T RBARFEL R ML P E S 22

P S E NS B R T ke s e B

hae ERAPE OFEVE

& %EL 1 NSC 97—2221—E—OO4—007—MY2
HEWYm: 97# 87 1px 100# 1 31p
REBER 5 Bt TS

R AEL DRI

ERAREA S 2 (FEras Bom i) s FRM (B 5 80

FRSEAR CHAE TR AR R RE > B E

BRI R AT

SEFLFA(RE R FER TN O EREE: W= EF
(

éﬁiiw’ﬂﬂ$4ém #2387 E )

Rk FEHA T AR B4R

@%?‘é%w@ﬁﬁ
A"ZI
v

ARSI TR TN @ TR A

-+

I

(2 B8 d e mEpaf (- #2672 2B 44

v Y B O100& 4°* 179



Pt TR P

FRALIMFERFTEANPRE EXFFHPRERFL A F AR §E(H
Biit Tyl Az R 1 xﬁ\ﬁifgﬁg\l%@.——-)ﬁ@ '?‘“p}) S P o)
TFEAAY FE AL FRAE B

o
—~
oy
N
;:
|
4\?
*w

N

R

Lo g p B2 R diAp BARR AR P AR T - SR S
e s\ P
% F]H
@ﬁ*wm@@pﬂ’ﬁp $**J—ﬁu%‘ﬁlﬁﬁg*ﬁ“”iﬁpf’ﬁf%%—m% Y

#wefee 7k WAIED 23 R & R B Tsh* o aidir@ 5 F 2 6 o jid 2 L Rehfes s AP 20w
"?F’*J# € ¥ 8 jiFF7 34 € b4 ACL o COLING -

2. oy = % B T 4 g 0 L%ﬁ )
W Wl B4 agdz<4 ERY [
_g?—fu [ EE® []Y 3 ;'_L:‘ | e
s [ #i [Lle? ME
He (100 % 5 %2)

AERHmTF R AT o

1. C.-L. Liu. Selecting Bayesian-network models based on simulated expectation, Behaviormetrika, 36(1), 1-25.
2009.

2. C.-L. Liu. A simulation-based experience in learning structures of Bayesian networks to represent how students
learn composite concepts, International Journal of Artificial Intelligence in Education, 18(3), 237-285. 2008.

3. C.-L. Liu, M.-H. Lai, Y.-H. Chuang, and C.-Y. Lee. Visually and phonologically similar characters in incorrect

simplified Chinese words, Proceedings of the Twenty Third International Conference on Computational
Linguistics (COLING'10), posters, 739-747. 2010.

4. C.-L. Liu, K.-W. Tien, M.-H. Lai, Y.-H. Chuang, and S.-H. Wu. Capturing errors in written Chinese words,

Proceedings of the Forty Seventh Annual Meeting of the Association for Computational Linguistics (ACL'09),
short papers, 25-28. 2009.
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At the time the proposal for the research project was drafted, we planned two types of research work. The first was to apply
Bayesian networks as the language for modeling students’ learning procedures. The second one was to employ techniques of natural
language processing for assisting the construction of software for computer-assisted language learning. After two years of work, we
have published 19 papers based on our findings. Although these papers cover a wide range of applications, they share the same
technical foundations: artificial intelligence and computational linguistics.

After two years of work, we are afraid that we have encountered more challenges than we thought, and we have learned a lot
from this experience. Despite the challenges, we have worked hard enough to find some useful results. The results were published in
three international journal articles, six international academic conferences papers, and 10 domestic academic conferences papers.
Among these publications, we thought the long article published in the International Journal of Artificial Intelligence in Education
(1JAIED) is quite representative. In addition, we published our results, as short papers, in the most prestigious conferences in the field
of Computational Linguistics, i.e., ACL 2009 and COLING 2010. Although we cannot say that such results are perfect, we hope that
these accomplishments are reasonable for the resources that we were granted.

The papers that we published in IJAIED and Behaviormetrika were about student modeling with Bayesian networks. The target
problem was about modeling the learning procedure with which students learn composite concepts.

At almost the same time that we finished the work on student modeling, we began to work on the issues related to incorrect
Chinese characters in text. The majority of our recent publications surround this research topic, and we tried to work on both
traditional and simplified Chinese characters. Both intuition and our experience show that the sources of incorrect characters are
related to phonological and visual similarity between Chinese characters. In order to enable computers to find visually similar
characters, we extend the original Cangjie codes to capture the detailed structures of Chinese characters. Some similarity measures
were proposed for the task, and experimental results have proven their effectiveness. With the help of Web-based statistics that we
collected from portals like Google, we were able to reproduce incorrect words at very high rate.

Based on such a computing tool, we have built a system that can help teachers to compile test items for word corrections of
Chinese characters. We have also employed the tool to build a game-based learning environment to help students learn to read
Chinese characters.

For the research direction about incorrect Chinese characters, we have published papers IC1, IC2, IC4, IC5, IC6, and J1 (please
refer to the papers listed below). In addition, with the support of an NSC project that began from August 2010, we have actually
extended the work reported in the conference papers, and have a journal paper accepted by the ACM Transaction on Asian Language
Information Processing. A portion of our experience in building a game-based environment for learning Chinese characters was
reported in DCL1. This game was based on research results of psycholinguistics, and the latest experiments, those we conducted in
2011, proved the effectiveness of the games.

We have conducted some more exploration that we did not mention in the original proposal. We applied techniques for sentence
manipulation to help teachers build test items for scrambled sentences, and the results were reported in IC3 and DC7. We tried to learn
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about how the texts for reading comprehensions were chosen by analyzing the linguistic structures of the texts, and the results were
reported in DC2 and DC5.

DC4 reported how we may infer the emotion carried by short Chinese sentences.

DC3, DC6, and DC8 were related to techniques of machine translation (MT). DC3, in particular, was related how we may apply
MT techniques for translating English test items into their Chinese counterparts.

DC9 was a piece of work that related to a previous NSC research project of ours. It reported an information retrieval system for
Chinese indictment documents.

DC10 provided our experience in using machine learning techniques in game design. It was one of our first attempt to build a
game, and was educational for us to build the game for learning Chinese characters.
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Bayesian Networks, Probabilistic Modeling, Learning Style Modeling, Incorrect Chinese Characters, Word Correction Tests,
Scrambled Sentence Tests, Psycholinguistics, Games for Learning Chinese Characters
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J1. Chao-Lin Liu, Jen-Hsiang Lin, and Yu-Chun Wang. Applications of NLP techniques to computer-assisted authoring of test items
for elementary Chinese, US-China Education Review, 7(3), 42-52. David Publishing Company, USA, March 2010.

J2. Chao-Lin Liu. Selecting Bayesian-network models based on simulated expectation, Behaviormetrika, 36(1), 1-25. The
Behaviormetric Society of Japan, Japan, April 2009.

J3. Chao-Lin Liu. A simulation-based experience in learning structures of Bayesian networks to represent how students learn
composite concepts, International Journal of Artificial Intelligence in Education, 18(3), 237-285. 10S Press, The Netherlands,
September 2008.
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IC1. Shih-Hung Wu, Yong-Zhi Chen, Ping-Che Yang, Tsun Ku, and Chao-Lin Liu. Reducing the false alarm rate of Chinese
character error detection and correction, Proceedings of the First CIPS-SIGHAN Joint Conference on Chinese Language
Processing (CLP'10), 54-61. Beijing, China, 28-29 August 2010.
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simplified Chinese words, Proceedings of the Twenty Third International Conference on Computational Linguistics
(COLING'10), posters, 739-747. Beijing, China, 23-27 August 2010.

