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Abstract

In this report, we summarize the results of this research project on several fronts.
For student modeling, we proposed a simulation-based approach to learn the struc-
tures of Bayesian networks that contain unobservable variables. We have built three
functioning systems for practical applications of natural language processing tech-
niques. We built an environment for computer-assisted translation of TIMSS test
items, an environment for assisting teachers to compose test items for elementary
Chinese, and an environment for searching Chinese indictment documents.

Keywords: Bayesian networks, structure learning, learning processes of composite
concepts, information retrieval, computer assisted language learning, machine
translation
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A Simulation-Based Experience in Learning Structures of
Bayesian Networks to Represent How Students Learn
Composite Concepts

Chao-Lin Liu, Department of Computer Science, National Chengchi University, Taiwan

chaolin@nccu.edu.tw

Abstract. Composite concepts result from the integration of multiple basic concepts by students to
form high-level knowledge, so information about how students leam composite concepts can be used
by instructors to facilitate students” learning, and the ways in which computational techniques can as-
sist the study of the integration process are therefore intriguing for learing, cognition, and computer

ientists. We provide an exploration of this problem using heuristic methods, search methods, and
machine-learning techniques, while employing Bayesian networks as the language for representing the
student models. Given experts” expectation about students and simulated students” responses o test
items that were designed for the concepts, we try to find the Bayesian-network structure that best
represents how students learn the composite concept of interest. The experiments were conducted with
only simulated students. The accuracy achieved by the proposed classification methods spread over a
wide range, depending on the quality of collected input evidence. We discuss the experimental proce-
dures, compare the experimental results observed in certain experiments, provide two ways to analyse
the influences of Q-matrices on the experimental results, and we hope that this simulation-based ex-
perience may contribute to the endeavours in mapping the human learning process.

Keywords. Student Modelling; Learing Patterns; Bayesian Networks: Computer-Assisted Cognitive Modelling;
Computer-Assisted Learning; Machine Leaming

INTRODUCTION

Obtaining good student models is crucial to the success of computer-assisted learning. Relying on stu-
dent models, computerised adaptive testing systems (CATS) may assess students’ competence levels
more efficiently than traditional pen-and-paper tests by adaptively selecting and administering appro-
priate test items for individual students (van der Linden & Glas, 2000). If, in addition, a model cﬂpr
tures how students learn, then we may apply the model for computer assisted instruction and testi
(Nichols et al., 1995; Leighton & Gierl, 2007). For instance, by introducing prerequisite relat 0n<h|p<
in a refined model, Carmona et al. (2005) showed that there is room for boosting the cffi
CATs. In this paper, we adopt Bayesian networks (Pearl, 1988; Jensen & Nielsen, 2007) as the lan-
guage to represent student models, and discuss a simulation-based experience in which we attempted
o learn student models with machine-learning techniques based on students” responses to test items.
‘The simulation-based results indicate how and when we can leam students’ learning patterns from

their item responses, and shed light on some difficultics that we may encounter in similar studies that
use the item responses of real students.

Measuring students’ competence levels with their responses to test items s a typical problem of
uncertain reasoning in CATs. The slip and guess cases are two frequently mentioned sources of uncer-
tainty, e.g.. (VanLehn etal., 1994; Millin & Pérez-de-la-Cruz, 2002). Students may accidentally fail to
respond o test items correctly (the slip case), or they may just be lucky enough to guess the correct
answers to the test items (the guess case). Students may also make mistakes intentionally (Reye, 2004).
Due to such an un ennin correspondence between students’ mastery levels and item responses, re-
searchers and pra s lied probability-based methods for student assessment (Mnlevy &
Gitomer, 1996). Vm (ZUU()) and Vomlel (2004), for instance, showed that probability-based proce-
dures offer chances for teachers to correctly identify students” mastery levels with a fewer total num-
ber of test items in tests of variable length.

In recent years, Bayesian networks have offered a convenient comp\lml\ondl tool for implement-
ing the probability.based tesing procedurcs and also for cognitive and developmental peschology
(Chymotr, 2003). Martin and Vank chn (1995 and Mislevy and Gitomer (1996) studied the applica:
tions of Bayesian networks for student assessment. Mayo and Mitrovie (2001) conducted a survey of
this trend and applied decision theories to optimise their systems for intelligent tutoring. Conati et al.
(2002) applied Bayesian networks to both assessing students’ competence and recognising students’
intention. The research on applications of Bayesian networks in CATs also led to real world perform-
ing systems, .g., SIETTE (Concjo et al., 2004; Guzman et al., 2007b).

ly Bayesian networks in an inference task, we need the network structure and the condi-
tional probability tables (CPTs) that implicitly specify the joint probability distribution of all of the
variables of interest. Just as we have to learn model parameters when we apply the Item Response
Theory (van der Linden & Hambleton, 1997) in CATS, we have to lean the CPTs for Bayesian net-
works (Mislevy et al., 1999) from students” records, while experts often provide specifications of the
network structures. The network structure essentially portrays the structure of the knowledge of the
students in the study, and has an influence on the ways in which the decision mechanisms in CATs
make inferences about students mastery levels.

Not surprisingly, researchers have explored different network structures in which the nodes for
the variables were organised different styIES For instance, Millan and Pérez-de-la-Cruz (2002)
categorised nodes in their multi-layer Bayesian networks into four types: Subjects, topics, concepts,
and questions. Reye (2004) employed nodes that represented students” competence as the backbone of
the network, and associated a uniform substructure with cach node on the backbone to assist the proc-
ess of making inferences about students’ competence. Despite the differences in the network structures,
both studies emphasised the importance of modelling the prerequisite relatios umong the learning
targets. Carmona et al. (2005) reported that adding prerequisite relationships in Bayesian networks
helped reduce test lengths in CATS. In addition to utilising different categories of variables, research-
ers may choose to let the nodes for concepts be parent nodes of nodes for test items, or the other way
around. Mislevy and Gitomer (1996) and Millin and Pérez-de-la-Cruz (2002) discussed the implica-
tions of the different choices which can be made in the directions of the links.

Although the majority of the CAT research community rely on experts to provide network struc-
tures, it is conceivable that we may learn the network structures from students’ records using the ma-
chine learning techniques for Bayesian networks (Heckerman, 1999; Jordan, 1999; Neapolitan, 2004).
Vomlel (2004) attempted to apply a variant of the PC-algorithm (Spirtes et al., 2000) that was imple-
mented in Hugin (http://www.hugin.dk) to leam network structures, and augmented the networks with

hidden variables based on experts’ knowledge. Recently, Desmarais et al. (2006) leared item-to-item
knowledge structures from students® records, and compared the leamed structures with those reported
in (Vomlel, 2004). The item-to-item knowledge structures are special in that the states of all of the
nodes in the networks are directly observable, making the learning of the network structures a rela-
tively practical matter. The experience indicates that it is an interesting but challenging task to leam
the network structures from scratch in the cases that there are many hidden variables, due in part to the
large number of candidate network structures,

ent perspective. Instead of trying to
ing experts select models that differ in
subtle ways. This can be helpful for constructing student models for how students leam composite
concepts. Assume that it requires knowledge of four basic concepts, say cA, cB, cC, and cD, to learn a
composite concept dABCD. In this case, will we be able o tell whether students manage to leam
GABCD by direetly |megmlmg CA, cB, cC, and ¢D or whether they first integrate cA, B, and cC into
an intermediate product and then integrate this intermediate product with cD? To what extent can the
use of machine lr:nmmg chniques help us to identify the dieet prerequists necessary for the pro-
duction of the composite concept?

We explore methods to answer this question by expressing the problem with Bayesian networks
and by learning the network struetures based on students” responses to test items. Although there are
various methods for learning Bayesian networks (Heckerman, 1999; Neapolitan, 2004), our learning
problem is distinet. We face a problem of learning the structure of hidden variables because we cannot
directly observe students’ competence levels of the concepts. The students” item response patterns that
we can observe and collect have only an indirect and uncertain relationship with students’ actual com-
petence patterns, which is a challenge that has long been discussed in the literature on CATS, e.g.,
(Martin & VanLehn, 1995; Mislevy & Gitomer, 1996). Although the states of the hidden nodes for the
competence levels can only be inferred indirectly, we are sure of the existence of the hidden nodes, so
our focus is to lean the structure that relates the hidden variables. Finally. for any practical problems
that involve three or more basic concepts, there are at least four hidden variables in question, making
the target problem nontrivial

rder to explore the effectiveness of different computational techniques for the target problems,
we employ the device of simulated students which has been used in many studies on methodologies
for intelligent tutoring systems, e.g., (VanLehn et al., 1994; Vos, 2000; Mayo & Mitrovic, 2001;
Millan & Pérez-de-la-Cruz, 2002; Liu, 2005; Desmarais et al., 2006; Matsuda et al., 2007). We gener-
ated the item responses of the students that were simulated with a specific Bayesian network whose
structure encoded belicfs about how students leamed composite concepts. We could control the degree
of uncertainty in the relationship between the item responses and the mastery levels by adjusting the
simulation parameters. Hiding the original Bayesian network, we applied mutual information (MI)
(Cover & Thomas, 2006), searc] ods, artificial neural networks (ANN) (Bishop, 1995),
and support vector machines (SVMs) (Cortes & Vapnik, 1995) to analyse students” item responses to
determine the structure of the original network.

We report experimental resuls and discuss observations that are potentially useful for further
studies. The quality of the predictions that are made by our classifiers depends on many factors, e.g.,
the algorithms that we used to guess the network structures, the degree of uncertainty in the relation-
ships between the students’ competence levels and the item responses, and the quality of the training
data for the machine-learning algorithms. On average, using SVMs as the underlying classification
mechanism offers the best performance and efficiency, when training data of good quality is available.

Experimental experience provides hints on the principles that are useful for guiding the designs of fur-
ther studies. More specifically, we identify some methods for determining the quality of training data,
provide two analytical methods for comparing the influences of Q-matrices on the experimental results,
and report situations when different classification methods may offer better performance. Specific de-
tails will be discussed in appropriate sections.

We define the target problems and provide background information in Preliminaries’, discuss the
applications of mutual information, search-based methods, artificial neural networks, and support vec-
tor machines to the problems in Methods for Model Selection, and present the design of experiments
in Design of the Experiments. In Idealistic Evaluations, we evaluate and compare the effects of
the proposed methods under different combinations of slip, guess, and Q-matrices, when the quality of
training data is good. In More Realistic Evaluations, we investigate the results of experiments under
different combinations of slip, guess, and Q-matrices, when the quality of training data is relatively
poor. Finally, we summarise the implications of the simulation results and review more relevant litera-
ture in Summary and Discussion.

PRELIMINARIES

We outline the nature of the problems that we would like to solve in the first subsection, and explain
how we formulate the target problems with Bayesian networks in the second subsection. Using Bayes-
ian networks as the representation language, we provide a more precise definition of the target prob-
lem in the third subsection, show how we simulate students’ item responses in the fourth subsection,
look into the issue about computational complexity in the fifth subscction, and illustrate the difficulty
of solving the target problems with existing software in the last subsection.

The Simulated World

‘We consider a set of concepts C and an item bank 3 that contains test items for C . Some concepts in
€ are basic and others are composite. Learning a composite concept requires the students to integrate
their knowledge about certain basic concepts. A composite concept, say dABC, is the result of integrat-
ing knowledge about basic concepts cA, cB, and cC. Let C comain N concepts, ic.
{C1,Cy..C, ) . For each concept C; C, we have a subset 3; = {1 ;.1 jm,} in 3 for test-

ing students’ competence in C, . For easier reference, we call C, the parent concept of the items in
3. The concepts that students directly integrate to form a composite concept C, are also referred as
the parent concepts of C.. Based on this definition, a prerequisite concept is not necessarily a parent
concept of a composite concept. More specifically, CA and B are not parent concepts of ABC when,
for instance, students learn dABC by integrating dAB and cC, although CA and ¢B must be prerequi-
sites of dABC. We refer to a student’s competence in the concepts being studied as a competence pat-
tern, and assume that students demonstrate special patterns in their competence. Students that share
the same competence patterns form a subgroup.

‘We employ the convention of the Q-matrix, originally proposed to represent the relationships be-
tween concepts and test items (Tatsuoka, 1983), for the encoding of the competence of a subgroup in

! We use the font of Helvetica for section headings to avoid the need to use numbered section headings.

‘Table 1. Competence patterns in two Q-matrices
. Competence i
cA cB cC dAB dBC dAC dABC |cA c¢B cC dAB dBC dAC dABC

the basic concepts and also in being able to integrate the parent concepts into composite ones. In Table
1, there are two Q-matrices that are separated by the double bars, and the “SID” column shows the
identification of the subgroups. We will use these Q-matrices in the experiments reported in Idealistic
Evaluations and More Realistic Evaluations. Let g, denote the cell at the | row and the k" col-

umn in a Q-matrix. If C, is a basic concept, we set g to 1 when students of the j” subgroup has the

competence in C; if C; is a composite concept, we set g to | when students of the j* subgroup
has the ability to integrate all of the parent concepts of C, . Hence, if the k" concept is composite, the
j" subgroup is competent in the concept only if q;, =1 and the j" subgroup is competent in all of the
parent concepts of the K" concept. Based on this definition, g, is related to both the rule nodes and
the rule application nodes that are defined by Martin and VanLehn (1995).

‘The competence patterns, which are used in our simulations, are not as deterministic as they ap-
pear. In the simulations, we intentionally introduce some degrees of uncertainty to reflect the possibil-
ity that teachers s ey uot categoise the subgroups precisely. This is similar to the concept of residual
ability discussed in (DiBello et al., 1995, page 362). We will go further into this issue when we present
our simulator in Generating Student Records.

As discussed in (DiBello et al, 1995, pages 365 and 370), we can apply Q-matrices in different
ways, depending on the interpretation of the rows and columns. In addition, the contents of the matri-
ces can differ in a wide variety of ways, and, consequently, rescarchers can report results of experi-
ments using a selected number of Q-matrices typically. Different choices of the Q-matrices certainly
influence the results of our experiments, and we will discuss this issue shortly.

Example 1. In the Q-matrices shown in Table 1, we assume that students form only eight subgroups,
although there could be 27 subgmups in a problem that includes seven concepts. The competence pat-
ter for the subgroup gy in the left Q-matrix is {1, 1, 1, 0, 0,0, 1}. By adopting the left Q-matrix, we
assume that a typical student in g should be competent in all basic concepts, should be able to inte-
grate the parent concepts for dABC, but cannot integrate the parent concepts for dAB, dBC, and dAC at
the time of the experiments. W

A Formulation with Bayesian Networks

We choose to use Bayesian networks to represent student models, because Bayesian networks are a
popular choice for researchers to capture the uncertain relationship between students® performance and

T
Fig. 1. A complete Bayesian network

their competence in many research projects, .g., (VanLehn et al., 1998; Mislevy et al., 1999, Millin
& Pérez-de-la-Cruz, 2002; Reye, 2004; Vomlel, 2004; Carmona et al., 2005; Chang et al., 2006; Al-
mond, 2008). We employ nodes in Bayesian networks to represent students’ competence in concepts
and the correctness of their responses o test items. For easier recognition, we use the names of the
concepts as the names of the nodes that represent the concepts. The names of the nodes that represent
the correctness of the item responses are in the form of iXa, where i denotes item, X is the name of the
parent concept, and & is the identification number of the test item. When there is no risk of confusion,
we refer to the nodes that represent concepts simply as the concepts and the nodes that represent test
items simply as test items. Hence, in Figure 1, we have seven different concepts—three basic ones (CA,
¢B, and ¢C) and four composite ones (dAB, dBC, dAC, and dABC). As a simplifying assumption, each
simulated student will respond to three test items designed for every concept. For instance,
Fp = iALIAZ,iA3}, and IAL, iA2, and iA3 are test items for CA.

All nodes are dichotomous in our simulation, except for the group node. In all simulations, group
will be used as a special node that represents the student subgroups, and it can have such values as g,
2. ... and g, where 7 depends on the design of the simulations. Nodes representing competence lev-
els may have cither competent or incompetent s their values, and nodes representing item responses
may have either correct or incorrect as their values.

The links in a Bayesian network signify direct relationships between the connected nodes, and the
nodes that are not directly connected are conditionally independent (Pearl, 1988; Jensen & Nielsen,
2007). There are no strict rules governing the directions of the links in Bayesian networks, except that
a valid Bayesian network must not contain any directed cycles and mm it is recommended that we fol-
low the causal directions in model construction (Russell & 02). The literature has discuss
the implications of different choices of the dircctions of the s fm LAT: c.g. (Mislevy & Cunmer
1996; Millin & Pérez-de-la-Cruz, 2002; Glymour, 2003; Liu, 2006d). We employ the most comm
choices, and discuss relevant issus in Impacts of Latent Variables and Summary and Discussion,
As a result, links point from the parent conceps to the integrated concepts and from the parent con-
cepts to their test item

In Figure 1, the values of group come from the set of por
of the two Q-matrices in Figure 1, group will have eight por
dent group. Since the subgroup ide
links from group to all concept nodes.

We defer the discussion of how we set the contents of the conditional probability tables to Gen-
erating Student Records.

ible student subgroups. If we use cither
sible values, each denoting a possible stu-
¥ of a student affects the competence pattern, there are direet




The Target Question and Assumptions

Our target problem is to learn how students learn composite concepts by observing students” fuzzy (Bi-
renbaum et al., 1994) item-response patterns that have only an indirect relationship with their compe-
tence patterns. Students” item responses are fuzzy because they do not necessarily indicate students’
actual competence.

A composite concept is a concept that requires the knowledge of two or more basic concepts. For
instance, Mislevy and Gitomer (1996) used “Mechanical Knowledge”, “Hydraulics Knowledge”
“Canopy Knowledge”, and “Serial Elimination” as the prerequisites for “Canopy Scenario Requisites
No Split Possible”, and Vomlel (2004) included “Subtraction”, “Cancelling Out”, and “Multiplicatio
as the basic capabilities that are necessary for finding the solution for (3x%)~+.

Although it is convenient to use the nodes for all the prerequisites as the parent nodes of the node
for the composite concept, we anticipate that constructing a more precise model that reflects the proc-
ess of the learning of the composite concept may improve the performance of CATS and other com-

uter-assisted learning tasks. This anticipation is related to the study of cognitive diagnostic assess-
‘ment (Nichols et al., 1995; Leighton & Gierl, 2007). Indeed, Carmona et al. (2005) report that intro-
ducing prerequisite relationships into their multi-layered Bayesian student models enables their CAT
system to diagnose students with a fewer number of test items. Furthermore, if teachers know how
students normally learn a composite concept, the teachers will have more information as to how to
provide appropriate and specific help for students who fail to demonsrate competency in the concept
(Naveh-Benjamin et al., 1995). For instance, if students normally learn dABC by integrating cA and
dBC and if a student shows a lack of competence in dABC, a teacher may have to consider the st
dent’s ability in leaming dBC from cB and cC in addition to providing the student with information
about the three basic concepts. Using Vomlel’s arithmetic problem as an example, we are wondering
how computational techniques can help us compare the merit of the (partial) Bayesian networks shown
in Figure 2.

Therefore, we consider the problem of how the use of computational techniques can help us iden-
tify students’ learning patterns. To facilitate the discussion about the ways in which a composite con-
cept may be learned, we define the notation that we will use to represent how students learn a compos-
ite concept. Let 7 denote the composite concept which we would like to know how students leam. As-
sume that there are @ basic concepts included in 7. Based on our non-overlapping assumption that
we present below, 7 can have at most @ parent concepts. If some of ©'s parent concepts are composite,
will have less than a parent concepts. We denote a way of learning 7 by a computational form of r .
A computational form of 7 may have one or more parts, the parts are connected by underscores, and
each part of the computational form represents a parent concept of 7.

Definition 1. Assume that learning x requires the knowledge of @ basic concepts. Let {m, m....7}

Cancelling out

54+ 5/6)- 1)

Fig. 2. Which model is better?

Fig. 3. Three other ways to learn dABC (from left to right): AB_C, BC_A, AC_B
dencte (he set of parent concepts of x; where z<a. The computational form of the way to leam & is
Each computational form of a composite concept represents a learning pattern for stu-
dents o o the composite concept.

Definition 2. (The non-overlapping assumption) We assume that any two parent concepts defined in
Definition 1 do not have common basic concepts.

The non-overlapping assumption presumes that students must leam composite concepts from
non-overlapping components. Specifically, the parent concepts of the composite concepts do not in-
clude common basic concepts. Hence, there are only four possible ways to learn dABC: (1) integrating
CA, cB, and cC directly (denoted by A_B_C); (2) integrating dAB and cC (denoted by AB_C): (3) inte-
grating dBC and CA (denoted by BC_A); and (4) integrating dAC and cB (denoted by AC_B). The
structure shown in Figure 1 is A_B_C. Figure 3 shows three other ways to learn dABC, and, from the
left to right, they are AB_C, BC_A, and AC_B (Nodes for test items are not included for readability of
the networks i Figure 3 and other Bayesian networks that we will discuss later in this paper.)

‘The non-overlapping assumption simplifies the space of the possible answers. Without excludi
the possibility of overlapping ingredient concepts, we would have to consider AB_BC, AB_AC, and
BC_AC if we minimise the number of overlapping basic concepts. We would also have to consider
cases like AB_BC_A and even AB_BC_AC_A if we do not minimise the number of overlapping basic
concepts. It is certainly possible that a student can learn dABC with these alternative methods. How-
ever, we leave these more challenging possibilities for future studics.

As we present more details about the designs of our experiments, it will become clear that the
tion of the non-overlapping assumption. However, mak-
ssumption simplifies the space of the possible solutions, while the proposed methods
can still be applied without the assumptions.

We do not assume further limitations on the ways that students might integrate the candidate par-
ent concepts. For instance, under some circumstances, one might believe that a student cannot inte-
grate cA and CB unless CA is already a part of another relevant concept, say CAC. In this case, one
might learn dABC from dAC and cB but not from dAB and cC. We did not consider such special con-
straints in our study.

Definition 3. (The common assumption) All students learn a composite concept with the same learn-
ing pattern.

‘The common assumption presumes that all students use the same strategy to learn a composite
concept. The purpose of using this assumption is just to simplify the presentation of our discussion. It
is understood that there is no clear support for this rather controversial assumption. However, the cur-
rent goal of our methods is to select exactly one best candidate from the many possible ways of lean-
ing the composite concept. It will become clear, as we present our methods in the rest of this paper,
that we can easily modify our methods to select the top k candidate solutions for human experts to

make the final judgment about how students may leam the composite concept. We simply have to pre-
sent the k highest-scored candidate structures to the experts to rclax the common assumption. There-
fore, we hope this assumption is not as provocative as it might appeas

In summary, we would like to find ways to tell which of the Candidate neworks, <. £. those in
Figure 3, was used to generate the simulated students records.

Generating Student Records

The contents of the conditional probability tables (CPTS) of the Bayesian networks were generated
based on a Q-matrix (e.g., those contained in Table 1), a given network structure (e.g., those shown in
Figures 1 and 3), and simulation parameters according to the methods described in (Liu, 2005). When
generating the CPTs, we considered not only the chances of slip and guess but also the chances of stu-
dents abnormal behaviours that deviated from the typical competence pattems of the subgroups to
which they belonged. To capture the uncertainty of this latter type, we inherited the concepts of group
guess and group slip discussed in (Liu, 2005). but st both group guess and group sl to groupinflu-
ence. More preciscly, when gy, =1, we assigned a high probability for the j" subgroup being compe-

tent in the K" concept (if C, is basic), and this probability is sampled uniformly from [I-
grouplnfluence, 1], where groupinfluence is a simulation parameter selected for individual experi-
ments. Hence, even if g, =1, Pr(C, = competent | group = g;) might not be equal to 1, and students of
the j" subgroup might not be competent in the k" concept. Similarly, when g, =0, we assigned a low
probability for the " subgroup being competent in the k™ concept (if C is basic), and this probability
is sampled uniformly from [0, grouplnfluence]. Hence, even if g, =0, students of the j* subgroup
‘might be competent in the K" concept.

‘The conditional probabilities of correctly responding to test items given different competence
levels were specified with a standard procedure that has been commonly employed in the literature,
e.g., (Martin & VanLehn, 1995; Mayo & Mitrovic, 2001; Conati et al., 2002; Millin & Pérez-de-la-
Cruz, 2002). Instead of using two simulation parameters for slip and guess, we set these two parame-
ters to the same value and called it fuziness. Hence the probabilities
Pr(l} = comrect | C,; = competent) and Pr(l ;= correet |, = incompetent) were, respectively, sampled
uniformly from [1- fuzziness, 1] and [0, fuzziness]. Notice, again, that the value of fuzziness functioned
as the bounds of the actual values of guess and slip but not their values.

Similar to what has been reported in the literature, e.g.. (DiBello et al., 1995; Mayo & Mitrovic,
2001; Conati et al., 2002), we employed the concept of noisy-and (Pearl, 1988) for setting the condi-
tional probabilities for the composite concepts which have multiple parent nodes. Noisy-and nodes
reflect a probabilistic version of the “AND” relationship in traditional logics. The degree of noise is
controlled by the simulation parameter grouplnfluence. Readers are referred to (Liu, 2005) for more
details.

We controlled the percentages of the subgroups in the entire simulated student population by ma-
nipulating the prior distribution over the node group. We could use any prior distribution for group in
the simulator. In the reported experiments, the node group took the uniform distribution as its prior
distribution. Hence, if we were simulating a population of 10000 students that consisted of eight sub-
groups, each subgroup might have approximately 1250 students.

