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Data Mining and Intelligent Retrieval Techniques

for Digital Music Archives( II )

Abstract

In this project, we investigated the data mining techniques for intelligent retrieval of digital
music archive. The way of the digital music archive retrieval, including metadata search,
content-based music retrieval, music style retrieval, music browsing, personalized music
recommendation and etc., is helpful for retrieving music archive easily. In this project, we
utilize the data mining technique to learn user’s concept of relevance feedback for developing
content-based music retrieval technique.

Traditional content-based music retrieval system retrieves a specific music object which
is similar to the user’s query. There is also a need, category search, for retrieving a specific
category of music objects. In category search, music objects of the same category share a
common semantic concept which is defined by the user. The concept for category search in
music retrieval is subjective and dynamic. Different users at different time may have different
interpretations for the same music object. In the music retrieval system along with relevance
feedback mechanism, users are expected to be involved in the concept learning process.
Relevance feedback enables the system to learn user’s concept dynamically.

In this project, the relevance feedback mechanism for category search of music retrieval
based on the semantic concept learning is investigated. We proposed a segment-based music
representation to assist the system in discovering user’s concept in terms of low-level music
features. Each music object is modeled as a set of significant motivic patterns (SMP) achieved

il



by discovering motivic repeating pattern. Both global and local music features are considered
in concept learning.

Moreover, to discover user’s semantic concept, a two-phase frequent pattern mining
algorithm is proposed to discover common properties from relevant and irrelevant objects
respectively and based on which a classifier is derived for distinguishing music objects.

Except user’s feedback, three strategies of the system’s feedback to select objects for
user’s relevance judgment are investigated. Most-positive strategy returns the most relevant
music object to the user while most-informative strategy returns the most uncertain music
objects for improving the discrimination power of the next round. Hybrid feedback strategy
returns both of them. Comparative experiments are conducted to evaluate effectiveness of the
proposed relevance feedback mechanism. Experimental results show that a better precision

can be achieved via proposed relevance feedback mechanism.
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CHAPTER 1

Introduction

The amount of digital multimedia data increases with the advances in multimedia and
computer technologies. Digital data enriches our lives and technologies for storing, analyzing
and accessing multimedia data are increasingly demanded. One of the technologies is
multimedia information retrieval which has been conducted for many years. In the area of
music retrieval, a typical music retrieval system can discover what user needs by given
keywords such as title, author name etc. Except querying by metadata, a content-based
retrieval (CBMR) system is introduced which searches for music object by analyzing music
content. Traditional content-based music retrieval system discover a specific music object
which is similar to a given music segment. Issues related to CBMR include music

representation, similarity metric, indexing and query processing.

Instead of searching for a particular music object (“target search”), there is a need for
retrieving a specific category of music objects (“‘category search”). These music objects, of
the same category, share a common semantic concept which is defined by the user. For
example, when a user wishes to search for romantic music, the retrieved music objects should

share the common concept of romantic feeling.

Different users at different time may have established different interpretations of concept
for the same music object. Therefore, the concept for category search in music retrieval is

subjective and dynamic. The taxonomy of categories of music objects with respect to user’s



concept can’t be constructed in advance and in a fixed way.

To attack this problem, an on-line and user-dependent learning process is needed. Users
are expected to be involved in the learning process for two reasons. One is the system lacks of
prior knowledge with respect to user’s concept and thus users are required to provide
examples. The other is that owing to the scarcity of training samples, relevance feedback
provided by the user is needed to improve the retrieval results. In a query session of music
retrieval, the process may proceed for several iterations until the user satisfies the result.
User’s relevance feedback in each round enables the system to learn user’s concept
dynamically. The system accumulates relevance feedback data throughout the session. The

performance is expected to be improved via relevance feedback.

In this report, the relevance feedback mechanism for category search of music retrieval
based on the semantic concept learning is investigated. There are four main contributions in
our work. The first is the investigation of relevance feedback in content-based music retrieval.
Little attention has been paid to the design of relevance feedback approach while in

content-based music retrieval most users are frustrated in specification of music query.

The second is the proposed segment-based music modeling approach. In traditional
multimedia retrieval, most research on relevance feedback approaches models the multimedia
object as a whole. Some approaches in image retrieval extended to deal with local features by
decomposing an image into regions. In music retrieval, for the sake that concept may be
constituted by entire music object or only parts of it, we propose the segment-based music
representation to facilitate the system to capture user’s concept in compound granule. In our
approach, a music object is treated as a whole as well as a set of music segments. These music

segments are extracted from a music object based on music theory.



The third contribution is the developed algorithm for learning user’s semantic concept.
The algorithm is presented to enable a learning process based on the segment-based music
representation and to discover the concept which is constituted by different music features.
We transform the relevance feedback problem to the binary classification problem where
examples from user’s feedback are regarded as either irrelevant or relevant to the user’s
concept. An on-line and user-dependent classifier is trained to classify music objects from

music archive and return the result to the user.

The last one is a comparative performance is evaluated based on three system feedback
strategies for returning results for user’s feedback. The strategy adopted will determine how
much discrimination power the system can obtain for the next iteration. Most-positive
strategy will return the most relevant music object to the user, most-informative strategy
will return uncertain music objects that provide more discriminative information for systems
to learn user’s concept, and hybrid feedback strategies (HB) returns both of them. Traditional
method (most positive strategy) always returns the most relevant music objects to the user.
Most-informative will select a set of music objects such that user’s feedback will improve the
discrimination of uncertain music objects at the next iteration. The strategy highly depends on
user’s willingness to interact with the system. For impatient users, the system should applied
MP strategy. On the contrary, if users are willing to interact with the system, MI strategy can

be applied. The hybrid one is compromise of these two.

Figure 1.1 illustrates the music retrieval along with the relevance feedback mechanism.
Music objects in music archive and user’s example query music are preprocessed by the
music object modeling module. The semantic concept learning module is designed to discover
from user’s relevance feedback the relationships between user’s semantic concept and music

features. A classifier with respect to the user’s relevance concept is derived to classify each



music object in the music archive either as relevant or irrelevant for the next round. The
system then will select a collection of music objects for user’s relevance judgment and based
on which a further semantic learning process may proceed again once the user isn’t satisfied
with the retrieval result. Therefore, a query session may involve more than one rounds of
learning process. In each round, there are two types of feedback, the feedback (relevance
feedback) given from users to systems (U2S) and the feedback (search result) returned from
systems to users (S2U). In the U2S feedback, the user judges each retrieved music object
either relevant or irrelevant to the concept. The system proceeds to learn user’s semantic
concept from U2S feedback and then returns a collection of music objects for user’s relevance

judgment.
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Figure 1.1 Framework of music retrieval along with relevance feedback mechanism.

This report is organized as follows. Related work about relevance feedback and music

retrieval is introduced in section 2. The music modeling approach is described in section 3.



Section 4 presents the semantic concept learning task. Experimental results are presented in

section 5. We conclude our work in section 6.



CHAPTER 2

Related Work

2.1 Relevance feedback schemes

In the area of modern information retrieval, a variety of approaches were developed for
improving query formulation through query expansion and term reweighting [20]. Relevance
feedback (RF) in image and video retrieval area has been addressed a lot. Most of them
extend RF techniques in text retrieval while some of them adopt machine learning techniques.
Note that all the existing work may have different assumption and problem settings. In this
section, we will list some major variants in different conceptual dimensions in the aspect of

user behavior model and algorithmic assumptions.

Object

According to the target that the user looks for, relevance feedback work can be
categorized into two types, category search, and target search. In content-based image
retrieval (CBIR), most of the work assumes the user is looking for a specific category of
images. On the other hand, Cox et al. [4] assume what user looks for is a particular target
object and a Bayesian framework is used to evaluate underlying probabilistic distribution over

test data in a database via user’s relevance feedback.