IC3. Chao-Lin Liu, Chih-Bin Huang, Ying-Tse Sun, and Wei-Ti Kuo. Computer assisted creation of items for scrambled sentence
tests, Proceedings of the Seventeenth International Conference on Computers in Education (ICCE'09), 117-121. Hong Kong,
China, 30 November-4 December 2009.

IC4. Chao-Lin Liu, Kan-Wen Tien, Min-Hua Lai, Yi-Hsuan Chuang, and Shih-Hung Wu. Phonological and logographic influences
on errors in written Chinese words, Proceedings of the Seventh Workshop on Asian Language Resources (ALR7), the Forty
Seventh Annual Meeting of the Association for Computational Linguistics (ACL'09), 84-91. Singapore, 2-7 August 2009.

IC5. Chao-Lin Liu, Kan-Wen Tien, Min-Hua Lai, Yi-Hsuan Chuang, and Shih-Hung Wu. Capturing errors in written Chinese words,
Proceedings of the Forty Seventh Annual Meeting of the Association for Computational Linguistics (ACL'09), short papers,
25-28. Singapore, 2-7 August 2009.

IC6. Chao-Lin Liu, Kan-Wen Tien, Yi-Hsuan Chuang, Chih-Bin Huang, and Juei-Yu Weng. Two applications of lexical information
to computer-assisted item authoring for elementary Chinese, Lecture Notes in Computer Science 5579: Proceedings of the
Twenty Second International Conference on Industrial Engineering & Other Applications of Applied Intelligent Systems
(IEAJAIE '09), 470-480. Tainan, Taiwan, 24-27 June 2009.
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Abstract

Visually and phonologically similar cha-
racters are major contributing factors for
errors in Chinese text. By defining ap-
propriate similarity measures that consid-
er extended Cangjie codes, we can identi-
fy visually similar characters within a
fraction of a second. Relying on the pro-
nunciation information noted for individ-
ual characters in Chinese lexicons, we
can compute a list of characters that are
phonologically similar to a given charac-
ter. We collected 621 incorrect Chinese
words reported on the Internet, and ana-
lyzed the causes of these errors. 83% of
these errors were related to phonological
similarity, and 48% of them were related
to visual similarity between the involved
characters. Generating the lists of phono-
logically and visually similar characters,
our programs were able to contain more
than 90% of the incorrect characters in
the reported errors.

1 Introduction

In this paper, we report the experience of our
studying the errors in simplified Chinese words.
Chinese words consist of individual characters.
Some words contain just one character, but most
words comprise two or more characters. For in-
stance, “# ” (mai4)' has just one character, and
“Z % ” (yu3 yan2) is formed by two characters.
Two most common causes for writing or typing
incorrect Chinese words are due to visual and
phonological similarity between the correct and

" We show simplified Chinese characters followed by
their Hanyu pinyin. The digit that follows the symbols
for the sound is the tone for the character.

the incorrect characters. For instance, one might
use “%|” (hwa2) in the place of “#:”(hwad4) in
“%] &35 % (kel hwa4 xing2 xiang4) partially
because of phonological similarity; one might
replace “#” (zhuo2) in “w % 4 #” (xinl lao2
1i4 zhuo?2) with “ 24 (chu4) partially due to visu-
al similarity. (We do not claim that the visual or
phonological similarity alone can explain the
observed errors.)

Similar characters are important for under-
standing the errors in both traditional and simpli-
fied Chinese. Liu et al. (2009a-c) applied tech-
niques for manipulating correctness of Chinese
words to computer assisted test-item generation.
Research in psycholinguistics has shown that the
number of neighbor characters influences the
timing of activating the mental lexicon during the
process of understanding Chinese text (Kuo et al.
2004; Lee et al. 2006). Having a way to compute
and find similar characters will facilitate the
process of finding neighbor words, so can be in-
strumental for related studies in psycholinguistics.
Algorithms for optical character recognition for
Chinese and for recognizing written Chinese try
to guess the input characters based on sets of
confusing sets (Fan et al. 1995; Liu et al., 2004).
The confusing sets happen to be hand-crafted
clusters of visually similar characters.

It is relatively easy to judge whether two cha-
racters have similar pronunciations based on
their records in a given Chinese lexicon. We will
discuss more related issues shortly.

To determine whether two characters are vi-
sually similar is not as easy. Image processing
techniques may be useful but is not perfectly
feasible, given that there are more than fifty
thousand Chinese characters (HanDict, 2010)
and that many of them are similar to each other
in special ways. Liu et al. (2008) extend the
Cangjie codes (Cangjie, 2010; Chu, 2010) to en-
code the layouts and details about traditional



Chinese characters for computing visually simi-
lar characters. Evidence observed in psycholin-
guistic studies offers a cognition-based support
for the design of Liu et al.’s approach (Yeh and
Li, 2002). In addition, the proposed method
proves to be effective in capturing incorrect tra-
ditional Chinese words (Liu et al., 2009a-c).

In this paper, we work on the errors in simpli-
fied Chinese words by extending the Cangjie
codes for simplified Chinese. We obtain two lists
of incorrect words that were reported on the In-
ternet, analyze the major reasons that contribute
to the observed errors, and evaluate how the new
Cangjie codes help us spot the incorrect charac-
ters. Results of our analysis show that phonolog-
ical and visual similarities contribute similar por-
tions of errors in simplified and traditional Chi-
nese. Experimental results also show that, we can
catch more than 90% of the reported errors.

We go over some issues about phonological
similarity in Section 2, elaborate how we extend
and apply Cangjie codes for simplified Chinese
in Section 3, present details about our experi-
ments and observations in Section 4, and discuss
some technical issues in Section 5.

2 Phonologically Similar Characters

The pronunciation of a Chinese character in-
volves a sound, which consists of the nucleus and
an optional onset, and a tone. In Mandarin Chi-
nese, there are four tones. (Some researchers in-
clude the fifth tone.)

In our work, we consider four categories of
phonological similarity between two characters:
same sound and same tone (SS), same sound and
different tone (SD), similar sound and same tone

(MS), and similar sound and different tone (MD).

We rely on the information provided in a lex-
icon (Dict, 2010) to determine whether two cha-
racters have the same sound or the same tone.
The judgment of whether two characters have
similar sound should consider the language expe-
rience of an individual. One who live in the
southern and one who live in the northern China
may have quite different perceptions of “similar”
sound. In this work, we resort to the confusion
sets observed in a psycholinguistic study con-
ducted at the Academic Sinica.

Some Chinese characters are heteronyms. Let
C; and C, be two characters that have multiple
pronunciations. If C; and C, share one of their

pronunciations, we consider that C; and C, be-
long to the SS category. This principle applies
when we consider phonological similarity in oth-
er categories.

One challenge in defining similarity between
characters is that the pronunciations of a charac-
ter can depend on its context. The most common
example of tone sandhi in Chinese (Chen, 2000)
is that the first third-tone character in words
formed by two adjacent third-tone characters will
be pronounced in the second tone. At present, we
ignore the influences of context when determin-
ing whether two characters are phonologically
similar.