Table 2. A sample of simulated students’ item responses for the Bayesian network shown in Figure

1 and the left Q-matrix in Table 1 (1 and 0 denoting correct and incorrect, respectivel
o Test ltems
A2 iA3_iBL_iB2 iABL iAB2 iAB3 iBCL iABCI iABCZ TABC3

& 11 [ 1 1 1 1
@ |1 1 o 1 1 [ ] ] 0
I I R R R o 1 1 1
o |11 1 01 o 1 I I 0
p |11 1 10 0 0 1 1 ] ]
e |0 0 0 1 1 00 o 1 0 0 1
g [0 1 0 1 1 0 o 1 0 ] 0
P I 00 0 0 1 1 1
o I S S 010 0 0 1 1

In summary, we created Bayesian networks with the procedure reported in (Liu, 2005), and we

controlled the degree of uncertainty by two parameters, i.c., groupnfluence and fuzziness. Given the

network strueture and the CPTs, we had a functioning Bayesian network, and could apply this network

to simulate item responses of different types of students. We employed a uniform random number

generator in simulating students” behaviours with a typical Monte Carlo simulation procedure. For

instance, we randomly samplsd @ number, 4 from a uniform distribution (0, 11 If the conditional
il

i
we would assume that this student responded to iA2 incorrectly. Students of the same subgroup may
have different item responses to the same item because we independently drew a random number for
cach test item and each simulated student.

Example 2. Table 2 shows the data for certain students that we generated with the Bayesian network
shown in Figure | and the left Q-matrix shown in Table I, when setting groupinfluence and fuzziness
10 0.05 and 0.10, respectively. Each row in Table 2 contains a record for a simulated student, e.g.. the
first simulated student correctly responds to all of the test items while the second simulated student
fails iA3 and iABC3. Although we always simulate item responses for students of all of the subgroups,
we cannot show all of the data here. Notice that, due to the degree of uncerainty which was simulated
and which was controlled by grouplnfluence and fuzziness, a student who should be competent in a
concept might not respond correctly to a test item for that concept. For instance, the second student of
& fails to respond correctly to iA3, although all the members of g, are supposed to be competent in CA
as indicated by the Q-matrix.;

Computational Complexity

Assume that there are /3 basic concepts in C . The computational complexity of our target problem
comes from both the number of different ways that students can learn the composite concept whi
directly or indirectly, integrates all /?basic concepts and the number of different Q-matrices.

Table 3. Results of computing Formula (2) grow ially with §
[pI5T4]sTe 789 10
|5y [a]1a 51202 876 4130 [ 21146 | 115974 |

Given the non-overlapping assumption and the common assumption, the number of different
ways that students can leam the composite concept which integrates all /3 basic concepts is related to
the Stirling number of the second kind (Knuth, 1973). Formula (1) shows the number of ways to parti-
tion t different objects in exactly i nonempty sets.
S(t.i) Z( 1)'[ )(I—n )
Formula (2) shows the number of ways to partition /3 different objects in more than two nonempty
sets, and Table 3 illustrates how the number of possible learning patterns grows with 4 $(6) is the
number of possible ways to learn a composite concept from /3 basic concepts.

)

‘The choice of the Q-matrix influences the prior distribution for the students being simulated. and
is an important issue for studies that employ simulated students (VanLehn et al., 1998). There can be a
myriad number of different Q-matrices, cf. (DiBello et al., 1995), and clearly the chosen Q-matrix af-
feets the difficulty of identifying the learning patiern of interest. When there are /¥ basic concepts in € ,
there can be as many as n=2"-1 different concepts in C , and there can be as many as 2" different com-
petence patterns, as we have explained in Example 1. In principle, a student can belong to any of these
2" patterns. Because each of these 2" patterns can be cither included or not included in the Q-matrix,
there are 2?" different Q-matrices. Note that such quantities occur only in the worst-case scenario as
not all of these 2" patterns and not all of the 2°-1 conceps are practical.

We can choose to include all possible competence patterns in a Q-matrix, or, alternatively, we c
make the Q-matrix include only those patterns that appear to be helpful for identifying the learning
patterns. In the former case, there is only one possible Q-matrix, but the size of this Q-matrix will be
quite large. For #=3 and =4, the Q-matrices will include, respectively, 128 and 32768 competence
patterns. In the latter case, the selection of Q-matrices is equivalent to choosing a certain population of
students to participate in our studies in order that we can achieve our goals. For instance, all of the
values in the dABC columns of the Q-matrices in Table 1 are set to 1. As explained in Generating Stu-
dent Records, such a setting makes the simulated students very likely to be able to integrate the parent
concepts of dABC to leam JABC, and, if we want to leam how students learn dABC, it should be rea-
sonable to recruit students who appear to be competent in dABC in our studies. Hence the choice for
the settings of the dABC columns of the Q-matrices in Table 1 is not groundless. We will discuss the
influence of Q-matrices in more detail in Influences of the Q-Matrices and More Realistic Evalua-
tions when we present the experimental resuls.

Example 3. Based on this discussion, we choose to report results for interesting Q-matrices in which
there are only three or four basic concepts. For the C used in Table 1. 4=3 and n=7. There are four
different ways to learn the composite coneept dABC, 128(=2") different competence patterns, and 2'**
possible Q-matrices, so there are 2'* (=4x2'>*) problem instances. For the problem in which we con-

sider four basic concepts (i.c.. f~4), there will be 14 different ways to learn dABCD based on Formula
(2). A complete enumeration of the subsets of {A, B, C, D}, without considering the empty subsct, in-
cludes 15 configurations, which makes n =15 in C (cf. Table 7). Hence, for this case, we have
32768(=2"%) competence patterns and 14x2*" different problem instances. W

Impacts of Latent Variables

In addition to the large search space that was discussed in Computational Complexity, another major
difficulty in learning the learning patterns comes from the fact we cannot directly observe the levels of
competence of the students. What we have at hand are students” responses to test items that are indi-
rectly and probabilistically related to the actual competence levels. The literature, ¢.g., (Heckerman,
1999), has addressed common issues in learning network structures with hidden variables, and some,
e.g., (Desmarais et al., 2006), have discussed issues that are specific to leaming network structures for
educational applications. In this subsection, we look into problems that are directly related to our tar-
get problems

If we could directly observe the states of competence levels of concepts, we would be able to ap-
ply theoretical inference tools. Let CI(X, Y, Z) denote the situation that variables in X and Z become
independent when we obiain information about the variables in Y. For simplicity, we say X and Z are
conditionally independent given Y when CI(X, Y, 2) holds. (Note that X, Y, and Z may contain on or
more variables.) Take the case for leaming AABC as an example. If we can directly observe the states
of group, cA, ¢B, cC. dAC, and JABC, we will find that CI(dAC, {group, cA, cB, cC}, dABC) if the
actual structure is the network shown in Figure 1. We can tell whether the conditional independence
holds based on the criteria for judging whether d-separation (Pearl, 1988) holds in Bayesian networks,
and the data generated with this network are expected to reflect the independent relationship. Hence,
we would be able to tell the leaming pattern for ABC by checking whether CI(GAC, {group, cA, cB,
¢C}, dABC) and other relevant conditional independence relationships hold.

In reality, we cannot directly observe the states of group, cA, ¢B, ¢C, dAC, and dABC, and can
observe only the states of the test items for A, cB, ¢C, dAC, and dABC, i.c., the states of iAj, iBj, iCj,
AC], and IABC], where -1, 2, 3. This information is helpful but dos not allow us to determine the
answer (o the problem for sure, because CI({iAC][j=1.2.3},{iA}. iBj. iCjli=12.3}, {iABCjji~1.2.3})
fails to hold for any structure shown in Figures 1 and 3 now. In Figure 1, even if we further assume the
availability of information about group either because of students” records or because of the help of
student assessment software, nodes iACj and nodes iABC], j~1,2,3, remain probabilistically dependent.
In this network, only direct information about the competence levels, i, ¢A and cC, or either of dAC
and dABC, can d-separate nodes iACj and nodes iABY a consequence, if we can observe
only the states of the nodes for test items, we cannot ell the mnmnce among different ways of learn-
ing dABC based on the concept of d-separation.

“The research into learning Bayesian networks from data has made significant progress in recent
years (Heckerman, 1999; Neapolitan, 2004). Yet, the pmblem of leaming Bayesian networks with
hidden variables is relatively more difficult. Based on our limited knowledge, existing alg
tackle problem instances that consider a wited mumber of hidden varables it sueh algorithms do not
explicitly attempt to learn the relationships among a set of hidden variables, which is the focus of this
paper. In addition to the consideration of hidden variables, a further major technical challenge in lear-
ing Bayesian networks is missing values in some of the training data. We disregard this consideration
at this moment, though it is possible for a real student not to answer all the questions in a test. We as-
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Fig. 4. Learning with the PC algorithm: (a) Only with item responses (b) With complete data

sume that students will be motivated to respond o all of the test items, though it may be quite difficult
to ensure that students will make their best

In order to show the applicabi iaion of the existing algorithms, we tried our problem
with the PC-algorithm (Spirtes et al., 2000) implemented in Hugin. Hugin was implemented and is
being supported by the rescarch team that originally invented the junction-tree algorithm (Jensen &
Nielsen, 2007), so we believe that it is a reliable software tool. We generated records for 10000 stu-
dents with the procedure described in Generating Student Records. (More details about our simulation
and experiments are provided in Generating Datasets) In that simulation, we used the network
shown in Figure 1 and the left Q-matrix shown in Table 1, and we set groupinfluence and fuzziness to
0.05. (It will become clear that setting both grouplnfluence and fuzziness to 0.05 is the simplest case in
our experiments.) After recording test records for 10000 simulated students, we removed the data for
group and all of the nodes for concepts to achieve a table like Table 2. We informed the PC-algorithm
that the values for these nodes were missing in training instances, and achieved the network shown in
Figure 4(a) when we set “Level of Significance” to 0.05 (which is the default value in Hugin). This
recommended choice of the Level of Significance has also been adopted in other research work, e.g.,
(Vomlel, 2004). With the absence of all of the data for group and concept nodes, the PC-algorithm
isolated these nodes from the rest of the network. If we ignore the isolated nodes in Figure 4(a), the
resulting network appears as an item-to-item knowledge structure that relates nodes representing test
items (Desmarais et al., 2006). Note that, without an appropriate introducing of the hidden nodes into
the leamed structure, the nodes for the test items become probabilistically related, resulting in a very
complicated network in Figure 4(a) when compared with the network in Figure 4(b). Interested readers

may refer to (Desmarais et al., 2006) for the techniques for learning item-to-item knowledge structures.

We obtained the network shown in Figure 4(b) from the PC-algorithm in Hugin by using the
original simulation data, while not removing the data for group and the concept nodes. We manually
arranged the nodes in Figure 4(b) to put them in positions that were similar to their counterparts in

Figure 1. A simple comparison of these two networks shows that the directions of the links between
the concept nodes in the learned network (Figure 4(b)) are quite different from those in the original
network (Figure 1). In addition, the node dABC has only one parent node in Figure 4(b), which is ob-
viously incorrect. These two networks look quite similar except for these differences.

The differences between the networks shown in Figure 4 show how direct observations about the
nodes in the networks help the PC-algorithm to build better networks. The network in Figure 4(b) does
not have isolated nodes, and looks more similar fo that in Figure 1 from which the simulation data
were created. Qualitatively, the network in part (b) reflects the relationships among the variables more
concisely and faithfully than the network in part (a).

‘The implication of the differences in dircctions of the links in Figure 1 and Figure 4(b) is a com-
plex issue, and we cannot jump immediately to the conclusion that Figure 1 is a superior option, as
might be the case had we actually leamed a network from real data. Although applying causal rela-
tionships in determining the dircctions of links in Bayesian networks generally helps us build more
concise networks (Russell & Norvig, 2002), links in Bayesian networks do not necessarily reflect
causal relationships (Pearl, 1988). Indeed, we can apply Shachter’s arc reversal operations (Shachter,
1988) to reverse the directions of the links in Bayesian networks and preserve the joint probability dis-
tributions. If the applications ultimately rely only on the joint probability distributions implicitly repre-
sented by the Bayesian networks, the structure of the leamed Bayesian network will not seriously af-
fect the application of the leamed network. A structure that s unnecessarily complex will make the
inference algorithm run less efficiently, but that will not affect the correctness of an inference proce-
dure. Hence, if we learn Bayesian networks to build better CAT systems, the structures of the learned
Bayesian networks may not play a crucial role, unless the leamed networks can encode the joint prob-
ability distributions of important variables more precisely. For instance, Carmona et al. (2005) report
that adding links for prerequisite relationships enables their assessment system to actually shorten the
test lengths for variable-length tests

From our perspective, the difference in directions of the links in Figure 1 and Figure 4(b) indi-
cates that leaming student models from scratch does not help much for identifying the structure of the
network based on which students” item responses were gencrated. The aim of our work is to identify
this unobservable Bayesian network based on students” external performance, when students, cither
consciously or unconsciously, utilise a common strategy to learn a composite concept and if this strat-
egy can be represented by Bayesian networks. Hence, we propose that we use computer software as an
aid in the selection of the best model from a set of candidate models that experts provide. We hope
that this is a more viable approach for some problems, and we present our methods in the following
sections,

METHODS FOR MODEL SELECTION

‘The main goals of our experiments are to evaluate the cffectiveness of the proposed methods. The hid-
den structures of the Bayesian networks embody the abstract learing patterns, so our algorithms aim
at guessing the hidden structures that were used to create the simulated test records, and we call our
programs the classifiers, henceforth. (Depending on the context of the discussion, we may say that we
want to leam the learning patterns, or we may say that we want to leam the hidden structures of the
Bayesian networks.) We discuss three different ways to build the classifiers in three subsections.

Mutual Information-Based Methods

Consider the problem of learning the learning pattern for dABC. When there is only one actual struc-
ture, we can consider the networks shown in Figure 3 as competing structures, and we can try to define
scores for the competing structures to compare their fitness to the

Although students” item responses provide only indirect evidence about the values of the concept
nodes, they are still useful for estimating the states of the concept nodes. Given the estimated states,
mutual information-based measures will become useful. Intuitively, the nodes that represent the parent
concepts of a composite concept should contain a greater amount of information with the node that
represents the composite concept. Let MI(X:Y) denote the mutual information (Cover & Thomas, 2006)
between two scts of random variables X and Y. Formula (3) shows the definition of MI(X:Y); where
d(X) and d(Y) are, respectively, the domains of X and Y, and X and y are, respectively, the values of X
and Y.

_ _ Pr(X =xY =y)
R PrX=X)Pr(Y =) ®
Let H(X) denote the entropy of X, H(X|Y) the conditional entropy of X given Y (Cover & Thomas,
2006), and R, S, and T three sets of random variables. We can show that MIR:T)>MI(S:T) implies
H(TIRIH(TIS).
MI(R:T) > MI(S;T)= H(T)~H(T [R) > H(T)~H(T [S)= H(T |R) < H(T|S)

MI(X:Y

Y =y)log

Since entropy is a measure for gauging the uncertainty about random variables, this derived ine-
quality suggests that R may be more related to T than S is to T (because the information about R makes
T less uncertain than the information about $ does). Experience has shown that mutual information is
useful for studying student classification (Liu, 2005; Weissman, 2007). For the current study, we pre-
fer the set of candidate concepts that contain a larger amount of mutual information about the target
composite concept, when trying to find the parent concepts of a composite concept.

Based on this heuristic interpretation, if the actual structure is the lefimost one in Figure 3, then
MI(dAB, cC; dABC) should be larger than MI(dAC, cB; dABC). Analogously, if the actual structure is
the rightmost one in Figure 3, then the inequality should be reversed.

In order to apply this heuristic principle, we use the observed item responses to estimate the ob-
seure competence levels. We have assumed that students will respond to three test items for each con-
cept in Generating Student Records, so students may give correct answers to 0%, 33%, 67%, or 100%
of the test items for each concept. We can use this percentage as the estimation for the state of a con-
cept node, and, similarly, we can estimate the joint distributions of multiple concept nodes. For in-
stance, Pr(dAB=33%, cC=67%) is set to the percentage of students who correctly answered one item
and two items, respectively, for dAB and cC. In estimating the joint pmbnb\lme;, ‘we smooth the prob-

ab woid zero ilities because some of variables may not ap-
pear in the samples by chance, cf. (Witten & Frank, 2005). We add 0.001 to every different configura-
tion of the variables. By adding this small amount o the count of each configuration of the variables,
we will not distort the actual probability distribution reflected by the students’ records and also, at the
me time, completely avoid the problem of zero probability. With this procedure, we have a way to
estimate the mutual information measures. Hence, we can try the following heuristic for learing how
students lear composite concepts.

Table 4. A sample of statistics for responses to test items designed for dAB and cC
IAB

column total

Heuristics 1. Let = o1, 3.} be the set of computational forms for all possible ways to leam a
composite concept 7. Let I1 be the set of parent concepts represented by o, where j=1.2,....0. We

choose I1° as the parent concepts of 7 f I1° is the set of parent concepts represented by the o° speci-
fied in the following formula.

= argmax MI(TT ;7). u
ojea

Example 4. Using some simulated data similar to those shown in Table 2, our classifier constructs a
table like Table 4. Table 4 contains counts for 10000 simulated students who responded correctly to
0%, 33%, 67%, and 100% of test items designed for dAB and cC. We do not consider the smoothing
operations at this point as we wish to focus on the function of this numerical example. The “row total”
and “column total”, respectively, show the counts of students who correctly responded to items for cC
and dAB. Individual cells in the table show the counts of students who correctly responded to the test
items with the percentages specified on the row and in the column. There were 10000 simulated stu-
dents, so the estimated values for Pr(dAB=33%), Pr(cC=67%) and Pr(dAB =33%.C—67%) are, re-
spectively, 0.2731, 0.2438, and 0.0648. Hence the classifier can estimate the individual probability
distributions for dAB and cC. It can also estimate the joint distribution for dAB and cC.

When using a larger table containing data for dAB, dAC, cB, cC. and dABC, the classifier can
compute the mutual information MI(dAB, ¢C; dABC) and MI(dAC, cB; dABC) with Formula (3), and
can apply Heuristic 1 accordingly. For instance, if MI(cA, cB, cC; dABC) is the largest among the es-
timated values of MI(dAB, cC: ABC), MI(dAC, cB; dABC), MI(dBC, cA; dABC), and MI(cA, cB, cC:
ABC), then the structure is A_B_C. If MI(dAC, cB; dABC) is the largest among the estimated values
of MI(dAB, ¢C: dABC), MI(dAC, cB: dABC), MI(dBC, cA; dABC), and MI(GA, B, cC; dABC), then the
structure is AC_B. W

We will examine the effectiveness of this heuristic method in experiments.
Search-Based Methods

An obvious drawback of applying Heuristic 1 is that we will have to compute the estimated mutual
information for ach possible way of learning the composite concepts. We have seen how the number
of candidate structures can grow with the number of basic concepts in Table 3. Instead of computing
the MT measures for all competing structures, it is possible to do the comparison incrementally using a
search-based procedure. We present and explain the search procedure, provide a simple running ex-
ample, and analyse the computational complexity of the proposed algorithm in this subsection.

Algorithm. SearchdPattern
Input. Students’” item responses (e.g.. the data listed in Table 2) and the target composite concepts
(e.g.. ABCD)
Output. The most likely way to learn the target composite concept
Procedure.
1. If the target composite concept involves only two basic concepts, return these basic concepts.
2. Let k=2, p==, and & be an empty set. Denote the target composite concept by 7, and let fbe
the number of basic concepts included in . Set ; to s computational form that is the con-
catenation of all symbols for the basic concepts included in .

Find all legal ways to split . into x parts. Let Q.

(01,0, 05y} denote the set of le-

gal splits of e,y where size(x) denotes the number of elements in Q-

IS

Let {j.7j2.+. 7} be the set of candidate parent concepts that we concentrate to form an
] €0, Compute the score for each wj €, ,j= 1.2, ..., size(k).

score()) = MUz 1.7 5.0, 7 ) i)

5. Find o, such that = argmax,,,cq, score(w;)

6. If score(wy) < p and oris not an empty set, return 6. Otherwise, set p to score(wy) , set & to
the set of candidate parent concepts represented by oy , and increase Kby 1.

7. If k>3 retumn o Otherwise, return to step 3 [

We include step 1 in the algorithm just to make the algorithm methodologically complete. We do
not expect a normal condition when we have to run our algorithms to find the learning patter for a
composite concept that consists of only two basic concepts.

Atsstep 2, we conduct initialization operations for the algorithm. We set @] to the unique compu-
tational form of 7 that is simply the sequence of symbols that represents the basic concepts required
for learning . For instance, @] will be ABCD if ris JABCD.

Step 3 is the key step by which we search for the solution hierarchically. This step requires the
definition for legal ways of splitting ;. A computational form for a learning pattern of ¢ contains
one or more symbols, and a legal splittng of the computational form converts exactly one of these
parts into two smaller parts. A legal split of v}, is called a successor of w;., . For instance, {ABC_D,
ABD_C. ACD_B. BCD_A, AB_CD, AC_BD. AD_BC} is the set of successors of ABCD, and A_B_CD
and AB_C_D are the only successors of AB_CD. Two or more computational forms can share a suc-
cessor. For instance, A_B_CD is a successor to both AB_CD and BCD_A. We cannot split A_B_C_D
further because it does not have any parts that include two or more symbols. (Note that size(x) is equal
to S(f,x) as defined in Formula (1).)

Step 4 computes the scores for each o .. The scores are defined as the estimated mutual in-

ussed in Formula (3). Recall that a computational form, as defined in Definition 1,
f parent concepts, i.e., {71,727} , of a composite concept. A 7, represents
a corresponding concept of the " part of ;. For instance, if ; is AB_C_D, we have 7, = 0AB,
=cD

7j2=cCand 7

Step S finds the @, that has the largest score among all ;j & Q.

At step 6, if the largest score of the successors is smaller than or equal to the score of the current

candidate, then the current candidate becomes the answer. Otherwise, the successor that has that larg-
est score becomes the current candidate. Notice that this search procedure prefers simpler structures by
using <" rather than “<”. This design choice should bring to mind the principle of Occam’s razor,
which prefers simpler models against complex ones, and this principle is commonly embraced in the
machine leaming literature (Witten & Frank, 2005). Evidently, SearchaPattern can be applied to
solve the problem for any value of 4, and the algorithm must stop when & becomes larger than / at
step .
Example 5. We illustrate the search procedure for leaming how students learn dABCD in Figure 5. In
Figure 5, arrows connect computational forms and their successors, and successors include exactly one
more component than the original computational forms. Part (a) shows the complete search space, and
part (b) shows a particular search example. The search procedure begins by setting o to ABCD, and
the search goes from the left o the right. We compute the scores for the competing structures in which
ABCD has only two parent concepts at steps 2, 3, and 4. The structure that has the largest score be-
comes the current candidate at steps 5 and 6. (Assume that ABD_C is the current candidate in Figure
5(b).) At step 7, we return o step 3 to compute the scores of the successors of the current candidate. In
the second iteration of the algorithm, we repeat steps 3 and 4, and compute the scores for the computa-
tional forms that contain three components, namely, AB_C_D, AD_B_C, and A_BD_C in Figure 5(b).
We call the computational form, in €, that has the largest score at step 5 the new candidate (say
A_BD_C). At step 6, if the score for the current candidate (ABD_C) is higher than that for the new
candidate (A_BD_C), we return the current candidate as the answer. Otherwise, we replace the current
candidate with the new candidate and carry out step 7. In the latter case, we will have to compute a
score for A_B_C_D, which must be the only successor to the new candidate in Figure 5. If the score of
A_B_C_D is larger than that of the new candidate, then A_B_C_D is the answer, otherwise the new
candidate is the answer.
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Fig. 5. Learning the models through a search procedure: () The complete search space for
learning JABCD (b) An example




Table 5. Percentage of avoided by using SearchdPattern grows with §
‘number of basic concepts in  (i.e.. £) s 6 7 8 [ 9 10
total number of candidate structures 14| 51 | 202 | 876 | 4139 | 21146
an upper bound of checked structures 12 [ 26 | 50 | 92 | i68 | 310
a lower bound of saving in percentage | 0.00 | 14.3 | 49.0 | 75.2 | £9.5 | 959 | 985

Computationally, using SearchdPattern is more efficient than dircctly computing the scores
for all candidate structures, which is illustrated by the data in Table 5. We duplicate the first row and
the second row of Table 5 from Table 3. Except for the trivial case when s 2 at step 1, we must run
at least the iteration for =2, It is casy to verify that when x=2, there will be 2711 elements in €,
‘This is the number of different ways to split /different objects into two nonempty sets, and is equal to
S(4.2) as defined in Formula (1). ©, can have at most /felements for the following iterations in which
=3, k=4, ..., k=3-1. There are only /3 basic concepts in 7, so we can split any €, where
2, in at most /3 different ways. Hence, during these intermediate search steps, SearchaPattern will
compute at most fix(/43) scores. In the worst case, SearchdPattern must run the iteration for
and will stop when &>/ at step 7. In this very last iteration, €, can have only one clement, which
represents the situation when students learn the target composite concept directly from /3 basic con-
cepts,

Hence, in the worst case, SearchdPattern computes at most (2°'-1+ fx(f-3)+1) scores. The
third row of Table 5 shows this quantity for different values of /2 Note that the numbers are pessimis-
tic estimates of the number of times that SearchdPattern has to compute scores. For instance, when
fis 4, Search4Pattern computes at most 11 scores rather 12 scores as discussed

from two sources. First, we do not necessarily reach the case when x> for all different ways of leam-
ing the target composite concept. In addition, €2, must have fewer than /3 successors in Q) when xis
between 3 and /#1. The fourth row of Table 5 shows a lower bound of the avoided computation in
percentage. To obtain the percentage in each column, we subtract the quantity in the third row from
the quantity in the second row, and divide the difference by the quantity in the second row.

