTP into two LBPs.

The above coding scheme has brought relief to the
histogram dimensionality problem. However, it also
adversely affects the pattern’s tolerance for noise,
which is considered to be the key strength of LTP.
According to our experiments, LTP-UL-LBP performs
even worse than the original LBP in the presence of
noise. An effective coding scheme needs to be
developed to maintain compactness of the feature
vector, while at the same time retain its ability to
faithfully describe the object of interest in a noisy
environment.

3. Extended Local Ternary Patterns

There are two conflicting factors that affect the
performance of LBP/LTP. On one hand, when we



employ a larger number of sample points or use a
base-3 representation, we will achieve better feature
resolution. One the other hand, too fine the resolution
implies sensitivity to minor changes in the pattern, as
well as difficulties in actual implementation. (Consider
the case of LTP(16,2)). The proposed ELTP attempts
to strike a balance by using a clustering method to
group the patterns in a meaningful way, as explained
in the following.

3.1. Basic formulation

The process for converting a region into its ELTP
representation (Eq. (4)) is very similar to that
described in [2], i.e.,

1 ifPG) —P(0) > 6
0 if [P()) — P(0)] < 6
—1 ifP(i) — P(0) < —0

LTP(i) = (4)

Instead of employing a fixed threshold 6, however, we
propose to assign its value based on the local statistics
of the pattern. Specifically, we will use Eq. (5) to
compute 6:
0=axo (O<a<l) )

where o is the standard deviation of the local patch,
and o is a scaling factor. Such a formulation helps to
retain one favorable property of LBP: invariance with
respect to illumination transformation, as illustrated in
the following example

Fig. 5 depicts the LTP of two image patches using
our proposed criteria («=0.3). The intensity value of
the right patch is obtained via a simple linear
transform:

R() =L x3+10 (6)
10 | 40 | 45 40 |1 130] 145 -1 1 1
23125123 7918179 ¢ 0 0
40115 ] 35 or 130 55 | 115 1 -1 1

Fig. 5 Invariance of ELTP under gray-level
transformation.

If we use fixed threshold, say 8=5, the right region
will have a different LTP, as shown in Fig. 6.

40 | 130] 145 ;1] 1 1
79 185] 79 ¢ -1 -1
130 55 | 115 11111

Fig. 6 LTP using a fixed threshold (6=5)
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3.2. Dimensionality reduction

As discussed previously, using a base-3 system for
representing feature patterns will increase the feature
dimension in a drastic manner. It is therefore
necessary cut down the size of the histogram by
grouping patterns. But how does one achieve this goal
in a sensible manner? Here we propose to form the
groups based on pattern similarity. Suppose x =
(xn—1,..,x0) and y=(yn—1,..,y0) are two ELTP
strings, the distance between x and y can be
calculated using their Hamming distance:

D(x,y) = X5 |x; = il (6)
For a ternary string of length n,
max D(x,y)=2n 7

The similarity (or affinity) between two ELTP strings
can therefore be defined as:

A(xy) =1-252 ()
When there is a need to group patterns, those with
larger affinity should be merged together. Specifically,
if P is the number of sample points, there will be at
most 3” distinct ELTP strings. To reduce the size of
the feature dimension from 3” to K, we will first
compute the similarity between any two ELTP strings
to form a 3 x 37 symmetric affinity matrix. This will
transform the original dimensionality reduction
problem into a graph partitioning problem, which can
be solved using spectral clustering algorithms [7]. It
should be noted that the same process can be applied
to reduce the feature dimension of LBP. The only
difference lies in the way one computes the similarity
measure (Eq. 9):
— D(xy)
A(xy) =1-—"=

n

(€)

Fig. 7 summarizes the procedure for reducing feature
dimension for the proposed ELTP representation.

S1. Choose P(sample points) and K(histogram size)
S2. Form a 3" x 37 affinity matrix using Eq. (8)

S3. Perform a K-way partition of the 37 patterns using
spectral clustering.

S4. Merge those patterns belonging to the same
partition into a single bin in the histogram.

S5. Use the K-dimensional histogram for feature
representation.