Feedback Algorithm

Work on CBIR with RF can be considered as a ranking problem where an ordered object



list will be returned to the user based on the system’s RF algorithm. RF algorithm is
developed based on defined query representation along with distance function. A typical RF
technique which takes user’s relevance judgment into account to provide an improved
retrieval results is the query reformulation approach. In [18], two main query reformulation
approaches, single-point and multipoint, in single feature representation feedback are
mentioned. The well-known technique of single point approach is query point movement
(QPM). The objective of QPM approach is to reformulate a new query point such that this
new point is close to relevant results and far from irrelevant results. In QPM, a single query is
used and regarded as a point in a multidimensional space along with a single distance function
(e.g. Euclidean distance function). Multipoint approach opposite to single query point uses
multiple query points and aggregate their individual distances to data points into an overall
distance. A well known approach is multipoint query expansion (QE). In such paradigm, the
objective is to search for objects similar to more than one example. The distance of an object
to the query points in a feature space is measured based on a weighted summation of the
distances to each query point. When the new multiple query points are constructed through
relevance feedback, the membership of the query points and weight that correspond to each
query point may be changed. In other words, work adopts QE approach not only reformulate
the query by adding new relevant examples or eliminating irrelevant examples but also
adjusting weight of each example in each iteration. On the other hand, instead of representing
the query in a single multidimensional space, multifeature representation feedback treats each
feature representation individually. The query is represented as a collection of single-feature
representation queries and an aggregation function is employed to combine the individual
query distances into an overall distance. During a query session, the user can select feature
representations that he is interested in along with the RF approach for each single feature

representation. For example, users can give a query by selecting color histogram



representation using QPM approach for RF and the wavelet feature representation using a
multipoint query expansion for RF. A query based on the multifeature query model may be
modified by adding or deleting single-feature representation queries and by updating the
weights for each single feature query, which is known as query reweighting. Work relative to
multifeature representation feedback can refer to [21]. Eventually, an ordered set of
multimedia objects will be returned to the user by decreasing relevance by using RF

techniques mentioned above.

Research of content-based video retrieval focused on formulating appropriate query via
interaction has also been presented in [2] where not only features but also multiple modalities
are considered. Information of video objects is implicitly represented by many modalities
such as audio, color, and motion vectors. To search a collection of multimedia object is more
challenging than searching text documents where natural human language is used to represent
a query. Therefore, Amir et. al. [2] probed into a question of what modalities compose of
user’s information need when retrieving video objects and presented a mechanism to
transform an abstract information need into a concrete search query by using mutual relevance
feedback. A query expansion task across multiple modalities proceeds along a query session
and will formulate a proper query at the end of a query session. Finally, the multimodal search
query will be kept as a meta-representation of the corresponding semantic concept and may be

applied later for the same concept without going through tiring interactions again.

Recent work on RF treat it as a classification problem [8][10][22][25][28][28][30]. In
classification paradigm, user’s relevance feedback is regarded either as relevant class or
irrelevant class and the objective is to incorporate user’s relevance feedback for building
classifiers to classify multimedia objects. Most of the previous work utilizes support vector

machines (SVMs). Since the SVMs not only set up a decision boundary between relevant and



irrelevant images but also provides a mechanism to rank all of them. Moreover, it’s efficient
in facilitating interactions in an on-line environment although it lacks of incremental learning
property. In addition to SVMs, some work adopts Bayesian framework [4] and some may use
boosting technique to build a composite classifier to make binary decision on each returned
objects. For instance, [30] proposed two online pattern classification methods, called
interactive random forest (IRF) and adaptive random forests (ARF) which form a composite
classier known as random forest for relevance feedback. Both improve the performance of
regular random forests in different aspect. IRF improves the efficiency by using a two-level
resampling technique, while ARF improves the effectiveness by using dynamic feature

extraction and adaptive sample selection techniques.

In addition to classification approach, Yan [32] also mentioned the issue of selecting
negative examples since negative instances are less well-defined as a coherent subset. [32]
presented a negative pseudo-relevance feedback mechanism which uses the bottom-ranked
examples for negative feedback identified based on a similarity metric. The training examples
containing the positive examples (the query images) and the negative examples are then fed
back to train a margin-based classifier. An adaptive similarity space will be learned following

the pseudo-relevance feedback mechanism.

User’s Feedback

There are three main ways for user to provide relevance feedback. The first one is binary
feedback where the user judges each returned object either as relevant (or positive) or
irrelevant (negative). The second type is degree of (ir)relevance where the user has to score
each returned object showing how (ir)relevant an object is with respect to his semantic
concept. In this way, it’s difficult and burdensome for users to give (ir)relevance degree for

each object consistently. The third type of feedback is a comparative judgment where no



definite relevant and irrelevant judgment is made. Some feedback algorithms may take both

positive and negative samples into account while some only consider positive samples.

System’s Feedback

In addition to machine learning technique introduced in RF to increase the discrimination
power, an active learning technique related to returning strategy is introduced to improve the
discrimination of uncertain object in the next round. It’s a strategy of selecting the best set of
object at a feedback round to maximize potential information from the user. A standard
strategy always returns the most positive objects based on previous training process. On the
other hand, the system can actively query the user for labels to achieve the maximal
information. The objects whose labels the system most uncertain about are named most

informative objects in [33].

Representation

Most work on CBIR tends to model an image object as a vector in a multiple feature
space [18][21]. Each feature dimension will be assigned a feature weight to represent the
importance of that dimension. Hence, the feature weight of all dimensions forms a feature
weight vector. The goal of algorithms using vector representation is to adjust the weight
vector dynamically which may captures user’s interest more precisely via few rounds of

feedback learning.

Instead of describing an object as a whole, some work concerns local properties of an
object and model an object as a set of feature vector corresponding to a local part. Owing to
different expectations of the user, the user may mark an object relevant either based on global
or local properties among the object. In some applications, such as [13][14], an image is

considered as a set of regions and the system should be capable of leaning regions which are

10



emphasized by the user if user’s feedback is concerned based on region properties.
Long/Short-Term Learning

Much research about CBIR on RF has been addressed by using machine learning
techniques [28][31]. Most learning method only concerns about the feedback information
during the current query session. In addition to short-term information, [8][10] also took the
knowledge from the past user interactions into account. The learning technique which takes
information within the current query session into account is named as short-term learning,
while long-term learning will learn knowledge over many query sessions. The function of
different learning techniques is slightly different. Short-term learning aims to improve the
retrieval result of the current query session and has more flexibility to fit user’s need. On the
contrary, long-term learning collects knowledge from the past and aims to boost performance
of future sessions. However, the user may have different interpretation for the identical object
at different circumstances and hence the past information doesn’t help all the time.

The framework proposed in [8] demonstrated how long-term learning is incorporated
into short-term learning in. He et. al [8] proposed a long-term learning approach for
constructing a semantic space from user’s past interaction and image content. The high-level
semantic space is updated when more and more queries is made. During short-term learning
in a query session, the low-level features of the query are extracted to conduct the first round
of the retrieval. After that, the system uses the feedback examples to form the semantic
representation of the query example. The query is refined and a classifier is generated to
differentiate semantically relevant object from irrelevant ones. Then, the user judges the
refined retrieval results and the system keeps on next round of short-term learning process if

it’s necessary.

11



2.2 Music Information Retrieval

A traditional information retrieval system aims to search for a particular music object
which is close to a rough excerpt of the particular music given by the user. It belongs to the
target search problem where key issues include music representation, similarity measure,
indexing and query processing techniques [12][17][23]. A typical model of MIR system
extracts low-level features (rhythm, melody, chords) from a music object and represents each
music object as feature strings. After that, exact or approximate matching process is
performed between query object and each one in database. A similarity measure will be
addressed in a system allowing approximate matching based on music theory or heuristic
rules. On the other hand, in order to speed up the searching process, issues related to index

music objects in database may also be conducted.