Model-Based Methods: ANNs and SVMs

In addition to using the heuristic method and the search-based method, we build classifiers by employ-
ing the data about mutual information measures to train artificial neural networks (ANNs) (Bishop,
1995) and support vector machines (SVMs) (Cortes & Vapnik, 1995) for better performance. We ex-
periment using two specific classes of ANNs: probabilistic neural networks (PNNs) (Wasserman,
1993), which are a variant of radial basis networks, and feed forward back-propagation networks
(BPNS) that are in MATLAB (htty thwork Support vector machines
are a relatively new tool that can be applicd to the task of classifications, and we try the C-SVC SVMs
that are implemented in the LIBSVM package (Chang & Lin, 2001). We can train ANNs and SV!
with training patterns that are associated with known class labels, and the trained ANNs and SVMs
can be used to classify the classes of test patterns.

We must determine what features the ANNs and SVMs will use to do ¢ tion. In addition
o the estimated mutual information that we have to compute to apply Heuristic 1, we introduce more
features that are computed from these original features. Based on the evidence that we gathered in ex-

Table 6. A sample instance for training ANNs and SVMs

class label: AB_C
original features derived features
MI(dAB.cC:dABC) 7 | MI(dAB.cC:dABC) max UP[2.12
MI(GBC,cA:GABC) | 0.04 | MI(dBC,cA:dABC)max | 0. maxavg | 1.94
MIGAC,cB:dABC) | 0.06 | MI(GAC,CB:dABC) max
MI(cA,cB.cC:AABC) | 0.08 | MI(cA,cB.cC:dABC) max

periments (Liu, 2006b), we found that the classifiers performed relatively poorly when the estimated
values of the largest mutual information and the second largest mutual information were close, so we
chose to add the ratios between the estimated mut ing instances.
We divide each of the raw (estimated) mutual information by the largest mutual information to create
new features. We also divided the largest mutual information by the second largest, and divided the
largest mutual information by the average mutual information.

Example 6. Table 6 shows a training instance for leaning JABC by integrating dAB and cC, which is
indicated by the class label AB_C. Let max denote the largest mutual information among the original
features, runnerUp the second largest, and avg the average of all original features. We need to com-
pute the scores for four competing structures that are shown in Figures 1 and 3, and they are shown in
the leftmost column of the table. A simple comparison and calculation show that max=0.17, run-
nerUp=0.08, and avg=0.0875 in this example

We also compute new features that are defined based on the original features. For instance,
MI(dBC,cAdABC)max=0.04/0.17-0.23 and max/avg=0.17/0.0875=1.94. Among these new features,
we observed in experiments that max/runnerUp is quite indicative of the danger that a wrong deci
can be made. When this ratio is small, it is generally dangerous to apply Heuristic 1. In this particular
case, the fact that max/runnerUp is 2.1 indicates that it is quite safe for us to choose AB_C as the way
students that learn dABC. The chance of choosing a wrong solution by applying our heuristics in-
creased when this ratio fell below 1.2 in many of our pilot experiments. |

We can compute the number of features for this procedure of preparing the training instances.
When there are /3 basic concepts included in the composite concept, there will be S(4) original fea-
tures and $(f)+2 derived features. As we have shown in Table 3, the total number of features can
grow explosively. Trying to examine the possibility and effects of reducing the computational load, we
will reduce the number of features using the principle component analysis (PCA) (lolliffe, 2002) in
Effects of Methods.

There are further details that we should provide about how we applied the ANNs and SVMs. For
instance, we had to choose different parameters in applying both the ANNs and SVMs, and we scaled
all feature values into the range [-1, 1] to improve the performance of the resulting ANNs and SVMs.
These details are important but it is more appropriate to discuss them along with the experiments, so
we defer such discussion until then.
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Fig. 6. Creating records of item responses of simulated students

DESIGN OF THE EXPERIMENTS

We explain the generation of student data, the major steps for an individual experiment, the evaluation
of the classification results, and the major categories of experiments in four subsections.

Generating Datasets

Figure 6 shows the main flow of how we create the test records for the simulated students. The simula-
tor requires three different types of input. They include the skeleton of a Bayesian network that en-
codes the learning patterns of the simulated students, the Q-matrix that specifies the competence pat-
tems of the simulated students, and simulation parameters grouplnfluence and fuzziness that control
the degrees of uncertainty in the students” item responses. The Bayesian networks can be provided by
domain experts who have good reasons to employ the competing structures, and each of these struc-
tures represents a possible leaming pattern of students. The Q-matrices are related to students’ compe-
tence and how the students apply their knowledge (Martin & VanLehn, 1995). Recall that we ex-
plained, in Generating Student Records, that the provided Q-matrix, grouplnfluence, and fuzziness
will influence the underlying joint distribution that we randomly create for the provided skeletal
Bayesian network. We discussed a sample output in Example 2. Both the network structures and the
simulated data will be used in further experis

Although we have been using examples in which students need the knowledge about three basic
concepts 1o learn the composite concept dABC, we will also present results of the experiments in
which students need the knowledge about four basic concepts to learn the composite concept dABCD.
We have shown the networks for cases for three basic concepts in Figures | and 3, and have applied
their computational forms to refer to these netwark skeletons in The Target Question and Assump-
tions. With our non-overlapping assumption (stated in Definition 2), there can be only four ways to
learn dABC: A_B_C, AB_C, AC_B, and BC_A

Figure 7 shows the networks for cases when four basic concepts are included in the target com-
posite concept, JABCD. In Figure 7(a), we do not show the nodes for the test items for readability.
There would be 45 (=3x15) extra nodes otherwise. Note that, except for dABCD, the parent nodes of
all nodes for composite concepts are nodes for basic concepts. This is not a necessary assumption, and
the composite concepts that require the knowledge of three basic concepts can be learned by any con-
ceivable way. In drawing the networks shown in Figure 7(b), we only draw the node for ABCD and
its parent nodes. All the other parts are exactly the same as their counterparts as already drawn in Fig-
ure 7(a). For instance, the parent concepts of dABD in the network that used the lefimost sub-network
in the top row of Figure 7(b) are also cA, cB, and cD. For convenience, we refer to these skeletal net-

ents.
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Fig. 7. (a) One possible way to learn dABCD (b) Five other ways to leam JABCD

works by their computational forms. Namely, from top to the bottom row and from left to right in both
1ows, we have A_B_CD, AB_C_D, ACD_B, ABD_C, and A_B_C_D in Figure 7(b).

We will use 3baiscs and 4basics as defined below to specify the setups of the experiments.
Based on the non-overlapping assumption and data shown in Table 3, 3baiscs includes all four dif-
ferent ways to learn dABC. There are 14 possible ways to leam dABCD, and we arbitrarily choose two
cases that contain two parent concepts, two cases that contain three parent concepts, and one case that
contains four parent concepts.

Definition 4. When we try to lean the leaming pattern for dABC, we provide A_B_C, AB_C, AC_B,
and BC_A to the simulator, and call this set 3baiscs.

Definition 5. When we try to leam the learning pattern for dABCD, we provide A_B_CD, AB_C_D,
ACD_B, ABD_C, A_B_C_D to the simulator, and call this set 4basics.

We employed the Q-matrices in Table 1 for the learning problems of dABC, when experimenting
with 3baiscs. Table 7 shows a Q-matrix that we used in many of our experiments when we used
4basics for the learning problems of dABCD. The contents of the Q-matrix in Table 7 are special in
that we chose to set all the columns for the basic concepts and the target composite concepts to 1. This
is equivalent to assuming the nature of the types of the students we recruit for a study of learning how
they lean. If we are interested in learning how students leam dABCD, it should be reasonable to sup-
pose that we will recruit students who appear to be competent in all required basic concepts and the
target composite concept. In addition to using this Q-matrix, we may also change the contents for dif-
ferent purposes in other experiments. For instance, in the experiments reported in Alternative Q-
Matrices, we set some numbers in the basic concepts and the target composite concept to

In the experimental evaluation, we set groupinfluence and fuzziness to different values in {0.05,
0.10, 0.15, 0.20, 0.25, 0.30}. Hence, there can be 36 combinations of groupinfluence and fuzziness in
our experiments. We did not try values larger than 0.3 because they were beyond the considerations
normally discussed in the literature (e.g., VanLehn et al., 1998; Junker, 2006; Pardos et al., 2007).

Table 7. Competence patterns in a Q-matrix
Sompetence in (ntegrating) coneeps ________|
A D _AB GAC GAD BC BD dCD GABC GABD GACD dBCD GABCD

Some researchers have reported observations of larger values for these parameters for special reasons
for instance, Beck and Sison (2004) observed a large value for the case of guess, and linked the obser
vation with the speech recognition technology.

For a network structure, a Q-matrix, and a particular combination of grouplnfluence and fuzziness,
we typically created test records for 10000 simulated students. A test record contains the correctness
of a student’s item responses to all test items. Table 2 shows some sample test records. The setting for
an experiment is constituted by a particular combination of groupinfluence and fuzziness, a structure
for the Bayesian network that represents the candidate learning pattern, and a given Q-matrix. For con-
venience, we use the term a subset of an experiment to refer to a group of the settings in which we
considered a specific combination of groupinfluence and fuzziness, the structures in 4basics (or
3baiscs), and a given Q-matrix. In an experiment, we used many different subsets of experiments
to compare the effects of the influential factors,

Recall that we discussed the creation of the joint probability distribution for a Bayesian network
with the help of random numbers in Generating Student Records. Hence, the generated Bayesian net-
works and the simulated test records varied with the seed for the random number generator. In order to
obtain information about the average performance of our classifiers, we created 600 network instances
for each seting in an experiment, and simulated 10000 students from cach of these network instances.
For convenience, we will refer to data that are created from a set of such 10000 simulated students as
an instance.

s
r

Example 7. An experiment for studying the learning patterns for dABCD may employ 1.08 billion
simulated students, if we consider all 36 com
cach subset demands 30 million students. We obtained 30 mil

candidate networks in groupInfluence and fuzziness, 600 network instances per candidate network, and
10000 students per network instance. The total of 1.08 billion is the result of multiplying 30 million by
36m
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Fig. 10. Training and evaluating ANNs and SVMs
Steps of the Experiments

Due to the different nature of the heuristic methods, the search-based methods, and the machine learn-
ing-based methods, we evaluated the classifiers in slightly different ways.

Figure 8 shows the main steps for evaluating the heuristic principle. We duplicate the shadowy
part from Figure 6 to show how the simulator worked for our classifiers. When we worked on the
learning problems of JABCD, S(4) is 14 as shown in Table 3. To guess the hidden structure of cach of
the 3000 (=5x600) network instances that we had generated for a subset of an experiment in which we
considered the structures in 4basics, our classifier estimated the 14 mutual information measures
based on the test records of 10000 simulated students, and guessed the hidden structure based on Heu-
sistic 1. We conducted the experiments for the learing problems of dABC analogous!

Figure 9 shows that we evaluated SearchaPattern with almost the same method that we had
used to evaluate Heuristic 1. The major difference was that we computed the scores for candidate
structures hierarchically as explained in Search-Based Methods. Due to this hierarchical scarch
procedure, we may save costs in computing scores for all the candidate solutions as analysed in
Search-Based Methods.

Figure 10 summarises the main steps that we took to apply ANNs and SVMs in our work. Tn a
subset of an experiment that was designed for the leaning problems of dABCD, we created 600 net-
work instances for each of the candidate networks shown in Figure 7(b). We split the network in-
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Fig. 11. Flow for creating data for training and testing ANNs and SVMs

stances into training and test sets, as in all supervised learning (Witten & Frank, 2003). The training
set included 500 training instances that we generated from the students” records obtained from 500
network instances for a candidate network. The test set included 100 test instances generated from the
students” records obtained from the remaining 100 network instances. Because we mixed the instances
created for each of the networks shown in Figure 7(b), we obtained a total of 2500 (=5x500) training
instances and 500 (=5x100) test instances in a subset of an experiment.

igure 11 provides more details about how we prepared the training and test instances for ex-
perimentation with ANNs and SVMs. In addition to the original 14 estimated MI measures, we ob-
tained 14 more features by computing and using the ratios between the estimated MI measures as fea-
tures. The process is similar to that we outlined for Example 6. We divided the original 14 estimated
MI measures by the largest estimated MI measure in each training instance. We then obtained two
more features from the following procedure. We divided the largest estimated MI measure by the sce-
ond largest estimated MI measure, and divided the largest estimated MI measure by the average of all
estimated M1 measures. Hence, we used 30 features for cach of the 500 training instances for cach of
the five candidate networks in 4basics. The actual answers (also called class labels in Example 6)
were attached to the instances for both training and testing. An example of a training instance created
for the learning problems of JABC was presented in Table 6.

In summary, we created a training instance with records of 10000 simulated students, and there
were 2500 training instances, each with 30 attributes and a class label. When testing the trained ANNs
and SVMs, we produced the 16 extra features from the original 14 estimated MI measures for each of
the test instances as well. The actual class label was attached to the test instance so that we could com-
pare the actual and predicted classes, but the trained ANNs and SVMs did not peek at the actual an-
swers.

Note that, although we created students’ data only from the networks shown in Figure 7 for the
learning problems of dABCD, our classifiers did not necessarily take advantage of this information.
Specifically, our classifiers, which employed Heuristic 1 and SearchdPattern, did not “know”
this restriction, so they were fiee to guess any of the possible answers. In contrast, the classifiers that
employed ANNs and SVMs “expected” this constraint and confined their answers to within the five
possible answers, because they are supervised-learning techniques (Witten & Frank, 2005). The ex-
periments for the 3basi cs cases were conducted analogously.

Measurement of Quality

We report the aceuracy for the measurement of the quality of our classifiers, although we also em-
ployed confusion matrices (Witten & Frank, 2005) to analyse some of the internal data. The accuracy
for an experiment is the percentage of correet prediction of testing network instances that we used to

create the simulated data. We also used the F measure that weighed recall and precision equally (Wit-
ten & Frank, 2005) to measure the performance. We provide experimental results in terms of accuracy
and F measure in Table 8. However, we observed that the F measures and the accuracy we collected
were similar to each other in the experiments, o we chose to report results in terms of their accuracy.
‘The total number of network instances for training and testing differed among the subsets of the
experiments as explained in the previous subsection, so the basis for calculating accuracy is not the
same for different experiments. For evaluating the performances of the heuristics and
SearchdPattern with 4basics, we used 3000 (=5x600) test instances. For evaluating the per-
formances of the ANNs and SVMs with 4basics, there were, respectively, 2500 (=5x500) and 500
(=5x100) training and test instances for each different subset in an experiment. When working with
3basics for the learning problems of dABC, we had 2400 (4x600) test instances for evaluating the
heuristics and Search4Pattern, and had, respectively, 2000 (~4x500) and 400 (~4x100) training
and test instances for evaluating the ANNs and SVMs in a subset of an experiment.

Major Categories of Experiments

In Idealistic Evaluations and More Realistic Evaluations, we examine how influential factors may
affect the final accuracy. Figure 12 summarises the relationships between the experiments that we dis-
cu sections. The experiments were designed so that the experience may be useful for further

Teal world studies.

In all experiments discussed in Idealistic Evaluations, we assume that we are able to obtain cor-
rect values for grouplnfluence, fuzziness, and Q-matrices. The main focus of Effects of Methods and
Parameters is the comparison among the effectiveness of different computational methods and the
influence of the simulation parameters groupInfluence and fuzziness, and the details in this section arc
used as a foundation for all the experiments that follow. In Alternative Q-Matrices, we examine the
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Fig. 12, Organisation of sections Idealistic Evaluations and More Realistic Evaluations

influence of the number of learing patterns with simple examples, and look into the influence of the
contents of the Q-matrices both experimentally and analytically. In Influences of the Q-Matrices, we
analyse the influence of the Q-matrix with an alternative analytical method.

‘The main purpose of More Realistic Evaluations is to explore what might happen when the re-
ported methods are applied in certain challenging scenarios. Using different choices of groupinfluence,
fuzziness, and Q-matrices in creating training and test data may show us how the proposed methods
will perform when we have incorrect expectations of the students about whose learing patterns we
have an interest. In the first subsection, we see the effects of using different combinations of groupin-
fluence and fuzziness in creating the training and test data. In the second subsection, we discuss the
effects of using different Q-matrices in creating the training and test data.

IDEALISTIC EVALUATIONS

We applied the procedures that we presented in Design of the Experiments to evaluate the influ-
ences of different approaches and simulation parameters on the performance of our classifiers. In Ef-
fects of Methods and Parameters, we first compare the effectiveness of different approaches with
the Q-matrix shown in Table 7, and, in Alternative Q-Matrices, we study the effects of changing the
contents of the Q-matrix in Table 7. In Influences of the Q-Matrices, we discuss a viewpoint for
quantitatively analysing the influence of the Q-matrices.

Effects of Methods and Parameters

In this subseetion, we compare the effectiveness of applying the approaches that we discussed in
Methods for Model Selection. We report the experimental results of guessing of the learning pat-
tems using the heuristic and the scarch methods first, with the ANNs next, and then with the SVMs.
We used the structures in 4basics, the Q-matrix in Table 7, and 36 different combinations of
groupinfluence and fuzziness in each of the experiments discussed in this subsection.

Using heuristics and SearchdPattern

We tested Heuristic 1 and Search4Pattern with the procedures shown in Figures 8 and 9, respec-
tively. We can compare the accuracies achieved by these procedures using the charts shown in Figure
13. In both charts, the horizontal axes show the decimal parts of the values of fuzziness. The legend for
a curve shows both the origin of the data and the decimal parts of grouplnfluence. For instance, “s05”
indicates that the search method was used when grouplnfluence was 0.05, and “h15” indicates that
Heuristic 1 was used when groupinfluence was 0.15. The vertical axis shows the accuracy as ex-
plained in Measurement of Quality. Here, each point in the charts shows the aceuracy of a subset of
the experiment, and the aceuracy is the percentage of the correet prediction of the hidden structures of
the 3000 (=561 ific combination of groupinfluence and fuzziness.

Experimental results indicated that both the heuristics-based and search-based methods can pre-
dict the correct structure better than 90% of the time when both groupinfluence and fuzziness does not
exceed 0.15. Neither methods performed very well beyond this range, but the search-based method
offered similar or better prediction than the heuristics-based one.

Fig. 13. Using Heuristic 1 and Searchapattern for prediction

Using SearchaPattern offered better classification accuracies than using the heuristic, in gen-
eral. When we applied Heuristic 1, we compared the scores of learning patterns that contained differ-
ent numbers of parent concepts, ¢.¢., MI(GABC, ¢D; dABCD) and MI(dAB cC, cD; dABCD). Given
that we had only estimated values of mutual information, the inequality in the granularity underl
the estimations further infected the performance of our classifiers that used Heuristic 1. In contrast,
when we applied Search4Pattern, we compared the scores of learning patterns that contained the
same numbers of parent concepts, e.g., those in the same columns in Figure 5. The comparisons were
relatively more meaningful, and we achieved a beter performance in the experiments. Although the
formal algorithm looks complex, running SearchaPattern took just a few milliseconds, when was
just 4, to obain a data point on any curves, because the algorithm just compared a few numbers only
and we implemented the algorithm in C. (The running time was measured on a Windows XP machine
with Pentium IV 2.8G CPU and 1.24G RAM.)

In the most challenging case when both groupinfluence and fuzziness were set to 030, the accu-
racy for the heuristics-based method was only 20%, a figure that would be obtained for a random
guess among five alternatives. This is an interesting observation, because we allowed our classifier to
guess any of the 14 possible structures in Figure 5. If we had made random guesses among the 14 pos-
sible answers, we could have seen as low as 7% in accuracy. Hence, 20% in accuracy was ot the re-
sult of a random guess.

‘This phenomenon is related to two factors. The first factor is that we used basic concepts as the
parent concepts of all of the composite concepts, except dABCD, as discussed in Generating Data-
sets. The second one is that the basic concepts must be prerequisites of dABCD, although they might
not be the parent concepts of ABCD. As a consequence, computing the MI measure as defined in Mu-
tual Information-Based Methods allowed a special favour to the structure A_B_C_D, so the accu-
racy happened to be equal to the resulis of random guessing when the possible answers included
A_B_C_D (cf. Figure 7). If we had excluded the cases of A_B_C_D from 4basics, the accuracy
would fall below 25%, which would be the result of random guessing if there were only four possible
answers

It is also interesting to find that, when the degree of fuzziness reduced, the accuracy did not im-
prove in every case (the upper left comer of the charts). After examining the confusion matrices, we

found that our programs had misclassified many A_B_CD and AB_C_D structures as AB_CD, which
was not included in 4basics. Intuitively, this type of error was understandable because the structure
AB_CD was very close to those of the actual answers. In addition, another reason was revealed by an
inspection of the contents of the Q-matrix in Table 7. Many student groups were competent in dAB
and dCD in the Q-matrix, so it would have been easy for our classifiers to make incorrect classifica-
tions.

Using artificial neural networks

‘We conducted three sets of experiments with the Neural Network Toolbox in MATLAB. As stated in
Steps of the Experiments (cf. Figure 11), we created 3000 instances for each subset of an experi-
ment. Hence, afier adding class labels to the instances, we could use 2500 instances as the training
data. Training and test data were siratified (Witten & Frank, 2005), so the training data included 500
instances of each of the five competing structures in 4basics. The remaining 500 instances were
used for testing, and we calculated the percentages of correct classifications for the classifiers.

We ran experiments that used probabilistic neural networks (PNNs) and backpropagation net-
works (BPNs) without doing principal component analysis (PCA) (Jolliffe, 2002). We also ran ex-
periments that used BPNs after doing PCA. When we ran PCA over the features, we eliminated prin-
cipal components that contributed less than 0.5% to the total variation in the training data.

Our BPNs had three layers. There was an output unit for cach possible learning pattern, and an
input unit for each feature in the training instances. Let v be the number of feature (input) units, we
used 5 (s/2] hidden units i the BPNs. We used the tansig transfer function for the hidden and output
units, and ran the traingdX training function for 1000 epochs when the prediction errors on the training
data levelled off and remained stable for a large number of epochs. We ran the training processes mul-
tiple times and recorded the performance of the best performing models. This is a random restart
strategy, cf. (Russell & Norvig, 2002), for avoiding local minima, that could be induced by poor initial
settings of link weights in training ANNs. In the test stage, we chose the competing structure whose
corresponding output unit had the largest output value.

‘When experimenting with PNNs, we used the default settings in MATLAB. In these experiments,
we used the default radial basis function for our PNNs in MATLAB:

radbas(s. x ;)= xpl-( ) [<bizs ).

where % and ¥ represent two instances. The bias (or sometimes called the spread in the MATLAB
manual) for our PNNs was the default value, 0.1. Training PNNs was much faster than training BPNs
in MATLAB, as the PNNs would choose the most probable class as the hidden structure.

‘The charts shown in Figure 14 depict the performance we achieved with different ANN. The ti-
tles of these charts indicate how we conducted the experiments. The data in the leftmost chart came
from the classifier that employed probabilistic neural networks (pnn) and for which we did not pre-
process the attributes using principal component analysis (nopea). The data in the middle chart came
from the classifier that employed back-propagation networks (bpn). The data in the rightmost chart
came from the same classifier that we used to create the middle chart, but we pre-processed the train-
ing and test instances using the PCA and ignored components that contributed less than 0.5% to the
total variation of the training data. The horizontal and vertical axes are the same as those in the charts
shown in Figure 13. The legends show the decimal parts of the groupInfuence used in the experiments
that produced the data.

Fig. 14. Using BPNs and PNNs for prediction

Al three charts in Figures 14 show the general trend that the accuracy degraded with increasing
groupinfluence and fuzziness. When these parameters were small, it was possible to achieve high ac
racy. Clearly, using BPNs without doing PCA offered the best performance. In the most challenging
case when both groupinfluence and fuzziness were set to 0.3, we achieved 75% in accuracy. Carrying
out PCA before training BPNs saved a significant portion of training time, s did using PNNs. It took,
respectively, approximately 49 and 37 seconds to finish the experiments when groupinfluence and
fuzziness were both set to 0.30 in the middle (nopea) and the right (pca) chart in Figures 14. The exe-
cution time was measured on a Windows XP machine with MATLAB 2007a, Pentium IV 2.8G CPU,
and 1.24G RAM. Although we reduce the running time of our classifiers by simplifying the data in-
stances with PCA, the resulting sacrifice in accuracy can be undesirable in educational applications.

Comparing the charts in Figures 13 and 14 provides a clue for the net effects of the prior informa-
tion for training ANNs. All the curves in Figure 14 will lie above their corresponding curves in Figure
13 if we overlap the charts. The difference reached 55% (=75%-20%) when both groupinfluence and
fuzziness were 0.3. The increase in accuracy justifies the extra effort that is necessary for collecting the
prior information about the set of hidden structures and the Q-matrix. In addition, note that curves
were also smoothed near the upper left comer. When the domain experts provide a correct set of the
possible learning patterns, our algorithm reduces the chance of making unnecessary errors.

