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Abstract 
We report the research work for investigating the annotation of judicial documents in 

Chinese and applying Bayesian networks for student modeling. This piece of work embarked in 
the year 2005 and will continue toward 2008. We have achieved reasonable results in the first 
year.  

Overview 
In the past many years, we have studied classification techniques for categorizing judicial 

documents in Chinese. The categorization of judicial documents can be useful in practice if we 
can achieve satisfactory accuracy. Although we hope, the actual application of our system may 
not take place in the courts. With our current achievements, we see that we can build a 
Google-like server for judicial consultation. The main difference between our system and Google 
will be that we do not require users to choose and type in key words for search. In a normal 
prosecution procedure, the defendant will receive a prosecution document from the courts. To 
know that the prosecution documents are about, the users just feed the whole file to our system to 
search similar prior documents. Our system can provide prior documents that are similar to the 
current document based on prosecution reasons or legal articles that might be cited for the current 
case. 

In addition to the categorization of judicial documents, we have also attempted to apply 
machine learning-based methods for learning student models. The input data to our learners are 
simulated students’ records for taking tests. We implemented the simulator in the past year, and 
are continuing to improve it. Given students’ test records, our classifier try to tell how students 
learning composite concepts. We have identified some key issues in this research direction, and 
expect to work on them in the continued projects. At this moment, we see that there are chances 
that computers can help educational experts to select detailed models about students’ learning 
patterns. However, this is not a simple work, particularly when students’ test records do not 
deterministically reflect students’ competence.  

Technical skeletons 
Since we have applied very different approaches for the document classification and student 

modeling problems in our research, we have to provide the skeletons separately. 

Classification of judicial documents 
As in the work that we did in the past many years, we applied k nearest neighbor (kNN) 

methods for the classification task. With a preprocessing procedure, we extracted key information 
from the documents and converted them into a set of features. In applying kNNs, we calculated 
the similarity between two documents with the similarity measure defined based on the feature 
sets.  

In the past, we have been using word-based features in our work. A Chinese word is a 
sequence of characters that we segmented from a normal Chinese text. In our research that took 
place between 2004 and 2005, we have applied the introspective learning method to adjust the 
weights for the keywords, hoping to improve the accuracy of our classifiers.  

This year, we switched to phrase-based features. The hunch is that using phrases, consisting 
of two words, should make the phrase more specific in their semantics, and hopefully can 



improve the effectiveness of our classifiers. The creation and weighting of the phrases and the 
evaluation of our methods had been reported in an international conference. Please be referred to 
the appended paper for more details. 

Student modeling with Bayesian networks 
We believe that what reported in this summary is a brand new issue that one can find in the 

literature. We will make a great contribution to the world, if this research direction eventually 
leads to real world applications.  

How do we know how students learn composite concepts? When a composite concept 
consists of multiple basic concepts, there can be many different ways to learn it. For instance, 
there are at least 14 different ways to learn a composite concept that contains four basic concepts. 
(Please see the appended papers for reasons.) A human teacher may believe that s/he knows how 
her/his students learn. However, such beliefs are generally not critically verified. We do not 
intend to disregard human intuition, but we believe that machines can be useful in searching for 
the real learning process.  

We organize our work into several components. Since this is the first step of our study, we 
do not have data for real students yet. Instead, we implemented a student simulator that is 
structurally similar to a computer-assisted student assessment system. The simulator can generate 
students’ test records, which will be used in the place of test records of real students.  

Given the student records, we employed several classification techniques to guess the 
learning patterns. In running the simulator, we had to provide key information about students’ 
learning patterns so that the simulator can create test records accordingly. Such key information 
was known to us but was not provided to our classifiers. Hence, our classifiers had to guess these 
hidden learning patterns.  

The details of how we conducted the experiments are provided in the appended papers. It is 
found that our classifiers can hit the current answer, if the experimental settings are favorable. 
However, the problem is not as easy as it may appear, and our classifiers performed not clearly 
better than a random guesser when the settings are really unfavorable. 

Published papers 
Since we have conducted quite a lot of work in a year, we thought it might be more direct to 

provide the papers that we published and presented in international conferences for both the NSC 
reviewers and the ordinary public to know more about our achievements.  

We have published our papers in AI and IEEE conferences. We provided the list, and the 
papers follow. 

 C.-L. Liu. Learning students' learning patterns with support vector machines, Lecture 
Notes in Computer Science 4203: Proceedings of the Sixteenth International 
Symposium on Methodologies for Intelligent Systems (ISMIS’06), 601-611. Bari, Bari, 
Italy, 27-29 September 2006. (SCIE) 

 C.-L. Liu and C.-D. Hsieh. Exploring phrase-based classification of judicial documents 
for criminal charges in Chinese, Lecture Notes in Computer Science 4203: Proceedings 
of the Sixteenth International Symposium on Methodologies for Intelligent Systems 
(ISMIS’06), 681-690. Bari, Bari, Italy, 27-29 September 2006. (SCIE) 

 C.-L. Liu and Y.-T. Wang. An experience in learning about learning composite concepts, 



Proceedings of the Sixth IEEE International Conference on Advanced Learning 
Technologies (ICALT’06), 187-189. Kerkrade, Limburg, Netherlands, 5-7 July 2006. 
(EI?) 

 C.-L. Liu. Learning how students learn with Bayes nets, Lecture Notes in Computer 
Science 4053: Proceedings of the Eighth International Conference on Intelligent 
Tutoring Systems (ITS’06), 772-774. Jhongli, Taiwan, 26-30 June 2006. (SCIE) 

 



Learning Students’ Learning Patterns with Support 
Vector Machines 
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Abstract. Using Bayesian networks as the representation language for student 
modeling has become a common practice. Many computer-assisted learning 
systems rely exclusively on human experts to provide information for con-
structing the network structures, however. We explore the possibility of apply-
ing mutual information-based heuristics and support vector machines to learn 
how students learn composite concepts, based on students’ item responses to 
test items. The problem is challenging because it is well known that students’ 
performances in taking tests do not reflect their competences faithfully. Ex-
perimental results indicate that the difficulty of identifying the true learning 
patterns varies with the degree of uncertainty in the relationship between stu-
dents’ performances in tests and their abilities in concepts. When the degree of 
uncertainty is moderate, it is possible to infer the unobservable learning pat-
terns from students’ external performances with computational techniques. 

1   Introduction 
Providing satisfactory interaction between human and machines requires good com-
putational models of human behaviors. Take computer-adaptive testing (CAT) for 
example. Researchers build models based on the Item-Response Theory (IRT) [1,2] 
and Concept Maps [3] for predicting students’ performances and selecting appropri-
ate test items for assessment. With good student models, a computational system can 
evaluate students’ competence with less test items than traditional paper-and-pencil 
tests will need, and can achieve better accuracy in its evaluation. In addition, test 
takers can access a CAT system almost any time at any location, and can obtain their 
scores on the spot. Hence, CAT has been adopted in many official evaluation activi-
ties, including TOFEL and GRE, although there are sporadic criticisms [4].  

Typically, domain experts provide information about student models, which are 
then implemented with computational techniques. CAT systems that adopt IRT as-
sume that a student’s responses to test items are mutually independent given the stu-
dent’s competence, so IRT-based systems generally take the so-called naïve Bayes 
models [5, 6]. Based on this assumption, the problem of building student models boils 
down to learning the model parameters from observed data [7, 8]. Similarly, Liu et al. 
assume the availability of concept maps of students and teachers, and design algo-
rithms for comparing the concept maps for assessment [3].  