Fig. 7 Dimensionality reduction process for ELTP.



Following the K-way partitioning, it is possible to
compute the mean distance of patterns belonging to
the same cluster. The mean distance is regarded as an
indicator of cluster homogeneity, and can be used to
assign the weight w;in weighted x?distance (Eq. 10).
Clusters of greater homogeneity should get more
weight.

(S@-T(@)?

2 _
Xw (S, T) =X w SO+TQ)

(10)

The uniform pattern argument also applies in the
ternary case, with a slight modification in the
definition. If we consider only the number of
transitions in the ternary digit pattern, then both
12222111(1=>2, 2->1) and 02220000 (0>2, 2->0)
will be uniform patterns. However, if we take into
account the amount of transitions, then the former
pattern (transition amount=2) will be more uniform
than the latter (transition amount=4).

Finally, ration-invariance version of the ELTP can
be obtained by defining a new distance measure (Eq.
11):

D'(x,y) = minj—o.,-1 DO, ROT, () (11)
where ROT; denotes the circular shift operation by j
digits.

4. Experimental Results

We present preliminary experimental results
comparing the performance of the original LPB, LTP-
UL-LBP and the newly proposed ELTP in term of
noise sensitivity. For the purpose of comparison, we
set P=8 and K=256. The scaling factor a for defining
ELTP is set to 0.3 in the experiment. We use lena
image to perform the test. The image is corrupted with
Gaussian noise of different scales. Image patches are
randomly selected from the noisy image and the
corresponding LBP, LTP and ELTP are calculated. To
evaluate noise immunity, we compute the histogram
intersection between the original patterns and their
noisy counterparts. The results are depicted in Fig. 8.

Generally speaking, ELTP is least sensitive to
perturbations, especially at high noise levels, using the
same size of feature vector (K=256). The original LTP
was designed to have better noise resistivity, yet the
coding scheme (by decomposing into upper and lower
LBP) counters all the benefits. As for the
computational complexity, the K-way partition needs
to be performed only once. After that, the grouping of
patterns can be done using a fairly simple table-lookup
method.
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0.8
0.6
0.4
0.2

noise level

11 21 31 41 51 61

s | BP em— E| TP Upper LBP e ower LBP

Fig. 8. Performance comparison.

5. Conclusions

A novel scheme of defining local ternary patterns
and a systematic approach for grouping these patterns
have been devised in this paper. Preliminary
experimental analysis showed encouraging results
using the proposed ELTP for region description.

Future work includes an in-depth investigation of
different spectral clustering algorithms and how they
affect the partitioning results. More importantly, we
will examine the efficacy of the proposed ELTP to
machine vision applications such as texture
classification, face or facial expression recognition and
background modeling.
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Abstract—This study explores the daily life user experiences of
an experimental e-book reading device among high-school
students, aiming to understand how well the digital natives
accept the use of e-book reading devices and the potential
utilities of such devices for them, either for leisure purposes or
as an assistive educational tool. Toward this goal, we have
custom-designed the e-reader user interface as well as the e-
book content to suit the needs of this particular user group.
The unique opportunity of having access to the hardware
device, software design and potential users creates an ideal
experimental platform for us to unbiasedly investigate the role
of this new technology through a long-term user behavior
collection and analysis process. We anticipate that the new
reading behaviors of the digital natives will provide clues for
further improvements in the design and development of
digital reader devices.

Keywords- e-ink display; e-book reader; user log analysis;
user experience

L

Digital natives, the generation growing up with
abundance digital technologies, have developed new ways
of obtaining and consuming information. With continuing
advances in information technology, especially in the area
of display hardware, market for the once slow growing e-
book reading devices has revived. The introduction of
Kindle in 2007 by Amazon has kick-started a new wave of
devices based on electronic-ink display. All the major book
retailers in the U.S. have followed suit, aiming to replicate
the success of Amazon.