Although we have confined our definition of
phonological similarity to the context of the
Mandarin Chinese, it is important to note the in-
fluence of sublanguages within the Chinese lan-
guage family will affect the perception of phono-
logical similarity. Sublanguages used in different
areas in China, e.g., Shanghai, Min, and Canton
share the same written forms with the Mandarin
Chinese, but have quite different though related
pronunciation systems. Hence, people living in
different areas in China may perceive phonologi-
cal similarity in very different ways. The study in
this direction is beyond the scope of the current
study.

3 Visually Similar Characters

Figure 1 shows four groups of visually similar
characters. Characters in group 1 and group 2
differ subtly at the stroke level. Characters in
group 3 share the components on their right sides.
The shared component of the characters in group
4 appears at different places within the characters.

Radicals are used in Chinese dictionaries to
organize characters, so are useful for finding vi-
sually similar characters. The characters in group
1 and group 2 belong to the radicals “2 ” and “3i”,
respectively. Notice that, although the radical for
group 2 is clear, the radical for group 1 is not
obvious because “7 ” is not a standalone compo-
nent.

However, the shared components might not be
the radicals of characters. The shared compo-
nents in groups 3 and 4 are not the radicals. In

BdF Y FiFit WAt AWM
group 1 group 2 group 3 group 4

Figure 1. Examples of visually similar characters



many cases, radicals are semantic components of
Chinese characters. In groups 3 and 4, the shared
components carry information about the pronun-
ciations of the characters. Hence, those charac-
ters are listed under different radicals, though
they do look similar in some ways.

Hence, a mechanism other than just relying on
information about characters in typical lexicons
is necessary, and we will use the extended Cang-
jie codes for finding visually similar characters.

3.1

Table 1 shows the Cangjie codes for the 13
characters listed in Figure 1 and five other
characters. The “ID” column shows the
identification number for the characters, and we
will refer to the i character by ci, where i is the
ID. The “CC” column shows the Chinese
characters, and the “Cangjie” column shows the
Cangjie codes. Each symbol in the Cangjie codes
corresponds to a key on the keyboard, e.g. “2 ”
and “ ¢ ” collocate with “W” and “L”,
respectively. Information about the complete
correspondence is available on the Wikipedia®.
Using the Cangjie codes saves us from using
image processing methods to determine the de-
grees of similarity between characters. Take the
Cangjie codes for the characters in group 2 (cs, cq,
and c¢;) for example. It is possible to find that the
characters share a common component, based on
the shared substrings of the Cangjie codes, i.e.,
“x 4> Using the common substring (shown in
black bold) of the Cangjie codes, we may also
find the shared component “ 4 > for characters in
group 3 (cio, C11, and cy,), the shared component
“fl 7 in cy3 and ¢4, the shared component “# ” in

Cangjie Codes for Simplified Chinese

c1s and cy4, and the shared component “#” in ¢4
and c7.
Despite the perceivable advantages, these

original Cangjie codes are not good enough. In
order to maintain efficiency in inputting Chinese
characters, the Cangjie codes have been limited
to no more than five keys. Thus, users of the
Cangjie input method must familiarize them-
selves with the principles for simplifying the
Cangjie codes. While the simplified codes help
the input efficiency, they also introduce difficul-
ties and ambiguities when we compare the Cang-

2cn.wikipcdia.or,tz/wiki/ Cangjie_input_method#Keyboard la
yout ; last visited on 22 April 2010.

ID | CC | Cangjie ID | CC | Cangjie
1 2l 2l 10 & LI
2 e I 11 ] % [ kes ]
ENENEEEEE R ETE
e dae B F [rax
5 F ol 3% 4L 14| ® | arc¥ &
A T 15 f [ c a4 ]
7 A [y 6] 2 | 3-4+7
8 [ [s-pp 17 ] 3 [ 5--7 |
9 7| §-wnr 18| & |- A- |

Table 1. Examples of Cangjie codes

jie codes for computing similar characters. The
prefix “3 - ” in c¢i¢ and c¢j7 can represent “#”,
“d” (e.g., cg), and “7 7 (e.g., o). Characters
whose Cangjie codes include “ may con-
tain any of these three components, but they do
not really look alike.

Therefore, we augment the original Cangjie
codes by using the complete Cangjie codes and
annotate each Chinese character with a layout
identification that encodes the overall contours of
the characters. This is how Liu and his col-
leagues (2008) did for the Cangjie codes for tra-
ditional Chinese characters, and we employ a
similar exploration for the simplified Chinese.

3.2

Figure 2 shows the twelve possible layouts that
are considered for the Cangjie codes for
simplified Chinese characters. Some of the
layouts contain smaller areas, and the rectangles
show a subarea within a character. The smaller
areas are assigned IDs between one and three.
Notice that, to maintain read-ability of the
figures, not all IDs for subareas are shown in
Figure 2. An example character is provided
below each layout. From left to right and from
top to bottom, each layout is assigned an
identification number from 1 to 12. For example,
the layout ID of “[E]” is 8. “[E]” has two parts, i.e.,

[13 r‘]” and 66—1 2
Researchers have come up with other ways to

s I B Eg

A £

%__”

Augmenting the Cangjie Codes

ﬁ III | I
3 1 (3] H' i i
2 £ 5 By

Figure 2. Layouts of Chinese characters



decompose individual Chinese characters. The
Chinese Document Lab at the Academia Sinica
proposed a system with 13 operators for describ-
ing the relationships among components in Chi-
nese characters (CDL, 2010). Lee (2010b) pro-
pose more than 30 possible layouts.

The layout of a character affects how people
perceive visual similarity between characters.
For instance, c;s in Table 1 is more similar to ¢;7
than to cig, although they share “#”. We rely on
the expertise in Cangjie codes reported in (Lee,
2010a) to split the codes into parts.

Table 2 shows the extended codes for some
characters listed in Table 1. The “ID” column
provides links between the characters listed in
both Table 1 and Table 2. The “CC” column
shows the Chinese characters. The “LID” column
shows the identifications for the layouts of the
characters. The columns with headings “P1”,

“P2”, and “P3” show the extended Cangjie codes,

where “Pi” shows the i™ part of the Cangjie
codes, as indicated in Figure 2.

We decide the extended codes for the parts
with the help of computer programs and subjec-
tive judgments. Starting from the original Cang-
jie codes, we can compute the most frequent sub-
strings just like we can compute the frequencies
of n-grams in corpora (cf. Jurafsky and Martin,
2009). Computing the most common substrings
in the original codes is not a complex task be-
cause the longest original Cangjie codes contain
just five symbols.

Often, the frequent substrings are simplified
codes for popular components in Chinese charac-
ters, e.g., “i” and “%#”. The original codes for
and “#” are “~ 5 4”and “% % - 7, but they are
often simplified to “~* -+~ and “3 -
tively.
Cangjie code with “#”, and
Cangjie code with “7 ” and “ 4 .

After finding the frequent substrings, we veri-
fy whether these frequent substrings are simpli-
fied codes for meaningful components. For mea-
ningful components, we replace the simplified
codes with complete codes. For instance the
Cangjie codes for “*¥” and “*¥” are extended to
“35 ” in Table 2, where we indicate the
extended keys that did not belong to the original
Cangjie codes in boldface and with a surrounding
box. Most of the non-meaningful frequent sub-
strings have two keys: one is the last key of a

“ 2

”, respec-
When simplified, “i” have the same
“#” have the same

include

ID | CC | LID | P1 P2 P3
5 % N A L

e ) N _
7 s+ AR L
10 | 19 10 5o & >
11 bl 10 'k o ~
12 | ¥ 10 * & =
13 it 5 | 1A
14 7] 9 a ¢ 5oA
15 i 2 LI 4
16 | #* 2 5 (A - < =
17 | % 2 5 (A - - A
18 % 3 e |- 3 -
19 2 4 o _ |Z|); r

Table 2. Examples of extended Cangjie codes

part, and the other is the first key of another part.
They were by observed by coincidence.