Although human experts can choose good models from candidate models, they 
may not agree on their choices. For instance, Millán and Pérez-de-la-Cruz discussed a 
hierarchical structure of Bayesian networks [9] that included nodes for subjects, top-
ics, concepts, and questions [10]. Vomlel employed nodes for skills and misconcep-
tions, and used relevant nodes as direct parents of nodes for tasks [11].   



In this paper, we explore computational techniques for comparing the candidate 
models for students. Although we do not expect computational techniques will give 
better model structures than human experts will do in the short term, we hope that 
computational techniques can assist human experts to identify more precise models. 
More specifically, we would like to guess how students learn composite concepts. A 
composite concept results from students’ integration of multiple basic concepts. Let 
dABC denote the composite concept that involves three basic concepts cA, cB, and cC. 
How do we know how students learn the composite concept? Do they learn dABC by 
directly integrating the three basic concepts, or do they first integrate cA and cB into 
an intermediate product, say dAB, and then integrate dAB with cC? 

We compare candidate models that are represented with Bayesian networks, based 
on students’ responses to test items. Students’ responses to test items reflect their 
competences in the tested concepts in an indirect and uncertain manner. The relation-
ship is uncertain because students may make inadvertent errors and luckily hit the 
correct answers. We refer to these situations as slip and guess, respectively, hence-
forth. Slip and guess are frequently cited in the literature, and many researchers 
adopted Bayesian networks to capture the uncertainty in their CAT system, e.g., [6, 8, 
10-12].  

As a result, our target problem is an instance of learning Bayesian networks. This 
is not a new research problem, and a good tutorial is already available [13]. However, 
learning Bayesian networks for student modeling is relatively rare, based on our 
knowledge, particularly when we would try to induce a network directly from stu-
dents’ item responses. Vomlel created network structures from students’ data and 
applied principles provided by experts to refine the structures [11]. Besides those 
difficulties for learning structures from data, learning a Bayesian network from stu-
dents’ data is more difficult because most of the variables of interests are not directly 
observable. Hence, the problem involves not just missing values and not just one or 
two hidden variables. 

In our experiments, we have 15 basic and composite concepts. We cannot observe 
whether students are competent in these concepts directly, though we assume that we 
can collect students’ responses to test items that are related to these concepts. The 
problem of determining how students learn composite concepts is equivalent to learn-
ing the structure of the hidden variables given students’ item responses. 

We propose mutual information (MI) [14] based heuristics, and apply the heuris-
tics for predicting the hidden structures in two ways: a direct application and training 
support vector machines (SVMs) [15] for the prediction task. Experimental results 
indicate that it is possible to figure out the hidden structures under moderate uncer-
tainty between students’ item responses and students’ competence.  

We provide more background information in Section 2, introduce the MI-based 
heuristics in Section 3, present the SVM-based method in Section 4, and wrap up this 
paper with a discussion in Section 5. 

2   Preliminaries 
We provide more formal definitions, explain the source of the simulated students’ 
item responses, and analyze the difficulties of the target task in this section. 



The goal of our work is to find the hidden structure of the unobservable nodes that 
represent students’ competence in concepts, based on observed students’ item re-
sponses. We assume that students learn composite concepts from parent concepts that 
do not have overlapping basic concepts. For the problem of investigating how stu-
dents learn dABC that we mentioned in Section 1, we assume that there are four pos-
sible answers: AB_C, AC_B, BC_A, and A_B_C, where the underscores separate the 
parent concepts. Although there is no good reason to exclude a learning pattern like 
AB_BC, including such overlapping parent concepts will dramatically make the prob-
lem more complex. We obtained students’ item responses from a simulation program 
that was reported in a previous work [6]. In this paper, we will try to learn how stu-
dents learn dABCD, and there are 14 possible ways to learn this target concept. 

2.1   Creating Simulated Students  

Although not using real students’ data subjects our work to criticisms, we believe that, 
if we can employ computational models to predict students’ behaviors in CAT sys-
tems, we should believe that the same computational model is trustworthy for simu-
lating students’ behaviors. The use of simulated students is not our invention, previ-
ous and well-known work has taken the same approach for studying computational 
methods, e.g., [10, 12]. 

Using Liu’s simulator that is described in [6], we can control the structure of the 
Bayesian network and the generation of the conditional probability tables (CPTs). 
The generation of the CPTs relies on a random number generator that uniformly sam-
ples numbers from a given range. In order to specify competence patterns of the stu-
dent population, we also have to provide a matrix that is similar to the Q-matrix [16], 
and Table 1 shows the matrix that we used in many of our experiments. The columns 
are concepts, and the rows are student groups. When the column is a basic concept, 
cells are 1 if a typical student in the student group is competent in the concept, and 
cells are 0 otherwise. When the column is a composite concept, cells are 1 if a typical 
student in the student group is able to integrate the parent concepts to form the com-
posite concept if s/he is competent in the parent concepts. Although the cells are ei-
ther 0 or 1, Liu employed random numbers to give an uncertain relationship between 

Table 1. One of the Q-matrices used in the experiments 
group cA cB cC cD dAB dAC dAD dBC dBD dCD dABC dABD dACD dBCD dABCD 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 
3 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 
4 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 
5 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 
6 1 1 1 1 1 0 0 0 0 1 1 0 1 0 1 
7 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 
8 1 1 1 1 1 0 0 0 0 1 1 0 0 0 1 
9 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 
10 1 1 1 1 1 0 0 0 0 1 0 1 1 0 1 
11 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 
12 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 
13 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 
14 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 
15 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 
16 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 



student groups and compe-
tence in concepts through a 
simulation parameter: 
groupInfluence. A student’s 
behavior may deviate from 
his/her typical group compe-
tence pattern with a probabil-
ity that is uniformly sampled 
from the range [0, groupInfluence]. 

We assumed that every concept had three test items in the experiments, and the 
network shown in Figure 1 shows a possible network when we consider the problem 
in which there are only three basic concepts. Note that in this network, we assume 
that students learn dABC by directly integrating the three basic concepts, which is 
indicated by the direct links from the basic concepts to the node labeled dABC. We 
cannot show the network for the case in which there are four basic concepts in this 
paper, due to the size of the network. (There will be 15 nodes for concepts, 3×15 
nodes for test items, and a lot more links between these 60 nodes.) 

The probabilities of slip and guess are also controlled by a simulation parameter: 
fuzziness. Students of a student group may deviate from the typical behavior with a 
probability that is uniformly sampled from [0, fuzziness].  

Given the network structure, the Q-matrix, and the simulation parameters, we can 
create simulated students. In our experiments, we assumed that a student can belong 
to any of the 16 student groups with equal probabilities. Following Liu’s strategy, we 
used a random number, ρ that was sampled from [0, 1] to determine whether a stu-
dent would respond to a test item correctly or incorrectly. The conditional probability 
of correctly responding to a test item given a student belonged to a particular group 
can be calculated easily with Bayesian networks. Consider the instance for iA1, a test 
item for cA. If ρ is smaller than )|1Pr( 1ggroupcorrectiA ==  when we simulated a 
student who belonged to the first group, we assumed that this student responded to 
iA1 correctly. Since there were 15 concepts, a record for a simulated student would 
contain the correctness for each of 45 (=3×15) test items.  