The format of digital electronic books has been in
existence for decades. The recent surge of e-book readers is
mostly attributed to the reduced manufacturing cost of e-ink
display. Unlike the conventional LCD, the e-ink screens
reflect lights like ordinary paper. It causes less eye strain,
and consumes very little power. Anecdotal evidence
suggests that e-paper is more comfortable to read than
conventional displays. However, current e-ink devices have
only 16 levels of gray. The refresh rate is also too slow to
show animation or video. These constraints have led the
device makers to emphasize its portability, readability and
‘greenness’.

Although many e-book readers have been introduced in
the last two years, they are mainly targeted on general users
for their casual reading activities. Several field studies have
been conducted to gather the initial responses of the users to
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this new technology [1,2]. A few pilot programs sponsored
by Amazon have been carried out in several U.S.
universities to study Kindle DX’s functionality and potential
to replace paper textbooks in college. The initial responses
are disapproving, due to the device’s slow performance and
lack of note taking capability [3].

In this research, we are aiming at a different user group:
high school students. We also have a different perspective.
Instead of forcing the participant to use the device according
to our direction, the objective is to exploit the role of this
device in the student’s daily lifer user experiences through a
long-term user behavior collection and analysis process. We
are able to obtain the hardware from a supportive
manufacturer. The device is based on a proprietary
embedded OS. With access to the software development kit
(SDK), we have the capability to customize the e-reader
user interface, as well as the system functionalities of the
device. To understand how this device is used, we asked the
participants to fill out surveys. Additionally, a background
process is embedded in the device to gather user log for
subsequent analysis.

The rest of this paper is organized as follows. In Section
2 we list the specifications of the device and discuss some
design constraints. We then present the system framework
and user interface design. Section 3 is concerned with the
experiment design, including subject selection, deployment
process and test schedule. Section 4 presents the user log
analysis. Section 5 concludes this paper with a brief
summary and outlook on future work.

1L

The e-book reading device used in this experiment has
dual screens, as depicted in Fig. 1. The top screen is a six-
inch e-ink display panel with a 600x800 resolution and 16
levels of grayscale. It is used for displaying information.
The bottom is a LCD-based touch screen whose resolution
is 360x100. This area is dedicated for user operation and
interaction. The main screen shows the six functions of the
e-book reading device. My textbooks item (A) contains
course materials and assigned readings. Recent readings
item (B) provides a short cut to recently opened documents.
My documents item (C) allows the user to access self
upload pdf or word doc files. My music item (D) contains
audio collections. My pictures item (E) is a place holder for
png, jpg or gif files. System settings item (F) permits the

DEVICE AND USER INTERFACE DESIGN
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user to adjust the device’s settings, including data/time,
refresh mode, etc.

Due to limited display area and number of gray levels,
not all textbook materials are suitable to be presented using
this device. Four subjects, namely, Chinese literature,
English, History and Geography have been identified after
consultation with high school teachers.

600px({9cm)
HE — = [25m
@ vecw semsjesstamasee L1 | 50px
A} My Textbooks il
6) Recent Readings
€ My Documens [P
800px o)y e B
700px
(12em) € MyPicure so. 70 ’
F) SystemSettings j:
B | rm———— — J 25px
360px(9cm)
(a]e]c o]
100px D =
(2.5cm) £LF
1 1
40px 280px A0px

Figure 1. Specifications and user interface of the e-reader.

III.

Forty 10th-grade students from the affiliated high school
of National Chengchi University (AHS of NCCU)
participated in the experiment after obtaining written
consent from their parents. We held a discussion session to

EXPERIMENT DESIGN

solicit input from the potential users during the design stage.

We have carefully described the characteristics of the e-ink
display for the users to better understand the limitations of
this device. The users are encouraged, yet not forced, to use
the device as much as they can.

To understand how this device is used, we ran a log-
collection process in the background to record user activity.
Specifically, all the key-press events, including hardware
and virtual keys, the time stamp, and the corresponding
page will be written to a log file. The format is shown in
Table 1.

TABLE 1. FORMAT OF THE USER LOG

Key Pressed Time Page
1 VK_Menu 1272888558 Page ResourcesCenter
2 VK A 1272888562 Page MiniReader

The first phase of our experiment starts at 5/5/2010. We
gathered user logs at 5/31/2010, a little more than three
weeks after the initial distribution. Out of the forty
machines sent out to the students, thirty-eight log files have
been successfully collected. Two devices were sent back
for repair due to fragility of the display panel.