Although most of the examples provided in
Table 2 indicate that we expand only the first
part of the Cangjie codes, it is absolutely possible
that the other parts, i.e., P2 and P3, may need to
be extended too. c¢;9 shows such an example.

Replacing simplified codes with complete
codes not only help us avoid incorrect matches
but also help us find matches that would be
missed due to simplification of Cangjie codes.
Using just the original Cangjie codes in Table 1,
it is not easy to determine that ¢;g (“4”) in Table
1 shares a component (“#”) with ¢ and ¢;7 (“3*”
and “%5”). In contrast, there is a chance to find
the similarity with the extended Cangjie codes in
Table 2, given that all of the three Cangjie codes
include “3 A -7,

We can see an application of the LIDs, using
“P7, 3”7 and “%” as an example. Consider the
case that we want to determine which of “37”
and “%” is more similar to “%*”. Their extended
Cangjie codes will indicate that is the an-
swer to this question for two reasons. Flrst, “Rh”
and “3%” belong to the same type of layout; and,
second, the shared components reside at the same
area in “3*” and “37”.

G‘?"”

3.3  Similarity Measures

The main differences between the original and
the extended Cangjie codes are the degrees of
details about the structures of the Chinese cha-
racters. By recovering the details that were ig-
nored in the original codes, our programs will be



better equipped to find the similarity between
characters.

In the current study, we experiment with three
different scoring methods to measure the visual
similarity between two characters based on their
extended Cangjie codes. Two of these methods
had been tried by Liu and his colleagues’ study
for traditional Chinese characters (Liu et al.,
2009b-c). The first method, denoted SC1, con-
siders the total number of matched keys in the
matched parts (without considering their part
IDs). Let c; denote the i™ character listed in Table
2. We have SCl(cis, c16) = 2 because of the
matched “+ = ”. Analogously, we have SC1(c,
Cip) = 2.

The second method, denoted SC2, includes
the score of SC1 and considers the following
conditions: (1) add one point if the matched parts
locate at the same place in the characters and (2)
if the first condition is met, an extra point will be
added if the characters belong to the same layout.
Hence, we have SC2(cis, ci6) =SCl(cys,
c16)t1+1=4 because (1) the matched “~ = lo-
cate at P2 in both characters and (2) c;5 and ¢
belong to the same layout. Assuming that c;¢ be-
longs to layout 5, than SC2(c;s, ¢i6) wWould be-
come 3. In contrast, we have SC2(cy, ¢15)=2. No
extra weights for the matching “+ = because it
locates at different parts in the characters. The
extra weight considers the spatial influences of
the matched parts on the perception of similarity.

While splitting the extended Cangjie codes in-
to parts allows us to tell that ¢;5s is more similar
to ci¢ than to ¢y, it also creates a new barrier in
computing similarity scores. An example of this
problem is that SC2(c,7, c15)=0. This is because
that “35 4 — ” at P1 in c¢;7 can match neither “ 3
A at P2 nor “~ 7 at P3 in cys.

To alleviate this problem, we consider SC3
which computes the similarity in three steps.
First, we concatenate the parts of a Cangjie code
for a character. Then, we compute the longest
common subsequence (LCS) (cf. Cormen et al.,
2009) of the concatenated codes of the two cha-
racters being compared, and compute a Dice’s
coefficient (cf. Croft et al., 2010) as the similari-
ty. Let X and Y denote the concatenated, ex-
tended Cangjie codes for two characters, and let
Z be the LCS of X and Y. The similarity is de-
fined by the following equation.

Dice| cg = where |S| is the length of string S (1)

2x|Z]
XI=IY[
We compute another Dice’s coefficient be-
tween X and Y. The formula is the similar to (1),
except that we set Z to the longest common con-
secutive subsequence. We call this score
Dice, ccs Notice that Dice ccg < Diceics

Dice_ccs <1, and Dice cs <1 . Finally, SC3 of two
characters is the sum of their SC2, 10x Dice, ccs ,
and 5xDice o . We multiply the Dice’s coeffi-

cients with constants to make them as influential
as the SC2 component in SC3. The constants
were not scientifically chosen, but were selected
heuristically.

4  Error Analysis and Evaluation

We evaluate the effectiveness of using the pho-
nologically and visually similar characters to
captures errors in simplified Chinese words with
two lists of reported errors that were collected
from the Internet.

4.1 Data Sources

We need two types of data for the experiments.
The information about the pronunciation and
structures of the Chinese characters help us gen-
erate lists of similar characters. We also need
reported errors so that we can evaluate whether
the similar characters catch the reported errors.

A lexicon that provides the pronunciation in-
formation about Chinese characters and a data-
base that contains the extended Cangjie codes are
necessary for our programs to generate lists of
characters that are phonologically and visually
similar to a given character.

It is not difficult to acquire lexicons that show
standard pronunciations for Chinese characters.
As we stated in Section 2, the main problem is
that it is not easy to predict how people in differ-
ent areas in China actually pronounce the charac-
ters. Hence, we can only rely on the standards
that are recorded in lexicons.

With the procedure reported in Section 3.2, we
built a database of extended Cangjie codes for
the simplified Chinese. The database was de-
signed to contain 5401 common characters in the
BIGS encoding, which was originally designed
for the traditional Chinese. After converting the
traditional Chinese characters to the simplified
counterparts, the database contained only 5170



different characters.

We searched the Internet for reported errors
that were collected in real-world scenarios, and
obtained two lists of errors. The first list’ came
from the entrance examinations for senior high
schools in China, and the second list* contained
errors observed at senior high schools in China.
We used 160 and 524 errors from the first and
the second lists, respectively, and we refer to the
combined list as the llist. An item of reported
error contained two parts: the correct word and
the mistaken character, both of which will be
used in our experiments.

4.2  Preliminary Data Analysis

Since our programs can compare the similarity
only between characters that are included in our
lexicon, we have to exclude some reported errors
from the Ilist. As a result, we used only 621 er-
rors in this section.

Two native speakers subjectively classified the
causes of these errors into three categories based
on whether the errors were related to phonologi-
cal similarity, visual similarity, or neither. Since
the annotators did not always agree on their clas-
sifications, the final results have five interesting
categories: “P”, “V”, “N”, “D”, and “B” in Table
3. P and V indicate that the annotators agreed on
the types of errors to be related to phonological
and visual similarity, respectively. N indicates
that the annotators believed that the errors were
not due to phonological or visual similarity. D
indicates that the annotators believed that the
errors were due to phonological or visual similar-
ity, but they did not have a consensus. B indi-
cates the intersection of P and V.

Table 3 shows the percentages of errors in
these categories. To get 100% from the table, we
can add up P, V, N, and D, and subtract B from
the total. In reality there are errors of type N, and
Liu and his colleagues (2009b) reported this type
of errors. Errors in this category happened to be
missing in the Ilist. Based on our and Liu’s ob-

P \% N D B
Ilist | 83.1 | 483 0 3.7 35.1
Table 3. Percentages of types of errors

3 www.0668edu.com/soft/4/12/95/2008/2008091357140.htm

; last visited on 22 April 2010.