After using the networks to create simulated students, we hid the networks from 
our programs that took as input the item responses and guessed the structures of the 
hidden networks. 

2.2   Contents of the Q-Matrix and Problem Complexity 

The contents of the Q-matrix influence the prior distributions of students’ competence 
patterns and the performance of simulated students [12]. Clearly, there can be many 
different ways to set the contents of the matrix. 

We set the Q-matrix in Table 1, partially based on our experience. Notice that all 
columns for the basic concepts and the target concept, dABCD, are 1. This should be 
considered a normal choice. If we do want to learn how students learn dABCD, we 
should try to recruit students who appear to be competent in dABCD to participate in 
our experiments. In addition, there is no good reason to recruit anyone who is not 
competent in any of the basic concepts in the experiments. We set the values for 
dABC, dABD, dACD, and dBCD to 16 possible combinations, and this is why we 
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Figure 1. A Bayesian network for 3 basic concepts 



include 16 student groups in Table 1. We randomly choose the values of dXY, where 
X and Y are symbols for basic concepts, and will report experimental results for other 
possible settings. 

When we consider β basic concepts in the problem, the number of possible ways 
to learn how students learn a composite concept that is comprised of all these β con-
cepts is related to the Stirling number of the second kind [17]. It is easy to verify that 
this number grows rapidly with β, and we will have 14 alternatives if we set β to 4. 
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3   MI-Based Heuristics 
Consider the situation when we generate students’ data from the network shown in 
Figure 1. If we have the true states of all the concept nodes, it is not difficult to learn 
the network structure with a variant of the PC algorithm [18] implemented in Hugin 
[19]. However, we cannot observe the true competence levels of students in reality, 
and can only indirectly measure the competence through the results of examinations. 
Moreover, the item responses do not perfectly reflect students’ competence, due to 
many reasons including guess and slip. Hence, we need to find indirect evidence that 
may help us to predict the hidden structure. 

3.1   Estimating the MI Measures 

Recall that we have assumed that every simulated student will respond to three test 
items for each concept. Out of three test items, a student may correctly respond to 0%, 
33%, 67%, and 100% of the test items. Hence, it is possible to estimate the state of 
the concept nodes with the percentage of correct responses. We can also use the per-
centages to estimate the state of a set of variables. For instance, Pr(cA=33%, cB=66%) 
can be the percentage of students who correctly respond to exactly one item for cA 
and two items for cB. Given such estimates, we will be able to compute the mutual 
information between any two sets of variables, and apply the estimated mutual infor-
mation in guessing the hidden structure. 

Intuitively, the variables 
that are more closely re-
lated to each other will 
exhibit higher mutual in-
formation. Partial networks 
shown in Figure 2 include 
five possible ways to learn 
dABCD, i.e., A_B_CD, 
AB_C_D, ACD_B, ABD_C, and A_B_C_D. Let MI(X;Y) denote the mutual informa-
tion between two sets of variables, X and Y. If A_B_CD is the true structure, we ex-
pect that it is more likely for the estimated MI(cA, cB, dCD; dABCD) to be larger than 
the estimated MI(dAB, cC, cD; dABCD) and other estimated MI measures. Hence, we 
can employ the following heuristics.  

Heuristics: The structure that has the largest estimated MI measure is the hidden 
structure.  

dABCD dCD

cDcA cB cC

dABCDdACD

cDcA cB cC

dABCDdAB

cDcA cB cC

dABCD

cDcA cB cC

dABCDdABD

cDcA cB cC

 
Figure 2. Candidate (partial) Bayesian networks in our experiments 



Before we estimate the MI measures, 
we add 0.001 to the number of occur-
rences of every possible combination 
of variables. This will avoid the zero 
probability problems, and is a typical 
smoothing procedure for estimating 
probability values [20]. 

3.2   Experimental Evaluation 

Figure 3 shows the flow of how we 
evaluated the heuristic. In the experi-
ments, we used five different network structures to create simulated students, and 
their main differences are shown in Figure 2. The parent concepts of other composite 
concepts that do not appear in the sub-networks in Figure 2 are the basic concepts. 
For instance, the parent concepts of dABD in the network that used the leftmost sub-
network in the top row of Figure 2 are cA, cB, and cD. As we mentioned in Section 2, 
we mainly used the Q-matrix in Table 1 in our experiments. We set groupInfluence 
and fuzziness to different values in {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}, so there were 36 
combinations. We did not try values larger than 0.3 because they were beyond con-
sideration normally discussed in the literature. For each of the five network structures 
and a combination of groupInfluence and fuzziness, we sampled 600 network in-
stances with the Q-matrix shown in Table 1, and created a different population of 
10000 simulated students for each of these instances. The choice of “10000” was 
arbitrary, and the goal was to make each of the 16 groups include many students.  

An experiment corresponded to a different combination of groupInfluence and 
fuzziness, so there were 36 experiments. We used accuracy to measure the quality of 
our prediction of the hidden structures. It was defined as the percentage of correct 
prediction of 3000 (=5×600) randomly sampled network instances that were used to 
create the simulated students. According to Equation (1), there were 14 possible an-
swers when β is 4. Hence, to guess the hidden structure of each of these 3000 net-
work instances, we calculated the estimated MI measures for 14 possible answers 
from the item responses of the 10000 simulated students.  

Figure 4 summarizes the ex-
perimental results. The vertical 
axis shows the accuracy, the hori-
zontal axis shows the decimal part 
of fuzziness, and the legends mark 
the values of groupInfluence used 
in the experiments. Curves in these 
charts show a general trend that we 
expected. Increasing the values of 
groupInfluence and fuzziness made 
the relationship between students’ 
item responses and their compe-
tence patterns more uncertain and 
our prediction less accurate. When 

Figure 4. Accuracy achieved by the MI-based heuristics 
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Figure 3. Flow for evaluating the heuristic 



both groupInfluence and fuzziness were both close to 0.3, the accuracy was about 0.2.  
It is easy to interpret 0.2 as a result of random guesses from five possible answers, 

but this is not correct. Although we used only five network structures that are shown 
in Figure 2 to create simulated students, our prediction program did not take this into 
account, and could consider network structures that were not included in Figure 2. 
The fact is that our heuristics favored particular structures, which we learned by look-
ing into the internal data collected in experiments. When both groupInfluence and 
fuzziness were large, the heuristics tended to favor A_B_C_D, which happened to be 
one of the true answers. As a result, we had the accuracy of 0.2. Had we excluded 
A_B_C_D from the true networks, the accuracy would become smaller than 0.2. 

Although we expected that the accuracy should improve as we reduced the values 
of groupInfluence and fuzziness, the experimental results did not fully support this 
intuition. (When we conducted experiments for the cases in which there were only 
three basic concepts, experimental results did support this intuitive expectation.) 
When both groupInfluence and fuzziness were close to 0.05, the heuristics tended to 
favor AB_CD against other competing structures, making the accuracy worse than we 
expected. More specifically, we created a 14×14 confusion matrix [20] and found that 
our heuristics chose AB_CD relatively frequently when the true structures were 
A_B_CD and AB_C_D. The accuracy could hit as low as 0.85 when both groupInflu-
ence and fuzziness were both 0.05 for other Q-matrices that were different from the 
Q-matrix shown in Table 1. These Q-matrices were different in the settings in the 
dXY columns, where both X and Y represents a basic concept. This phenomenon is 
certainly not desirable, though understandable, because of the similarity between and 
A_B_CD, AB_C_D, and AB_CD. 