Relevant research related to music information retrieval includes music recommendation
and filtering systems [3][5][15][19][24]. Some of them recommend music object via
collaborative filtering technique. Lack of objective similarity metric between multimedia
objects has complicated many multimedia applications. When there is no nature idea of
similarity between music objects, collaborative filtering strategy seems helpful for prediction.
However, the similarity recommendations created by analyzing behaviors and ratings of users
do not necessarily correspond to actual music similarity. Besides, popular music objects may

dominate the recommendation result.

Chen [3] analyzes polyphonic music object and properly group music objects according
to extracted music features and content-based, collaborative and statistics-based
recommendation methods are proposed based on the favorite degrees of users to the music
groups. Ringo [24] is one of the earliest proposed music recommendation systems by
collaborative filtering method. Users are grouped by similar preference and music objects are

12



recommended based on ratings derived from the users with similar preference. Ragno [19]
presented a graph-based preference modeling framework where preference is derived from
learning an expertly authored stream (EAS) from radio stations. EAS provides similarities
among music objects judged by experts. Based on EAS, the burden of defining similarity
metrics by content is avoided. However, the system may always generate same playlists for

the same seed song which lack of desirable variety.

Music recommendation can be solved via categorizing music objects by user’s
preference. M. Grimaldi et al. [5] used classification approach to predict user’s taste. An
instance based classifiers based on user profiles is applied to learn music preferences. In his
work, a reasonable accuracy can be achieved if user’s taste is driven by a certain genre
preference. A personalized music recommendation system proposed by Kuo [15] use
associative classification methods to learn user’s preference based on chords which are
extracted from MIDI files. A user’s profile was constructed by marking a sub set of music

genre that a user is interested in.

Research about RF in music information retrieval has seldom been conducted. The first
work on content-based music information retrieval based on RF was presented in [11]. In
Hoshi’s research, a music retrieval system was proposed for searching music objects based on
user’s preference. He assumes that the system only has insufficient knowledge about a user’s
preference in real world and proposed a retrieval method based on vector representation to
address this problem. The user may not be satisfied with the retrieval results which are
produced based on insufficient learning data. A relevance feedback mechanism is applied to
improve retrieval result and experiments were conducted to show its effectiveness. An
advantage of this approach is that it enables the user to discover new songs according to

user’s preference. Hoashi also presented two types of profile constructed from user ratings

13



and from genre preference respectively. Comparative experiments show that precision of user
rating based profiles is higher then that of the genre based profiles. When relevance feedback

is conducted, genre based method outperforms user rating based method.
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CHAPTER 3

Music Object Modeling

A good music representation should be able to assist the system in capturing user’s semantic
concept in terms of low-level music features. A music object can be characterized by multiple
features such as tempo, rhythm, melody etc. Each feature can be represented as a set of
representations. For example, average pitch difference and pitch standard deviations can be
used for representations of the melody feature. In the representation space, the semantic
concept can be characterized as a subset of representations which discriminates the concept
from others. For instance, an inspiring music which rise and fall seriously in melody is

describable by average pitch difference.

To understand user’s concept, global features corresponding to an entire objects and
local features with respect to each music segment should be considered. A music object is
composed of a set of music segments. A music object can be globally described by a set of
representations in feature space or locally described as multiple sets of representations in

feature space where each representation set corresponds to a music segment.

We proposed a segment-based music modeling technique to represent music object in
segment level. In our work, the modeling approach consists of three steps. In the first step we
represent each music object as a set of segments found by the motivic repeating pattern
finding algorithm. Then, multiple feature representations are extracted from each music

segment. Moreover, global feature representations are also extracted from an entire music

15



object to represent the music object as a whole. The last step is to filter significant motivic

patterns based on frequency of patterns.

The music modeling approach is organized as follows. Section 3.1 describes the
technique for finding motivic repeating patterns. Section 3.2 introduces the step of feature
extraction. After that, section 3.3 introduces how to filter significant motivic repeating

patterns.

3.1 Motivic Repeating Pattern Finding

In music, a motive is a salient recurring fragment of notes that may be used to construct
the entirely or parts of complete melodies and themes. Therefore, each music object can be
described by a set of motives. The recurrence of a motive may not be an exact repetition in the
music object but with some variations. This is called as motivic treatment in musicology [26].
Six common motivic treatments (a)repetition (exact repeat), (b)transpose (interval repeat),
(c)sequence, (d)contrary motion, (e)retrograde, and (f)augmentation/ diminution repetition are

considered in our work (Figure 3.1).

We first apply the all-mono method to extract main melody. The extracted main melody
will be represented as a note sequence where each note is expressed by pitch and its duration.
Then, we modified the correlative matrix method [12], originally designed for exact repeating
pattern finding, to discover six variations of motivic repetitions [9]. Finally, a minimum
constraint on the length of a fragment is used to retain motivic patterns of more than four

notes.

The correlative matrix method is utilized for repeating pattern discovery with a given

note sequence. It includes the following three steps:
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1) Construct Correlative Matrix:

2)

3)

The correlative matrix is the data structure which is initially formed by the given note
sequence. Namely, if the length of note sequence is n, the size of the matrix is nxn.
The purpose of the first step is to fill the matrix row by row. For the i note and the
7™ note in the note sequence, the cell of ™ row and the /™ column in the matrix will
be set as one if they are the same, otherwise it will be empty. In addition to the
current matching results, the value of cell in the i row and the /™ column is also
decided based on the result of the cell in the (i-1)™ row and (j-1)" column. Assume
the value of the cell in (i-1)™ row and (/'—1)th column is v. The value of the cell in i™
row and /™ column will be set to v+1 if the /™ note is the same as /™ note in the
sequence. The value in the cell indicates the length of a potential repetition.

After the construction step, the matrix will keep all of the intermediate results of

substring matching.

Find Candidate Set:

For each non-empty cell, the corresponding pattern is regarded as a candidate, a
potential repeating pattern. The associated information is computed as we find each
candidate. The information includes, pattern, rep count, and sub count. Pattern
indicates the repeating pattern, rep count represents the count of matching for the
repeating pattern, and sub_count means the number of other repeating patterns which
contains this pattern. To calculate the rep count and sub_count for the ith row and jth
column (M), conditions of M, ,,;.; and M;+; ;+; has be taken into account. After
computation for each non-empty cell, patterns with their corresponding repetition

count and substring count will be used to calculate pattern frequency in the next step.
Discover Non-trivial Repeating Patterns:
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The purpose of this step is to discover all non-trivial repeating patterns and calculate
the actual frequency of each legal pattern. A pattern is trivial if its rep _count equals
sub_count. The trivial case indicates that there exists a superstring S’ containing the
pattern S and S appears along with S’. In such case, the superstring S’ is considered
more representative and hence the trivial pattern S will be removed. After removal,

the frequency fof each pattern p in a music object m is calculated by the formula:

f(p,m):(1+\/1+8xrep_count)/2 (1)

Table 3.1 shows an example. Given a note sequence of “CAACCAACD?”, the correlative
matrix is constructed by substring matching row by row. For the 1* note “C”, it repeats in 4",
Sth, and 8" position of the sequence. For the cell M4, because “A” in the 2" row matches the
“A" in the 6™ column and M 15 1S 1, the value of My is set to 2. The value 2 indicates the
pattern “CA” with length 2. To find all candidates, all non-empty cells is scanned and
associated information of each candidate is computed. Take M;; as an example. The
corresponding pattern of Mj3; is “CAA”, whose count of match so far is one and is a substring
of the pattern “CAAC” since Mys isn’t empty. Hence, the associated information of “CAA” is
(“CAA”, 1, 1). Since the rep count of “CAA” equals sub_count, “CAA” is a trivial pattern

and will be removed. The pattern “C” is an example of non-trivial patterns.