4gaozhong.ktSu.com/soft/2/38018.html; last visited on 22
April 2010.

servations, the percentages of phonological and
visual similarities contribute to the errors in sim-
plified and traditional Chinese words with simi-
lar percentages.

4.3 Experimental Procedure

We design and employ the ICCEval procedure
for the evaluation task.

At step 1, given the correct word and the cor-
rect character to be intentionally replaced with
incorrect characters, we created a list of charac-
ters based on the selection criterion. We may
choose to evaluate phonologically or visually
similar characters. For a given character, 1CCEv-
al can generate characters that are in the SS, SD,
MS, and MD categories for phonologically simi-
lar characters (cf. Section 2). For visually similar
characters, 1CCEval can select characters based
on SC1, SC2, and SC3 (cf. Section 3.3). In addi-
tion, ICCEval can generate a list of characters
that belong to the same radical and have the same
number of strokes with the correct character. In
the experimental results, we refer to this type of
similar characters as RS.

At step 2, for a correct word that people origi-
nally wanted to write, we replaced the correct
character with an incorrect character with the
characters that were generated at step 1, submit-
ted the incorrect word to Google AJAX Search

Procedure ICCEval

Input:

CcCr: the correct character; cwd:
the correct word; crit: the selec-
tion criterion; num: number of re-
guested characters; rnk: the cri-
terion to rank the incorrect
words;

Output: a list of ranked candidates
for ccr

Steps:

1. Generate a list, L, of charac-
ters for ccr with the specified
criterion, crit. When using SC1,
SC2, or SC3 to select visually
similar characters, at most num
characters will be selected.

2. For each c in L, replace ccr in
cwd with c, submit the resulting
incorrect word to Google, and
record the ENOP.

3. Rank the list of incorrect words
generated at step 2, using the
criterion specified by rnk.

4. Return the ranked list.




API, and extracted the estimated numbers of
pages (ENOP) ° that contained the incorrect
words. In an ordinary interaction with Google, an
ENOP can be retrieved from the search results,
and it typically follows the string “Results 1-
10 of about” on the upper part of the browser
window. Using the AJAX API, we just have to
parse the returned results with a simple method.

Larger ENOPs for incorrect words suggest
that these words are incorrect words that people
frequently used on their web pages. Hence, we
ranked the similar characters based on their
ENOPs at step 3, and return the list.

Since the reported errors contained informa-
tion about the incorrect ways to write the correct
words, we could check whether the real incorrect
characters were among the similar characters that

our programs generated at step 1 (inclusion tests).

We could also check whether the actual incorrect
characters were ranked higher in the ranked lists
(ranking tests).

Take the word “fr§ ¥ 3 as an example. In
the collected data, it is reported that people wrote
this word as “ﬂfri’éj ¥ %7, 1.e., the second charac-
ter was incorrect. Hoping to capture the error,
ICCEval generated a list of possible substitutions
for “EE,? ” at step 1. Depending on the categories
of sources of errors, 1CCEval generated a list of
characters. When aiming to test the effectiveness
of visually similar characters, we could ask 1C-
CEval to apply SC3 to generate a list of alterna-

tives for “7§”, possibly including “#% 7, “:%”,

15w}l

%, and other candidates. At step 2, we created
and submitted query strings “fvi ¥ &7, “frid
¥ %7, and “fv & ¥ % ” to obtain the ENOPs for
the candidates. If the ENOPs were, respectively,
410000, 26100, and 7940, these candidates
would be returned in the order of“EEJ ” %7 and

“%”. As a result, the returned list contained the
actual incorrect character “EE'] ”?
on top of the ranked list.
Notice that we considered the contexts in
which the incorrect characters appeared to rank.
We did not rank the incorrect characters with just
the unigrams. In addition, although this running
example shows that we ranked the characters
directly with the ENOPs, we also ranked the list

X 34

, and placed “#

5According to (Croft et al., 2010), the ENOPs may not re-
flect the actual number of pages on the Internet.

of alternatives with pointwise mutual information:
PMI(C,X )= —HEAX) )

Pr(C)xPr(X)
where X is the candidate character to replace the
correct character and C is the correct word ex-
cluding the correct character to be replaced. To

compute the score of replacing “f% ” with “?% ”in

G T F7,X= “% 7, C="fv0¥ %7, and (CAX)
is “e% ¥ & 7. (O denotes a character to be re-
placed.) PMI is a common tool for judging collo-
cations in natural language processing. (cf. Ju-
rafsky and Martin, 2009).

It would demand very much computation ef-
fort to find Pr(C). Fortunately, we do not have to
consider Pr(C) because it is a common denomi-
nator for all incorrect characters. Let X; and X,
be two competing candidates for the correct cha-
racter. We can ignore Pr(C) because of the fol-
lowing relationship.

) PEC A Xp) | Pr(C A X2)

PMI(C, X1)2 PMI(C. X Pr(X)) — Pr(Xy)

Hence, X, prevails if score(C,X,) is larger.

Pr;C A X) 3)
1(X)

In our work, we approximate the probabilities

used in (3) by the corresponding frequencies that

we can collect through Google, similar to the

methods that we used to collect the ENOPs.

score(C, X )=

44

We ran ICCEval with 621 errors in the Ilist. The
experiments were conducted for all categories of
phonological and visual similarity. When using
SS, SD, MS, MD, and RS as the selection crite-
rion, we did not limit the number of candidate
characters. When using SC1, SC2, and SC3 as
the criterion, we limited the number candidates
to be no more than 30. We consider only words
that the native speakers have consensus over the
causes of errors. Hence, we dropped those 3.7%
of words in Table 3, and had just 598 errors. The
ENOPs were obtained during March and April
2010.

Table 4 shows the chances that the lists, gen-

Experimental Results: Inclusion Tests

SS SD MS MD | Phone
Ilist | 82.6 | 29.3 1.7 1.6 97.3

SC1 SC2 SC3 RS | Visual
Ilist | 78.3 71.0 | 87.7 1.3 90.0

Table 4. Chances of the recommended list con-
tains the incorrect character



erated with different crit at step 1, contained the
incorrect character in the reported errors. In the
Ilist, there were 516 and 300° errors that were
related to phonological and visual similarity, re-
spectively. Using the characters generated with
the SS criterion, we captured 426 out of 516
phone-related errors, so we showed 426/516 =
82.6% in the table.

Results in Table 4 show that we captured
phone-related errors more effectively than visual-
ly-similar errors. With a simple method, we can
compute the union of the characters that were
generated with the SS, SD, MS, and MD criteria.
This integrated list suggested how well we cap-
tured the errors that were related to phones, and
we show its effectiveness under “Phone”. Simi-
larly, we integrated the lists generated by SCI,
SC2, SC3, and RS to explore the effectiveness of
finding errors that are related to visual similarity,
and the result is shown under “Visual”.

4.5 Experimental Results: Ranking Tests

To put the generated characters into work, we
wish to put the actual incorrect character high in
the ranked list. This will help the efficiency in
supporting computer assisted test-item writing.
Having short lists that contain relatively more
confusing characters may facilitate the data prep-
aration for psycholinguistic studies.

At step 3, we ranked the candidate characters
by forming incorrect words with other characters
in the correct words as the context and submitted
the words to Google for ENOPs. The results of
ranking, shown in Table 5, indicate that we may
just offer the leading five candidates to cover the
actual incorrect characters in almost all cases.