When the heuristics led us to choose a wrong structure, the estimated MI measures 
for the chosen structures were not larger than the MI measures for the correct struc-
tures by a big margin. In fact, we found that, when the heuristics failed to choose the 
correct answers, most of the estimated MI measures were very close to each other. 
Hence, we expect that if we consider the ratios between the estimated MI measures, 
we may design more effective heuristics. We included ratios between estimated meas-
ures as features for building the SVM-based classifiers that we report below. 

4   SVM-based Methods 
Support vector machines [15] are a 
relatively new formalism that can be 
applied to the task of classifications. 
We can train SVMs with training 
patterns that are associated with 
known class labels, and the trained 
SVMs can be used to predict the classes of test patterns. In this work, we employed 
the LIBSVM packages provided by Chang and Lin [21].  

4.1   Preparing for Experiments 

Figure 5 summarizes the main steps that we took to apply SVMs in our work. As 
explained in Section 3.2, we obtained students’ data in 36 different experiments. In 
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test data
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the five candidate networks
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(try different kernel functions;

try different combination of
cost and gamma)

Figure 5. Guessing the hidden structure with SVMs 



each of these experiments, there were 600 network instances for each of the candidate 
networks shown in Figure 2. Therefore, we used students’ data obtained from 500 
network instances for each of the candidate network as the training data, and used the 
students’ data obtained from the remaining 100 network instances as the test data.  

 Figure 6 summarizes how we pre-
pared the training and test instances. 
In addition to the original 14 esti-
mated MI measures, we also com-
puted ratios between the estimated MI 
measures as features. The introduction 
of ratios was inspired by analyses that 
we discussed at the end of Section 3.2. 
We divided the original 14 estimated 
MI measures by the largest estimated 
MI measure in each training instance. 
This gave us 14 new features. We also 
divided the largest estimated MI measure by the second largest estimated MI measure, 
and divided the largest estimated MI measure by the average of all estimated MI 
measures. This gave us 2 more features, so we used 30 features for each of the 500 
training instances for each of the five candidate networks. The true answers (also 
called class labels) were attached to the instances for both training and testing. In 
summary, we created a training instance from 10000 simulated students, and there 
were 2500 (=5×500) training instances, each with 30 attributes and a class label. 
When testing the trained SVMs, we produced the 16 extra features from the original 
14 estimated MI measures for each of the test instances as well. The true answer was 
attached to the test instance so that we could compare the true and predicted answers, 
but the SVMs did not peek at the true answers. 

4.2   Results 

Charts shown in Figure 7 show the experimental results. The vertical axis, the hori-
zontal axis, and the legend carry the same meanings as those for charts in Figure 4. 
The titles of the charts indicate what types of SVMs we used in the experiments. We 
used the c-SVC type of SVMs in all experiments, and tried three different kernel 
functions, including polynomial (c-
svm-poly), radial basis (c-svm-rb), 
and sigmoid (c-svm-sm) kernels. 
Among these tests, using polyno-
mial and radial basis kernels gave 
almost the same accuracy, and both 
performed better than the sigmoid 
kernel. However, it took a longer 
time for us to train an SVM when 
we used the polynomial kernel.  

Comparing the curves for the 
same experiments in Figures 3 and 
4 show the significant improve-

Figure 7. Accuracy achieved by the SVM-based methods 
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ments achieved by using the SVMs. In the middle chart in Figure 7, the accuracy 
stays above 0.75 even when groupInfluence and fuzziness were 0.3. The heuristics-
based method got only 0.2 in accuracy under the same situation. In addition, the 
trends of all curves support our intuitive expectation—larger groupInfluence and 
fuzziness would lead to worse accuracy. The problem that occurred in the upper left 
corners of the charts in Figure 4 was also gone. Even when we tried different Q-
matrices, smaller groupInfluence and fuzziness also made the prediction of the hidden 
structure easier than when we used larger groupInfluence and fuzziness. 

We have to explain that we had to search for the best parameters for SVMs when 
we trained SVMs. In particular, we ran experiments that used different values for cost 
and gamma in LIBSVM, using default values for other parameters. Different combi-
nations of cost and gamma led to different accuracy in guessing the hidden structures 
for the test data. In our experiments we tried combinations of cost and gamma from 
values in {0.1, 0.2, …, 1.9}, and used the best accuracy for the test data in 381 
(=19×19) cases when we prepared charts in Figure 7. 

5 Concluding Remarks 
We tackle a student modeling problem that requires us to infer the hidden model for 
learning composite concepts, based on observations of variables that have only indi-
rect and uncertain relationships with variables in the hidden model. Experimental 
results indicate that this task is not impossible, and we can actually achieve good 
results when the situations are favorable. 

We report results of two different approach—A heuristics-based and an SVM-
based approach. Charts shown in Figures 3 and 7 clearly show that the SVM-based 
approach is more effective. However, the advantages of our SVM-based approach 
come at some costs. We will need experts to enumerate the candidate networks and 
guess the contents of the Q-matrix. Only after obtaining these information, can we 
create simulated students and train the SVMs, which will then be used to guess the 
hidden structure with students’ item responses. (Although we did not use item re-
sponses of real students in our experiments, we will have to do so in reality.)  

Though we cannot discuss all experimental results in this paper, our experience in-
dicates that the contents of the Q-matrix affect the final accuracy. The contents of the 
Q-matrix show what types of students that we should recruit for investigating how the 
students learn the composite concepts. Results reported in this paper were acquired 
with the Q-matrices that assumed students were competent in dABCD and all basic 
concepts. If we allow cells in these columns to be zero, then the final accuracy will be 
affected. However, we do not think this should happen in reality. If we do want to 
learn how students learn dABCD, we should have tried as hard as possible to collect 
item responses from students who appear to be competent in dABCD and all basic 
concepts. Given the intentionally introduced uncertainties, i.e., groupInfluence and 
fuzziness, our algorithm does allow errors in recruiting students, and experts do not 
have to provide very exact information about the Q-matrices. The SVM-based ap-
proach is reasonably robust in this aspect.  

We hope the reported results can be useful for student modeling in reality. Our ex-
perience underscores the importance of experts’ opinion for the success of the model-
ing task. Experimental results also show the potential applicability of the heuristics-



based methods for selecting the correct hidden sub-structure even when experts’ 
opinions were not available. 
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Abstract. Phrases provide a better foundation for indexing and retrieving 
documents than individual words. Constituents of phrases make other compo-
nent words in the phrase less ambiguous than when the words appear separately. 
Intuitively, classifiers that employ phrases for indexing should perform better 
than those that use words. Although pioneers have explored the possibility of 
indexing English documents decades ago, there are relatively fewer similar at-
tempts for Chinese documents, partially because segmenting Chinese text into 
words correctly is not easy already. We build a domain dependent word list 
with the help of Chien’s PAT tree-based method and HowNet, and use the re-
sulting word list for defining relevant phrases for classifying Chinese judicial 
documents. Experimental results indicate that using phrases for indexing indeed 
allows us to classify judicial documents that are closely similar to each other. 
With a relatively more efficient algorithm, our classifier offers better perform-
ances than those reported in related works. 