Table 3.1 An example of correlative matrix.

CIAJA|C|C|A|A|C|D
C|- 1]1 1
A -1 21

A - 1

C -1

C - 1
A -1

A _

C _
D _
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The method described is the standard version for discovering exact repeating patterns
and can’t be applied for other repeating variants shows in Figure 3.1 without modification.
For exact repetition (Figure 3.1 (a)), we can utilize the method directly.

For transpose (interval repeat) (Figure 3.2 (b)), we have to transform the pitch sequence
into pitch interval sequence(Figure 3.1). After that, the correlative matrix method is applied

on the pitch interval sequence.

oo

5

Sl ii iijiaiees 19

Pitches | [67 64 64|55 62 6250 62 64 65(67 67 67|
Pitch Interval © [[3001F30k222 12 00]... |

Figure 3.1 Transformation from pitch sequence into pitch interval sequence.

Sequence is a type of motive treatment which contains more than three consecutive
motive transpositions (Figure 3.2 (c)). Beside, the direction of the transposition has to be the
same, namely ascending or descending. In Figure 3.2 (c), the first rectangle indicates the
original motive. The second and third are the transposition of the original motive. To discover
sequence, the method is the same as the case of transpose except that we have to check

whether the discovered pattern is repeated consecutively.

Contrary motion (Figure 3.2 (d)) is a motive treatment where pitch interval sequence is
inversely repeated while the rhythm keeps the same. Namely, the contrary motion of the
original motive can be obtained by assigning opposite sign for each pitch interval. To discover
contrary motion, the correlative matrix is constructed by two different sequences. One is the
original pitch interval sequence and the other is the one with opposite sign. Others remain the

same.
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Retrograde is a repetition where pitch contour is inversely repeated while rhythm keeps
the same. Figure 3.2 (e) gives an example. The second motive <72, 72, 71, 67, 65, 65> is the
retrograde of the first one <65, 65, 67, 71, 72, 72>. To discover retrograde in the sequence,
The conditions to decide the value for each cell is changed. To assign the value of Mj;, the
original method will take M, ;;; into account while M;,,;+; will be considered in the

retrograde case. Others remain the same.

Augmentation (diminution) repetition is repetition where pitch sequence remains the
same while rhythm becomes faster (slower) with a ratio. In Figure 3.2 (f), the second motive
is the augmentation repetition of the first one and the third motive is the diminution of the
first one. To discover augmentation (diminution) repetition, the process for discovering
repeating patterns remains the same while an additional check on the results is needed to

ensure the rhythm of repetitions with regarded to one pattern is changed in a ratio.

After six discovery processes perform on each music object, we only keep original
motive to represent the structure feature of that music. Next step describes the process of

feature extraction.

3.2 Feature Extraction

We extract six kinds of global feature representation and five kinds of local feature
representation shown in Table 3.2. In other words, each music object is modeled as a
six-attribute global feature and a set of five-attribute local features. Music features considered
in this report are melody, rhythm and tempo. Representations for melody features include
average pitch, pitch standard deviation, highest/lowest pitch, chord sequence and average
pitch difference. Rhythm feature is represented as density while tempo is represented as the
tempo value only.
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Average pitch is the average pitch values of notes within a music piece (an entire one or
a segment). Pitch standard deviation is the standard deviation of pitch values of notes within a
music piece. Highest and lowest pitch value is extracted from a music object and average
pitch difference indicates the average of difference in pitch between two consecutive notes
within a music segment. Chord sequence is a sequence of chord within a segment calculated
by chord assignment algorithm which is a heuristic method based on harmony and music
theory. Details on chord sequence can be seen in [14]. Density of a music piece is defined as
number of notes dividing by the total duration of a music piece. Tempo denotes the speed of a

music object and is defined as number of beats per minute.

Table 3.2 Global and local features considered in our work.

Global feature

Local feature

Density (gd) Density (/d)

Average Pitch (gap) Average Pitch (lap)

Pitch standard deviation (gsd) | Pitch standard deviation (/sd)
Tempo (gt) Chord sequence (/cs)

Highest Pitch (ghp) Average Pitch difference (lapd)
Lowest Pitch (glp)

In some cases, two different music segments may be approximately sounds the same. In
order to consider the fault-tolerant cases, we intent to quantize the feature values in each
segment. In the aspect of global feature, density and pitch standard deviation are quantized by
the range of 0.5. More precisely, the quantized value will equal the quotient obtained by
dividing the raw value by 0.5. For instance, two densities of 1.7 and 1.9 are quantized as 3. In
the same way, the average pitch, highest pitch and lowest pitch are divided by 5. In the part of

local feature, density, pitch standard deviation and average pitch difference are divided by 0.5.
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The average pitch value is quantized as it does in the global feature, while the chord sequence
remains the original value.

In order to observe the impact of quantization on performance, we keep two copies of
features, the raw one and the quantized one. These two copies will be processed in the next
step and the sequential learning process respectively. We will compare the performance of the

two different representations in the chapter 5.

3.1 Significant Motive Selection

We aim to filter significant motivic patterns (SMPS) in this step. We measure the
significance of each motivic repeating pattern and retain those significant one with regard to a
music segment. A motivic repeating pattern with high frequency in the music object isn’t
necessarily more important than the one with low frequency in the other music object.
Therefore, the frequency of a motive, f(p,m), is normalized by dividing the maximal
frequency of the motivic pattern p’ in music m. A motive is more important with respect to
one music object if the motive is more specific in the music database (DB) and thus the
importance of a motive with respect to one music object is defined as follows:

S (p,m)/max f(p',m)

_ p'em o)
W (p,m) sup(p. DB) ()

where sup(p,DB) stands for the support of p in the DB.

Table 3.3 shows the representations of the song “don’t let the sun go down on me” which
contains eight SMPs with importance higher than 0.5. Only the representations of global
feature and local features of three SMPs are shown in Table 3.2. Figure 3.3 illustrate the

corresponding score for these SMPs.
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Figure 3.2 Examples of six motivic treatments.

Table 3.3 Representation of the global feature and three SMPs of the music object M.

M | &d | gap | gsd | gt | ghp | glp
1.7 | 73 | 3.5 | 7 81 | 72
{ 1d lap Isd Ics lapd
2 | 75 2 0 3]
1d lap Isd Ics lapd
11| 74 2 7 |
1d lap Isd Ics lapd !
04| 76 2 3 0.3
SWIP1
[fin] Fi I)] | | :- | | | 1 | | [
= — SMIP2
e e aauaa e
E =1 | I i E I 1 I 1
SIWIP3
— -! L,

Figure 3.3 Corresponding score of SMPs in Table 3.3.
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CHAPTER 4

Semantic Learning from User’s Relevance Feedback

The semantic learning process at each round is performed on the accumulated training data.
The training data is composed of two databases, the relevant one (MDB') and irrelevant one
(MDBM). Each database contains relevant/irrelevant music objects accumulated from previous
rounds. The amount of samples in each MDB"/ MDB increases during the session. The
concept can be learned by mining common properties of MDB" and MDB™ respectively first
and then discovering discrimination between these properties. Table 4.1 is an example of
MDB?" containing four music objects while Table 4.2 is an example of MDB" with three
music objects. For convenience of explanations, in these examples, a music object is modeled
as a two-attribute global feature (G, H), and a set of three-attribute local features (A, B, C)
where each three-attribute local feature corresponding to a SMP. One example of common
properties of MDB"is (A=1,C=1) and one example of discriminative properties of MDB" and
MDB" is (B=2) & (H=2) & (A=1, C=1) which appears frequently in MDB’ but seldom or

never appears in MDB".