The “Total” column shows the total number of
errors that were captured by the selection crite-
rion. The column “Ri” shows the percentage of
all errors, due to phonological or visual similarity,
that were re-created and ranked i™ at step 3 in
ICCEVAL. The row headings show the selection
criteria that were used in the experiments. For
instance, using SS as the criterion, 70.3% of ac-
tual phone-related errors were rank first, 7.4% of
the phone-related errors were ranked second, etc.
If we recommended only 5 leading incorrect cha-

The sum of 516 and 300 is larger than 598 because
some of the characters are similar both phonologically
and visually.

racters only with SS, we would have captured the
actual incorrect characters that were phone re-
lated 81.6% (the sum of R1 to RS) of the time.
For errors that were related to visual similarity,
recommending the top five candidates with SC3
would capture the actual incorrect characters
87.1% of the time. Since we do not show the
complete distributions, the sums over the rows
are not 100%. In the current experiments, the
worst rank was 21.

We also used PMI to rank the incorrect words.
Due to page limits, we cannot show complete
details about the results. The observed distribu-
tions in ranks were not very different from those
shown in Table 5.

5 Discussion

Compared with Liu et al.’s analysis (2009b-c)
for the traditional Chinese, the proportions of
errors related to phonological factors are almost
the same, both at about 80%. The proportion of
errors related to visual factors varied, but the av-
erages in both studies were about 48%. A larger
scale of study is needed for how traditional and
simplified characters affect the distributions of
errors. Results shown in Table 4 suggest that it is
relatively easy to capture errors related to visual
factors in simplified Chinese. Although we can-
not elaborate, we note that Cangjie codes are not
good for comparing characters that have few
strokes, e.g., ¢; to c4 in Table 1. In these cases,
the coding method for Wubihua input method
(Wubihua, 2010) should be applied.
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Abstract. We apply techniques of natural language processing to support the creation of special
scrambled sentences that allow only specific word orders. The scrambled sentences are useful for
students to practice their knowledge about grammars. It takes two steps to create a test item for
scrambled-sentence tests. We create a set of grammatical alternative sentences from the target sen-
tence, and make sure that students will rebuild the target sentence by pegging some of the words in
the target sentence. The proposed methods can automatically and effectively peg words to single out
a specific sentence from a set of sentences. We also employ the Stanford parser and propose a practi-
cal heuristic principle to help teachers exclude a potentially large number of alternative grammatical
orderings of a set of words in the scrambled sentence.

Keywords: scrambled sentence tests, computer assisted item generation, grammar learning,
natural language processing

1 Introduction

Techniques that were originally designed for natural language processing (NLP) have proved to be instru-
mental for applications for computer assisted language learning (CALL) [1, 3, 7]. In this paper, we report an
application of NLP techniques for grammar learning.

Word orders are important in conveying the correct meaning in almost all languages, so learning the cor-
rect word orders are crucial even for beginning learners of languages (cf. some examples at
http://www.manythings.org/ss/ and http://www.msrossbec.com/scrambleintro.shtml). Placing students in
actual conversations is common for students to practice knowledge of word orders. However, some students
might not be ready for such challenging field tests, so a less stressful environment is necessary for those who
are not completely ready for direct conversations.

Constructing sentences from scrambled sentences offers an alternative for students of intermediate com-
petence. In these practices, sentences are segmented and scrambled to create a set of words or phrases, and
students have to reconstruct the original sentences with the given text segments. Taking advantage of the
information contained in parse trees, Liu et al. [5] segmented the sentences into different numbers of pieces
to make the test items adaptive to students’ competence levels.

A sentence can be segmented at coarse or fine levels, and a student may find two or more grammatical
orders of the resulting segments. When a teacher prefers to avoiding multiple answers to a test item, just
segmenting the sentences based on parse trees become insufficient, and more techniques are in need.

The safest way to make sure that there is only way to build a sentence from a set of words is to rule out all
but the target sentence by pegging some words. Given a set of sentences, it is not very difficult to find such
words to be anchored. Our experience show that the task of generating all grammatical permutations of a set
of words turns out to be more challenging that it appears [1, 4].

In Section 2, we present more background information about the work on scrambling sentences for
grammar learners. In Section 3, we propose methods to select and peg some words for a set of sentences to
achieve a wunique ordering. In Section 4, we attempt to employ the Stanford parser
(http://nlp.stanford.edu:8080/parser/) to find all grammatical arrangements of a set of words and phrases.
With such a capability, we will reduce the burden of teachers. In Section 5, we report the results when we
repeated the work reported in the previous section with a categorical parser. In Section 6, we propose a prac-
tical heuristic to solve the discussed problems.
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2 Problem Definition

We employ parsing techniques to split a given sentence. Fig-

ure 1 shows a parse tree, produced by the Stanford parser, for /S\

“The new bike is better than that old car”. This sentence can NP VP\

be split in multiple ways, e.g., {“this new bike”, “is better ADJP,

than”, “that old car”} or {“this”, “new”, “bike”, “is better AIDJP\ PP

than”, “that”, “old”, “car”}. An instance of sentence recon- NP

struction practice is to provide the segments {“is better than”, 7 I\

“this new bike”, “that old car”} to students and expect them DIT JIJ NlN Vl?z JJlR HI\I DIT J[' |

to come up with the original sentence. This new bike is better than that old moped
Splitting the given sentence at different granularities offers Figure 1. A sample parse tree

a way to control the difficulty of the test items, and is a useful

strategy in adaptive assessment. Rebuilding the sentence from {“is better than”, “this new bike”, “that old
car”} is easier than rebuilding the sentence from {“this”, “new”, “bike”, “is better than”, “that”, “old”,
“car”}. Splitting the sentence into more segments, all else being equal, generally makes the task of recon-
struction of the sentence more challenging. Hitting the correct order from 3!(=6) arrangements by chance is
more likely to occur than hitting the correct order from 7!(=5040) arrangements by chance.

There might be different ways to rebuild a correct sentence for a given segmentation of the original sen-
tence. When we segment the original sentence into more segments, we may have allowed more possible an-
swers. For instance, we may build at least 48 sentences from {“this”, “new”, “bike”, “is”, “better”, “than”,
“that”, “old”, “car”} (cf. Table 1 on the next page).

When we would like the students to practice a particular sentence pattern, we may want to force the stu-
dents to rebuild the sentence in a specific manner, e.g., assertive sentences vs. yes/no questions. One may
rely on the contextual information to exclude some of the syntactically acceptable arrangements as Liu et al.
[5] suggested. If the sentence in Figure 1 was preceded by an utterance that involved a new bike in a conver-
sation, then “this old bike” would become less plausible in the expected ordering.

An automatic method to fix some of the words at their original locations makes certain that there is ex-
actly one acceptable solution. If we split the sentence in Figure 1 into nine words, there will be at least 48
grammatical arrangements. If we fix “new”, “that” and “car” at the second, the seventh and the ninth words
in the sentence, respectively, there will be only way rebuild the sentence.

In addition, when preparing a test item, a teacher typically provides only one sentence—The one the
teachers would like the students to rebuild. To facilitate the preparation of test items, we attempt to find all
of the alternative arrangements of the words that constitute the given sentence. For the sentence used in Fig-
ure 1, we would like to create sentences like “This new car is better than that old bike” and “Is this new bike
better than that old bike” for the teachers, and help the teachers rule out these grammatical alternatives by
pegging some selected words.