Using supported vector machines

We conducted our experiments with functions provided in LIBSVM (Chang & Lin, 2001). We used
the c-SVC type of SVMs in all experiments, and tried three different kemel functions, including poly-
nomial (c-svm-poly), radial basis (c-svm-rb), and sigmoid (c-svm-sm) kemels as they are defined in
LIBSVM. (Note that we used the symbol 7 in a different context in A Formulation with Bayesian
Networks. The yin the SVM kemnel functions denotes a free variable.)

polynomial function:  K(xi.x})=(x x)* )

radial bas

function: K[x.,x“:exp(—yﬂx‘—x‘
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Fig. 15. Using SVMs for prediction: (a) experimental results (b) search for the best parameters
sigmoid function:  K(x.x})=tanh(x] x}) (6)
In fact, although we had adopted some default setings in LIBSVM, we still had to search for the
best parameters for SVMs at the time of training the SVMs. In particular, we ran experiments that
used different values for the cost, C, which i the penalty parameter for misclassification, and 7, which
appears in the kemel functions listed in Formulae (4), (5), and (6). Different combinations of C and 7
led to different accuracy in guessing the hidden structures for the test data. We show a contour graph
of the accuracy for a subset of the experiment in Figure 15(b), which we created for different combina-
tions of C and 7 (when groupinfluence and fuzziness were 0.30 and 0.25, respectively). The numbers
on the curves indicate the accuracies in percentage. In our experiments we tried combinations of C and
 from values in {0.1, 0.2, ... 1.9}, and used the best accuracy for the test data in these 361 (=19x19)
cases when we prepared the charts in Figure 15(a).

‘The charts shown in Figure 15(a) show the experimental results. The vertical axis, the horizontal
axis, and the legend carry the same meanings as those for the charts in Figure 14. The titles of the
charts indicate the s of SVMs that were used in the experiments. Similar to the charts in Figure 14,
all three charts in Figure 15 show the general trend that the accuracy degraded with increasing
groupinfluence and fuzziness. When these parameters were small, it was possible to achieve high accu-

racy.

The effort in collecting information about the possible set of hidden structures and the Q-matrix
proved rewarding again. Comparing the curves for the related experiments in Figures 13 and 15(a)
shows us that significant improvements were achieved by using the SVMs. In the middle chart in Fig-
ure 15(a), the accuracy stays above 0.75 even when groupinfluence and fuzziness are 0.3. The heuris-
ties-based method achieved only 0.2 in accuracy under the same situation. The problem that occurred
in the upper left corners of the charts in Figure 13 was also absent. The charts shown in Figure 15(a)
indicate that using polynomial and radial basis kemels gave almost the same accuracy, and both per-
formed better than the sigmoid kemel. However, it took a longer time for us to train an SVM when we
used the polynomial kernel. For instance, it took, respectively, 118 and 18 minutes to try 361 different
combinations of C and y when groupinfluence and fuzziness were both 0.3 in the left chart and in the
middle chart in Figure 15(a).

Table 8. Accuracy versus F measures (shown in the form of accuracy/F)

0.05 0.10 0.15 020 025 030
0000/1.0000_1.0000/1.0000_1.0000/1.0000_1.0000/1.0000_1.0000/1.0000_1.0000/1.0000
0000/1.0000 1.0000/1.0000_1.0000/1.0000_1.0000/1.0000_1.0000/1.0000 0.9960/0.9960
0000710000 _1.0000/1.0000_1.0000/1.0000_1.0000/1.0000_1.0000/1.0000_0.9900/0.9901
0000/1.0000 _1.0000/1.0000_1.0000/1.0000_0.9980/0.9950 0.9940/0.9941 0.9600/0.9610
90001 000055536 09805980 DU 544 OAUISTS U002
9980/0.9980 0.9860/0.9865_0.968010.0697_0.9340/0.9374_0.8740/0.55: 719

fuzziness (01>

‘The best performing ANN and SVM models seemed to have achieved the same accuracy. Com-
paring the charts in Figures 14 and 15(a), we find that different ways of using the ANN and SVM
techniques may offer different qualities in prediction. However, the middle charts in Figures 14 and
15(a) suggest that the best-performing ANNs and SVMs offered almost the same performance.

Table 8 shows the actual values of the data that we used to plot the middle chart in Figure 15(2)
as well as their corresponding F measures (Witten & Frank, 2005). The precision rates and the recall
rates were calculated for cach of the five classes in 4basics first, and the F measure for cach of
these five classes was set to the average of the precision rate and the recall rate for that class. The re:
ported F measure in the table is the average of the F measures for the five classes. The observed accu-
racy and F measures were close, as we noted in Measurement of Quali

Depending on the values of grouplnfluence and fuzziness, it took different lengths of un
each of the experiments, even when we were using the same setting for SVMs. For instance, it took
206 seconds to compare the effects of 361 combinations of C and 7 when groupinfluence and fuziness
were both 0.05, and it took us 1083 seconds when groupInfluence and fuzziness were both 0.3. On ay-
erage, we spent nearly 3 seconds for trying out the effects of a combination of C and when groupin-
fluence and fuzziness were 0.3. (We measured the exccution time on a Windows XP machine with
LIBSVM 2.84 in C, Pentium IV 2.8G CPU, and 1.24G RAM.)

Alternative Q-Matrices

In this subsection, we investigate the effects of using different Q-matrices in the experiments.
the experimental results discussed in Effects of Methods and Parameters suggested that using
ANNs and SVMs could provide a similar performance, we used only the best performing SVMs,
c-svmerb in Figure 15(a) in this subsection. (We made this choice partially because LIBSVM i
freeware that we can run on many machines. In contrast, we have only one license for using MAT-
LAB.) We will chdnge 0 the number of basic concepts it e nchded n the target composite con-
cepts in the first sul /ay in which we set the values for other intermediate concepts
in the second and (3) Ihe Competence pateans for the basic and the target compositc concepts st

Effects of number of basic concepts

We ran experiments with 3basics, the right Q-matrix in Table 1, and 36 combinations of groupin-
fluence and fuzziness. Notice that we must use different Q-matrices for the structures in 3basics and
abasics. Hence the differences in the accuracy of the resulting classification cannot be attributed
exclusively to the number of basic concepts.

atasic avasic
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Fig. 16. Using the Q-matrices contained in Table 7 and in the right part of Table 1

Figure 16 shows the differences in the aceuracy of classification when we reduced the number of
basic concepts in the experiments. The chart titled dbasic is a duplicate of the c-svm-rb chart in Figure
15(a). and the chart titled 3basic was produced from the new experiment. When groupinfluence and
fuzziness are large, learning the way students leam GABC is easier than leaming how they leam
ABCD by a margin of nearly 10% in this pair of experiments. When groupinfluence and fuzziness are
small, reducing the number of basic concepts did not yield obvious differences

All else being equal, a problem that considers three basic concepts is not as complex as one that
considers four basic concepts in nature. Hence, what we have observed should not be surprising. How-
ever, experimental results are affected by many factors including those that we will discuss in the re-
mainder of this paper, so we cannot claim that problems that consider only three basic concepts must
be casier than those that consider four basic concepts.

Effects of competence patterns for the intermediate concepts

We refer to the composite concepts that can serve as the parent concepts of the target composite con-
cept as the intermediate concepts. When we study the learning problems of dABCD, there can be 10
intermediate concepts, including those composite concepts that involve two or three basic concepts
i.c., dAB, JAC, ..., and dBCD in Table 7.

Recall that, in the Q-matrix in Table 7, we assumed that all of the recruited students were compe-
and were able to integrate the parent concepts of ABCD. Based on such a
anging the competence patterns for the intermediate concepts can be rede-
fined as one of choosing the number of student groups in the Q-matrix. Hence, we selected some stu-
dent groups that we used in Table 7 as the Q-matrices that we used in the new expes

We conducted experiments in which the Q-matrices contained one, two, four, eight, and sixteen
student groups, and we called the Q-matrices used in these experiments Qi, Qz, Qu, Qs and Qug, re-
spectively. Hoping to do a more meaningful comparison between results of different experiments, we
made Q a subset of Q; when i<j. Namely, a student group must belong to Q; if that student group be-
longs to Q,, for any i<j. The first group, ;. was the obvious choice for Q because it represented the
group of perfect students. For easier reference and comparison, Q is a complete duplicate of the Q-
matrix in Table 7. This was how we determined Q, and Qi in Table 9.

We anticipated that student subgroups that had stronger contrasting competence patterns would
help our classifiers make correct decisions, so we chose a student group that was most different from
2110 be included in Q;. We computed the distance between all pairs of student groups based on the
Euclidean distance between the competence patierns of two student groups. Equation (7) shows the

definition for the current experiment, where 15 is the number of different concepts in the Q-matrix in
Table 7. Based on this notion of distance, g, was chosen to be the second student group in Q..
distance(s;.9) Q)

Fig. 17. Effects of changing the competence patterns for the intermediate concepts

Table 9. Competence patterns in four sub-matrices of the Q-matrix in Table 7

ence in (integrating) concepts
SI° [6A 66 oc D dAB GAC dAD GBC GBD dCD GABC dABD GACD dBCD 0ABCD
Qg [t 1 1 1 1 1 1 v 11 1 1 1 1 1
R 1
Qlael 1 1 1 1 0 0 0 0 1 0 0 0 o 1
P I T R R B 1
|1 1 1 1 1 1 1 0 0 0o 1 0 o0 1 1
|1 1 1 1 0 0 0 1 1 1 0o 1 1 1 1
w1 1 1 1 1 0 0 0 0 1 0 0o 0 0 1
w0 L T T 1 1 1 1 1 1 1 1 1 1 1
w1 1 1 1 0 1 0 1 0 1 1 1 o0 1 1
|t 1 1 1 1 0 0 0 0 1 1 1 0 o 1
|1 1 1 1 1 0 1 0 1 0o 1 0 1 1 1
Qlg it 1 1 1 1 1 1 0 0 0o 1 0o 0 1 1
|1 1 1 1 0 0 0 1 1 1 0o 1 1 1 1
g1 1 1 1 0 0 1 1 0 0 0o 0 1 1 1
wW|1 1 1 1 1 0 0 0 0 10 0 0 0 1
Qe duplicate the contents in Table 7

We then calculated the distances between all pairs of student groups except g, and g that were in
Qa. We put the pair, g; and gy, that had the largest distance between them into Q and the pairs that had
the second and the third largest distance into Qy. Table 9 shows the resulting Qj, Qz, Qs Qs and Quq

We used the structures in 4basi S, the new Q-matrices, and 36 combinations of grouplnfluence
and fuzziness in the new experiments. The charts in Figure 17 depict the results of this sequence of
experiments. From the left to the right, the results came from the experiments in which we used Q.. Q.
Q.. and Qs to create the training and test data. The rightmost chart is a duplicate of the c-svm-rb chart
in Figure 15(a).

The results show some interesting trends. Although we used perfect students in Q, it was very
difficult to leam how students leam when we collccted data exclusively from perfect students. This
phenomenon became less surprising when we came to believe that it is hard to tell how students leam
if they are competent in all relevant concepts. Hence, we consider this simulated result interesting be-
cause the simulated results taught us something that we had not expected.

As we added more and more contrasting pairs of student groups into the Q-matrices, the average
aceuracy improved from the leftmost to the rightmost chart. The curves in the individual chart move
upward gradually. In addition, we see that the curves for cases that used smaller groupinfluence and
fuzziness do not necessarily fall below the curves for cases that used larger groupinfluence and fuzzi-
ness in an individual chart. This is particularly so in the chars on the left side of Figure 17. This ob-
servation shows that the intermediate patierns are as influential as grouplnfluence and fuzziness on the
experimental results

Effects of competence in the basic and the target composite concepts
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Design of the Experiments. The differences between the basics and the c-svm-rb charts suggest that
it will not be very fruitful if we recruit students who are not competent in the basic concepts in order to
study how they might lean the target composite concept. The differences between the target and the c-
svmrb chars are not as salient as those between the basics and the c-svm-rb charts, but the trends still
support that we should recruit students who appear to be competent in the target composite concept.
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columns for g, are equal to 1 in Q. in Table 9.)
‘With this notion, we can define the distance between any two leaming patterns, p, and py, in a Q-
matrix by Formula (8) where £(Q) denotes the number of student groups in the Q-matrix, Q.

distance (9. Pk ®

Table 12 shows the distances between the five learning patierns based on the data for Qs in Table

11 (We computed a table in the same format for Q, Q2. Qs, and Qi but do not show them here.) Let

# denote the set of learning patterns provided by the domain experts for the leaming problem. The
total distance between leaming patterns in P in a particular Q-matrix i defined in Equation (9).

total _distance(Q. ) distanceq (pj. pi) ©

3
PyeP.PeP.pj=pic

‘The function of Equation (9) is very simple. Applying the equation for Qg in Table 11, we simply
compute the sum of the numbers in Table 12, and the result is 38.36. Since there must be at most 20
non-zero terms in the particular example the average distance for Qs is 39.36+20=1.92. We can casily
verify that the average distance for learning patterns in Qi. Qz, Q:. Qs and Qu in Table 11 are, respec-
tively, 0,00, 0.60, 117, 192, and 2.53. (We could have chosen to divide the total distance by 25 be-
cause there are 25 terms in Table 12. This choice would not affect the ordering, since every total dis-
tance was divided by the same quantity.)

Interestingly, we can verify that the average accuracies depicted in the charts shown in Figure 17
increased in line with the average distances of the learning patterns in Q;, Qu, Qs Q, and Q6. Hence,
if we have information about the recruited students and if we can control the recruitment of the stu-
dents, increasing the average distance between the competing leaming patterns may improve our
chances to find the actual learning pattern.

Notice that the average distance between the competing patterns is not the only factor that affects
ieved accuracy. The average distance between competing patterns in Qy and Q; in Table 10 are
0.00 and 1.92, respectively. Again, we achieved h ies when we used Q.. However, our
classifiers performed differently when we used Q2 in Table 9 and Qy in Table 10, even though the av-
erage distances between the competing patterns in these Q-matrices are both 0.00. Other reasons that
make the competing patterns in a Q-matrix differentiable will also affect the experimental results.

orcover, we must be reminded that the zeros and ones in the Q-matrices do not deterministi-
cally influence the simulated students” behaviours, although the distances computed with Formula (9)
remain related to the differences between the leaming patterns. We should take into consideration the
magnitude of grouplnfluence, because it affects the relationships between competence patierns and
group members, as discussed in Generating Student Records. Furthermore, we have assigned group
slip and group guess (Liu, 2005) to the same value, i.¢., groupinfiuence, in the experiments that we
have discussed so far. If we set these two parameters to different values, the Mahalanobis distance
(Duda etal., 2001) would be more appropriate to use in place of the Euclidean distance.

MORE REALISTIC EVALUATIONS

In the previous section, we assumed that we were able to provide perfect information about the con-
tents of the Q-matrices for the recruited students. The purpose of the experiments was to compare the
effectiveness of different classification techniques, of the influences of the simulation parameters, and

ate the effects of two types of deviations from the perfect conditions.
In the first subscetion, we assume that the grouplnfluence and fuzziness used by the simulator are dif-

ferent from those exhibited by the real students (i.c.. in the test data), while the experts provide perfect
Q-matrices. In the second subscction, we relax the assumption of the need to acquire perfect Q-
matrices, and assume that the Q-matrices that we conjecture do not necessarily contain the actual
competence patterns of real students.

Influences of the Simulation Parameters

We conducted experiments to examine the influence of incorrect guesses of groupinfluence and fuzzi-
ness on the prediction of the leaming patterns. To this end, we continued to use the networks shown in
Figure 7(b) and the Q-matrix contained in Table 7 as discussed at the beginning of Design of the Ex-
periments when we created simulated data with the steps outlined in Figure 11. In all of the experi-
ments that we discussed in Idealistic we used the same of

and fuzziness to generate both the training and test data. In the experiments discussed in this subsec-
tion, we used different combinations of groupinfluence and fuzziness when we created training and
test data.

Recall that there can be 36 combinations of groupInfluence and fuzziness when we set these vari-
ables to values in {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}. When we intentionally chose different combina-
tions of groupinfluence and fuzziness in generating training and test data, we could have 1296 (=36x36)
different experiments. Hence, we must choose only certain of these possible experiments. Due to this
constraint, we set both grouplnfluence and fuzziness to 0.10 and 0.25 when we created training data in
two different and continued to set and fuzziness to all 36 different combi-
nations when we created test data. Hence, we will see the experimental results of 72 cases.

‘The statistics in Table 13 show the performance of our classifiers under these relatively unfavour-
able circumstances. The data in the left half of Table 13 came from the experiment when we set both
groupinfluence and fuzziness to 0.10 when we created data for training the SVMs. We created 36 sets
of test data, setting grouplnfluence and fuzziness to 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30. Each ex-
periment used a different combination of groupinfluence and fuzziness, and included 2500 (=500x5)
training instances and 500 (=100x5) test instances. The data in Table 13 shows the accuracies of the
trained SVMs. For instance, reading the data from the left half of Table 13, we see that our class
achieved 75% accuracy when groupinfluence and fuzziness were both 0.10 for the training data and
when grouplnfluence and fuzziness were, respectively, 0.15 and 0.20 for the test data. We obtained the
data shown in the right half of Table 13 with the same procedure, but we trained the SVMs with the
data that we created by setting both groupinfluence and fuzziness to 0.

Table 13. Influence of simulation parameters and fuzziness
i22iness for test data
for test data 51030 0015020
9 0.54 21029035
1 2 (031057
7 7 0.43 | 0.86
5 31079093
1 0 3086 096
3 0 s 4
fuzziness) for training data
(0.10,0.10) I (0.25,0.25)

Recall that we assumed that there are sources from which we can acquire the information about
the Q-matrix, the candidate structures, and the values for groupInfluence and fuzziness. In contrast, the
groupinfluence and fuzziness that we used to create the test data were assumed to represent the charac-
teristics of real students. It is important to also recall that the values of groupinfluence and fuzziness
confine the ranges of the data in the generated conditional probability tables. For instance, as we ex-
plained in Generating Student Records, the probability of making an unintentional mistake (i.c., the
slip cases) will be between 0 and 0.10 when fuzziness is 0.10. We did not set the chance of slip to 0.10
when fuzziness was 0.10.
Statistics in Table 13 show the importance of acquiring a correct combination of groupinfluence
and |u11mess Neither the classification accuracies in the left or in the right part of the table can com-
pete ¢ experimental results that we observed when we assumed the availability of correet
gmupln'luence and fuzziness, e.g., those depicted in Figure 15,

The data in Table 13 also indicate that we achieved better results when the guessed groupinflu-
ence and fuzziness are closer to the actual gmuplnﬂuence and fuzziness. It s interesting to note that the
proposed method showed limited robustness. We could achieve good prediction accuracy even when
the groupinfluence and fuzziness that we used to generate the training and the test data were ot the
same, although the classification accurac rated with the increa ergence between the
guessed and the actual values of groupinfliience and fuzziness,

Influences of the Q-Matrices and Sizes of Student Populations

So far, we have assumed that we can use perfect Q-matrices for generating training data. What might
occur if this assumption does not hold? In order to make the design of experiments more complete, we
conducted experiments under such special situations, and we discuss what we observed in this subsec-
tion.

When we use different Q-matrices to generate training and test data, we are simulating the situa-
tion in which we have imprecise expectations about students competence paterns. Such imprecision
will have adverse effects on the performance of machine-learning based methods.

Itis not easy to find a pair of Q-matrices that are of general interest, however. As discussed in
Computational Complexity, we can have 2"’ different Q-matrices when we consider problems that
include only 4 basic concepts. Selecting which two different Q-matrices from this enormous amount
of different choices for experiments can become a problem itself. Other rescarchers have faced this
kind of selection problem as well, ¢.g., DiBello et al. (1995) (pages 365 and 370) discussed issues re-
lated to the choice of Q-matrices for cognitive measurement problems.

In this subsection, we discuss the experimental results that we obtained when we used the Q-
matrix shown in Table 14 to create test data, while the data for training SVMs were created with other
Q-matrices. The contents of Table 14 were chosen such that every learning pattern shown in Figure
7(b) can be exercised by at least one student group in the table (cf. the discussion in Influences of the
Q-Matrices). More specifically, g: and g, respectively, support ACD_B and ABD_C; g, and g, re-
specuvely. support AB_C_D and A_B_CD; g, supports A_B_C_D; g, supports all these learning pat-

ms (i.c., g supports all patterns in 4basics); and g, represents a group of students who are not
compelenl in dABCD.
needed two Q-mafrices to compare and show the cffects of Q-matrices on the classification
accuracy. Since we have used the Q-matrix in Table 7 in many of our experiments, it was natural to
continue to use this Q-matrix to create the training data in this section. Notice that the Q- malux shown
in Table 14 shares only one competence pnll:m with the Q-matrix shown in Table 7. setup is
meant to simulate the situation under which we can guess only one of the competence pal(ems of the
included the entirety of the contents of the Q-matrix
a. This was achieved by combining the Q-matrices shown in Table 7
and Table 14. Based on whether the Q-matrix used ﬁ)r raating the training data also included the Q-
matrix used for creating the test data, we call the first kind of experiments Notincluded (i.e., only
‘Table 7) and the second kind of exper .

Recall that the selection of grouplnfluence and fuzziness influences the classification accuracy.
When we created training and test data with different Q-matrices in the Included and NotIncluded
experiments, the selected grouplnfuence and fuzziness affected the experimental results as well

With the chosen Q-matrices, groupInfluence, and fuzziness, we created and conducted the ex-
periments. Experimental results indicated that we obtained higher classification accuracy in the In-
cluded experiments than in the Notincluded experiments. When both groupinfluence and fuzziness
were 0.1 in creating both the training and test data, there were larger differences in classification
racy in these two kinds of experiments; when grouplnfluence and fuzziness were 0.25, the differences
reduced. As we reported in previous sections, larger groupinfluence and fuzziness made the c!
tion more difficult, and could have contributed to the shrunk differences in accuracy when we used
different Q-matrices in the experiments.

We were also curious about the influences of the size of student population on the classification
aceuracy. Hence we created data sets with different sizes of student populations in the experiments.
More specifically, we conducted and compared the experimental results that were obtained when there
were about 625 and 375 (~0.6x625) simulated students for each student group in two sets of experi-
ments. (Due to the randomness that we reported in Generating Student Records, we cannot control the
exact number of students in a student group.) We repeated both the Included and NotIncluded

ifica-

Table 14. Competence patterns in the Q-matrix for the new.

Competence in (integrating) concepts
CA [ 6B [ CC [ ¢ [4AB [dAC [6AD [dBC [dBD |dCD | dABC| ABD | GACD [dBCD] dABCD.

experiments, and observed that using a greater number of simulated students in training the SVM clas-
sifiers helped us achieve better classification accuracy.

Itis perhaps not very surprising to have observed that the results in the Included experiments
were better than those in the NotIncluded experiments and that using more simulated students led to
beter classification results. However, it was useful to know that the simulated results agreed with the
intuition.

More interestingly, we found that, when the Q-matrix, grouplnfluence, and fuzziness that were
used in creating the training and test data did not match very well, SVMs did not necessarily provide a
better performance than SearchaPattern. (In Effects of Methods and Parameters, SVMs pro-
vided a better performance when these influential factors were the same for creating both the training
data and the test data.) The setup for creating the test data influenced the performance of both the
SVMs and the SearchdPattern algorithm, but the setup for creating the training data affected only
the SVMs because the performance of SearchaPattern does not rely on the training procedure at all.
When the assumptions adopted for creating training data differed very much from the assumptions
adopted for creating test data, SearchdPattern may offer a better performance.

SUMMARY AND DISCUSSION
‘We wrap up this paper by summarising our findings and referring to additional related work
A Lesson for Learning about Learning

Experimental results indicate that learning the learning patterns with students” item response patterns
is not easy but it is possible. In Idealistic Evaluations, we assumed that we obtained exact informa-
tion about the Q-matrices, groupInfluence, and fuzziness. We observed that it was quite simple to ap-
ply Heuristic 1 and Search4Pattern, but that they did not perform as well as the model-based
methods when we can train SVMs and ANNs with exact information about Q-matrices, groupinflu-
ence, and fuzziness. The best performing SVMs and ANNS offered similar prediction accuracies in our
experiments. We found that a good selection of the student groups, i.c., the contents of the Q-matrix,
will affect how well we can leam about students” learning patterns. Hence, we discussed two different

ays to analyse the quality of the Q-matrices

We employed both groupInfluence and fuzziness in the simulation to summarise the influence of
other factors in the study. This is similar to the residual ability discussed in (DiBello et al., 1995, page
362). In addition, the actual value of fuzziness is related to the positivity in the Unified Model (DiBello
et al., 1995, page 369). It is easy to prove that the positivity of an item increases with the value of
fuzziness when fuzziness is between 0 and 0.5, which is the case in all our simulations. Hence, in gen-
eral, it becomes increasingly difficult to identify students” learing patterns corretly as we increase
the degree of fuzziness.

In More Realistic Evaluations, we relaxed the assumptions for the obtaining of exact informa-
tion about the Q-matrices, grouplnfluence, and fuzziness, and discussed the results of experiments that
were conducted under more realistic conditions. Since we have explained, in Computational Com-
plexity, that there can be a myriad of different real world situations, we discussed only some of the
possible ones in this paper. We found that whether we used exact information about Q-matrices,
groupinfluence, and fuzziness in creating the data for training SVMs significantly influenced the re-




sulting accuracies in experiments. It was interesting to observe that the SVMs did not necessarily out-
perform Searchapattern when we had only imperfect information about Q-matrices, groupinflu-
ence, and fuzziness. Hence, it would definitely be rewarding to seek more exact information about
these influential factors.