The semantic learning process for capturing user’s concept proceeds first by frequent
pattern mining algorithm followed by associated classification algorithm. Details are shown in

the following.

4.1 Frequent Pattern Mining
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Relevance/irrelevance is usually defined by a characteristic that is shard by
relevant/irrelevant music objects. To capture the characteristic sharing by a class of music
objects, we employ the data mining techniques. Before the mining process, each (attribute,
value) pair of the global and local feature is transformed to an item. For example, an (attribute,
value) pair of (B,2) is transformed to an item “B2”. Therefore, the global feature is
represented as an itemset of six items while the local feature of an SMP is represented as an
itemset of five items. A music object is therefore treated as a set of itemsets. Before presenting

the algorithm, we introduce some formal definitions in the following.
Definition 1:

Let 7 be the set of possible items and ¥ = {X] X < I, X is the itemset corresponding to a local
feature or a global feature}. Let MDB"/MDB" be a music database, where each object T'is a

set of itemset such that 7={T}, T,,...,T;| T;e Y }, namely T Y.

Example 1:
Take M1 in table 4.1 as an example. The object M1 is represented as {{G4, H2}, {41, B2,

Cl}, {42, B2, Cl}, {Al, Bl, C2}}.
The common property found in this mining stage is called a frequent pattern,.
Definition 2:

Let X be the itemset corresponding to a local feature or a global feature. The common

property, pattern, found in the mining stage is a set of itmest, P = {P;, P»,....P,| P,c X }.
Example 2:

An example of pattern in table 3 is {{H2}, {41,C1}} where itemset {H2} and {41, Cl} are

the subset of a local feature or a global feature.
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Definition 3:

We say that an object 7' contains the pattern P if there is a one-to-one mapping function from
P to T such that for each P;, there existsa I;, T;e T > P;c T

Example 3:

Take the pattern {{42}, {C2}} as an example. If an object contains {{42}, {C2}}, there must
exist two distinct itemset containing {42} and {C2} respectively. For instance, in table 4.1

M1 and M2 contains {{42}, {C2}}, while M3 doesn’t contain {{42}, {C2}}.

Definition 4:

Given a pattern P, the support count of P, supCount(P), is the number of objects in MDB' /
MDBY that contain P and it’s support sup(P) in an object database is (supCount(P))*100%.
We called P a frequent pattern if sup(P) is no less than a given minimum support

threshold ,minsup.

Example 4:
An example of frequent patterns with support 100% in MDB' is {{B2}, {H2}, {41,CI}}

which is contained in all objects in MDB".

Table 4.1 An example of MDB”.

M1 [G1H] ([4][B]C] [4][B][C] [4]B][C],
4 2] [1]2]1] [2]2]1] [1]1]2
M2 |Gl H]| ([4]B][C] [4]B][C] [4]B]C],
]2 [2]2]2) [1]2]1] [2]4]2
M3 [GLH] ([4]B[C] [4][B][C],
]2 [1]3]1] [2]2]2
ma |GLH| ([4]B[C] [4][B][C],
42| [1]1]1] [1]2]2
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Table 4.2 An example of MDB",

MIGH{ABC)ABC’ABC}
4|1 1121 1113 213|3
M2 |G| H ( A|B|C ) A|B|C !
1|2 2133 1141
M3 |G| H ( A|B|C !
4|3 1141
frequent patterns in MDB" frequent patterns in MDB™
(A=1),(B=2), (H=2), ... (A=1), (B=3), (C=1), ...
(A=1,C=1), ... (A=1,C=1), ...
(H2)&(B=2) & (A=1,C=1) (B=3) & (A=1,C=1)
L

JEE
N

(H=2)&(B=2)&(A=1,C=1)—Positive  conf=100%

(H=2)&(A=1,C=1)—Positive conf=100%
Classifier | (B=2)&(A=1,C=1) —Positive conf=80%

(B=2)—Positive conf=80%

(B=3)&(A=1,C=1)—Negative conf=66.7%

7

Figure 4.1 An example of classifier.

The task of frequent pattern mining is to find all frequent patterns with support no less
than the minimum support threshold minsup. The frequent pattern found in MDB", MDB™ are
called positive frequent pattern and negative frequent pattern respectively. Both of them are is

the form of set of itemsets.

A well-known approach for mining frequent pattern is Apriori algorithm [1]. Apriori is a
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data mining technique originally developed to discover frequent itemsets from database of
itemsets. However, in our work, MDB?/MDB".is a database of sets of itemsets and the
frequent pattern is also a set of itemsets. Therefore, we proposed a two-phase mining
algorithm modified from Apriori to discover the frequent patterns. The first phase will find the
frequent itemsets and the second phase will discover the frequent patterns constituted by the
frequent itemset found in the first phase. Note that the itemset found in the first phase
corresponds to the music segment (SMP) level while the pattern (set of itemsets) found in the
second phase corresponds to the music object level. The mining process will proceed on both

MDB?" and MDBN respectively.

1% phase : mining frequent itemsets

We employ Apriori algorithm to discover all frequent itemset in which each item must
appear in the same itemset. The classic Apriori algorithm for discovering frequent itemset
makes multiple passes over the database. In the first pass, support of each individual item is
calculated and those above the minsup will be kept as a seed set. In the subsequent pass, the
seed set is used to generate new potentially frequent itemsets, candidate itemsets. Then the
support of each candidate itemset is calculated by scanning the database. Those candidates
with support no less than minsup are the frequent itemsets and are fed into the seed set that
will be used for the next pass. The process continues until no new frequent itemsets are found.
In our work, only the step of support calculation is different from classic Apriori algorithm,
since in our work each object is a set of itemset, rather than an itemset. For the example of
Table 3, the support count of the frequent itemset {42, C2} is two. {42, C2} appears in M2,

M3, but not in M1, M4.
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" phase : mining in segment level

The second phase will discover the patterns constituted by frequent itemsets found in the
first phase. Similar to the algorithm in the first phase, the algorithm makes multiple passes
over the database MDB"/MDB". In the k-th pass, the seed set (the set of candidate patterns of
k itemsets) is generated by joining two frequent patterns of k itemsets found in the previous
pass. Then the support of each candidate pattern is calculated by scanning the database. Those
candidates with support no less than minsup are the frequent patterns and are fed into the seed
set that will be used for the next pass. The process continues until no new frequent patterns
are found. The only exception is the first pass in which the seeds are the frequent itemsets

generated in the first phase.

In order to improve the efficiency of the above mining process, we introduce the pattern
canonical form in the following to makes the candidate generation more efficient.

Following shows the definitions and examples.

Definition 5:
Let Py be a pattern containing k itemsets. Assume that items in an itemset is ordered by
lexicographic ordering «:. The pattern canonical form of P  is defined as the set of itemsets
in which itemset is rendered based on the ordering <ps. We define the ordering < pc as
follows. If a = {54, 52, ...,sw} and S = {¢;, t, ...,t,} are two itemsets in P, then a < pe S iff one
of the following is true.

(i) m <n or

(ii) m=nand 3ij,1<i<j,>Su= ZﬁkaI' 1<k<iand Soj < 11g).

Example 5:

For example, the canonical form of {{41,C1}, {41}, {B2,C1}} is {{41},{41,C1},{B2,C1}}.
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Definition 6:

Given two frequent k-patterns in pattern canonical form, {P;, P,,...,Pi} and {Q;, O»,...,Ox,
they are joinable if P,= Q; and P;= Q,, ..., and Py= Q). A (k+1)-candidate pattern {P,,
P, ..., Py, O} will be generated in canonical form as well.