3 Pegging Words for a Unique Order

Assume that we have a way to find all grammatical arrangements of the words for a sentence like the one
shown in Figure 1. We present algorithms to select and fix the words that will single out the desirable ar-
rangements. It is very likely that, for educational purposes, a teacher may want to fix certain words of her/his
choices. The user interface of our system certainly can accommodate this need, but we will not consider this
need when discussing the design of the internal algorithm.
Assume that there are m tokens, Wy, Wy, ..., Wi, ..., Wy, in ) )

a given sentence, Sq, and that we have a set of n sentences, Algorithm: Word-Pegging
S={s1, 52, .-+, Sj, ---» Sn}, that are formed with those m tokens Input: S = {81, S, .., S -, Snj and
in sg. Hence, we have syeS. Figure 2 shows the algorithm o 139: WilWa. .. Wi. .. Wi Where $g€S

. .. utput: the set of indexes of tokens to be pegged
that will find the minimum number of words to peg and to Steps:
allow s to be the answer to the sentence reconstruction task. | " ¢ \W 10 &

In the algorithm, we identify the sentences that share the , ¢y W, set ¢, to the number of sentences in

same tokens at the same positions as Sy. The sentences that S whose k-th token is the same as Wi, If keW,
meet such criteria are called “surviving” sentences. The al- set Cy to (n+1)

gorithm aims at reducing the number of surviving sentences 3. Find the index v in [1,m], such that c, is the
by pegging more and more tokens. By construction, the al- smallest among all ¢, for any u#v (more dis-
gorithm will iterate at most (m-1) times, when it chooses to cussion about the choice of v in the paper)

peg (m-1) tokens. In addition, when it happens to peg (m-1) 4. Add v to W. Remove from S the sentences

tokens, sy will be the last sentence in S at Step 5. s }"tfh‘}’lse v-th t°11<en is not the same gs Wy "
We enumerated 48 grammatical arrangements of the = }: ere 1S only one SS enteznce -5, return W

words in the sentence in Figure 1, and we list the sentences otherwise, return to Step

in Table 1. We ran the Word-Pegging algorithm with these Figure 2. An algorithm for pegging words
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48 arrangements. The algorithm returned the indexes for “the”, “new”, and “bike”. In fact, this is not the
only choice, and pegging words in {“new”, “bike”, “that”} will also make the original sentence the only an-
swer among the 48 arrangements. If the original sentence was “Is this new bike better than that old car”,
Word-Pegging will recommend {“is”, “this”, “new”, “bike”}. If we modify and allow Word-Pegging to find
alternative ways of pegging the words, {“this”, “bike”, “better”, “old”} can be such an alternative.

A conceivable method to offer flexibility to teachers is that we modify Word-Pegging to compute all pos-
sible ways of pegging the words and provide these choices to the teacher. For instance, allowing the teachers
to choose whether we should peg words in {“this”, “new”, “bike”}, {“new”, “bike”, “that”}, or {“new”,
“that”, “car”}. This will allow the teachers to make the resulting test item fit specific teaching needs. How-
ever, there can be many such choices.

A more practical alternative to make Word-Pegging more flexible is to allow the teachers to specify a set
of words that they want to peg. However, we do not include the algorithm due to page limits.

4  Seeking Admissible Arrangements

Recommending the tokens to peg to achieve unique answers resolves the first problem discussed in Section 2.

The algorithms we presented and discussed in Section 3 will be  Taple 1. Alternative sentences with ranks

sufficient when it is possible for the teachers to provide an ex-
haustive list of grammatical arrangements like those listed in
Table 1. However it is not always easy for a human teacher to
enumerate such grammatical permutations and provide the set
of S as input to our algorithms. It will be more convenient for
the teachers if our system can help them enumerate all possible
arrangements of the words of the sentence provided by the
teacher.

An intuitive approach for generating the grammatical enu-
merations for a given sentence that contains m tokens is to com-
pute all m! permutations and check their grammaticality. Doing
so requires a categorical parser, which we do not have at this
moment. Instead we employ the Stanford parser to parse the
permutations.

A more challenging barrier is that parsing all of the m! per-
mutations is feasible only for relatively small values of m be-
cause of computational costs. It took about 5.5 hours to parse
the 9! (=362880) permutations of the sentence in Figure 1,
when we ran the Stanford parser (version 2008-10-26) on a ma-
chine with 3.0G INTEL Core 2 Duo E8400 CPU and 2.0 G
RAM running Windows XP SP3.

In fact, we did not receive categorical decisions for the gram-
maticality of the permutations from the Stanford parser. It
would accept all of the permutations and provided the probabili-
ties of the permutations being grammatically acceptable.

In general, these estimated probabilities are not good for
comparing the acceptability of sentences of different lengths,
but they serve as a good indication for sentences of the same
length. In our case, we have an additional advantage that we are
comparing the acceptability of the permutations of the same set
of tokens.

Hence, we submitted the permutations to the Stanford parser,
collected the probabilities of these permutations, and ranked
them accordingly. Table 1 shows the ranks of the 48 legal ar-
rangements in the 8! (=40320) permutations. We created the
40320 permutations by treating “more than” as a token in the
sentence in Figure 1. The permutation “That is better than this
old new car bike” received the highest probability in all permu-
tations, where a noun is functioning as an adjective. Neverthe-
less, we did not treat it as an acceptable candidate in Table 1.

Given the ranking information, our job is to choose the o
permutations that have the leading probabilities among all of
these 40320 permutations as the input to the Word-Pegging
algorithm. If we choose the top 100 arrangements, and run the
Word-Pegging algorithm, the algorithm will recommend us to

48 Arrangements (rank)

this new bike is better than that old car (16)

that new bike is better than this old car (8)

this old bike is better than that new car (14)

this new car is better than that old bike (15)

that old bike is better than this new car (6)

this old car is better than that new bike (13)

that new car is better than this old bike (7)

that old car is better than this new bike (5)

is this new bike better than that old car (1181)

is that new bike better than this old car (1177)

is this old bike better than that new car (1179)

is this new car better than that old bike (1180)

is that old bike better than this new car (1175)

is this old car better than that new bike (1178)

is that new car better than this old bike (1176)

is that old car better than this new bike (1174)

this bike is better than that new old car (38)

this bike is better than that old new car (37)

that bike is better than this old new car (19)

that bike is better than this new old car (20)

this car is better than that new old bike (36)

this car is better than that old new bike (35)

that car is better than this new old bike (18)

that car is better than this old new bike (17)

this new old bike is better than that car (94)

this old new bike is better than that car (92)

that old new bike is better than this car (59)

that new old bike is better than this car (60)

this new old car is better than that bike (93)

this old new car is better than that bike (91)

that new old car is better than this bike (58)

that old new car is better than this bike (57)

is this bike better than that new old car (839)

is this bike better than that old new car (838)

is that bike better than this old new car (833)

is that bike better than this new old car (834)

is this car better than that new old bike (836)

is this car better than that old new bike (828)

is that car better than this new old bike (831)

is that car better than this old new bike (825)

is this new old bike better than that car (840)

is this old new bike better than that car (837)

is that old new bike better than this car (832)

is that new old bike better than this car (835)

is this new old car better than that bike (830)

is this old new car better than that bike (829)

is that new old car better than this bike (827)

is that old new car better than this bike (826)
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peg the words in {“new”, “bike”, “that”}. This choice turns out to be correct selections for the sentence in
Figure 1 and sentences in Table 1. Another possible choice is {“new”, “that”, “car”}. If we choose the top
400 arrangements, the algorithm will recommend us to peg words in {“new”, “bike”, “is”, “that”}. This time,
we place an unnecessary constraint to force the students to rebuild the sentence in Figure 1. Notice that the
sentence in Figure 1 was ranked 16 as shown in Table 1. Furthermore, an inspection of the permutations
shows that the permutations which received the top 10 probabilities all started the sentences with “That”.
Consequently, the Word-Pegging algorithm will find that we just have to peg the first word of the original
sentence, i.e., “This”, to force the students to arrange the words exactly the same as the sentence in Figure 1.
This is certainly incorrect as none of the 10 leading permutations belonged to the grammatical set that we
listed in Table 1.