Although we spent the greater part of our time in this present work in learning the learning pat-
ters for a composite concept that involves four basic concepts, due to computational costs also dis-
cussed in (DiBello et al., 1995, page 364), the proposed approach can be applied to learning the lear-
ing patterns of more complex composite concepts. What s required is that we should explore the prob-
lem space incrementally. Namely, building the structures for simpler sompusi ite concepts before trying

is base on the mumber of basic concepts included in the composic concepts. Wilh approprise basic
building blocks (sometimes called “objects” in computer science), we will be able to build models for
more complex compos cepts.

‘The use of simulated students in the experiments can appear as a weakness in this study. Under
no circumstances can simulated students replace real students for decisive answers. In practice, student
modelling for CATs must choose some levels of abstraction for the students in the models, and this
practical imperfectness also exists in systems that aim at mental simulation (Weng & Huang, 2006).
Nevertheless, we have considered many important factors, including groupnfluence, fuzziness, com-
petence patierns in the Q-matrices, and imperfect guesses in the experiments. Hence, we hope that the
scale of the experiments and the reported observations justify the plan of using the simulated results to
identify important issues that we may encounter when we use data for real students in future studies.

Obviously, we have not completed all paths of the exploration for this problem in this already
lengthy paper. For instance, we mentioned that the search-based method and SVMs complemented
each other in the more realistic experiments in More Realistic Evaluations. This observation sug-
gests that one may seck to combine the predictions made by these two methods to achieve better re-
sults, which is the so-called stacking method as used in the machine learning community (Witten &
Frank, 2005). However, we would prefer to explore this opportunity with real students when possible.

More on Related Work

What we have discussed so far involves the issues of (1) the definition of “causal relationships.,” (2)
representing the causal relationships with Bayesian networks, and (3) learning the causal models for
variables of interest from indirect evidences. Using the most intuitive interpretation of the word
“causal,” we believe that being competent in a parent concept, say dAB, is a fundamental basis for a
student to be able 10 learn a more complex concept, =y GABC, under the normal conditions. Hence,
we believe that the first issue is not a major concern in this paper.
1t cannot be denied that our work is related to the mudcllmg of causal relationships among ran-
dom variables with the use of only indirect evidence. Inferring the causal relationships among vari-
ables of interest can have a wide range of applications. Hence, it should not be surprising that re-
searchers of many disciplines have studied this topic in the literature, e.g., (Rost & Langeheine, 1997;
Glymour & Cooper, 1999; Chockler & Halpern, 2004; Halpern & Pearl, 2005). In fact, the learning of
structures to represent causal relationships among factors of interest is a common interest in
science, and is not limited to the leaming of Bayesian networks; for instance, Desjardins (2001) at-
tempts to learn causal structures of chemical reactions with unobservable variables.

Bayesian networks themselves do not necessarily represent causal relationships (Pearl, 1988), but
it possible to represent causal relationships with Bayesian networks (Cooper, 1999; Glymour, 2003).
Not all applications of Bayesian networks to student assessment aim at building causal models, and
may choose whatever structures that will fulfil the needs of probabilistic reasoning (Millin & Pérez-
de-la-Cruz, 2002). For instance, when considering a capability that has multiple prerequisites, all the
nodes that represent the prerequisites may be used as the parent nodes of the node that represents the
integrated capability, very similar to the approach taken by people who use Concept Maps (Novak,
1990). Some researchers also reverse the arc directions between nodes for the prerequisites and the
integrated capability (Millin & Pérez-de-la-Cruz, 2002). Nevertheless, using the nodes that represent
the prerequisites as the parent nodes is a more common and intuitive choice (Martin & VanLehn,1995;
Millin & Pérez-de-la-Cruz 2002).

Among the rescarch works that adopt Bayesian networks for student modelling, the way we build
Bayesian networks is related to Millin and Pérez-de-la-Cruz’s (2002) categorising nodes for represent-
ing subjects, mplcs concepts, and questions. In their continuing work, Carmona et al. (2005) showed
\m\ mdmg appropriate links for encoding prerequisite relationships in Bayesian networks can improve
ncy in adaplive student asscssment. Yet another rlatcd work consideing he prerequisite
mlmomhxp: in Bayesian networks is by Reye (2004), but the structures proposed by Reye are quite
different from what we see in this paper and Millin’s models.

Our work is also related to the research of multilevel models based on the Item Response Theory
(IRT) (Fox, 2005). If we take the relationships between the test items and the basic concepts as the
first-level IRT model, and the relationships between the basic concepts and the composite concepts as
the higher levels, our models, e.g.. the one shown in Figure 7(a), are related to multilevel IRT models.
From this viewpoint, our work is an instance of studying how computers can help experts determine
the structures of their multilevel IRT models. However, to make our models be more qualified as IRT
models, we have to strengthen our models by adding more parameters to quantify the relationships
between item responses and competence in concepts.

Given that we chosetorepresnt the prrcquisite rlatonships with Bayesian netwarks, ou prob-
lems become instances of learning the hidden the related concepts 1999;
Neapolitan, 2004). Learning the structures dneclly ﬁom data is not an easy task, particularly when the
values of many of the random variables are completely missing. The domain knowledge provided by
domain experts is believed to help us leam models of higher qualities (AUAL 2006). Although we
cannot explore all the problem instances that one can imagine duc to the number possible combina-
tions as discussed in Computational Complexity. we explored some interesting settings in the ex-
periments, and the results show the importance of the quality of source information.

It is possible to leam the prerequisite relationships from some related work, .g., theory about
knowledge structure (Falmagne et al., 2003) and item-to-item knowledge structure (Desmarais et al.,
2006). Learning item-to-item knowledge structure requires certain special techniques. Figure 4(a) as
discussed in Impacts of Latent Variables is an item-to-item structure that we leamed with the PC
algorithm in Hugin. Clearly there are places in the structure where we can improve, e.g., the directions
of some ares should be reversed, and interested readers can refer to (Desmarais et al.. 2006). Certain
recent research results, e.g., (Albert et al., 2007; Guzmén et al., 2007a) report the applications of hier-
archical structures are also related to our work.

Concluding Remarks

We have achieved a wide range of classification accuracies in our experiments, depending on the qual-
ity of our preparation of the training data and the students’ responses. Experimental results suggest
that, when we can acquire sufficiently good advice on a problem, machine-learning techniques (both
the best performing ANNs and SVMs) may help us identify the hidden leaming processes nearly 90%
of the time in favourable conditions. When we cannot acquire advises of higher quality, search-based
methods, i.c., SearchaPattern, can become a good alternative. When we do not have adequate
information about the students and when the relationship between students’ item responses and their
competence levels are very uncertain, it becomes very difficult to infer how students learn based on
their item response patterns.

We have identified a method, that we discussed along with Formulae (8) and (9), to predict the in-
fluences of different Q-matrices. This analytical viewpoint helps us choose student \ubgmups that can

s uracics in leaming student models, The selection of O-maty

in experi-

nts e studics (Difiello et al. 1995, pp. 370371 All ce being equal.
increasing he tota.distance, which is dofined in Formula (5), ncréased the chances of identifying the
correct leaming patterns

Although the use of simulators must resultin some degree of distance or abstraction from the real
situations and cannot mimic all the characteristics of real students perfectly, we believe that results
observed in our simulation-based experiments have shed some light on the nature of this learning
problem about learning.

Do we really need to know and include the prerequisite relationship among concepts in student
models? Mislevy and Gitomer (1996) state and we agree that “The nature and the grain-size of a stu-
dent model in an intelligent tutoring system ought therefore to be targeted to the instructional options
available.” If we cannot take advantage of the detailed models, there is perhaps no incentive for en-
deavouring to find comprehensive models. Carmona et al. (2005) have shown that student models
that consider prerequisite mlmonsmps make their adaptive student assessment more cfficient. We
also hope that more instructional Il become available with the advent of detailed student
models, thereby forming a synelg K relaton between th tw,

The work reported in this paper is related to cognitive diagnostic assessment for education. Cog-
nitively informed models have the potential to help computers assist human’s learing activities in a
ore cffective and efficient way (Nichols et al., 1995; Conati, 2002; Alkhalifa, 2006; Leighton &
ierl, 2007). More specifically, in a recently edited book by Leighton and Gierl (2007), Huff and
Goodman (2007) elaborate several issues that are related to employing cognitive diagnostic assess-
ment for providing instructionally relevant information that serves the needs for education
to scoring. Gierl et al. (2007) discuss four possible structures for describing the relations|
attributes in test development. We hope that the proposed methods and the experimental results pre-
sented here may contribute to the efforts in mapping the human learning process and cognitive diag-
nostic assessment.
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Abstract

Chinese characters that are similar in their
pronunciations or in their internal structures
are useful for computer-assisted language
learning and for psycholinguistic studies. Al-
though it is possible for us to employ image-
based methods to identify visually similar
characters, the resulting computational costs
can be very high. We propose methods for
identifying visually similar Chinese characters
by adopting and extending the basic concepts
of a proven Chinese input method--Cangjie.
We present the methods, illustrate how they
work, and discuss their weakness in this paper.

1 Introduction

A Chinese sentence consists of a sequence of char-
acters that are not separated by spaces. The func-
tion of a Chinese character is not exactly the same
as the function of an English word. Normally, two
or more Chinese characters form a Chinese word to
carry a meaning, although there are Chinese words
that contain only one Chinese character. For in-
stance, a translation for “conference” is “#f3t €~
and a translation for “go” is “%”. Here “#}3f &~
is a word formed by three characters, and “#%” is a
word with only one character.

Just like that there are English words that are
spelled similarly, there are Chinese characters that
are pronounced or written alike. For instance, in
English, the sentence “John plays an important roll
in this event.” contains an incorrect word. We
should replace “roll” with “role”. In Chinese, the
sentence “4~ X £ #1  3RHF ¥ 5% contains an
incorrect word. We should replace “3%35%” (a place
for taking examinations) with “#735™ (a market).
These two words have the same pronunciation,
shi(4) chang(3) ¥, and both represent locations. The
sentence “#& ¥ % M F — 23t 4 also con-

" We use Arabic digits to denote the four tones in Mandarin.
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tains an error, and we need to replace “# &~ with
“gh B> “# B is considered an incorrect word,
but can be confused with “fi & because the first
characters in these words look similar.

Characters that are similar in their appear-
ances or in their pronunciations are useful for
computer-assisted language learning (cf. Burstein
& Leacock, 2005). When preparing test items for
testing students’ knowledge about correct words in
a computer-assisted environment, a teacher pro-
vides a sentence which contains the character that
will be replaced by an incorrect character. The
teacher needs to specify the answer character, and
the software will provide two types of incorrect
characters which the teachers will use as distracters
in the test items. The first type includes characters
that look similar to the answer character, and the
second includes characters that have the same or
similar pronunciations with the answer character.

Similar characters are also useful for studies
in Psycholinguistics. Yeh and Li (2002) studied
how similar characters influenced the judgments
made by skilled readers of Chinese. Taft, Zhu, and
Peng (1999) investigated the effects of positions of
radicals on subjects’ lexical decisions and naming
responses. Computer programs that can automati-
cally provide similar characters are thus potentially
helpful for designing related experiments.

2 Identifying Similar Characters with In-
formation about the Internal Structures

We present some similar Chinese characters in the
first subsection, illustrate how we encode Chinese
characters in the second subsection, elaborate how
we improve the current encoding method to facili-
tate the identification of similar characters in the
third subsection, and discuss the weakness of our
current approach in the last subsection.

2.1 Examples of Similar Chinese Characters

We show three categories of confusing Chinese
characters in Figures 1, 2, and 3. Groups of similar

ciation for Computational Linguis

TEIFF RAR FEhTFE
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Flgure 1. Some similar Chinese characters

By R P AR RR RE
ﬂﬂ'] a£ass HBAXN MM
Figure 2. Some similar Chinese characters that have
different pronunciations

AL S AN sz.safr
BRA mles

Figure 3. Homophones with a ahdl’(.d component
characters are separated by spaces in these figures.
In Figure 1, characters in each group differ at the
stroke level. Similar characters in every group in
the first row in Figure 2 share a common part, but
the shared part is not the radical of these characters.
Similar characters in every group in the second
row in Figure 2 share a common part, which is the
radical of these characters. Similar characters in
every group in Figure 2 have different pronuncia-
tions. We show six groups of homophones that
also share a component in Figure 3. Characters that
are similar in both pronunciations and internal
structures are most confusing to new learners.

It is not difficult to list all of those characters
that have the same or similar pronunciations, e.g.,
“2X35%” and “# 357, if we have a machine readable
lexicon that provides information about pronuncia-
tions of characters and when we ignore special pat-
terns for tone sandhi in Chinese (Chen, 2000).

In contrast, it is relatively difficult to find
characters that are written in similar ways, e.g.,
“#” with “#”, in an efficient way. It is intriguing
to resort to image processing methods to find such
structurally similar words, but the computational
costs can be very high, considering that there can
be tens of thousands of Chinese characters. There
are more than 22000 different characters in large
corpus of Chinese documents (Juang et al., 2005),
so directly computing the similarity between im-

instance, the common part of the characters in the
rlghl group in the second row in Figure 3 appears
in different places in the characters.

Lexicographers employ radicals of Chinese
characters to organize Chinese characters into sec-
tions in dictionaries. Hence, the information should
be useful. The groups in the second row in Figure
2 show some examples. The shared components in
these groups are radicals of the characters, so we
can find the characters of the same group in the
same section in a Chinese dictionary. However,
information about radicals as they are defined by
the lexicographers is not sufficient. The groups of
characters shown in the first row in Figure 2 have
shared components. Nevertheless, the shared com-
ponents are not considcrcd as radicals, so the char-
acters, e.g., “FA”and “%)”, are listed in different
sections in the dictionary.

2.2 Encoding the Chinese Characters

The Cangjie® method is one of the most popular
methods for people to enter Chinese into com-
puters. The designer of the Cangjie method, Mr.
Bong -Foo Chu, selected a set of 24 basic elements
in Chinese characters, and propoﬁed a set of rules
to d Chinese ct 1 ts
that belong to this set of building blocks (Chu,
2008). Hence, it is possible to define the similarity
between two Chinese characters based on the simi-
larity between their Cangjie codes.

Table 1, not counting the first row, has three

ages of these characters demands a lot of comput
tion. There can be more than 4.9 billion
combinations of character pairs. The Ministry of
Education in Taiwan suggests that about 5000
characters are needed for ordinary usage. In this
case, there are about 25 million pairs.

The quantity of combinations is just one of

the bottlenecks. We may have to shift the p
of the characters “appropriately” to find the com-
mon part of a character pair. The appropriateness
for shifting characters is not easy to define, making
the image-based method less directly useful; for
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Cangjie Codes Cangjie Codes
+| += ENES
T [ =¥ Tl =t
7| sArAr | ArEs
& | +A x| A+
B | ——-AE % | AP
| —oALL | 8| —rALWY
W | FroA % 4ifoA
7| —3+3 A | —#FF
RN | |k
M| 838 il B3A
# | o4t i | AT
B | AMtE 2 | KPP
| AgtdA % | AHHA
| kepw 3 Fo+
B | ®9As A oALg
g [ A—k— @] hok—
B A—%= | K—%—
Table 1. Cangjie codes for some characters

* hitp:/fen.wikipedia.org/wiki/Cangjie_method

sections, each showing the Cangjie codes for some
characters in Figures 1, 2, and 3. Every Chinese
character is decomposed into an ordered sequence
of elements. (We will find that a subsequence of
these elements comes from a major component of a
character, shortly.) Evidently, computing the num-
ber of shared elements provides a viable way to
determine “visually similar” characters for charac-
ters that appeared in Figure 2 and Figure 3. For
instance, we can tell that “3%” and “ %" are similar
because their Cangjie codes share “ | @ A7, which
in fact represent “i&”.

Unfonundtely, the Cangjie codes do not ap-
pear to be as helpful for identifying the similarities
between characters that differ subtly at the stroke
level, e.g., “+ £ T F" and other characters listed
in Figure 1. There are special rules for decompos-
ing these relatively basic characters in the Cangjie
method, and these special encodings make the re-
sulting codes less useful for our tasks.

The Cangjie codes for characters that contain
multiple components were intentionally simplified
to allow users to input Chinese characters more
efficiently. The longest Cangjie code for any Chi-
nese character contains no more than five elements.
In the Cangjie codes for “A%” and “/&”, we see “—
4 —" for the component “£”, but this component
is represented only by “— —" in the Cangjie codes
for “88” and “%)”. The simplification makes it
relauvely harder to identify visually similar charac-
ters by comparing the actual Cangjie codes.

2.3 Engineering the Original Cangjie Codes

Although useful for the sake of designing input

3] -]

-2 A
Figure 4. Arrangements of components in Chinese

components in determining the similarity between
characters.

Figure 4 illustrates possible layouts of the
components in Chinese characters that were
adopted by the Cangjie method (cf. Lee, 2008). A
sample character is placed below each of these
layouts. A box in a layout indicates a component in
a character, and there can be at most three compo-
nents in a character. We use digits to indicate the
ordering the components. Notice that, in the sec-
ond row, there are two boxes in the second to the
rightmost layout. A larger box contains a smaller
one. There are three boxes in the rightmost layout,
and two smaller boxes are inside the outer box.
Due to space limits, we do not show “1” for this
outer box.

After recovering the simplified Cangjie code
for a character, we can associate the character with
a tag that indicates the overall layout of its compo-
nents, and separate the code sequence of the char-
acter according to the layout of its components.
Hence, the information about a character includes
the tag for its layout and between one to three se-
quences of code elements. Table 2 shows the anno-

method, the simplification of Cangjie codes causes -
difficulties when we use the codes to find similar x La);oul %P;;_I A Part2 | Part3
characters. Hence, we choose to use the ipl I 5 *A 3%
codes for the components in our database. For in- w 5 A i a
stance, in our database, the codes for “&7, “Ag”, =
“42,“8”, and “%)” are, rcspccuvcly, ——##——“, : 4 hoom | At A%
CR S ded =, A—dede—, = dede—— R b2y 5 PR o

LA and “— %k — K P w6 A * *

The knowledge about the graphical s ¥ A # e s

of the Chinese characters (cf. Juang et al., 2005; B 8 L::) A
Lee, 2008) can be instrumental as well. Consider B 9 L] % -
the examples in Figure 2. Some ct can be £l 2 —%k— | —Audk
decomposed vertically; e.g., “#” can be split into 1 2 HA —k k-
two smaller components, i.e., “#” and “m”. Some a 5 =] A
characters can be decomposed horizontally; e.g., B 9 ] a Aug
“#,” is consisted of “£” and “#,”. Some have 4 2 ES Ad
enclosing components; e.g., “ A is enclosed in oS 5 AAd ~
“0” in “B”. Hence, we can consider the locations # 6 # A p: N

of the components as well as the number of shared
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Table 2. Annotated and expanded code

tated and expanded codes of the sample characters
in Figure 4 and the codes for some characters that
we will discuss. The layouts are numbered from
left to right and from top to bottom in Figure 4.
Elements that do not belong to the original Canjie
codes of the characters are shown in smaller font.

Recovering the elements that were dropped
out by the Cangjie method and organizing the sub-
sequences of elements into parts facilitate the iden-
tification of similar characters. It is now easier to
find that the character (38) that is represented by
“—+44—"and “— A 14" looks similar to the
chdrmer (1“‘) that is represented by “4f A” and

” in our database than using their origi-
nal Cangjie codes in Table 1. Checking the codes
for “8” and “[8” in Table 1 and Table 2 will offer
an additional support for our design decisions.

In the worst case, we have to compare nine
pairs of code sequences for two characters that
both have three components. Since we do not sim-
plify codes for components and all components
have no more than five elements, conducting the
comparisons operations are simple.

2.4 Drawbacks of Using the Cangjie Codes

Usmg the Cangjle codes as the biﬂli for comparing
the similarity between ct J some
potential problems.

It appears that the Cangjie codes for some
characters, particular those simple ones, were not
assigned without ambiguous principles. Relying on
Cangjie codes to compute the similarity between
such characters can be difficult. For instance, “%-”
uses the fifth layout, but “3,” uses the first layout
in Figure 4. The first section in Table 1 shows the
Cangjie codes for some character pairs that are dif-
ficult to compare.

Due to the design of the Cangjie codes, there
can be at most one component at the left hand side
and at most one component at the top in the layouts.
The last three entries in Table 2 provide an exam-
ple for these constraints. As a standalone character,
“#8” uses the second layout. Like the dal

3 Concluding Remarks

We adopt the Cangjie alphabet to encode Chinese
characters, but choose not to simplify the code se-
quences, and annotate the characters with the lay-
out information of their components. The resulting
method is not perfect, but allows us to find visually
similar characters more efficient than employing
the image-based methods.

Trying to find conceptually similar but con-
textually inappropriate characters should be a natu-
ral step after being able to find characters that have
similar pronunciations and that are visually similar.
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ACL Lifetime Achievement Award

On Whose Shoulders?

Yorick Wilks*
University of Sheffield

Introduction

The title of this piece refers to Newton’s only known modest remark: “If I have seen
farther than other men, it was because I was standing on the shoulders of giants.” Since
he himself was so much greater than his predecessors, he was in fact standing on the
shoulders of dwarfs, a much less attractive metaphor. I intend no comparisons with
Newton in what follows: NLP/CL has no Newtons and no Nobel Prizes so far, and quite
rightly. Tintend only to draw attention to a tendency in our field to ignore its intellectual
inheritance and debt; I intend to discharge a little of this debt in this article, partly as
an encouragement to others to improve our lack of scholarship and knowledge of our
own roots, often driven by the desire for novelty and to name our own systems. Roger
Schank used to argue that it was crucial to name your own NLP system and then have
lots of students to colonize all major CS departments, although time has not been kind to
his many achievements and originalities, even though he did build just such an Empire.
But to me one of the most striking losses from our corporate memory is the man who
is to me the greatest of the first generation and still with us: Vic Yngve. This is the man
who gave us COMIT, the first NLP programming language; the first random generation
of sentences; and the first direct link from syntactic structure to parsing processes and
storage (the depth hypothesis). I find students now rarely recognize his name, and find
that incredible.

This phenomenon is more than corporate bad memory, or being too busy with en-
gineering to do the scholarship. It is something endemic in the wider field of Computer
Science and Artificial Intelligence, although bottom-up wiki techniques are now filling
many historical gaps for those who know where to look, as the generation of pioneers
has time to reminisce in retirement.! There are costs to us from this general lack of
awareness, though: a difficulty of “standing on the shoulders” of others and acknowl-
edging debts, let alone passing on software packages. Alan Bundy used to highlight this
in the AISB Quarterly with a regular column where he located and pilloried reinventions
in the field of AL he also recommended giving obituaries for one’s own work, and this
paper could be seen in that way, too.

+ Department of Computer Science, The University of Sheffield, Regent Court, 211 Portobello Street,
Sheffield, 51 4DP, UK. E-mail: Y.Wilks@dcs.shef.ac.uk. This article is the text of the talk given on receipt of
the ACL's Lifetime Achievement Award in 2008.

1 See the video interview with Victor Yngve on my Web site at
http://www.dcs. shef .ac.uk/~yorick/YngveInterview. html.
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Early Academic Life

My overwhelming emotion on getting this honor was, after surprise, a feeling of in-
adequacy in measuring up to previous honorees, but nonetheless, T want to grasp at
this moment of autobiography, or at what in his own acceptance paper Martin Kay
called: “but one chance for such gross indulgence.” I was born in 1939 in London at
just about the moment the Second World War started in Europe; this was, briefly, a
severe career slowdown. However, the British Government had a policy of exporting
most children out of the range of bombs and I was sent to Torquay, a seaside town in
southwest England that happened to have palm trees on all the main streets, a fact it
is often difficult to convince outsiders of. The town had, and has, a Grammar School
for Boys, which had a very good Cambridge-trained mathematician as its headmaster,
and eventually I made my way back across England to Pembroke College, Cambridge,
to study mathematics, a college now for ever associated with my comedian contem-
poraries: Peter Cook, Clive James, Eric Idle, Tim Brooke-Taylor, and similar wastrels. I
began a series of changes of subject of study, downhill towards easier and easier ones:
from mathematics to philosophy to (what in the end after graduation became) NLP/AI
It was not that I could not do the mathematics, but rather that I experienced the shock
that many do of finding how wide the range of talent in mathematics is, and that being
very good in a provincial grammar school does not make one very good at Cambridge.
This is a feeling peculiar to mathematics, I think, because the talent range is so much
wider than in most subjects, even at the top level.

Margaret Masterman, who was to become the main intellectual influence in my life,
was the philosophy tutor for my college, although her main vocation was running the
Institute she had founded, outside the University in a Cambridge suburb: CLRU, the
Cambridge Language Research Unit. It was an eccentric and informal outfit, housed in
what had been a museum of Buddhist art, some of whose sculptures were built into the
walls. MMB (as she was known) ran the CLRU from the mid 1950s to the early 1980s
on a mix of US, UK, and EU grants and did pioneering work in MT, Al, and IR. Of
those honored by the ACL with this award over the last five years, three have been
graduates of that little Buddhist shed, and include Martin Kay and Karen Spirck Jones,
a remarkable tribute to MMB. The lives and work of we three have been quite different
but all in different ways stem from MMB’s interests and vision: She had been a pupil
of Wittgenstein and, had she known it, would have approved of Longuet-Higgins’s
remark that “Al is the pursuit of metaphysics by other means.” She believed that
practical research into the structure of language could give insight into metaphysics,
but was in no way other-worldly: She was the daughter of a Cabinet Minister and knew
what it was to command.