The second phase of our experiment falls between
6/1/2010 and 7/2/2010, right before the summer vacation
starts. For this period, we are able to recover only 34
system logs since four more devices were out of order and
sent for repair. We made our final collection of machine
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logs on 10/29/2010, almost 6 months after the initial
distribution. We are able to record 33 user logs this time.

IV. USER LOG ANALYSIS

This section discusses the results of user log analysis.
We will first present the overall usage statistics and identify
active users. We will then inspect the operation log of active
users to study how the e-book readers have been used in a
real-life situation.

A. Overall Statistics

Fig. 2 summarizes the usage statistics of the thirty-three
students who participated in all three phases of the
experiment. About 50% (17 out of 33) of the users spent
less than 30 hours on the machine. Our speculation is that
these are individuals who may be curious about the device,
but the initial excitement wears down quickly after hands-on
experience. These students are classified as ‘inactive’ users.
Follow-up questionnaire has been distributed to inquire the
reasons for low utility. Ten participants whose usage ranges
from 30-60 hours are classified as ‘casual’ users. The
remaining six participants whose usage exceeds 60 hours
are considered ‘active’ users.

The next useful information is to examine the average
time between consecutive key-presses (or clicks) to deduce
the possible user behavior. If the interval between two
operations is short, the user may just be navigating through
different menu structures. On the other hand, if the interval
is long, we have reason to believe that the user is reading the
material shown on the e-ink display. The average time
between two operations (7,.) can be computed by:

__ Total Usage in Seconds
Total # of clicks

Tec (M

Fig. 3 depicts the calculated T, for all 33 users. The
average is 26.1 seconds with a standard deviation of 9
seconds.

50.00
40.00
30.00
20.00
10.00

0.00

1 4 7 10 13 16 19 22 25 28 31

Figure 3. Average time (in seconds) between two operations

We speculate that active users spend most of their time
reading the e-books instead of jumping around different
hierarchies of user menus. Consequently, their 7. should be
longer than that of other types of users. This is confirmed by
the statistics shown in Fig. 4, in which all 6 active users
have T,. greater than 30 seconds. For inactive or casual



users, the distinction is not as clear, as can be seen from the
mixed results in Fig. 4.

0-10 11--15 16-20 21-25 26-30 31-35 36-40 41-45

o N b~ OO

M Inactive Users Casual Users W Active Users

Figure 4. Histogram of T,

B. Statistics of Active Users

Certain statistics only make sense for those logs
obtained from active users. As a result, the subsequent
analysis will focus on the detailed usage patterns of the
active users.

Fig. 5 shows the percentage of time active users spent on
different type of materials. Either textbooks or assigned
readings (i.e., classic Chinese or English novels) are not
very well-received, totaling only 25% of the overall reading
time. Instead, most active users prefer to upload their own
documents. We believe this is strongly correlated to the
policy we have in this phase of the experiment, i.e., we treat
the e-book reader as a complementary tool and let the user
decide when, where, and how to utilize the machine.

A user session is defined as the interval between system
boot-up and standby or shut down. We can tell if the e-book
reader is used in fragmented time intervals by examining the
statistics of the user session. If we set the threshold to be
300 seconds (5 minutes), the average is 34.7% of long
sessions (over 5 minutes) vs. 65.3% of short sessions (less
than 5 minutes) for all active users.

W Textbook materials

Assigned readings

2%

Figure 5. Usage pattern: type of materials consumed

V. CONCLUSIONS

In this paper, we have described an experiment aimed at
facilitating high school learning through e-book reading
devices. Results from user log analysis indicate that the
reader can play an assistive role in promoting reading
activities. We are currently entering the second stage of
design and experiment using a new hardware platform
running Android OS. We are attempting to extend the e-pub
format to enable the incorporation of online tests and
interactive content. It is expected that with these new
functionalities and integrated online services, the e-book
readers will gain wider acceptance in modern classrooms.
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