The ranking information listed in Table 1 and the aforementioned examples show that a precise selection
of the grammatical arrangements is not an easy task. The 48 permutations were ranked within about four
dispersed intervals in the list. The minimum of these ranks is 5, the average is about 493, and the maximum
is 1181. Hence, it will not be easy to find a convincing threshold, say a, to find a leading permutations to
compute the pegging positions.

When we choose a large o, we will be forced to peg more tokens than necessary to exclude all of the (a-1)
permutations. This is the case if we choose 400 leading permutations. At one extreme, if we consider too
many superfluous permutations, we may have to peg (m-1) tokens for a sentence that has only m tokens,
making the resulting test item useless. On the other hand, when we choose a very small o, we probably will
miss those admissible arrangements, allowing multiple answers to the test items. This is the case if we
choose 10 leading permutations.

5 Filtering with a Categorical Parser

A parser that can categorically judge the acceptability of a | ;. 400
sentence will relieve us of the task of selecting the value of o 5 i gg
in the previous section. It is easy to implement a chart parser g 550
(a.k.a. CYK parser; [6]) for this purpose. However, it is not 55 200
trivial to acquire a set of grammar rules for the parser. 2 150
We relied on the Stanford parser to alleviate the problem. § 100
We submitted 7361 real sentences (48373 words in total) that g 50
we collected for learners of English to the Stanford parser, and =0
extracted the rules from the parse trees. Since Stanford parser 0 1 2 3 4
returned the most likely parse tree for a given sentence, we Log value of frequency (10 based)

considered only one parse tree for one sentence at this stage. Figure 3. Frequency of frequencies of rules
We obtained 985 rules. The most frequent rule occurred 4450

times, and 377 and 143 rules occurred only once and twice, respectively. The median frequency of these
rules is 2 (the second point, from the left, in Figure 3). The average frequency is 42.07 (2.6 on the horizontal
axis in Figure 3). Figure 3 shows the distribution of the frequencies of the rules. To make the rules work with
our chart parser, we had to rewrite the rules into the Chomsky Normal Form (cf. [6]). Since the purpose of
parsing the sentences with the chart parser was to verify grammaticality, it was fine with us to use such
weakly equivalent grammars.

Table 2 shows the nine sets of sentences that we used to evaluate the approach of using a categorical
parser to find grammatical arrangements of words. The words in the first sentence in every set are separated
by underscores. The underscores show how we segmented the original sentence into k chunks, and create all
of the k! permutations of the chunks as strings that were then checked by the categorical parser. (Notice that
we had segmented the sentences into different numbers of chunks.)

Take the first set of sentence for example. We segmented the original sentence “She can neither sing well
nor dance beautifully” into {“she”, “can”, “neither”, “sing well”, “nor”, “dance beautifully”}, and created all

of the 6! permutations of these six chunks. These 6! per- Taple 2. More sentences used in the experiments

mutgtiops were checked by the chart parser fgr gram- not all experimental results are included)
maticality. There were at least two grammatical sen- [ |p Sentences

tences in each set of sentences in T?ble 2 The. grammat1- 1.1 |She can neither sing well nor dance beautifully
cal sentences were numbered for identification in both |75 [She can neither dance beautifully nor sing well
Table 2 and Table 3. 2.1 |They are sometimes late for work

To examine the usefulness of the rules that we ex- [ 22 [Sometimes they are late for work
tracted with the Stanford parser, we used the rules in | 2.3 |They are late for work sometimes
different ways. In Table 3, we use C300, C450, C600, 2.4 | They sometimes are late for work
and C985, as the column headings, to indicate experi- | 6.1 |One_of my favorite hobbies_is_reading
mental results that we observed when we used 300, 450, | 6.2 | Reading is one of my favorite hobbies

600, and 985 most frequent rules with the chart parser. | 7.1 |He goes to_the library_every Sunday
7.2 | Every Sunday he goes to the library
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Except the very last row, the “I” column shows  Table 3. Using the chart parsers to filter sentences

whether the sentence with a particular ID was ac- D | sp €300 €450 €600 €985
cepted by the chart parser. We use “1” and “0” to IIN |JT IN I | N 1IN
indicate acceptance and rejection, respectively. The i; ?g i 32 i 78 i 96 % 240
IDs are exactly the IDs shown in Table 2, except the 2:1 T ] I I T
last row. The “N” column shows the number of sen- 2219 [0 150 [0 120 1201 150 [0 | 120
tences (out of the k! permutations) that were 2310 |1 1 1 1]
accepted by the chart parser. The “SP” column 241 6 |1 1 1 1
shows the ranks of the sentences when we submitted | 61| 1 O] o 10} o [0} 4 |0} ,
the k! permutations to the Stanford parser. 62 | 19 10 0 0 0

The very last row shows how the 48 sentences in |1 3 L oo o2 A 240 A 240
Table 1 were accepted by the chart parsers. When we 7210 10 0 0 0

10 0 0 12 | 4050 | 12 | 4050

used only 300 rules, no sentences in Table 1 were
accepted because of missing rules. When we used more than 300 rules, the parsers accepted only 12 sen-
tences from Table 1, and accepted 4050 permutations (from 40320 permutations) as grammatical sentences.

The statistics in the “SP” column confirm that it is not easy to find the best o candidate sentences to cap-
ture the correct sentences. However, the chart parsers that used different numbers of rules did not always
find the correct sentences either. The incorrect sentences could be accepted, and the correct sentences could
be rejected. Increasing the number of rules allowed the parsers to accept more sentences, but may not help
the acceptance of correct sentences.

To make the categorical parsers really useful, we may need to improve the grammar rules. This could be
achieved by finding a better source of the rules — either by domain experts or by machine learning techniques.

6 A Heuristic: POS-based Pegging

If we do assume that only learners of the beginning levels will be interested in the practices of sentence re-
construction, we have a good reason to assume that the correct sentences are probably not very long and not
very complicated. With these assumptions, we can do part-of-speech (POS) tagging of the correct sentence
first, and peg words that have the same POS tags. Details about effectiveness and problems of using this
heuristic will be discussed in an extended paper.

7 Summary

We have gone through an investigation of the techniques that are useful for the creation of test items for re-
constructing scrambled sentences. It is not difficult to determine how to peg tokens in a set of candidate
permutations to force unique solutions. It is not as easy to help the teachers to foresee all of the possible an-
swers to the scrambled sentence tests. Generating the set of grammatical sentences efficiently has been a
challenging task. We investigated the applications of the Stanford parser and a primitive categorical parser,
and proposed a useful heuristic. Although the results are not conclusive, the current experimental results
show encouraging improvements against the state of the art.
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