In a final twist, I found after her death in 1986 that she had made me her literary
executor: She had never written a book and wanted me to construct one from her papers
posthumously. It took me twenty years to get the required permissions but the volume
finally appeared in 2005 (Masterman et al. 2005).

Thesis Building and CLRU

When I started work at CLRU in 1962 to do a doctorate, it had no computer in the
normal sense, only a Hollerith card sorter of the sort built for the US census half a
century before. Basically, you put a stack of punched cards into one of these things—
which looked like a metal horse on four legs—and the cards fell into (I think) 10 slots
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depending on how you had plugged in a set of wires at the back to identify destination
slots for sorted cards with hole patterns on the cards. With some effort, these could
be turned into quite interesting Boolean machines; my first task was to take a notion
of Fred Parker-Rhodes that a Hallidayan could be exp d as a lattice of
typed classes, and then program the card sorter so that repeated sorts of punched cards
could be used to parse a sentence. It was triumph of ingenuity over practicality. Later
the CLRU owned an ICL 1202 computer with 1,200 registers on a drum, but it was
a so-called bini-ten machine designed for UK cash transactions when there were still
12 pennies to a shilling, and so the 1,202 has print wheel characters for 10, 11, and
12 (as well as 0-9), a fact on which Parker-Rhodes built a whole world of novel print
conventions for his research. This was the period at CLRU when Karen Spirck Jones
was completing her highly original thesis (published twenty years later as Jones [1986]
on unsupervised clustering of thesaurus terms—whose goal was to produce primitives
for MT, it is often forgotten—until she had to move her computations to a real computer
at the University Computing Laboratory, where she eventually created a new career in
IR, essentially using the same clump algorithms—created by Parker-Rhodes and her
husband Roger Needham—to do IR.

My own interests shifted to notions in an early Masterman paper titled “Semantic
message detection using an interlingua” (Masterman 1961), an area in which Martin
Kay had also originally worked on an interlingua for MT. My thesis computation was
done in LISP 1.6 on an IBM360 (under a one-man US Air Force contract, administered
by E. Mark Gold, who later became famous as the founder of learnability theory), at
SDC in Santa Monica, where I was attached loosely in 1966 to the NLP group there
run by Bob Simmons. My thesis was to be entitled “Argument and proof in Meta-
physics from an empirical point of view” and my advisor was MMB's husband, Richard
Braithwaite, Knightbridge Professor of Moral Philosophy at the University. He was a
philosopher of science and a logician, and was given the chair of moral philosophy—
a subject about which he knew nothing— because it was the only one available at
Cambridge at the time. This produced an extraordinary inaugural lecture in which
he effectively founded a new subject: “The theory of games as a tool for the moral
philosopher.”

Unfortunately for me he was not interested in my thesis, and took me on only
as a favor to MMB. My interest was the demarcation of metaphysical text: what it
was, if anything, that distinguished it from ordinary language text. Wittgenstein had
once said that words were “on holiday” in metaphysical text, but also that he wanted
to “bring words back from their metaphysical to their everyday usage” (Wittgenstein
1973). This is exactly what I wanted to capture with computation, and the thesis
was eventually submitted to the Cambridge Philosophical faculty in 1967—then called
Moral Sciences—with a large appendix of LISP program code at the back, something
they had never seen before, or since. The thesis was bound in yellow, though the
regulations stipulated black or brown bindings; I must have had some extraordinary
idea that someone might cruise the long corridors of Cambridge theses looking for one
that stood out by color—the arrogance of youth!

The thesis’s starting point was Carnap’s monumental Logische Syntax der Sprache
(1937) and his claim that meaningfulness in text could be determined by “logical
syntax”—rules of formation and transformation (a notion which may well sound famil-
iar; Chomsky was a student of Carnap). My claim was that this was a bad demarcation
and a better criterion of meaningfulness would be to have one interpretation rather than
many, namely, that word-sense discrimination (WSD) was possible for a given text. On
that view, the “meaningless” text had too many interpretations rather than none (or
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one). A word in isolation is thus often meaningless. Preference Semantics was a WSD
program to do just that, and to provide a new sense where WSD failed.

The other starting point of the thesis was a slim paper by Bosanquet on the nature of
metaphysical discourse, entitled “Some Remarks on Spinoza’s Ethics.” He argued that
Spinoza’s logical arguments are all false, but that what Spinoza was actually doing is
rhetorical, not logical: imposing a new sense on the reader. The system as implemented
was, of course, a toy system, in the sense that all symbolic NLP systems were in that
era. It consisted of an analysis of five metaphysical texts (by Wittgenstein, Spinoza,
Descartes, Kant, and Leibniz) along with five randomly chosen passages from editorials
in the London Tines, as some sort of control texts.

The vocabulary was only about 500 words, but this was many years before
Boguraev declared the average size of vocabularies in working NLP systems to be
36 words. The semantic structures derived—via what we would now call chunk
parsing—consisted of tree structures of primitives (from a set of about 80), one tree
for each participating word sense in the text chunk, that fitted into preformed triples
called templates. These templates were subject-predicate-object triples that defined
well-formed sequences of the triples of trees (i.e., the first tree for the sense of the
subject, the second for the action and so on), whose tree-heads had to fit those of the
template’s three primitive items in order. The overall system selected the word senses
that fitted into these structures by means of a notion of “semantic preference” (see
subsequent discussion), and then declared those to be the appropriate senses for the
words, thus doing a primitive kind of WSD.

There was in the thesis an additional “sense constructor” mode, called if the WSD
did not work, which tried to identify some sense of a word in the text whose representa-
tion would fit in the overall structure derived, and so could be declared a suitable “new”
sense for the word which had previously failed to fit in. Unsurprisingly, it identified, say,
a sense of “God” in the Spinoza text with an existing sense of “Nature” so that, after
this substitution, the whole thing fitted together and WSD could proceed, and thus the
passage be declared meaningful, given the criterion of having a single, ambiguity-free,
interpretation. This was the toy procedure that allowed me to argue that Spinoza’s real
aim, whether he knew it or not, was to persuade us that the word “God” could have
the sense of “Nature” and that this was the real point of his philosophy— exactly in line
with what Bosanquet had predicted.

The philosophy work was never really published, outside an obscure McGill Uni-
versity philosophy journal, although the meaningfulness criterion appeared in Mind in
1971 under the title “Decidability and Natural Language” (Wilks 1971). Since publishing
in Mind was, at the time, the ambition of every young philosopher, T was now satisfied
and could move to the simpler world of NLP. The thesis, shorn of the metaphysics,
appeared as my first book, Grammar, Meaning and the Machine Analysis of Language (Wilks
1972); the title was intended as a variation on the title of some strange German play,
popular at the time, and whose actual name I can no longer remember.

Preference Semantics

I returned from California to CLRU but left again for the Stanford AI Lab in 1969.
I had fantasized at CLRU about all the things one could do with a methodology of
trying to base a fairly complex compositional semantics on a foundation of superficial
pattern matching. This had earlier produced speculations like my 1964 CLRU paper
“Text searching with templates,” procedures that we could not possibly have carried
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L1 ((+ANI 1) ((SELF IN)(MOVE CAUSE)) (*REAL 2))— (1(xJUDG) 2)

Or, in semi-English:

[animate-1 cause-to-move-in-self real-object-2]—[1 *judges 2]
12 (1 BE (GOOD KIND))<«((*ANI 2) WANT 1)

Or, again:

[1 is good]« [animate-2 wants 1]

Figure 1
Inference rules in Preference Semantics.

out with the machines then available, but which I now choose to see as wanting to
do Information Extraction: though, of course, it was Naomi Sager who did IE first on
medical texts at NYU (see Sager and Grishman 1975).

At Stanford as a post-doc, I was on the same corridor as Winograd, just arrived from
MIT; Schank, then starting to build his Conceptual Dependency empire; and Colby and
his large team building the PARRY dialogue system, which included Larry Tesler, later
the Apple software architect. Schank and I agreed on far more than we disagreed on and
saw that we would be stronger together than separately, but neither of us wanted to give
up our notation: He realized, rightly, that there was more persuasive power in diagrams
than in talk of processes like “preference.” It was an extraordinary period, when Al and
NLP were probably closer than ever before or since: Around 1972 Colmerauer passed
though the Stanford AT Lab, describing Prolog for the first time but, as you may or may
not remember, as a tool for machine translation! I spent my time there defining and
expanding the coherence-based semantics underlying my thesis, calling it “Preference
Semantics” (PS), adding larger scale structures such as inference rules (see Figure 1)
and thesauri, and building it into the core of a small semantics-based English-to-French
machine translation system programmed in LISP. At one point the code of this MT
system ended up in the Boston Computer Museum, but I have no idea where it is now.
The principles behind PS were as follows:

+  anemphasis on processes, not diagrams;

*  the notion of affinity and repulsion between sense representations
(cf. Waltz and Pollack’s WSD connectionism [1985]);

o seeking the “best fit” interpretation—the one with most satisfied
preferences (normally of verbs, prepositions and adjectives);

o yielding the least informative/effort interpretation;
using no explicit syntax, only segmentation and order of items;

e meaningfulness as being connected to a unique interpretation/sense
choice;

®  meaning seen as represented in other words, since no other equivalent for
the notion works (e.g., objects or concepts);

®  gists or templates of utterances as core underlying entities; and

e there is no correct interpretation or set of primitive concepts, only the best
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One could put some of these, admittedly programmatic and imprecise, points as
follows:

o Semantics is not necessarily deep but also superficial (see more recent
results on the interrelations between WSD, POS, and IE, e.g. Stevenson
and Wilks [2001]).

*  Quantitative phenomena are unavoidable in language: John McCarthy
thought they had no place anywhere in Al, except perhaps in low-level
computer vision.

*  Reference structures (like lexicons) are only temporary snapshots of a
language in a particular state (of expansion or contraction).

*  What is important is to locate the update mechanism of language,
including crucially the creation of new word senses, which is not
Chomsky'’s sense of the creativity of language.

Constructible Belief Systems

1 returned to Europe in the mid 1970s, first to the ISSCO institute in Lugano, where
Charniak was and Schank had just left, and then to Edinburgh as a visitor before taking
ajob at Essex. I began a long period of interest in belief systems, in particular secking
some representation of the beliefs of others, down to any required degree of nesting—
for example A’s belief about B’s belief about C—that could be constructed recursively
at need, rather than being set out in advance, as in the pioneering systems emerging
from the Toronto group under Ray Perrault (Allen and Perrault 1980). I began thinking
about this with Janusz Bien of the University of Warsaw, who had also published a
paper arguing that CL/NLP should consider “least effort” methods: in the sense that
the brain might well, due to evolution, be a lazy processor and seek methods for
understanding that minimized some value that could be identified with processing
effort. I had argued in PS for choosing shortest chains of inferences between templates,
and that the most connected/preferred template structure for a piece of text should be
the one found first. I am not sure we ever proved any of this: It was just speculation,
as was the preference for the most semantically connected representation, and the
representation with the least information. All this is really only elementary information
theory: a random string of words contains the maximum information, but that is not
very helpful. Clearly, the preferred interpretation of “He was named after his father”
(i.e., named the same rather than later in time) is not the least informative, since the latter
contains no information at all—being necessarily true—so one would have to adapt
any such slogan to: “prefer the interpretation with the least information, unless it is
zero!”

The belief work, first with Bien, later with Afzal Ballim (Wilks and Ballim 1987)
and John Barnden, has not been a successful paradigm in terms of take-up, in that
it has not got into the general discourse, even in the way that Fauconnier’s “Mental
Spaces” (Fauconnier 1985) has. That approach uses the same spatial metaphor, but for
strictly linguistic rather than belief and knowledge purposes. But I think the VIEWGEN
belief paradigm, as it became, had virtues, and I want to exploit this opportunity to

available. remind people of it. It was meant to capture the intuition that if we want, for language
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understanding purposes, to construct X’s beliefs about Y’s beliefs—what I called the
environment of Y-for-X—then:

1. It mustbe a construction that can be done in real time to any level of
nesting required, because we cannot imagine it pre-stored for all future
nestings, as Perrault el al. in effect assumed.

2. Itmust capture the intuition that much of our belief is accepted by default
from others: As VIEWGEN expresses it, [ will accept as a belief what you
say, because I have normally no way of checking, or experimenting on, let
alone refuting, the things you tell me, e.g. that you had eggs for breakfast
yesterday. As someone in politics once put it, “There is no alternative.”
Unless, that is, what you say contradicts something I believe or can easily
prove from what I believe.

3. Wemust be able to maintain apparently contradictory beliefs, provided
they are held in separate spaces and will never meet as contradictions. I
can thus maintain within my-space-for-you beliefs of yours (according to
me) that I do not in fact hold.

In VIEWGEN, belief construction is done in terms of a “push down” metaphor: A
permeable “container” of your beliefs is pushed into a “container” of my beliefs and
what percolates through the membrane, from me to you, will be believed and ascribed
to you, unless it is explicitly contradicted, namely, by some contrary belief I already
ascribe to you, and which, as it were, keeps mine from percolating through. The idea
is to construct the appropriate “inner belief space” at the relevant level of nesting, so
that inference can be done, and to derive consequences (within that constrained content
space) that also serve to model, in this case, you the belief holder in terms of goals
and desires, in addition to beliefs. This approach is quite different not only from the
Perrault/Toronto system of belief-relevant plans but also to Al theories that make use
of sets-of-support premises since this is about belief-inheritance-by-default. It is also
quite distinct from linguistic theories like Wilson and Sperber’s Relevance Theory which
take no account at all of belief as relative to individuals, but perform all operations
in some space that is the same for everyone, which is an essentially Chomskyan ideal
competence-style notion of belief that is not relative to individuals—which is of course
absurd.

Mark Lee and a number of my students have created implementations of this
approach and linked it to dialogue and other applications, but there has been no major
application showing its essential role in a functioning conversational theory where
complex belief states are created in real time. However, the field is, I believe, now
moving in that direction (e.g., with POMDP theories [Williams and Young 2007]) since
the possibility of populating belief theories with a realistic base from text by means of
Information Extraction or Semantic Web parsing to RDF format is now real (a matter we
shall return to subsequently).

There were, for me at least, two connections between the VIEWGEN belief work
and Preference Semantics, in terms of meaning and its relation to processes. First,
there was the role of choice and alternatives, crucial to PS, in that an assigned mean-
ing interpretation for a text was no more than a choice of the best available among
alternatives, because preference implies choice, in a way that generative linguistics—
though not of course traditions like Halliday’s—always displayed alternatives but
considered choice between them a matter for mere performance. What was dispensable

to generative linguistics was the heart of the matter, I argued, to NLP/CL. Secondly,
VIEWGEN suggested a view of meaning, consistent locally with PS, dependent on
which individuals or classes one chose to see in terms of each other—the key notion
here was seeing one thing as another and its consequences for meaning. So, if one chose
to identify (as being the same person under two names) Joe (and what one believed
about him) with Fred’s father (and what one knew about him), the hypothesis was that
a belief environment should be constructed for Joe-as-Fred’s-father by percolating one
set of beliefs into the other, just as was done by the basic algorithm for creating A’s-
beliefs-about-B’s-beliefs from the component beliefs of A and B. This process created
a hybrid entity, with intensional meaning captured by the set of propositions in that
inner environment of belief space, but which was now neither Joe nor Fred’s father but
rather the system’s point of view of their directional amalgamation: Joe-as-Freds-father
(which might contain different propositions from the result of Fred's-father-as-Joe).

More natural, and fundable, scenarios were constructed for this technique in those
days, such as knowledge representations for Navy ships’ captains genuinely uncertain
as to whether ship-in-my-viewfinder-now was or was not to be identified with the
stored representation for enemy-ship-number-X. The important underlying notion was
one going back to Frege, and which first had an outing in Winograd’s thesis (Winograd
1972), where he showed you could have representations for blocks that did not in fact
exist on the Blocks World table. A semantics must be able to represent things without
knowing whether they exist or not; that is a basic requirement.

Later, and working with John Barnden and Afzal Ballim, this same underly-
ing process of conflating two belief objects was extended to the representation of
“metaphorical objects,” which could be described, quite traditionally in the literature,
as A-viewed-as-B (e.g., an atom viewed as a billiard ball). The metaphorical object
atom-as-billiard-ball was again created by the same push-down or fusion of belief sets
as in the basic belief point-of-view procedure. All this may well have been fanciful,
and was never fully exploited in published work with programs, but it did have a
certain intellectual appeal in wanting to treat belief, points of view, metaphor and
identification of intensional individuals—normally quite separate issues in semantics—
as being modellable by the same simple underlying process (see Ballim, Wilks, and
Barnden 1991). One novel element that did emerge from this analysis was that, in
the construction of these complex intensional identifications, such as between “today’s
Wimbledon winner” and “the top male tennis seed,” one could choose directions of
“viewing as” with the belief sets that led to objects which were neither the classic de re
nor de dicto outcomes: Those became just two among a range of choices, and the others
of course had no handy Latin names.

Adapting to the “Empirical Wave” in NLP

For me, as with many others, especially in Europe, the beginning of the empirical wave
in NLP was the work of Leech and his colleagues at Lancaster: CLAWS4 (a name which
hides a UK political joke), their part-of-speech tagger based on large-scale annotation of
corpora. Such tagging is now the standard first stage of almost every NLP process and it
may be hard for some to realize the skepticsm its arrival provoked: “What could anyone
want that for?” was a common reaction from those still preoccupied by computational
syntax or semantics. That system was sold to IBM, whose speech group, under Jelinek,
Mercer, and Brown, subsequently astonished the CL/NLP world with their statistical
machine translation system CANDIDE. I wrote critical papers about it at the time, not
totally unconnected to the fact that I was funded by DARPA on the PANGLOSS project
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at NMSU (along with CMU and ISI/USC) to do MT by competing, but non-statistical,
methods.

In one paper, I used the metaphor of “Stone soup” (Wilks 1996): A reference to the
old peasant folk-tale of the traveler who arrives at a house seeking food and claiming
to have a stone that makes soup from water. He begs a ham bone to stir the water
and stone and eventually cons out of his hosts all the ingredients for real soup. The
aspect of the story I was focusing on was that, in the CANDIDE system, I was not sure
that the “stone,” namely IBM’s “fundamental equation of MT,” was in fact producing
the results, and suggested that something else they were doing was, giving them their
remarkable success rate of about 50% of sentences correctly translated. As their general
methodology has penetrated the whole of NLP/CL, I no longer stand by my early
criticisms; IBM were of course right, and had everything to teach the rest of us.

Early critics of data-driven, alias empirical, CL found it hard to accept, whatever
its successes in, say, POS tagging, that its methods could extend to the heartland of
semantics and pragmatics. Like others, I came to see this assumption was quite untrue,
and myself moved towards Machine Learning (ML) approaches to word-sense disam-
biguation (e.g., Stevenson and Wilks 2001) and I now work in ML methods applied to
dialogue corpora (as I shall mention subsequently). But the overall shift in approaches
to semantics since 1990 has not only been in the introduction of statistical methods, and
ML in particular, but also in the unexpected advantages that have been gained from
what one might call non-statistical empirical linguistics, and in particular Information
Extraction (IE; see Wilks 1997).

1 referred earlier to the fact that my early work that could be called, in a general
sense, semantic parsing, and that it was in fact some form of superficial pattern match-
ing onto language chunks that was then transformed to different layers of compositional
semantic representation. There were obvious relations between that general approach
and what emerged from the DARPA competitions in the early 1990s as IE, a technology
that, when honed by many teams, and especially when ML techniques were added to
it later, had remarkable success and a range of applications; it also expanded out into
other, traditionally separate, NLP areas such as question answering and summarization.
This approach is not in essence statistical at all, however, although it is in a clear
sense “superficial,” with the assumption that semantics is not necessarily a “deep”
phenomenon but present on the language surface. I believe the IE movement is also
one of the drivers behind the Semantic Web movement, to which I now turn, and which
1 think has brought NLP back to a position nearer the core of Al, from which it drifted
away in the 1980s.

Meaning and the Semantic Web

The Semantic Web (SW; Berners-Lee, Hendler, and Lassila 2001) is what one could call
Berners-Lee’s second big idea, after the World Wide Web; it can be described briefly as
turning the Web into something that can also be understood by computers in the way
that it is understood by people now, as a web of texts and pictures. Depending on one’s
attitude to this enterprise, already well-funded by the European Commission at least, it
can be described as any of the following:

1. Asarevival of the traditional Al goal (at least since McCarthy and Hayes
[1969]) of replacing language, with all its vagueness, by some form of
logical representation upon which inference can be done.
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2. Asahierarchy of forms of annotation—or what I shall call augmentation
of content—reaching up from simple POS tagging to semantic class
annotation (e.g. CITY, PERSON-NAME) to ontology membership and
logical forms. DARPA/MUC/NIST competitions have worked their way
up precisely this hierarchy over the years and many now consider that
content can be “annotated onto language” reliably up to any required
level. This can be thought of as extending IE techniques to any linguistic
level by varieties of ML and annotation.

3. Asasystem of access to trusted databases that ground the meanings of
terms in language; your telephone or social security number might ground
you uniquely (in what is called a URI), or better still—and this is now the
standard view—a unique identifying object number for you over and
above phones and social systems. This is very much Tim Berners-Lee’s
own view of the SW.

There is also a fourth view, much harder to express, that says roughly that, if we keep
our heads, the SW can come into being with any system of coding that will tolerate the
expansion of scale of the system, in the way that, miraculously, the hardware under-
pinnings of the World Wide Web have tolerated its extraordinary expansion without
major breakdown. This is an engineering view that believes there are no fundamental
problems about the meanings and reference of SW terms in, for example, the ontologies
within the SW, and everything will be all right if we just hold tight.

This view may turn out to be true but it is impossible to discuss it. Similarly, view
(3) has no special privilege because it is the World Wide Web founder’s own view: Marx
was notoriously not a very consistent Marxist, and one can find multiple examples
of this phenomenon. View (3) is highly interesting and close to philosophical views
of meaning expressed over many years by Putnam, which can be summarized as the
idea that scientists (and Berners-Lee was by origin a database expert and physicist) are
“guardians of meaning” in some sense because they know what terms really mean, in
a way that ordinary speakers do not. Putnam’s standard example is that of metals like
molybdenum and aluminum, which look alike and, to the man in the street, have the
same conceptual, intensional meaning, namely light, white, shiny metal. But only the
scientist (says Putnam) knows the real meanings of those words because he knows
the atomic weights of the two metals and methods for distinguishing them.

No one who takes Wittgenstein—and his view that we, the users of the language,
are in charge of what terms mean, and not any expert—at all seriously can even consider
such a view. On the view we are attributing to Wittgenstein, the terms are synonymous
in a public language, just as water and heavy water are, and any evidence to the contrary
is a private matter for science, not for meaning.

View (1) of the Semantic Web is a well-supported one, particularly by recycled AT
researchers: They have, of course, changed tack considerably and produced formalisms
for the SW, some of which are far closer to the surface of language than logic (what
is known as RDF triples), as well as inference mechanisms like DAML-OIL that gain
advantages over traditional AI methods on the large and practical scale the SW is
intended to work over. On the other hand there are those in Al who say they have
ignored much of the last 40 years of Al research that would have helped them. This
dispute has a conventional flavor and it must be admitted that, in more than 40 years,
Al itself did not come up with such formalisms that stood any chance at all of working
on a large scale on unstructured material (i.c., text).
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This leaves us with View (2), which is my own: namely, that we should see the SW
partially in NLP terms, however much Berners-Lee rejects such a view and says NLP
is irrelevant to the SW. The whole trend of SW research, in Europe at least, has been
to build up to higher and higher levels of semantic annotation—a technology that has
grown directly out of TE’s success in NLP—as a way of adding content to surface text.
It seems to me obvious that any new SW will evolve from the existing WWW of text
by some such method, and that method is basically a form of large-scale NLP, which
now takes the form of transducers from text to RDF (such as the recently advertised
Reuters API). The idea that the SW can start from scratch in some other place, ignoring
the existing World Wide Web, seems to me unthinkable; successful natural evolution
always adapts the function of what is available and almost never starts again afresh.

T have set out my views on this recently in more detail (Wilks 2008), but it is
important to see that the SW movement—at least as I interpret it herein, and that does
seem pretty close to the way research in it is currently being funded, under calls and
titles like “semantic content”—is one that links to the themes already developed in this
paper in several ways, and which correspond closely to issues in my own early work,
but which have not gone away:

1. The SW takes semantic annotation of content as being a method—whether
done by humans or after machine learning—of recoding content with
special terms, terms close to what have traditionally been called semantic
primitives. It is exactly this that was denied by the early forms of, say,
statistical MT, where there was nothing available to the mechanism except
the words themselves. This is also quite explicit in traditional IR, where,
for example, Karen Spérck Jones consistently argued against any form of
content recoding, including the SW. As she put it: “One of these [simple,
revolutionary IR] ideas is taking words as they stand” (Jones 2003).