Example 6:

Given two frequent 2-patterns in canonical form, {{47},{B2}} and {{B2},{41,Cl}} will

generate the 3-candidate pattern {{4/},{B2},{41,CI}}

Moreover, in order to count the support of patterns more efficiently, we maintain a table,

occurrence table, for each pattern.

Definition 7:

Given a frequent k-patterns P in pattern canonical form, {P,, P,,...,Px}, the occurrence of P
in object 7' is {Lpri, LP2, ..., Lpr} where LpPi, 1 i k indicates the location of
itemset P;in 7. There may be more than one occurrence in an object. The table records all
occurrences in each object in the database for P is called the occurrence table.

Example 7:

The occurrence tables for the patterns {{B2},{H2}} and {{H2},{A1,C1}} are shown in Table
5(a) and (b) respectively. In Table 5(a), the first occurrence of the pattern {{B2},{H2}} in
music object M1 is (2,1) where {B2} appears in the 2™ itemset and {H2} appears in the 1*

itemset of music object M1.

We use the data structure, occurrence table, to store positions where the pattern appears
in. Each pattern is associated with an occurrence table. Moreover, we also derive the

occurrence table for each candidate during the process candidate generation.
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Table 4.3 Examples of occurrence tables.

(@) {{B2},{H2}} (b)) {{H2},{41.Cl}} (c) {{B2},{H2},{41,CI}

M1 (2,1), (3,1) M1 ((1,2) M1 ((3,1,2)

M2 (2,1)(3,1) M2 ((1,3) M2 ((2,1,3)

M3 ((3,1) M3 ((1,2) M3 ((3,1,2)

M4 ((3,1) M4 ((1,2) M4 ((3,1,2)
Definition 8:

Given two joinable k-patterns along with their occurrence tables, suppose that the occurrence
of the first pattern in a specific music object is (u;, uy, ...,ux) while that of the second pattern
in the same music object is (v;, v, ...,vx), an occurrence (u;, Uy, ..., Uy, i) for this object will
be generated if uy=v;, us=va,..., ur=vg-p and u; # vy

Example 8:

Given two occurrence tables in Table 5(a) and 5(b), the occurrence table for the candidate
{{B2}, {H2}, {41,C1}} is presented in Table 5(c). In Table 5(c), the occurrence in object M1,

(3,1,2) is generated by (3,1) in Table 5(a) and (1,2) in Table 5(b) of M1.

By utilizing the occurrence table, it is efficient to check the support count of each

candidate pattern without scanning the music database.

4.2 Associative Classification

After a two-level mining process performs on MDB' and MDBY, we obtain a collection
of positive and negative frequent patterns with respect to the common properties of music
objects relevant and irrelevant to the concept respectively. In order to discriminate the concept
of relevant music from that of irrelevant music, this step tries to find the discrimination

between characteristics of MDB and MDB™. The result of this step is a classifier consisting
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of rules. Figure 4.1 is an example of classifier learned from common properties discovered
from Table 3 and 4. One rule is “(B=2) & (A=1,C=1)— Positive”, which classifies a music
object containing attributes of (B=2) &(A=1,C=1) as positive class. This rule comes from the

fact that (B=2) & (A=1,C=1) appears frequently in MDB" but seldom appears in MDB".

We employ associative classification algorithm [16] to generate a binary classifier
learned from the positive and negative frequent patterns. The algorithm eventually will
generate a classifier containing a set of ranked rules. The classifier is of the form <rj, ry, ..., 7,
default class}. Each rule 7; is of the form,- ,, where/eF, F is the collection of positive and
negative frequent patterns and y is a class label. The confidence of a rule is defined as the

percentage of the training music that contains / belonging to class y.

A naive version of the algorithm will first sort the set of rules according to a defined
precedence order. And then select rules following the sorted sequence that correctly classify at
least one music object and will be a potential rule in our classifier. Different from the original
rule type, the frequent pattern on the left hand side of one rule in our work is a set of itemset.
We say that a music object is covered by a rule if it contains the frequent pattern of the rule.
Take the rule {{B2},{41,C1}}— positive in Figure 4.1 as an example, if a music object has
two itemsets containing {B2} and {41,C1} respectively, then the music objects is covered by
rule {{B2},{A1,C1}}—Positive. If the music object is in MDB", we say that it’s correctly
classified by the rule. A default class referred to the majority class of the remaining music
object in database is determined. Finally, it will discard those rules that do not improve the
accuracy of the classifier. The first rule in classifier that made the least error recorded in
classifier is the cut off rule where rules after the cut off rule will be discarded since they only

pI'OdUCG more €rrors.
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4.3 S2U Feedback Strategy

Once the classifier is constructed, the system then produces a ranked list of music objects.
As we have mentioned in section 1, what the system return to the user will determine the
potential information granted from the user. We present three types of feedback strategies,
most-positive, most-informative and hybrid strategies. In general, the most-informative music
objects will not coincide with the most-positive music objects. Different strategies along with

corresponding scoring function are described as follows.

(1) Most-Positive strategy (MP)

If the user is impatient, the system should present the most positive (i.e. those marked as
relevant by the system) music objects learned so far. The most positive music is a list of music
object m ordered by the score function which is related to the confidence of matched rules.

> conf(r)

reRp

2. conf(r)

reRpURn

Scoreyp(m) = 3)
where Rp/Rn stands for rules belong to positive/negative class that satisfies each music object

m.

(2) Most-Informative strategy (MI)

If we sacrifice the performance at this round for maximizing information obtained for the
next round, a better result can be expected in the future process. Most-Informative strategy
will select a set of music objects such that their judgment by the user will provide more
information for labeling uncertain music objects. The uncertain music objects are those whose
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class labels the system is uncertain about. These objects are most-informative objects. In other
word, the system using MI strategy will display a collection of most informative objects at
each round until the user attempts to find out what the system can retrieve in hand. Then, the

system will adjust itself to MP strategy and return the most positive music objects.

In the associative classification algorithm, object which matches no rules in hand belongs
to the default class. We define those belong to default class as most informative music objects.
If the user is willing to interact with the system, our system will display a number of most

informative music objects for user’s feedback.

(3) Hybrid strategy (HB)

HB is a compromised between MP and MI strategies. The system applied HB strategy will
equally return both most positive and most informative objects each round. The score of each

music object m is defined as follows:

0.5, medefault class
scoreyg (m) = 4)

scoreyp(m), otherwise
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CHAPTER 5

Experimental Result and Analysis

5.1 Dataset

The dataset contains 215 MIDI music objects collected from the internet. Each music
object belongs to western pop music including rock, jazz, and country genres. Subjects
involved in the experiment are unfamiliar with some of the music objects. In this case, noisy

and inconsistent judgment caused by the user because of familiarity may be avoided.

Automatic melody extraction process is performed on each MIDI file by all-mono
algorithm. The raw feature representation and quantized version will be fed to the system

separately for performance evaluation.

5.2 Experiment Setup

In order to evaluate the segment-based relevance feedback algorithm, we design an
on-line CBMR system with relevance feedback mechanism. The relevance feedback
information of users is essential for system evaluation. We invite eight subjects to investigate

our system for creating relevance feedback data.

The retrieval process proceeds by randomly selecting 20 music objects for user’s
labeling. An on-line training process will derive a classifier based on initial U2S feedback.

The classifier labels all music objects in database along with a scoring function which defines
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relevance degree of each one. According to specified S2U feedback strategy, at most 20 music
objects will be returned and judged by the user. Once the user isn’t satisfied with the current
retrieval result, next round proceeds again. The training samples are accumulated from each
relevance feedback round. The classifier is expected to be refined based on the accumulated

training samples via the relevance feedback mechanism.