1   Introduction 

We investigate the effectiveness of applying phrases for indexing judicial docu-
ments in Chinese. Conventional wisdom and experimental results suggest that phrases 
provide better indications of contents of the indexed documents than keywords, 
thereby offering better chances of higher quality of information retrieval. Indeed, 
many natural languages contain homonyms and polysemes, so using isolated key-
words for indexing takes the risk of interpreting words as unintended senses, and 
using phrases helps to alleviate the ambiguity problems with the contextual informa-
tion provided by the surrounding words. Due to this intuition, Salton, Yang and Yu 
have pioneered the applications of phrases for indexing English documents as early as 
30 years ago [1], and many researchers have followed this line of work [2, 3].  

Chinese text consists of Chinese characters, and a number of consecutive charac-
ters form a word in the sense of English words. For instance, XUN ( ) and QI ( ) 
are two Chinese characters, and XUN-QI ( ) is a Chinese word approximately 
corresponding to weapons in English. SH-YONG-XUN-QI ( ) is a Chinese 
phrase that contains two words, where SH-YONG ( ) means use in English, and 
SH-YONG-XUN-QI means use weapons in English.  



Partially due to our ignorance, we have not been able to identify sufficient work 
that is directly related to indexing Chinese documents with phrases. More commonly, 
people segment Chinese text with the help of a machine readable lexicon, and then 
index the documents with Chinese words. With special techniques for obtaining in-
formation about Chinese words such as Chien’s PAT tree-based approach [4], one 
may segment Chinese text without using lexicons. Instead of going through Chinese 
word segmentation first, some have used character level bigrams for indexing Chi-
nese documents [5, 6]. This approach offers a much improved performance than 
character-level indexing for Chinese text, while requiring a much larger space of 
index terms [7]. To further improve the quality of search results, some consider short 
Chinese words for indexing [7].  

As an exploration toward phrase-based indexing of Chinese text, we consider 
word-level bigrams for indexing indictment documents in Chinese. To this end, we 
rely on both HowNet [8] and Chien’s PAT tree-based methods for identifying useful 
Chinese words. After obtaining definitions of Chinese words, we segment each 
document for obtaining pairs of words, and use them as the signatures of the docu-
ments. We define the similarity between indictment documents based on the number 
of common term pairs. Having built this infrastructure, we classify indictment docu-
ments based on their prosecution categories as Liu did in [9], and classify indictment 
documents based on their cited articles as Liu did in [10]. Current experimental re-
sults indicate that using term pairs leads to classification of higher quality for the 
former task. However, the new method provides only comparable performance on the 
latter task. Our methods differ from Liu’s methods for the second task in two impor-
tant ways. In addition to using different indexing units, i.e., single terms vs. term 
pairs, we use different ways to obtain weights for these indexing units. We are still 
looking into the second task for further improvements. 

Section 2 provides more background information regarding our work. Section 3 
discusses our methods of obtaining Chinese words for the legal domain from our 
corpus. Section 4 extends the discussion for how we obtain phrases, how we assign 
weights to the phrases, and how we use the phrases for comparing the similarity be-
tween indictment documents. Section 5 contains the experimental results, and Section 
6 wraps up this paper with some discussions. 

2   Background 

We provide more background information on details of our classification tasks. We 
exclude information how we segment Chinese character strings into word strings [9] 
for page limits. We follow a standard procedure for segmenting Chinese, i.e., prefer-
ring the longer matches while using a lexicon to determine the word boundaries, that 
has been adopted in the literature. 

We can classify indictment documents in two different levels of grain sizes. The 
coarser lever is based on the prosecution categories, and the more detailed level is 
based on the cited articles. We consider six different prosecution categories: larceny 
( ), robbery ( ), robbery by threatening or disabling the victims ( ), re-



ceiving stolen property ( ), causing bodily harm ( ), and intimidation ( ). 
We use X1, X2, ..., X6, respectively, to denote these categories henceforth. The crimi-
nal law in Taiwan dedicates one chapter to each of these prosecution reasons, except 
that the two types of robberies X2 and X3 occupy the same category.  

Once judges determine the prosecution categories of the defendant, they have to 
decide what articles are applicable to the defendants. Each chapter for a prosecution 
category contains a few articles that describe applicability and corresponding sen-
tence of the article. Not all prosecution categories require detailed articles that sub-
categorize cases belonging to the prosecution category, but some prosecution catego-
ries require more detailed specifications of the prosecutable behaviors than others. In 
this paper, we concern ourselves with articles 266, 267, and 268 for gambling ( ). 
Article 266 describes ordinary gambling cases, article 267 describes cases that in-
volve people who make a living by gambling, and article 268 describes cases that 
involve people who provide locations or gather gamblers for making profits. 

Applicability of these articles to a particular case depends on details of the facts 
cited in the indictment documents. Very simple cases violate only one of these arti-
cles, while more complex ones call for the applications of more articles. In addition, 
some combined applications of these articles are more normal than others in practice. 
Let A, B, and C denote types of cases that articles 266, 267, and 268 are applied, re-
spectively, and a group of concatenated letters denotes a type of cases that articles 
denoted by each letter are applied. Based on our gathering of the published judicial 
documents, we observe some common types: A, C, AB, and AC. The cases of other 
combinations are so rare that we cannot reasonably apply and test our learning meth-
ods at this moment. Hence we will ignore those rare combinations in this paper. 

Classifying indictment documents based on the cited articles is more useful than 
classifying documents based on the prosecution reasons, because both legal practitio-
ners and ordinary people benefit from more exact classification. However, classifying 
documents based on cited articles is distinctly more difficult than classifying docu-
ments based on prosecution reasons. Documents of lawsuits that belong to the same 
prosecution category contain similar descriptions of the criminal actions, and sub-
categorizing them requires professional training even for human experts. 

3   Lexical acquisition 

Although employing a machine-readable lexicon is essential for our work, relying 
completely on HowNet will not provide satisfactory results. HowNet was developed 
by excellent researchers in China, and it is not deniable that HowNet provides invalu-
able information about Chinese words. Nevertheless, it is also true that the Chinese 
languages used in Taiwan and in China have become a bit different due to the separa-
tion in the past half century. In addition, HowNet may not include all legal terms that 
we need. For these reasons, we employ HowNet to find useful words for the legal 
applications, and Figure 1 shows the flow of how we acquire the lexical information. 

We apply Chien’s PAT tree-based algorithm [4] and our own algorithm, 
TermSpotter, for spotting possible Chinese words from a training corpus. When using 



the PAT tree-
based algo-
rithm, we ex-
tract only 
words that 
consist of two 
or three charac-
ters. We manually filter the candidate words reported by these algorithms, keeping all 
spotted words that were already listed in HowNet and useful words even if they are 
not listed in HowNet. The words are then manually clustered into categories based on 
their semantic similarity. 
Procedure: TermSpotter (input: a training corpus; output: a list of candidate words) 
1. Scan the corpus, and obtain frequencies of all bigrams 
2. Concatenate bigrams that have similar occurrence frequencies into longer words, 

preferring those have higher frequencies 
3. Save all n-grams that exceed the threshold for occurrence frequency into a word-

list 
4. Remove selected words from the wordlist, and return the resulting wordlist 

Our method for spotting terms in our training data is actually very simple. The 
TermSpotter aggregates consecutive n-grams that have similar and high occurrence 
frequencies into a longer word. At step 2, two neighbor n-grams will be aggregated if 
their frequencies did not differ more than 50% of their individual frequencies. At step 
3, n-grams are considered frequent if they occurred more than 30 times. The choices 
of 50% and 30 were arbitrary, which make TermSpotter perform satisfactorily so far. 
Step 4 removes words that meet specific conditions, and we subjectively set up the 
conditions.  