2. The SW accords a key role to ontologies as knowledge structures: partially
hierarchical structures containing key terms—primitives again under
another guise—whose meanings must be made clear, particularly at the
more abstract levels. The old Al tradition in logic-based knowledge
structuring—descending from McCarthy and Hayes (1969)—was simply
to declare what these primitive predicates meant. The problem was that
predicates, normally English words written in capital letters (as all
linguistic primitives in the end seem to be), became affected by their
inferential roles over time and the process of coding itself. This became
very clear in the long-term CyC project (Lenat 1995) where the key
predicates changed their meanings over 30 years of coding, but there was
no way of describing that fact within the system, so as to guarantee
consistency. In Nirenburg and Wilks (2000), Nirenburg and I debate this
issue in depth, and I defend the position that one cannot simply maintain
the meanings of such terms by fiat and independent of their usage—they
look like words and they function like words because, in the end, they are
words. The SW offers a way out of this classic Al dilemma by building up
the hierarchy of annotations with empirical processes like ontology
induction from corpora (e.g., ABRAXAS; see Iria et al. 2006); in this way
the meanings of higher level terms are connected back directly to text
usage. Braithwaite, my thesis advisor, described in his classic “Scientific
explanation” (Braithwaite 1953) a process in the philosophy of science he
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called “semantic ascent” by which the abstract high-level terms in a
scientific theory, seen as a logical hierarchy of deductive processes—terms
such as “neutron,” possibly corresponding to unobservables—acquired
meaning by an ascent of semantic interpretation up the theory hierarchy
from meanings grounded in experimental terms at the bottom. It is some
such grounding process I envisage the SW as providing for the meanings
of primitive ontological terms in a knowledge structure.

3. The RDF forms, based on triples of surface items, as a knowledge
base—usually with subject-action-object as basic form—can provide a less
formal but more tractable base for knowledge than traditional First Order
Predicate Logic (FOPL). They have a clear relationship back to the crude
templates of my early work and the later templates of IE. I claim no
precedence here, but only note the return of a functioning but plausible
notion of “superficial semantics.” It seems to me not untrue historically to
claim that RDF, the representational base of the SW, is a return of the level
of representation that Schank (under the name Conceptual Dependency, in
Schank [1975]) and I (under the name Preference Semantics) developed in
the late 1960s and early 1970s (Wilks 1975). I remember that at the Stanford
Al Lab at that time, John McCarthy, a strong advocate of FOPL as the right
level of representation of language content, would comment that
formalisms like these two might have a role as a halfway house on a route
from language to a full logic representation. On one view of the SW that
intermediate stage may prove to be the right stage, because full AT
representations have never been able to deliver in terms of scale and
tractability. Time will tell, and fairly soon.

The most important interest of the SW, from the point of view of this paper, is that
it provides at last a real possibility of a large-scale test of semantic and knowledge
coding: One thing the empirical movement has taught us is the vital importance of scale
and the need to move away from toy systems and illustrative examples. I mentioned
earlier the freely available Reuters API for RDF translation which Slashdot advertised
under the title “Is the Semantic Web a Reality at Last?” This is exactly the kind of move
to the large scale that we can hope will settle definitively some of these ancient issues
about meaning and knowledge.

A Late Interest in Dialogue: The Companions Project

My only early exposure to dialogue systems was Colby’s PARRY: As I noted earlier, his
team was on the same corridor as me at Stanford Al Lab in the early 1970s. I was a
great admirer of the PARRY system: It seemed to me then, and still does, probably the
most robust dialogue system ever written. It was available over the early ARPANET
and tried out by thousands, usually at night: It was written in LISP and never broke
down; making allowances for the fact it was supposed to be paranoid, it was plausible
and sometimes almost intelligent. In any case it was infinitely more interesting than
ELIZA, and it is one of the great ironies of our subject that ELIZA is so much better
known. PARRY remembered what you had said, had elementary emotion parameters
and, above all, had something to say, which chatbots never do. John McCarthy, who
ran the Al Lab, would never admit that PARRY was Al, even though he tolerated it
under his roof, as it were, for many years; he would say “It doesn’t even know who
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the President is,” as if most of the world’s population did! PARRY was in fact a semi-
refutation of the claim that you need knowledge to understand and converse, because
it plainly knew nothing; what it had was primitive “intentionality,” in the sense that it
had things “it wanted to say.”

My own introduction to practical work on dialogue was when I was contacted in
the late 1990s by David Levy, who had written 40 books on chess and ran a company
that made chess machines. He already had a footnote in Al as the man who had bet
McCarthy, Michie, and other Al leaders that a chess machine would not beat him within
ten years, and he won the bet more than once. In the 1990s he conceived a desire to win
the Loebner Prize? for the best dialogue program of the year, and came to us at Sheffield
to fund a team to win it for him, which we did in 1997. I designed the system and drew
upon my memories of PARRY, along with obvious advances in the role of knowledge
bases and inference, and the importance of corpora and machine learning. For example,
we took the whole set of winning Loebner dialogues off the Web so as to learn the kinds
of things that the journalist-testers actually said to the trial systems to see if they were
really humans or machines.

Our system, called CONVERSE (see Levy et al. 1997), claimed to be Catherine, a
34-year old female British journalist living in New York, and it owed something to
PARRY, certainly in Catherine’s desire to tell people things. It was driven by frames
corresponding to each of about 80 topics that such a person might want to discuss;
death, God, clothes, make-up, sex, abortion, and so on. It was far too top-down and
unwilling to shift from topic to topic but it could seem quite smart on a good day, and
probably won because we had built in news from the night before the competition of
a meeting Bill Clinton had had that day at the White House with Ellen de Generes, a
lesbian actress. This gave a certain immediacy to the responses intended to sway the
judges, as in “Did you see that meeting Ellen had with Clinton last night?”

This was all great fun and gave me an interest in modeling dialogue that has
persisted for a decade and is now exercised through COMPANIONS (Wilks 2004), a
large EU 15-site four-year project that I run. COMPANIONS aims to change the way we
think about the relationships of people to computers and the Internet by developing a
virtual conversational “Companion.” This will be an agent or “presence” that stays with
the user for long periods of time, developing a relationship and “knowing” its owner’s
preferences and wishes. It will communicate with the user primarily by using and un-
derstanding speech, but also using other technologies such as touch screens and sensors.

Another general motivation for the project is the belief that the current Internet
cannot serve all social groups well, and it is one of our objectives to empower citizens
(including the non-technical, the disabled, and the elderly) with a new kind of interface
based on language technologies. The vision of the Senior Companion—currently our
main prototype—is that of an artificial agent that communicates with its user on a
long-term basis, adapting to their voice, needs, and interests: A companion that would
entertain, inform, and react to emergencies. It aims to provide access to information
and services as well as company for the elderly by chatting, remembering past con-
versations, and organizing (and making sense of) the owner’s photographic and image
memories. This Companion would assume a user with a low level of technical knowl-
edge, and who might have lost the ability to read or produce documents themselves
unaided, but who might need help dealing with letters, messages, bills, and getting in-
formation from the Internet. During its conversations with its user or owner, the system

2 See http: //www. loebner .net/Prizef/loebner-prize. html.
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builds up a knowledge inventory of family relations, family events in photos, places
visited, and so on. This knowledge base is currently stored in RDF, the Semantic Web
format, which has two advantages: first, a very simple inference scheme with which
to drive further conversational inferences, and second, the possibility, not yet fulfilled,
of accessing arbitrary amounts of world information from Wikipedia, already available
in RDF, which could not possibly have been pre-coded in the dialogue manager, nor
elicited in a conversation of reasonable length. So, if the user says a photo was taken in
Paris, the Companion should be able to ask a question about Paris without needing that
knowledge pre-coded, but only using rapidly accessed Wikipedia RDFs about Paris. An
ultimate aim of this aspect of the Senior Compantion is the provision of a life narrative,
an assisted autobiography for everyone, one that could be given to relatives later if the
owner chose to leave it to them. There is a lot of technical stuff in the Senior Companion:
script-like structures—called DAFs or Dialogue Action Forms—designed to capture the
course of dialogues on specific topics or individuals or images, and these DAFs we are
trying to learn from tiled corpora. The DAFs are pushed and popped on a single stack,
and that simple virtual machine is the Dialogue Manager, where DAFs being pushed,
popped, or reentered at a lower stack point are intended to capture the exits from, and
returns to, abandoned topics and the movement of conversational initiative between
the system and the user. We are halfway through the project and currently have two
prototype Companions: The other, based not at Sheffield but at Tampere, is a Health
and Fitness Companion (HFC).? It is more task-oriented than the Senior Companion
and aims to advise on exercise and diet. The HFC is on a mobile phone architecture as
well as a PC, and we may seek to combine the two prototypes later. The central notion of
a Companion is that of the same “personality,” with its memory and voice being present
no matter what the platform. It is not a robot, and could be embodied later in something
like a chatty furry handbag, being held on a sofa and perhaps reminding you about the
previous episodes of your favorite TV program.

Finale

This article has had something of the form of a life story, and everyone wants to believe
their life is some kind of narrative rather than a random chase from funding agency to
funding agency, with occasional pauses to carry out a successful proposal. But let us
return to Newton for a moment in closing; for us in CL he is the great counter-example,
of why we do not do science or engineering in that classic solitary manner:

... where the statue stood
Of Newton, with his prism and silent face,
The marble index of a mind for ever
Voyaging through strange seas of Thought, alone.
— William Wordsworth (1770-1850)
The Prelude, book i, line 61

The emphasis there for me is on alone, which is pretty much unthinkable in our research
world of teams and research groups. Our form of research is essentially corporate and
cooperative; we may not be sure whose shoulders we are standing on, but we know
whose hands we are holding. I have worked in such a way since my thirties and, at

3 An early demo of a Companion can be seen on YouTube at
http: //www. youtube . con/watch?v=SqIP6sTt1Dw.
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9:00 - 9:10 Opening Session

9:10 - 10:10 Invited Talk: Marc Swerts, "Facial Expressions in Human-Human
and Human-Machine Interactions"

10:10 - 10:40 Break

Session 1A: Information Extraction 1

10:40 - 11:05: Richman, Alexander E.; Patrick Schone Mining Wiki Resources for Multili /\/dmed Entity o7
Bergsma, Shane; Dekang Lin; Randy Goebel Distrzbutic i of N Pronouns
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Attributes from Web Documents and Query Logs

11:55 - 12:20: Banko, Michele; Oren Etzioni 7he Tradeofs Between Open and Traditional Relation Extraction
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Mirovsk\'y, Jiri PDT 2.0 Requirements on a Query Language

: Miyao, Yusuke; Rune Stre; Kenji Sagae; Takuya Matsuzaki; Jun' ichi Tsujii Zask-oriented Evaluation of
Syntactic Parsers and Their Representations

11:30- Chan, Yee Seng; Hwee Tou Ng MAXSIM: A Maximum Similarity Metric for Machine Translation Evaluation
11:55 - 12:20: Voorhees, Ellen M. i s and xtensions to the Textual Entail Task
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11:05 - 11:30: Deng, Yonggang; Jia Xu; Yuging Gao Phrase Table Training for Precision and Recall: What Makes a Good
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Proceedings Ho2H HOH

2:25 - 2:50: Cao, Guihong; Stephen Robertson; Jian-Yun Nie Selecting Query Term Alternations for Web Search by Exploiting
Query Contexts

2:50 - 3:15: Duan, Huizhong; Yunbo Cao; Chin-Yew Lin; Yong Yu Searching Questions by Identifying Question Topic and
Question Focus
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2:25 - 2:50: Lee, John; Stephanie Seneff Correcting Misuse of Verb Forms

2:50 - 3:15: Espinosa, Dominic; Michael White; Dennis Mehay 7 St ¢ for Surface with CCG
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4:10 - 4:35: Ji, Heng; Ralph Grishman Refining Event Extraction through Cross-Document Inference

4:35 - 5:00: Branavan, S.R.K.; Harr Chen; Jacob Eisenstein; Regina Barzilay Learning Document-Level Semantic Properties
fiom Free-Text Annotations

5:00 - 5:25: Feng, Yansong; Mirella Lapata Automatic Image Annotation Using Auxiliary Text Information

Session 3B: Sentiment Analysis

3:45 - 4:10: Szarvas, Gyorgy Hedge Classification in Biomedical Texts with a Weakly Supervised Selection of Keywords
4:10 - 4:35: Andreevskaia, Alina; Sabine Bergler When Specialists and Generalists Work Together: Overcoming Domain
Dependence in Sentiment Tageing

4:35 - 5:00: Nomoto, Tadashi A Generic Sentence Trimmer with CRFs

5:00 - 5:25: Titov, Ivan; Ryan McDonald A Joint Model of Text and Aspect Ratings for Sentiment Summarization

Session 3C: Syntax & Parsing 1

3:45 - 4:10: Agirre, Encko; Timothy Baldwin; David Martinez Parsing and PP Attachment Performance with Sense
Information

4:10 - 4:35: Hoyt, Frederick; Jason Baldridge A Logical Basis for the D Combinator and Normal Form in CCG

4:35 - 5:00: Vadas, David; James R. Curran Parsing Noun Phrase Structure with CCG
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5:00 - 5:25: Vickrey, David; Daphne Koller Sentence Simplification for Semantic Role Labeling Transliterate

3:45 - 5:50 Session 3D: Student Research Workshop

3:45 - 4:10: Hagiwara, Masato A Supervised Learning Approach to Automatic Synonym Identification Based on Distributional
Features

: Banik, Eva An Integrated for Generaling al Constructions

Eidelman, Vladimir /nferring Activity Time in News through Event Modeling

5:00 - 5:25: Liao, Shasha Combining Source and Target Language Information for Name Tagging of Machine Translation
QOutput

5:25 - 5:50: Sun, Shugi; Yin Chen; Jufeng Li A R i on Features in Based Approach to Automatic MT
Evaluation

Poster Session Student Research Workshop (6:00-8:30)

Fossati, Davide The Role of Positive Feedback in Intelligent Tutorig Systems

Heintz, llana Arabic Language Modeling with Finite State Transducers

Kersey, Cynthia Impact of Initiative on Collaborative Pmb/sm Solving

Mclnnes, Bridget An Unsupervised Vector Approach to Biomedical Term Disambiguatic ing UMLS and Medline
Messiant, Cédric A Subcategorization Acquisition System for French Verbs

Trka, Keith Adaptive Language Modeling for Word Prediction

Zhang, Yitao A Hierarchical Approach to Encoding Medical Concepts for Clinical Notes

5:25 - 6:00 Break

Poster and Demo Session (6:00-8:30)

Batista, Fernando; Nuno Mamede; Isabel Trancoso Language Dynamics and Capitalization using Maximum Entropy

Boston, Marisa Ferrara; John T. Hale; Reinhold Kliegl; Shravan Vasishth Surprising Parser Actions and Reading Difficulty
Carenini, Giuseppe; Raymond T. Ng; Xiaodong Zhou izing Emails with Ct Cohesion and Subjectivity
Chali, Yllias; Shafiq Joty Zmproving the Performance of the Random Walk Model for Answering Complex Questions

Chen, Wei Dimensions of Subjectivity in Natural Language

Chitturi, Rahul; John Hansen Dialect Classification for Online Podcasts Fusing Acoustic and Language Based Structural and
Semantic Information

DeNero, John; Dan Klein 7%e Complexity of Phrase Alignment Problems

Dickinson, Markus Ad Hoc Treebank Structures

de la Chica, Sebastian; Faisal Ahmad; James H. Martin; Tamara Sumner Extractive Summaries for Educational Science Content

Dligach, Dmitriy; Martha Palmer Nove/ Semantic Features for Verb Sense Disambiguation

Dredze, Mark; Joel Wallenberg feelandic Data Driven Part of Speech Tagging

Duh, Kevin; Katrin Kirchhoff Beyond Log-Linear Models: Boosted Minimum Error Rate Training for N-best Re-ranking
Elsner, Micha; Eugene Charniak Coreference-inspired Coherence Modeling

Finkel, Jenny Rose; Christopher D. Manning Enforcing Transitivity in Coreference Resolution

Georgila, Kallirroi; Maria Wolters; Johanna Moore Simulating the Behaviour of Older versus Younger Users when Interacting
with Spoken Dialogue Systems

Goldberg, Yoav; Reut Tsarfaty A Single Generative Model for Joint Morphological Segmentation and Syntactic Parsing
Goldwasser, Dan; Dan Roth Active Sample Selection for Named Entity Transliteration

Goldwater, Sharon; Dan Jurafsky; Christopher D. Manning Which Words Are Hard to Recognize? Prosodic, Lexical, and
Disfluency Factors that Increase ASR Eiror Rates

HaCohen-Kerer, Yaakov; Ariel Kass; Ariel Peretz Combined One Sense Disambiguation of Abbreviations

Habash, Nizar Four Technigues for Online Handling of Out-of-Vocabulary Words in Arabic-English Statistical Machine
Translation

Haertel, Robbie; Eric Ringger; Kevin Seppi; Carroll James; McClanahan Peter Assessing the Costs of Sampling Methods in
Active Learning for Annolation

Hashimoto, Chikara; Sadao Kurohashi Blog Categorization Exploiting Domain Dictionary and Dynamically Estimated Domains
of Unknown Words

Henderson, James; Oliver Lemon Mixture Model POMDPs for Efficient Handling of Uncertainty in Dialogue Management
Hermjakob, UIf; Kevin Knight; Hal Daumé Il Name Translation in Statistical Machine Translation - Learning When to
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Hildebrand, Almut Silja; Kay Rottmann; Mohamed Noamany; Quin Gao; Sanjika Hewavitharana; Nguyen Bach; Stephan
Vogel Recent Improvements in the CMU Large Scale Chinese-English SMT System

Johnson, Mark Using Adaptor Grammars to Identify Synergies in the Unsupervised Acquisition of Linguistic Structure
Karakos, Damianos; Jason Eisner; Sanjeev Khudanpur; Markus Dreyer Machine Transiation System Combination using ITG-
based Alignments

Kazama, Jun" ichi; Kentaro Torisawa lnducing Gazetteers for Named Entity Recognition by Large-Scale Clustering of
Dependency Relations

Kennedy, Alistair; Stan Szpakowicz Evaluating Roget” s Thesauri

Kulkarni, Anagha; Jamie Callan Dictionary Defin: based h using a Generative Hierarchical Model
Li, Wenjie; Peng Zhang; Furu Wei; Yuexian Hou; Qin Lu A Novel Feature-based Approach to Chinese Entity Relation
Extraction

Li, Zhifei; David Yarowsky Unsupervised Translation Induction for Chinese Abbreviations using Monolingual Corpora

Li, Jianguo; Chris Brew Which Are the Best Features for Automatic Verb Classification

Liv, Chao-Lin; Jen-Hsiang Lin Using Structural Information for Identifying Similar Chinese Characters

Liu, Yandong; Eugene Agichtein You" ve Got Answers: Towards P ‘Models for Predicting Success in Cc ity
Question Answering

McClosky, David; Eugene Charniak Se/f-Training for Biomedical Parsing

Miller, Tim; William Schuler A Unified Syntactic Model for Parsing Fluent and Disfluent Speech

Moilanen, Karo; Stephen Pulman 7he Good, the Bad, and the Unknown: Morphosyllabic Sentiment Tagging of Unseen Words
Moschitti, Alessandro; Silvia Quarteroni Kernels on Linguistic Structures for Answer Extraction

Mrozinski, Joanna; Edward Whittaker; Sadaoki Furui Collecting a Why-Question Corpus for Development and Evaluation of
an Automatic QA-System

Nakov, Preslav; Marti A. Hearst So/ving Relational Similarity Problems Using the Web as a Corpus

Olsson, J. Scott; Douglas W. Oard Combining Speech Retrieval Results with Generalized Additive Models

Penn, Gerald; Xiaodan Zhu A Critical Rc‘awmfmen[ of Evaluation Baselines for Speech Summarization

Polifroni, Joseph; Marilyn Walker i as Cooperative in Dialogue: A and

Roth, Ryan; Owen Rambow; Nizar Habash; Mona Diab; Cynthia Rudin Arabic Morphological Tageing, Diacritization, and
Lemmatization Using Lexeme Models and Feature Ranking

Saha, Sujan Kumar; Pabitra Mitra; Sudeshna Sarkar Word Clustering and Word Selection Based Feature Reduction for MaxEnt
Based Hindi NER

Schulte im Walde, Sabine; Christian Hying; Christian Scheible; Helmut Schmid Combining EM Training and the MDL
Principle for an Automatic Verb Classific
Syed, Umar; Jason Williams Using Automatically Transcribed Dialogs to L&IHI User Models in a Spoken Dialog System
Talbot, David; Thorsten Brants Randomized Language Models via Perfect Hash Functions

Toutanova, Kristina; Hisami Suzuki; Achim Ruopp Applying Morphology Generation Models to Machine Translation
Tsuchiya, Masatoshi; Shinya Hida; Seiichi Nakagawa Robust Extraction of Named Entity Including Unfamiliar Word

Veale, Tony; Yanfen Hao; Guofu Li Mulalmgua] Harvesting of Cross-Clltural Stercotypes

Wan, Stephen; Cecile Paris oW Generating Elaborative jes Biased Towards the Reading
Context

Wang, Qin Iris; Dale Schuurmans; Dekang Lin Semi-Supervised Convex Training for Dependency Parsing

Xia, Yunging; Linlin Wang; Kam-Fai Wong; Mingxing Xu Lyric-based Song Sentiment Classification with Sentiment Vector
Space Model

Yamangil, Elif; Rani Nelken Mining Wikipedia Revision Histortes for Improving Sentence Compression

Yang, Fan; Jun Zhao; Bo Zou; Kang Liu; Feifan Liu Chinese-English Backward Transliteration Assisted with Mining
Monolingual Web Pages

Yuret, Deniz Smoothing a Tera-word Language Model

Zapirain, Befat; Eneko Agirre; Lluis Marquez Robustness and Generalization of Role Sets: PropBank vs. VerbNet

Zhang, Min; Hongfei Jiang; Aiti Aw; Haizhou Li; Chew Lim Tan; Sheng Li A Tree Sequence Alignment-based Tree-to-Tree
Translation Model

Demos (6:00-8:30)

6:00-8:30: Williams, Jason Demonstration of a POMDP Voice Dialer
6:00-8:30: Siddharthan, Advaith; Ann Copestake Generating Research Websites Using Summarisation Techniques
6:00-8:30: Versley, Yannick; Simone Paolo Ponzetto; Massimo Poesio; Vladimir Eidelman; Alan Jern; Jason Smith; Xiaofeng
Yang; Alessandro Moschitti BART: A Modular Toolkit for Coreference Resolution

:00 : 0" Donnell, Mick Demonstration of the UAM CorpusTool for Text and Image Annotation
Huggins-Daines, David; Alexander L. Rudnicky Znteractive ASR Error Correction for Touchscreen Devices
: Germann, Ulrich Yawat: Yet Another Word Alignment Tool
:30: Kang, Moonyoung; Sourish Chaudhuri; Mahesh Joshi; Carolyn P. Rosé SIDE: The Summarization Integrated
Development Environment
6:00-8:30: Yarrington, Debra; John Gray; Chris Pennington; H. Timothy Bunnell; Allegra Cornaglia; Jason Lilley; Kyoko
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Nagao; James Polikoff Mode/Talker Voice Recorder—An Interface System for Recording a Corpus of Speech for Synthesis
6:00-8:30: Kaisser, Michael 7he QuALiM Question Answering Demo: Supplementing Answers with Paragraphs drawn from
Wikipedia

Tuesday, June 17, 2008
Session: Outstanding Paper Award Presentations
9:00 - 9:10 Presentation of Awards

9:10 - 9:35: Bartlett, Susan; Grzegorz Kondrak; Colin Cherry Automatic Syllabification with Structured SVMs for Letter-to-
Phoneme Conversion

9:35 - 10:00: Shen, Libin; Jinxi Xu; Ralph Weischedel A New String-to-Dependency Machine Translation Algorithm with a
Target Dependency Language Model

10:00 - 10:25: Huang, Liang Forest Reranking: Discriminative Parsing with Non-Local Features

10:25 - 10:40: Bikel, Daniel M.; Vittorio Castelli Event Matching Using the Transitive Closure of Dependency Relations

10:40 - 11:10 Break

Session 4A: Syntax & Parsing 2

11:10 - 11:35: Koo, Terry; Xavier Carreras; Michael Collins Simple Semi-supervised Dependency Parsing

11:35 - 12:00: Nesson, Rebecca; Giorgio Satta; Stuart M. Shieber Optimal $k: of Synchronous Tt 19
Grammar

12:00 - 12:25: Dridan, Rebecca; Valia Kordoni; Jeremy Nicholson Enhancing Performance of Lexicalised Grammars

Session 4B: Dialogue

11:10 - 11:35: Ai, Hua; Diane J. Litman Assessing Dialog System User Simulation Evaluation Measures Using Human Judges
11:35 - 12:00: Lee, Cheongjae; Sangkeun Jung; Gary Geunbae Lee Robust Dialog Management with N-Best Hypotheses Using
Dialog Examples and Agenda

12:00 - 12:25: Rieser, Verena; Oliver Lemon Learning Effective Multimodal Dialogue Strategies from Wizard-of-Oz Data:
Bootstrapping and Evaluation

Session 4C: Machine Learning 2

11:10 - 11:35: Milidia, Ruy Luiz; Cicero Nogueira dos Santos; Julio C. Duarte Phrase Chunking Using Entropy Guided
Transformation Learning

Zhu, Xiaojin; Andrew B. Goldberg; Michael Rabbat; Robert Nowak Learning
: Suzuki, Jun; Hideki Isozaki Semi-Supervised Sequential Labeling and Segmentation Using Gig