In order to compare with performances for experiments with different strategies and
parameter settings, the user has to go through many experiments and provide relevance
feedback for each one of them in reality. It wastes user’s time and somewhat a tiring job. To
reduce user’s burden, we attempt to collect user’s relevance feedback data in advance. Once
the user determines the concept in mind, the user labels each music object in the database
either as relevant or irrelevant. The relevance feedback data made by the user will be regarded
as the groundtruth. After that, a series of experiments for each user will be conducted. Each
experiment corresponding to a query session contains many rounds will be simulated and

each returned music object will be automatically label based on user’s groudtruth.

5.3 Effectiveness Analysis

In order to evaluate the results of our experiments, the performance measure employed is
based on the average precision, which is defined as the ratio of the number of relevant music
objects of the returned music objects over the number of total returned music objects » for all

users.

Note that each experiment intends to evaluate effectiveness of the refinement framework
on music retrieval system. Music objects that system has returned in previous round will not

be removed from the music database.
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We conducted four sets of experiments for performance comparison. The first one is to
evaluate the different feedback strategies of the system. The second experiment is to measure
the effectiveness of the number of music objects accumulated from user’s feedback (top K).
Subsequently, the experimental result for evaluating effectiveness of the number of rounds (V)
applied most-informative (MI) will be discussed. Finally we show the effect of motive

threshold on performance.

5.3.1 Effectiveness of System Feedback Strategy

We perform three different experiments to compare the effectiveness of system feedback
strategy applied for each round during a query session. As mentioned in section 4.3, the
system can employ MP, MI or HB strategy at each round. Three different experiments are

described as follows:

S2U feedback strategy (MP): the system applies MP feedback strategy each round and only

uses the top K music objects returned for further refinement.

S2U feedback strategy (MI): the system applies MI feedback strategy for consecutive N

rounds and then evaluates the final result by applying MP feedback strategy for the rest of
rounds. By examining precision at the N+1 round among three S2U feedback strategies, how

well does MI strategy work can be evaluated.

S2U feedback strategy (HB): the system applies HB feedback strategy each round during the

query session.
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Figure 5.1 illustrates the performance comparison of three S2U feedback strategies
performed on raw feature presentation. Motive threshold is set to 0.4 for three different
strategies. Minsup is set to 0.2. The factor of NV is set to 4, i.e., the first four rounds are in most
informative strategy and the rest of rounds adopt most positive strategy. The number of music
objects used for relevance feedback, K, is set to 10. As the number of rounds increases,
precision grows for all S2U feedback strategies as we have expected. The randomly selected
initial training samples may limit initial knowledge learned from the first training round and
thus we fix the initial query examples as the seed set for each user to ensure fair comparison

among experiments under different parameter settings.

Figure 5.2 shows the performance comparison of three different strategies performed on
quantized feature representation. The parameter setting is the same as the raw one. In HB
feedback strategy part of uncertain music objects were contained in the retrieval results. The
precision of each round is bounded since the uncertain music objects aren’t necessarily the
positive objects. On the other hand, uncertain objects are counted on to improve the precision.
However, there’s no clear benefit gained by HB strategy shown in Figure 5.1 and 5.2. In the
first N round, HB and MP feedback strategies have better performance than MI feedback
strategy. With the help of active learning, MI feedback strategy gradually improves the system
and outperforms HB strategy after N round. The performance of HB feedback strategy is a
moderate one which is better than MI and less remarkable than MP in the first few rounds. On

the contrary, it’s worse than MI during the later half session.

The MP strategy ensures reliable performance. The accuracy above 60% can be achieved
at round three where the user provides feedback on only 20 music objects. Performance after
round three grows initially and then drops slightly. Although the curve doesn’t show

consistent growth, all cases after round three still keep 60% accuracy.
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The system adopted MI strategy in quantized one achieves 65% accuracy at round 5
while the user totally judges 40 music objects. Cases after rounds five keeps accuracy over
50%. According to our expectation, the function of MI strategy is expected to learn more
knowledge from user in comparison with MP strategy. Although the system adopted MI
strategy has good performance, more efforts on interacting with the system doesn’t generate

more benefit compared with MP strategy.

Compared with raw feature representation, the quantized one definitely outperforms in
all strategies. Beside, quantized one appears more consistent improvement via user’s
relevance feedback during a session. We refer this phenomenon to the successful

approximation of quantization.
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Figure 5.1 Performance of three feedback  Figure 5.2 Performance of three feedback
strategies on raw feature representation. strategies  on guantized feature

representation.

We conclude that MP feedback strategy is a reliable strategy. It’s efficient and effective
since user can obtain good retrieval results in few rounds. It’s also suitable for impatient users
because user can be satisfied with the retrieval results in the first few rounds without judging

many music objects. Besides, it ensures gradual improvement of retrieval results via relevance
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feedback. Patient users who are willing to feedback more music objects thus can also be

satisfied with MP strategy. On the contrary, HB and MI are less effective.

5.3.2 Effectiveness of Number of Music Object Accumulated from User’s Feedback

To simulate the learning process based on relevance feedback, the top K songs of the
ranked retrieval results were collected for next rounds of training. We conduct experiments for

each system feedback strategy to illustrate the correlation between K and the precision.

The system with respect to one feedback strategy returns a fixed amount of music objects
to the user at each round. After binary judgment of each retrieval music object is made, the
top K music object joined with previous training samples are used to refine the current
classifier.

The system returns at most 20 music objects and the top 5, 10, 15, and 20 of them will be
accumulated into the training dataset. The motive threshold for raw and quantized feature
representation is set to 0.4. The minsup is set to 0.2. The results of each feedback strategy

applied with different K are illustrated in the following.

Figure 5.3, 5.5, and 5.7 illustrate the result for raw feature representation. In the
experiment, we find out there’s no regular positive correlation between K and the precision.
When K is small (e.g. K =5), it’s reasonable that data mining and classification technique
can’t bring much benefit for refinement due to scarcity of training samples. However, we are
confused by the fact that accuracy drops when K is larger (e.g. K=20). On the other hand, we
found out that MP strategy is sensitive to parameter K while MI and HB have stable

performance under different K.

Figure 5.4, 5.6, and 5.8 show the performance of quantized one. In this experiment, there
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is no clear positive correlation between K and the precision as well. Beside, MP strategy is

sensitive to parameter K while the others aren’t.

In the case of MP strategy, the best performance during the whole session in quantized
one occurs when K is 10. When a user is impatient to interact with the system, it’s a good
choice to utilize MP strategy by judging 10 examples each round. In such case, the user can
obtains about 65.6% accuracy at the third round. In comparison with the raw feature
representation, over 60% accuracy can be expected after the third round in quantized version
in most cases. The highest accuracy 70% occurs at round seven in the case of K=10. On the
contrary, raw one doesn’t show satisfactory results which keeps accuracy under 60%. In short,

MP strategy in quantized one is effective and it is a good choice for all users.
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Figure 5.3 Performance of MP strategy Figure 5.4 Performance of MP strategy
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representation. representation

In the case of MI strategy, K doesn’t have notable impact on the performance in raw and
quantized feature representation. The difference caused by different K only appears during the
later half session in Figure 5.6 where positive correlation between K and the precision is

relatively clear. In quantized version (Figure 5.6), the accuracy of 65% can be expected in all

41



cases at round five. This fact indicates that we can only consider the case of K=5 where all
users can obtain satisfactory results by only judging 20 examples at most. One may say that
MI strategy can’t bring astonished improvement or behave worse than MP if we compare MI
and MP strategy in terms of the number of rounds. However, if we evaluate MI strategy in
terms of efforts that user has to make, we are not disappointed with MI strategy. According to
the observation that the system can achieve the same accuracy about 65% in both MI and MP
strategy by considering the same amount of relevance feedback, MI strategy is effective as
well. The only difference is that MI has to perform four rounds of semantic learning while
only two rounds of learning process are needed for MP strategy for the same performance. In
this way, MI is less efficient. Moreover, the improvement via relevance feedback isn’t
consistent enough where the curves shown in Figure 5.6 rise and fall frequently compared to

MP strategy in quantized representation.