We employed both TermSpotter and Chien’s algorithm to look for useful terms 
from 10372 real world indictment documents. The very first step in processing the 
legal documents that were published as HTML files was to extract the relevant sec-
tions at the preprocessing step. We then ran TermSpotter and Chien’s algorithm over 
the corpus to get the candidate words, and manually filtered the list to obtain the 
keyword database. At the manual filtering step, all extracted words that were also 
included in HowNet would be saved in the keyword database. We subjectively de-
cided whether to save the extracted words that were not included in HowNet. After 
checking each of the algorithmically extracted words, we found 1847 useful words 
that were already included in HowNet. We also found 832 useful words for the legal 
application, but they were not included in the original HowNet. In total, we have 
2679 words in the keyword database. 

To enhance the information encoded by the words, we manually categorized words 
which have similar meanings in legal applications. For instance, we have a category 
for location which includes Chinese words for banks, post offices, night markets, etc., 
and we also have a category for vehicle which includes such Chinese words as pas-
senger cars, busses, taxes, and trucks. We have 143 categories that include more than 
two Chinese words, and we treat a word as a single-word category if that word carries 
a unique meaning. In categorizing the words, we ignored the problem of ambiguous 
words, so a word was assumed to belong to only one category. Although making such 
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Figure 1. Constructing databases of lexical information 



a strong assumption is subject to criticism, we consider it worthy of exploration be-
cause words might carry specific meanings in phrases in legal documents. 

4   Phrase-based kNN classification 

Instance-based learning [11] is a technique that relies on past recorded experience to 
classify future problem instances, and kNN methods are very common among differ-
ent incarnations of the concept of instance-based learning. By defining a distance 
measure between the past experience and the future problem instance, a system se-
lects k past experiences that are most similar to the future problem instance, and clas-
sifies the future instance based on the classes of the selected k past experiences.  

The appropriateness of the similarity measure is crucial to the success of a kNN-
based system. Given a segmented Chinese text as we explained in Section 2, we can 
treat each past experience as a vector or a bag of Chinese words. The distance meas-
ure can be defined in appropriate ways [12]. In this paper, we report our experience in 
using phrases as units of indexing for legal documents in Chinese, and in learning the 
weights for phrases in classifying documents. Figure 2 shows the flow for training 
and testing our classifiers, and major components are explained in this section. 

4.1   Identifying phrases and learning their weights 

Although it is intuitive that using phrases will lead to more precise indexing of the 
past documents, it is far less clear about how we choose phrases from sentences [1, 2, 
3]. Moreover, it is not even clear that how we define “sentences” in Chinese. 
Although modern Chinese writing adopts punctuations such as commas and periods, 
a sequence of words ended with periods do not necessarily correspond to just one 
sentence as they normally do in English. It is very common that a sequence of Chi-
nese words ended with a period can be translated into multiple English sentences. In 
this work, we choose to use commas and periods as terminators for Chinese sentences.  

Given a Chinese sentence, we can segment the sequence of characters into a se-
quence of words. Now, with this sequence of words, can we determine a phrase that 
actually stands for the main idea of the original sentence? It seems that this is a tough 
question that we cannot solve without resorting to semantic analysis of the original 
text. If we may solve this problem now, we might have found a solution to the prob-
lem of exact indexing of documents which is an essential challenge for information 
retrieval. To circumvent this difficulty, we record all possible word pairs formed by 

instance databasegenerate instances
with phrasespreprocessing

query document classifier (kNN)
phrases of the
query instance

response to the
query

preprocessing
for classification

keyword database +
category database with

assigned weights

published judicial
documents

 
Figure 2. Training and testing our classifier  



words in the sentence, and disregard those pairs which do not occur more than 10 
times in the training documents. We then take the union of word pairs for all sen-
tences in a preprocessed document as the feature list of the document. We employ 
this procedure in ovals labeled with generate instances with phrases and preprocess-
ing for classification in Figure 2.  

Before we explain ways of assigning weights to phrases, we elaborate on how we 
define phrases in more details. Assume that, after being segmented, a sentence in-
cludes three words, α, β, γ. We will preserve the original ordering of these words, and 
come up with three combinations, i.e., α−β, α−γ, and β−γ, as the phrases for the sen-
tence. As a result, if we have a document that includes this sentence, these word pairs 
will all be included in the instance that represents the original document. We recog-
nize that this might not be a good design decision, but doing so relieves us of the task 
of determining which phrase is the “most representative” of the original sentence for 
the current exploration. 

It is expected that with appropriate weights, weighted kNN methods provide better 
performance than plain kNN methods [11]. Hence we would also like to assign 
weights to phrases. The weights for phrases should reflect their potential for helping 
us to correctly classify documents, so defining weights based on the concept similar 
to the inverse document frequency [12] is desirable. As we mentioned in Section 3, 
we actually have converted some words to their semantic categories. Hence, we will 
assign weights to phrases at the level of semantic category, rather than to the phrases 
at the word level.  

We explore two methods for assigning weights to phrases. Let S={s1, …, si, …, sn} 
be the set of different types of documents in an application. Assume that a phrase κ 
appears fi times in documents of type si. Let pi be the conditional probability of the 
current document belonging to si, given the occurrence of κ. We may assign the quan-
tity defined in (1) as the weight of κ. Notice that the denominator in (1) assimilates 
the formula of entropy. Hence a phrase with larger w1 will collocate with fewer types 
of documents. We also explore the applicability of (2). Qualitatively, w2 is similar to 
w1 in that a phrase with larger w2 will collocate with fewer types of documents. 
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4.2 Similarity measure 
Now that we have converted the original documents into instances that are repre-
sented by sets of phrases and that we have assigned weights to phrases, we are ready 
to define the similarity measure between instances for our classifier that adopts the 
kNN approach. Assume that we have two instances i1 and i2, each representing a set 
of key phrases. Let u1,2 denote the intersection of i1 and i2. We explore two methods, 
shown in (3) and (4), for computing the similarity between i1 and i2. The basic ele-
ment in both (3) and (4) is the portion of common phrases in the phrases of the in-



stances being compared. Two instances are relatively more similar if they share more 
common phrases. Formulas (3) and (4) differ only in how we combine the two ratios. 
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4.3 More design factors 

In addition to how we obtain basic words, how we define weights, and how we define 
similarity measure between instances, there are other design decisions that we can 
manipulate. It is interesting to consider whether we should take into account the part 
of speech (POS) of the words when we construct phrases. Since our phrases consist 
of only two words, it is natural for us to consider only verbs and nouns in forming the 
phrases. Under this constraint, we could have phrases of the form verb-verb, verb-
noun, noun-verb, and noun-noun. If we interpret our phrases as basic events in the 
descriptions of the criminal violations, we might prefer to employ phrases led only by 
verbs in computing similarity between instances. Hence, we can compare the per-
formance of classification when we consider any word pairs and when we consider 
only phrases with leading verbs. 