¢ Bigrams from Unigrams
Word Scale

Unlabeled Data

Session 4D: Semantics 2

: Bhagat, Rahul; Deepak Ravichandran Large Scale Acquisition of Paraphrases for Learning Surface Patterns
zpektor, Idan; Ido Dagan; Roy Bar-Haim; Jacob Goldberger Contextual Prefer 3
Davidov, Dmitry; Ari Rappoport Unsupervised Discovery of Generic Relationships Using Pattern Clusters and
its Evaluation by Automatically Generated SAT Analogy Questions

12:25 - 2:00 Lunch
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Session 5A: Short Papers 1 (Machine Translation)

2:00 - 2:15: Xiong, Deyi; Min Zhang; Aiti Aw; Haizhou Li A Linguistically Annotated Reordering Model for BTG-based
Statistical Machine Translation

Badr, Ibrahim; Rabih Zbib; James Glass Segmentation for En;
Aiti Aw; Haizhou Li Ex

-t0-Arabic S'mmnm/ Machine Translation

Session 5B: Short Papers 2 (Speech)

2:00 - 2:15: Varadarajan, Balakrishnan; Sanjeev Khudanpur; Emmanuel Dupoux Unsupervised Learning of Acoustic Sub-word
Units

2:15 - 2:30: Nenkova, Ani; Agustin Gravano; Julia Hirschberg High Frequency Word Entrainment in Spoken Dialogue

2:30 - 2:45: McMillian, Yolanda; Juan Gilbert Distributed Listening: A Parallel Processing Approach to Automatic Speech
Recognition

Session 5C: Short Papers 3 (Semantics)

2:00 - 2:15: Bethard, Steven; James H. Martin Learning Semantic Links from a Corpus of Parallel Temporal and Causal
Relations

2:15 - 2:30: Snajder, Jan; Bojana Dalbelo Basic; Sasa Petrovic; Ivan Sikiric Evolving New Lexical Association Measures
Using Genetic Programming

2:30 - 2:45: Katrenko, Sophia; Pieter Adriaans Semantic Types of Some Generic Relation Arguments: Detection and
Evaluation

2:45 - 3:00: Roa, Sergio; Valia Kordoni: Yi Zhang Mapping between Ct i Semantic jons and Lexical
Semantic Resources: Towards Accurate Deep Semantic Parsing

Session 5D: Short Papers 4 (Generation/Summarization)

2:00 - 2:15: Krahmer, Emiel; Erwin Marsi; Paul van Pelt Query-based Sentence Fusion is Better Defined and Leads to More
Preferred Results than Generic Sentence Fusion

-30: Belz, Anja; Albert Gatt /ntrinsic vs. Extrinsic Evaluation Measures for Referring Expression Generation
Liu, Feifan; Yang Liu Correlation between ROUGE and Human Evaluation of Extractive Meeting Summaries
:00: Schilder, Frank; Ravikumar Kondadadi FastSum: Fast and Accurate Query-based Multi-document Summarization

3:00 - 3:15 Break

Session SE: Short Papers 1 (Syntax)

3:15 - 3:30: Gabbard, Ryan; Seth Kulick Construct State Modification in the Arabic Treebank
. 5: Musillo, Gabriele Antonio; Paola Merlo Unlexicalised Hidden Variable Models of Split Dependency Grammars
00: Lin, Feng; Fuliang Weng Computing Confidence Scores for All Sub Parse Trees
4 00 - 4:15: Foster, Jennifer; Joachim Wagner; Josef van Genabith Adapting a WSJ-Trained Parser to Grammatically Noisy
Text

Session 5F: Short Papers 2 (Dialog/Statistical Methods)

3:15 - 3:30: Rangarajan Sridhar, Vivek Kumar; Srinivas Bangalore; Shrikanth Narayanan Enriching Spoken Language
Transiation with Dialog Acts

3:30 - 3:45: Kim, Donghyun; Hyunjung Lee; Choong-Nyoung Seon; Harksoo Kim; Jungyun Seo Speakers”  Intention
Prediction Using Statistics of Multi-level Features in a Schedule Management Domain

3:45 - 4:00: Dredze, Mark; Koby Crammer Active Learning with Confidence

4:00 5: Goldberg, Yoav; Michael Elhadad sp/itSVM: 1, Space-Efficient, non-Heuristic, Polynomial Kernel
http://www.ling.ohio-state.edu/acl08/schedule.html 2009/1/24 http://www.ling.ohio-state.edu/acl08/schedule.html 2009/1/24
Proceedings FIH HOH Proceedings HEREH HOH
Computation for NLP Applications Methods

Session 5G: Short Papers 3 (Semantics/Phonology)

3:15 - 3:30: Nielsen, Rodney D.; Wayne Ward; James H. Martin; Martha Palmer Exzacting a Representation from Text for
Semantic Analysis

3:30 - 3:45: Regneri, Michacla; Markus Egg; Alexander Koller Efficient Processing of Underspecified Discourse
Representations

3:45 - 4:00: Brown, Susan Windisch Choosing Sense Distinctions for WSD: Psycholinguistic Evidence

4:00 - 4:15: Alfonseca, Enrique; Slaven Bilac; Stefan Pharies Decompounding query keywords from compounding languages

Session SH: Short Papers 4 (IR/Sentiment Analysis)

3:15 - 3:30: Li, Shoushan; Chengqing Zong Multi-domain Sentiment Classification

Tmka, Keith; Kathleen McCoy Evaluating Word Prediction: Framing Keystroke Savings

Elsayed, Tamer; Jimmy Lin; Douglas Oard Pair > Document Similarity in Large Collections with MapReduce
4:00 - 4:15: Sun, Qi; Runxin Li; Dingsheng Luo; Xihong Wu Text Segmentation with LDA-Based Fisher Kemel

4:15 - 4:45 Break

Session 6A: Question Answering

4:45 - 5:10: Kaisser, Michael; Marti A. Hearst; John B. Lowe Improving Search Results Quality by Customizing Summary
Lengths

5:10 - 5:35: Ding, Shilin; Gao Cong; Chin-Yew Lin; Xiaoyan Zhu Using Conditional Random Fields to Extract Contexts and
Answers of Questions from Online Forums

5:35 - 6:00: Surdeanu, Mihai; Massimiliano Ciaramita; Hugo Zaragoza Learning to Rank Answers on Large Online QA
Collections

Session 6B: Phonology, Morphology 1

4:45 - 5:10: Adler, Meni; Yoav Goldberg; David Gabay; Michael Elhadad Unsupervised Lexicon-Based Resolution of
Vords for Full Morphological Analysis
5:10 - 5:35: Snyder, Benjamin; Regina Barzilay Unsupervised Multi] Learning for

5:35 - 6:00: Goldberg, Yoav; Meni Adler; Michael Elhadad EM Can Find Pretty Good HMM POS-Taggers (When Given a
Good Start)

Session 6C: Machine Translation 3

4:45 - 5:10: Uszkoreit, Jakob; Thorsten Brants Distributed Word Clustering for Large Scale Class-Based Language Modeling
in Machine Translation

5:10 - 5:35: Avramidis, Eleftherios; Philipp Koehn Enriching Morphologically Poor Languages for Statistical Machine
Translation

5:35 - 6:00: Haghighi, Aria; Percy Liang; Taylor Berg-Kirkpatrick; Dan Klein Learning Bilingual Lexicons from Monolingual
Corpora

Session 6D: Semantics 3

4:45 - 5:10: Zhao, Shiqi; Haifeng Wang; Ting Liw; Sheng Li Pivor Approach for Extracting Paraphrase Patterns from Bilingual
Corpora

5:10 - 5:35: Chambers, Nathanael; Dan Jurafsky Unsupervised Learning of Narrative Event Chains

5:35 - 6:00: Diab, Mona; Alessandro Moschitti; Daniele Pighin Semantic Role Labeling Systems for Arabic using Kernel

http://www.ling.ohio-state.edu/acl08/schedule.html 2009/1/24

7:00 - 11:00 Banquet

Wednesday, June 18, 2008

9:00 - 10:10 Invited Talk: Susan Dumais, "Supporting Searchers in Searching"
10:10 - 10:30 Break

Session 7A: Summarization

10:30 - 10:55: Biadsy, Fadi; Julia Hirschberg; Elena Filatova An Unsupervised Approach to Biography Production Using
Wikipedia

10:55 - 11:20: Mei, Qiaozhu; ChengXiang Zhai Generating Impact-Based aries for Scientific Literature

11:20 - 11:45: Nenkova, Ani; Annie Lovis Can You Summarize This? Identifying Correlates of Input Difficulty for Mult-
Document Summarization

Session 7B: Discourse & Pragmatics

10:30 - 10:55: Elsner, Micha; Eugene Charniak You Talking to Me? A Corpus and Algorithm for Conversation
Disentanglement

10:55 - 11:20: Yang, Xiaofeng; Jian Su; Jun Lang; Chew Lim Tan; Ting Liu; Sheng Li An Enntity-Mention Model for
Coreference Resolution with Inductive Logic Programming

11:20 - 11:45: Eisenstein, Jacob; Regina Barzilay; Randall Davis Gestural Cohesion for Topic Segmentation

Session 7C: Machine Learning 2

10:30 - 10:55: Reichart, Roi; Katrin Tomanek; Udo Hahn; Ari Rappoport Multi-Task Active Learning for Linguistic
Annotations

10:55 - 11:20: Mann, Gideon S.; Andrew McCallum Generalized Expectation Criteria for Semi-Supervised Learning of
Conditional Random Fields

11:20 - 11:45: Liang, Percy; Dan Klein Analyzing the Errors of Unsupervised Learning

Session 7D: Phonology, Morphology 2

10:30 - 10:55: Zhang, Yue; Stephen Clark Joint Word Segmentation and POS Tagging Using a Single Perceptron

10:55 - 11:20: Jiang, Wenbin; Liang Huang; Qun Liu; Yajuan Lt A Cascaded Linear Model for Joint Chinese Word
Segmentation and Part-of-Speech Tagging

11:20 - 11:45: Jiampojamarn, Sittichai; Colin Cherry; Grzegorz Kondrak Joint Processing and Discriminative Training for
Letter-to-Phoneme Conversion

11:45 - 12:50 Lunch
12:50 - 2:20 ACL Business Meeting

Session 8A: Information Retrieval 2

2:30 - 2:55: Bao, Shenghua; Huizhong Duan; Qi Zhou; Miao Xiong; Yunbo Cao: Yong Yu A Probabilistic Model for Fine-
Grained Expert Search

http://www.ling.ohio-state.edu/acl08/schedule.html 2009/1/24
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2:55 - 3:20: Weerkamp, Wouter; Maarten de Rijke Credibility Improves Topical Blog Post Retrieval
3 Csomai, Andras; Rada Mihalcea Linguistically Motivated Features for Enhanced Back-of-the-Book Indexing
3:45 - 4:10: Elsayed, Tamer; Douglas W. Oard; Galileo Namata Resolving Personal Names in Email Using Context Expansion

Session 8B: Syntax & Parsing 3

2:30 - 2:55: Nivre, Joakim; Ryan McDonald /7 Grz od and Transit D vy Parsers
2:55 - 3:20: Finkel, Jenny Rose; Alex Kleeman; Christopher D. Manning Efficient, Feature-based, Conditional Random Field
Parsing

3:20 - 3:45: Gomez-Rodriguez, Carlos; John Carroll; David Weir A Deductive Approach to Dependency Parsing
3:45 - 4:10: Bender, Emily M. Evaluating a Crosslinguistic Grammar Resource: A Case Study of Wambaya

Session 8C: Machine Translation 2

2:30 - 2:55: Ganchev, Kuzman; Jodo V. Graca; Ben Taskar Better Alignments = Better Translations?

2:55 - 3:20: Lin, Dekang; Shaojun Zhao; Benjamin Van Durme; Marius Pasca Mining Parenthetical Translations fiom the Web
by Word Alignment

3:20 - 3:45: Marton, Yuval; Philip Resnik Soft Syntactic Constraints for Hierarc P ised Translation

3:45 - 4:10: Dyer, Christopher; Smaranda Muresan; Philip Resnik Generalizing Word Lattice Translation

Session 8D: Semantics 4

2:30 - 2:55: Zhao, Shigi; Cheng Niu; Ming Zhou; Ting Liu; Sheng Li Combining Multiple Resources to Improve SMT-based
Paraphrasing Model

2:55 - 3:20: Srikumar, Vivek; Roi Reichart; Mark Sammons; Ari Rappoport; Dan Roth Extraction of Entailed Semantic
Relations Through Syntax-Based Comma Resolution

3:20 - 3:45: de Marneffe, Marie-Catherine; Anna N. Rafferty; Christopher D. Manning Finding Contradictions in Text

3:45 - 4:10: Kozareva, Zornitsa; Ellen Riloff; Edvard Hovy Semantic Class Learning from the Web with Hyponym Pattern
Linkage Graphs

4:40 - 6:10 Lifetime Achievement Award Presentation and Closing Session
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Using Structural Information for Identifying Similar Chinese Characters

Chao-Lin Liu

Jen-Hsiang Lin

Department of Computer Science, National Chengchi University, Taipei 11605, Taiwan
{chaolin, g9429}@cs.nccu.edu.tw

Abstract

Chinese characters that are similar in their
pronunciations or in their internal structures
are useful for computer-assisted language
learning and for psycholinguistic studies. Al-
though it is possible for us to employ image-
based methods to identify visually similar
characters, the resulting computational costs
can be very high. We propose methods for
identifying visually similar Chinese characters
by adopting and extending the basic concepts
of a proven Chinese input method--Cangjie.
We present the methods, illustrate how they
work, and discuss their weakness in this paper.

1 Introduction

A Chinese sentence consists of a sequence of char-
acters that are not separated by spaces. The func-
tion of a Chinese character is not exactly the same
as the function of an English word. Normally, two
or more Chinese characters form a Chinese word to
carry a meaning, although there are Chinese words
that contain only one Chinese character. For in-
stance, a translation for “conference” is “#f3t €~
and a translation for “go” is “%”. Here “#}3f &~
is a word formed by three characters, and “#%” is a
word with only one character.

Just like that there are English words that are
spelled similarly, there are Chinese characters that
are pronounced or written alike. For instance, in
English, the sentence “John plays an important roll
in this event.” contains an incorrect word. We
should replace “roll” with “role”. In Chinese, the
sentence “4~ X £ #1  3RHF ¥ 5% contains an
incorrect word. We should replace “3%35%” (a place
for taking examinations) with “#735™ (a market).
These two words have the same pronunciation,
shi(4) chang(3) ¥, and both represent locations. The
sentence “#& ¥ % M F — 23t 4 also con-

" We use Arabic digits to denote the four tones in Mandarin.
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tains an error, and we need to replace “# &~ with
“gh B> “# B is considered an incorrect word,
but can be confused with “fi & because the first
characters in these words look similar.

Characters that are similar in their appear-
ances or in their pronunciations are useful for
computer-assisted language learning (cf. Burstein
& Leacock, 2005). When preparing test items for
testing students’ knowledge about correct words in
a computer-assisted environment, a teacher pro-
vides a sentence which contains the character that
will be replaced by an incorrect character. The
teacher needs to specify the answer character, and
the software will provide two types of incorrect
characters which the teachers will use as distracters
in the test items. The first type includes characters
that look similar to the answer character, and the
second includes characters that have the same or
similar pronunciations with the answer character.

Similar characters are also useful for studies
in Psycholinguistics. Yeh and Li (2002) studied
how similar characters influenced the judgments
made by skilled readers of Chinese. Taft, Zhu, and
Peng (1999) investigated the effects of positions of
radicals on subjects’ lexical decisions and naming
responses. Computer programs that can automati-
cally provide similar characters are thus potentially
helpful for designing related experiments.

2 Identifying Similar Characters with In-
formation about the Internal Structures

We present some similar Chinese characters in the
first subsection, illustrate how we encode Chinese
characters in the second subsection, elaborate how
we improve the current encoding method to facili-
tate the identification of similar characters in the
third subsection, and discuss the weakness of our
current approach in the last subsection.

2.1 Examples of Similar Chinese Characters

We show three categories of confusing Chinese
characters in Figures 1, 2, and 3. Groups of similar

ciation for Computational Linguis

TEIFF RAR FEhTFE
BFE 8 AN ARk Rk ©US

Flgure 1. Some similar Chinese characters

By R P AR RR RE
ﬂﬂ'] a£ass HBAXN MM
Figure 2. Some similar Chinese characters that have
different pronunciations

AL S AN sz.safr
BRA mles

Figure 3. Homophones with a ahdl’(.d component
characters are separated by spaces in these figures.
In Figure 1, characters in each group differ at the
stroke level. Similar characters in every group in
the first row in Figure 2 share a common part, but
the shared part is not the radical of these characters.
Similar characters in every group in the second
row in Figure 2 share a common part, which is the
radical of these characters. Similar characters in
every group in Figure 2 have different pronuncia-
tions. We show six groups of homophones that
also share a component in Figure 3. Characters that
are similar in both pronunciations and internal
structures are most confusing to new learners.

It is not difficult to list all of those characters
that have the same or similar pronunciations, e.g.,
“2X35%” and “# 357, if we have a machine readable
lexicon that provides information about pronuncia-
tions of characters and when we ignore special pat-
terns for tone sandhi in Chinese (Chen, 2000).

In contrast, it is relatively difficult to find
characters that are written in similar ways, e.g.,
“#” with “#”, in an efficient way. It is intriguing
to resort to image processing methods to find such
structurally similar words, but the computational
costs can be very high, considering that there can
be tens of thousands of Chinese characters. There
are more than 22000 different characters in large
corpus of Chinese documents (Juang et al., 2005),
so directly computing the similarity between im-

instance, the common part of the characters in the
rlghl group in the second row in Figure 3 appears
in different places in the characters.

Lexicographers employ radicals of Chinese
characters to organize Chinese characters into sec-
tions in dictionaries. Hence, the information should
be useful. The groups in the second row in Figure
2 show some examples. The shared components in
these groups are radicals of the characters, so we
can find the characters of the same group in the
same section in a Chinese dictionary. However,
information about radicals as they are defined by
the lexicographers is not sufficient. The groups of
characters shown in the first row in Figure 2 have
shared components. Nevertheless, the shared com-
ponents are not considcrcd as radicals, so the char-
acters, e.g., “FA”and “%)”, are listed in different
sections in the dictionary.

2.2 Encoding the Chinese Characters

The Cangjie® method is one of the most popular
methods for people to enter Chinese into com-
puters. The designer of the Cangjie method, Mr.
Bong -Foo Chu, selected a set of 24 basic elements
in Chinese characters, and propoﬁed a set of rules
to d Chinese ct 1 ts
that belong to this set of building blocks (Chu,
2008). Hence, it is possible to define the similarity
between two Chinese characters based on the simi-
larity between their Cangjie codes.

Table 1, not counting the first row, has three

ages of these characters demands a lot of comput
tion. There can be more than 4.9 billion
combinations of character pairs. The Ministry of
Education in Taiwan suggests that about 5000
characters are needed for ordinary usage. In this
case, there are about 25 million pairs.

The quantity of combinations is just one of

the bottlenecks. We may have to shift the p
of the characters “appropriately” to find the com-
mon part of a character pair. The appropriateness
for shifting characters is not easy to define, making
the image-based method less directly useful; for

94

Cangjie Codes Cangjie Codes
+| += ENES
T [ =¥ Tl =t
7| sArAr | ArEs
& | +A x| A+
B | ——-AE % | AP
| —oALL | 8| —rALWY
W | FroA % 4ifoA
7| —3+3 A | —#FF
RN | |k
M| 838 il B3A
# | o4t i | AT
B | AMtE 2 | KPP
| AgtdA % | AHHA
| kepw 3 Fo+
B | ®9As A oALg
g [ A—k— @] hok—
B A—%= | K—%—
Table 1. Cangjie codes for some characters

* hitp:/fen.wikipedia.org/wiki/Cangjie_method

sections, each showing the Cangjie codes for some
characters in Figures 1, 2, and 3. Every Chinese
character is decomposed into an ordered sequence
of elements. (We will find that a subsequence of
these elements comes from a major component of a
character, shortly.) Evidently, computing the num-
ber of shared elements provides a viable way to
determine “visually similar” characters for charac-
ters that appeared in Figure 2 and Figure 3. For
instance, we can tell that “3%” and “ %" are similar
because their Cangjie codes share “ | @ A7, which
in fact represent “i&”.

Unfonundtely, the Cangjie codes do not ap-
pear to be as helpful for identifying the similarities
between characters that differ subtly at the stroke
level, e.g., “+ £ T F" and other characters listed
in Figure 1. There are special rules for decompos-
ing these relatively basic characters in the Cangjie
method, and these special encodings make the re-
sulting codes less useful for our tasks.

The Cangjie codes for characters that contain
multiple components were intentionally simplified
to allow users to input Chinese characters more
efficiently. The longest Cangjie code for any Chi-
nese character contains no more than five elements.
In the Cangjie codes for “A%” and “/&”, we see “—
4 —" for the component “£”, but this component
is represented only by “— —" in the Cangjie codes
for “88” and “%)”. The simplification makes it
relauvely harder to identify visually similar charac-
ters by comparing the actual Cangjie codes.

2.3 Engineering the Original Cangjie Codes

Although useful for the sake of designing input

3] -]

-2 A
Figure 4. Arrangements of components in Chinese

components in determining the similarity between
characters.

Figure 4 illustrates possible layouts of the
components in Chinese characters that were
adopted by the Cangjie method (cf. Lee, 2008). A
sample character is placed below each of these
layouts. A box in a layout indicates a component in
a character, and there can be at most three compo-
nents in a character. We use digits to indicate the
ordering the components. Notice that, in the sec-
ond row, there are two boxes in the second to the
rightmost layout. A larger box contains a smaller
one. There are three boxes in the rightmost layout,
and two smaller boxes are inside the outer box.
Due to space limits, we do not show “1” for this
outer box.

After recovering the simplified Cangjie code
for a character, we can associate the character with
a tag that indicates the overall layout of its compo-
nents, and separate the code sequence of the char-
acter according to the layout of its components.
Hence, the information about a character includes
the tag for its layout and between one to three se-
quences of code elements. Table 2 shows the anno-

method, the simplification of Cangjie codes causes -
difficulties when we use the codes to find similar x La);oul %P;;_I A Part2 | Part3
characters. Hence, we choose to use the ipl I 5 *A 3%
codes for the components in our database. For in- w 5 A i a
stance, in our database, the codes for “&7, “Ag”, =
“42,“8”, and “%)” are, rcspccuvcly, ——##——“, : 4 hoom | At A%
CR S ded =, A—dede—, = dede—— R b2y 5 PR o

LA and “— %k — K P w6 A * *

The knowledge about the graphical s ¥ A # e s

of the Chinese characters (cf. Juang et al., 2005; B 8 L::) A
Lee, 2008) can be instrumental as well. Consider B 9 L] % -
the examples in Figure 2. Some ct can be £l 2 —%k— | —Audk
decomposed vertically; e.g., “#” can be split into 1 2 HA —k k-
two smaller components, i.e., “#” and “m”. Some a 5 =] A
characters can be decomposed horizontally; e.g., B 9 ] a Aug
“#,” is consisted of “£” and “#,”. Some have 4 2 ES Ad
enclosing components; e.g., “ A is enclosed in oS 5 AAd ~
“0” in “B”. Hence, we can consider the locations # 6 # A p: N

of the components as well as the number of shared
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Table 2. Annotated and expanded code

tated and expanded codes of the sample characters
in Figure 4 and the codes for some characters that
we will discuss. The layouts are numbered from
left to right and from top to bottom in Figure 4.
Elements that do not belong to the original Canjie
codes of the characters are shown in smaller font.

Recovering the elements that were dropped
out by the Cangjie method and organizing the sub-
sequences of elements into parts facilitate the iden-
tification of similar characters. It is now easier to
find that the character (38) that is represented by
“—+44—"and “— A 14" looks similar to the
chdrmer (1“‘) that is represented by “4f A” and

” in our database than using their origi-
nal Cangjie codes in Table 1. Checking the codes
for “8” and “[8” in Table 1 and Table 2 will offer
an additional support for our design decisions.

In the worst case, we have to compare nine
pairs of code sequences for two characters that
both have three components. Since we do not sim-
plify codes for components and all components
have no more than five elements, conducting the
comparisons operations are simple.

2.4 Drawbacks of Using the Cangjie Codes

Usmg the Cangjle codes as the biﬂli for comparing
the similarity between ct J some
potential problems.

It appears that the Cangjie codes for some
characters, particular those simple ones, were not
assigned without ambiguous principles. Relying on
Cangjie codes to compute the similarity between
such characters can be difficult. For instance, “%-”
uses the fifth layout, but “3,” uses the first layout
in Figure 4. The first section in Table 1 shows the
Cangjie codes for some character pairs that are dif-
ficult to compare.

Due to the design of the Cangjie codes, there
can be at most one component at the left hand side
and at most one component at the top in the layouts.
The last three entries in Table 2 provide an exam-
ple for these constraints. As a standalone character,
“#8” uses the second layout. Like the dal

3 Concluding Remarks

We adopt the Cangjie alphabet to encode Chinese
characters, but choose not to simplify the code se-
quences, and annotate the characters with the lay-
out information of their components. The resulting
method is not perfect, but allows us to find visually
similar characters more efficient than employing
the image-based methods.

Trying to find conceptually similar but con-
textually inappropriate characters should be a natu-
ral step after being able to find characters that have
similar pronunciations and that are visually similar.
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