70 70
50 < 50
IS AN Y~ 5 /
5 40 / = 5 40 /
2 30 o —%— K=5 3 30 7 —x—K=5
= 90 ——K=10 = 90 ——K=10
K=15 * K=15
10 10
1 1 1 1 1 1 1 }<I:20 1 1 1 1 1 1 1 KI:20
0 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
round round

Figure 5.5 Performance of MI strategy Figure 5.6 Performance of MI strategy
with different K on raw feature with different K on quantized feature

representation. representation.

In comparison with raw feature representation (Figure 5.5), quantized one is more
effective where accuracy is always beyond 50%. Raw version is insensitive to parameter K

and doesn’t have steady growth as well.
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In HB feedback strategy, the performance is insensitive to parameter K. In Figure 5.7 and
5.8, all curves with different K have the same performance. Accuracy in raw feature
representation (Figure 5.7) is about 40% at each round. Quantized one (Figure 5.8) has better
accuracy about 50%. The curves in Figure 5.7 grow slightly as more rounds of learning
process are performed. Quantized representation shows more improvement via relevance

feedback. Hence curves in Figure 5.8 rise faster than raw ones.

In comparison with other strategies, HB strategy has worse performance. Hence, it’s not

a good choice for the system.
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Figure 5.8 Performance of HB strategy
with different K on quantized feature

representation.

In summary, the performance of all strategies in quantized representation is better than
that in raw one. MP strategy with 10 examples accumulated each round can achieve accuracy
over 60% rapidly. Accuracy about 70% can be expected by judging about 60 music objects.
Moreover, MP strategy ensures steady improvement of retrieval results via relevance
feedback under all different K. On the other hand, MI strategy with K = 5 can be regarded as

another option for users since it can achieve 65% accuracy as well by only judging 20 music
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objects over four rounds. Hence, the above two cases are good choices in terms of

effectiveness.

5.3.3 Effectiveness of Number of Rounds Applied MI Strategy

We denote the number of rounds applied MI strategy in a session as N. In order to
observe the effect of parameter N, four experiments with different N are conducted. The
motive threshold is set to 0.4, and K is set to 10. In the first N rounds, at most 20 music
objects belonging to default class are returned for relevance judgment. In other words, music
objects returned in first N round may be less then 20 objects and the size is not fixed at each
round. Hence, N isn’t necessarily correlated with the amount of information gained from
relevance judgment on uncertain music objects. Instead, what affects is the total amount of

uncertain object collected in the first N rounds.
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representation.

Figure 5.9 illustrates the results of each experiment. Intuitively, we expect accuracy of
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N+1 round grows as N increases. For instance, the accuracy at the fifth round in the case of
N=4 is higher than that at the fourth round when N=3. However, the improvement isn’t

obvious. Hence, the performance of MI strategy is insensitive to the parameter V.

5.3.4 Effectiveness of Support and Motive Threshold

We attempt to investigate how motive threshold affects the performance in this section.
Motive threshold for SMP ranges from 0.3 to 0.5. Minsup for mining frequent pattern is fixed
to 0.2. K is set to 10. Experiments with different motive threshold on raw and quantized
feature representation are conducted respectively for each feedback strategy, MP strategy
(Figure 5.10, 5.11), MI strategy with N=4 (Figure 5.12, 5.13), and HB strategy (Figure 5.14,

5.15).

Intuitively, the system may wok well as more SMPs are kept in one music object. This is
because that the higher motive threshold the less SMPs are retained as local features. If user’s
concept is highly correlated with those pruned SMPs, less knowledge will be obtained
concerning the user’s concept. Consequently, higher motive threshold may cause the system
to miss potential patterns. The classifier derived based on a less tiny pattern set will contain
less discrimination rules (even no rules) and may reduce the classification accuracy. The
performance of experiments in raw one (Figure 5.10, 5.12, 5.14) roughly shows the

correlation between motive threshold and accuracy.

In quantized representation (Figure 5.11, 5.13, 5.15), performance with motive threshold
0.4 is better than those with 0.3 or 0.5. It’s reasonable that music objects with motive
threshold 0.5 keeps less information. Hence, experiment with motive threshold 0.5 has the

worst performance in most cases in quantized one. Music objects with motive threshold 0.3
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have the most amount of information while it doesn’t show the best performance in all
experiments with different motive threshold. Although we are confused with the results, it
isn’t a bad news for users and the system. In terms of efficiency, the system with lower motive

threshold consumes less time and storage.

In the case of MP strategy, performance of raw one clearly demonstrates the impact of
motive threshold (Figure 5.10). On the contrary, the impact of motive threshold doesn’t affect
the performance so much (Figure 5.11). One of the evidence occurs at the first round where
the accuracy is descended in the order of motive threshold 0.3, 0.5 and 0.4. However the one
with motive threshold 0.4 achieve the highest accuracy in most rounds during the session.
Such conflicting evidence indicates the weak impact of motive threshold in quantized case

and appears in other feedback strategies as well (Figure 5.13, 5.15).
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The significance of motive is proportional to its frequency in one music object and
inversely related to its support in the music database. Higher motive threshold may cause

mining task more difficult since less SMP information is retained. In such case, lower minsup
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is preferred and higher precision is achieved. However, the lowest minsup the system can
accept is 0.2 (20%). When minsup is lower than 20%, a huge amount of frequent patterns will
be generated and will increase useless computation. Considering the case when minsup is

10% in a database containing 10 music objects, each item will form a frequent pattern which

is meaningless and unnecessary. Therefore we only consider the best case when minsup is 0.2.
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In summary, the performance in quantized representation is more efficient and effective
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than that in raw one. With suitable parameter setting, MP and MI strategies in quantized one

are good choices for all users.
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CHAPTER 6

Conclusions

Relevance feedback is helpful for music retrieval. Especially, most users are frustrated by the
specification of music query. In this report, we proposed the relevance feedback mechanism
for category search in content-based music retrieval. The main idea of our approach is to
discover the relationship between the semantic concept behind the cognition of music
category and the low level music features. A segment-based music modeling approach is
presented which takes both global and local features into consideration. To discover user’s
semantic concept, a two-phase frequent pattern mining algorithm is presented to discover
common properties from relevant and irrelevant music samples respectively. Then the
classification algorithm modified from association classification is employed for

discrimination of relevant and irrelevant concepts.

Relevance feedback is a process of a series of interaction between the user and system.
In the user’s feedback, the user judges each returned music object either as relevant or
irrelevant to the concept. The system then learns the user’s semantic concept and returns a
collection of music objects for user’s relevance judgment. Three system feedback strategies
are investigated for music retrieval. Most-positive returns the most relevance music and thus
provides less new information for the system to return results in the next round.
Most-informative returns the most uncertain results useful for user’s discrimination and

therefore is helpful for the next round. Hybrid strategy is the compromise between these two
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strategies. Comparative experiments are conducted to evaluate effectiveness of the proposed
refinement mechanism. Experimental results show that a better retrieval result can be

achieved via refinement mechanism.
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The relevance feedback mechanism for category search of music

retrieval based on the semantic concept learning is proposed.

This technique consists of three main parts.

1. We proposed a segment-based music representation to assist the
system in discovering user’s concept in terms of low-level music
features.

2. To discover user’s semantic concept, a two-phase frequent pattern
mining algorithm is proposed to discover common properties from
relevant and irrelevant objects respectively and based on which a
classifier is derived for distinguishing music objects.

3. Except user’s feedback, three strategies of the system’s feedback to
select objects for user’s relevance judgment are investigated.
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