The other design factor that we have considered is to limit the source of phrases. 
Recall the way we construct phrases in Section 4.1. If a sentence contains many basic 
words, we would create many combinations of these basic words, potentially intro-
ducing noisy phrases into our databases. Though the noise thus resulted may not 
interfere the classification very much, it may degrade the computational efficiency of 
the classifier. This observation leads us to screen sentences from where we would 
obtain phrases. For the experiment results reported in the following section, we con-
sider sentences that contain no more than 16 Chinese characters which can be seg-
mented into no more than 3 words. Experimental results under other settings are in-
cluded in a longer version of this paper. 

5   Experimental evaluations 

We evaluated our classi-
fier with real world judi-
cial documents. Table 1 
shows the quantities of 
the documents used for 
the task of classifying documents 
based on the prosecution categories. 
Table 2 shows quantities of docu-
ments for the task of classifying 
documents based on the cited arti-

Table 2. Number of cases in different combina-
tions of cited articles for gambling cases 
 A C AB AC 
training 1066 802 809 344 
test 267 201 203 86 

Table 1. Number of cases in different prosecution categories 
X1 X2 X3 X4 X5 X6 

training 1600 1600 1600 1600 710 241 
test 400 400 400 400 179 60 



cles. We acquired the documents from the web site of the Judicial Yuan, Taiwan 
(www.judicial.gov.tw). We continue to use the notation for representing different 
types of documents, which are discussed in Section 2.  

Since our work is not different from traditional research in text classification, we 
embraced such standard measures as precision, recall, the F measure, and accuracy 
for evaluation [12]. Let pi and ri be the precision and recall of an experiment, F is 
defined as (2×pi×ri)/(pi+ri). Due to page limits, we must summarize the classification 
quality for all different types of documents, and we took the arithmetic average of the 
precision, recall, F, and accuracy of all experiments under consideration. 

Tables 3 and 4 show statistics about the performance of our classifier. These tables 
employ the same format. The top row indicates whether we considered all types of 
word pairs or only phrases that were led by verbs, as we discussed in Section 4.3. The 
second row indiecates whether we employed formula (1) or (2) for defining weights 
of phrases, and the third row indicates whether we computed similarity between 
instances by formula (3) or (4). The numbers in the top row indicate the quantities of 
phrases that were obtained from the training documents. 

Table 3 shows the statistics for the experiments for prosecution category-based 
classifiction, when we extracted phases from sentences which contained no more then 
16 Chinese characters which were segmented into no more than three words. Using 
this setup, we obtained 1504 phrases when we considered all types of phrases, and, if 
we ignored pharses that were not led by verbs, we obtained 989 phrases from the 
training documents. We observed that no matter whether we consider POS of 
constituents of the phrases, the combination of formulas (2) and (4) would offer the 
best performance. This proposition held when we repeated the same experiment 
procedure for setups where we obtained phrases from sentences of different number 
of characters and words. Results for classifying cases based on cited articles, i.e., 
statistics in Table 4, furuther support that (2) and (4) together outperform for the task 
of cited article-based classification than other combinations of the formulas. 
Assuming that we use (1) for defining weights, (3) seems to be a better choice for 

Table 3. Classification based on prosecution categories (3,16) 
POS any phrases (1504) phrases led by verbs (989) 
Weights (1) (2) (1) (2) 
Similarity (3) (4) (3) (4) (3) (4) (3) (4) 
precision 74.7% 81.9% 79.7% 85.7% 72.2% 77.1% 77.9% 85.5% 
Recall 74.3% 67.3% 79.1% 81.5% 70.3% 63.4% 76.2% 81.5% 
F 70.0% 68.8% 77.7% 82.1% 66.1% 63.9% 74.9% 82.2% 
accuracy 74.9% 73.2% 81.6% 86.2% 70.7% 69.0% 78.6% 85.4% 

Table 4. Classification based on cited articles (3,16)
POS any phrases (459) phrases led by verbs (262) 
Weights (1) (2) (1) (2) 
Similarity (3) (4) (3) (4) (3) (4) (3) (4) 
precision 77.8% 73.9% 79.5% 80.6% 75.2% 74.7% 77.6% 77.9% 
Recall 79.0% 75.4% 80.5% 81.7% 76.0% 76.1% 78.7% 79.0% 
F 77.4% 73.8% 78.8% 80.2% 75.0% 74.8% 77.3% 77.7% 
accuracy 78.9% 75.4% 80.8% 81.9% 77.0% 76.1% 79.3% 79.7% 



computing similarity between instances. 
Statistics, particularly those for the combination of (2) and (4), in both Tables 3 

and 4 do not show any relative superiority in classification quality for whether we 
should consider POS of the constituents of the phrases. We do not consider the 
differences in the statistics significant although the averages for not considing POSs 
seem a bit better. However, we would have used more than 40% of number of 
phrases in the classification for considering all types of phrases. Using phrases that 
were led by verbs clearly had an edge on computational efficiency. 

Corresponding numbers for the combination of (2) and (4) in Tables 3 and 4 
support the intiution that classification based on prosecution categories is relateively 
easier than classification based on cited articles. The same observation had been 
reported by Liu and Liao [10]. However, we have to interpret this indication of our 
statistics carefully, because all cases that were used for obtaining Table 4 committed 
the crime of gambling in different details, while cases for obtaining Table 3 belonged 
to a range of different prosecution categories not including gambling, as we reported 
in Section 2. In addition, corresponding numbers for other columns in Tables 3 and 4 
do not fully support the intuition. Cases that belong to prosecution categories in our 
experiments may contain related criminal violations that disoriented our classifier. 
For instance, it should not be surprising that one would describe something that 
related to larceny (X1) before one could describe how one received stolen property 
(X4). Therefore differentiating X1 and X4 may not be easier than telling A and AC 
apart for gamling cases. 

6   Concluding remarks 

We reported an exploration among a myriad of possible ways of applying phrases to 
classifying judicial documents. The preliminary results are encouraging. Compared 
with the results reported in [9], we are able to achieve better quality of classification 
when our target prosecution categories are much closer than those used in previous 
studies. For the task of classifying cases based on cited articles, our method provides 
comparable quality with those reported by Liu and Liao [10]. However, our training 
method is more succinct and easy to understand and implement than the introspective 
learning method used in [10]. Our current system employs only relative frequencies 
of phrases among different types of documents, but Liu and Liao had to learn and 
adjust weights for each keyword in each training instance. Nevertheless, our 
advantage may have come from that we have to manually filter the Chinese words, 
and Liu and Liao’s approach does not need human intervention at all. Similar to Liu’s 
results, our results are better than those reported by Thompson [11]. Our results are 
also better than those achieved by pioneers of the phrase-based approach [2, 3], 
partially because the legal domains employ more specific terms in the judicial 
documents. 

Besides the inspiring results, the exploration left us more questions to study. 
Indeed, pioneers had reported many challenges for the phrase-based approach [2, 3]. 
It should be clear that coming up with an effective method for weighting the phrases 
is not easy. It is also difficult to determine how we obtain important phrases for 



indexing the case instances. Our two types of phrases correspond somewhat to 
statistical phrases and syntactic phrases [3]. Our results concur with Fagan’s in that 
syntactic phrases do not provide significant better performance than statistical phrases. 
Nevertheless, we cannot be satisfied with the current results, and would like to study 
related issues for fully understanding the applicability of phrase-based indexing for 
specific domains such as legal case classification in Chinese. 
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Abstract 

Students need to integrate multiple basic concepts 
to become competent in the activities that require the 
knowledge of the composite concept. Traditionally, we 
rely on experts’ judgments to build models for this 
integration process. In this paper, we explore compu-
tational methods for unveiling how students learn 
composite concepts, and compare effects of applying 
mutual information-based and hierarchical search-
based techniques for guessing the unobservable proc-
esses, which were simulated by Bayesian networks. 
Experimental results show that computational methods 
can be useful in assisting this student modelling task. 

1. Introduction 
We continue our exploration of student modeling 

with Bayesian networks [2]. In particular, we try com-
putational methods for learning how students learn 
composite concepts. Our learning component takes as 
input the item response patterns (IRPs) of simulated 
students, and returns the best Beyesian network that 
may explain the behavior of the simulated students.  

Using Bayesian networks (BNs) to model students’ 
knowledge structure is not a brand new idea. Millán et 
al. proposed four-level networks which included nodes 
for subjects, topics, concepts, and questions [4]. They 
offered evidence on how BNs of higher quality im-
proved the efficiency of computerized-adaptive testing 
[1]. Although the directions of arcs in BNs do not nec-
essarily correspond to causal directions in educational 
applications [3,4], and we are not discussing this issue 
in this issue, we follow the most popular way to apply 
BNs for student modeling.  

Learning the conditional probability tables, e.g., [5], 
and learning the structures, e.g., [6], of BNs from stu-
dents’ data are not new either. The latter is relatively 
rarely discussed in the literature, however, partially 
because most practical systems employ experts’ opin-
ion in choosing the network structures. We explore the 
issue of whether computational techniques can help us 
choose the best model from a set of competing models. 
Our approach is different with Vomlel’s [6] in how we 
utilized the experts’ opinion. We simulate students’ 

behavior based on the competing structures, and apply 
the simulated data to guess students’ learning process. 
We hope the results of this study can shed light on how 
we can learn models of real students from real data.  

In this abbreviated paper, we review how we simu-
lated students’ behavior in Section 2. We explain the 
basic idea of applying mutual information for compar-
ing BNs in Section 3, and discuss a search-based 
method for identifying the Bayesian network that we 
used to generate the simulated data in Section 4.  

2. Preliminaries 
We created item response patterns of simulated stu-

dents with our simulation environment [2]. We speci-
fied the network structure, the competence patterns, 
and the range of uncertain relationships between stu-
dents’ competence levels with their item responses in a 
simulation. Figure 1 shows a network structure, where 
we have seven concepts, three test items designed for 
each concept, and one node named ‘group’ for encod-
ing students of different competence patterns. Nodes 
whose names begin with c and d denote basic and 
composite concepts, respectively. In this network, the 
modeler encodes the belief that students learn dABC by 
directly integrating the three basic concepts, which is 
indicated by the direct links between the nodes.  

The competence patterns assign stereotypical be-
havior of different types of students, and need to be 
given in a matrix form (the Q matrix in [2]). By vary-
ing the contents of the matrices, we simulated different 
competence combinations of the student population. 

The simulator considers typical uncertain relation-
ships between students’ item responses and their com-
petence levels, i.e., guess and slip [3,4]. This is con-
trolled by a simulation parameter called fuzziness. Stu-
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Figure 1. A BN for 3 basic concepts [2,3] 
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dents may also behave differently from their typical 
competence patterns, and the degree of such abnormal 
behavior is controlled by groupInfluence. Using larger 
values for these parameters will introduce more ran-
domness into the observed item response patterns. 

Due to the size of the compete network, we do not 
show the networks that we used in our experiments 
completely. Figure 2 shows five substructures of the 
BNs that we used to simulate students’ item responses. 
We considered problems involving four basic concepts, 
and we would like our programs to learn how students 
learn dABCD. We assume that students learn a com-
posite concept from non-overlapping parent concepts, 
i.e., they do not share common basic concepts. This 
simplifies the problem space, but does not make the 
problem trivial. 

3. MI-based heuristics 
If we pretend that we were able to directly observe 

the states of the concept nodes, we can apply mutual 
information-based measures to our task. The mutual 
information between the composite concept and its 
parent concepts should be large than others. Let 
MI(X;Y) denote the mutual information between two 
sets of random variables X and Y. If the true structure 
is A_B_CD (i.e., learning dABCD by integrating cA, cB, 
and dCD), then MI(cA, cB, dCD;dABC) should be lar-
ger than MI(dAB, cC, cD;dABC) and other MI meas-
ures. Analogously, if the true structure is AB_C_D, 
then MI(dAB, cC, cD;dABC) should be the largest 
among all MI measures for all competing structures.  

We have assumed that students will respond to 
three test items for each concept in Section 2, so 
students may correctly answer 0%, 33%, 67%, or 
100% of the test items for a concept. We can use this 
percentage as the estimate for the state for a concept 
node, and, similarly, we can estimate the joint distribu-
tions of multiple concept nodes. For instance, 
Pr(dab=33%, cc=67%) was set to the percentage of 
students who correctly answered one item and two 
items, respectively, for dAB and cC. We also have to 
smooth the probability distributions to avoid zero 
probabilities because some configurations of the 
involved variables may not appear in the simulated 
samples. We add 0.001 to the number of occurrence of 
every different configuration of the variables. With this 
procedure, we have a way to estimate the mutual 
information measures, and we can try the following 

ures, and we can try the following heuristics in ex-
periments. 

Heuristics: The competing structure that has the larg-
est mutual information measure is the hidden structure. 

4. Search-based model selection 
Instead of computing the MI measures for all com-

peting structures, it is possible to do the comparison 
incrementally, and we have a search-based procedure.  

We illustrate the search procedure in Figure 3. The 
filled circle represents the beginning of the search pro-
cedure, and the search goes from the left to the right. 
We compute the estimated MI (EMI) of the competing 
structures in which dABCD has only two parent con-
cepts. The structure that has the largest EMI becomes 
the current candidate. We then compute the EMIs of 
the successors of the candidate. In Figure 3, structures 
on the second 
to the leftmost 
column are 
connected to 
their succes-
sors on the 
second to the 
rightmost 
column by 
lines. Successors are structures that are refined from 
the original candidate to include exactly one more 
component than the original candidate. We do not 
show all the lines in the middle of the graph for read-
ability. If the largest EMI of the successors is smaller 
than the EMI of the current candidate, then the current 
candidate is the answer. Otherwise, the successor that 
has that largest EMI becomes the current candidate. In 
the latter case, we will have to compute the EMI of 
A_B_C_D, which must be a successor of the new can-
didate in Figure 3. If the EMI of A_B_C_D is larger 
than that of the new candidate, then A_B_C_D is the 
answer, otherwise the new candidate is the answer. 

This search procedure is recursive, and can be ex-
panded and applied to more complex situations when 
there are more than four basic concepts. 

In the experiments, we set fuzziness and groupInflu-
ence to different combinations of 0.05, 0.1, 0.15, 0.2, 
0.25, and 0.3. We did not try values larger than 0.3 
because values larger than 0.3 were not considered in 
the literature, to the best of our knowledge. Hence, we 
conducted 36 experiments. In each of these 36 experi-
ments, we created 600 different networks for each of 
the five competing structures in Figure 2. Each of these 
networks was given different underlying joint prob-
ability distributions. In order to compute reliable mu-
tual information, we randomly sampled the IRPs of 
10000 simulated students from each network. 

dABCD dCD
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dABCDdACD

cDcA cB cC

dABCDdAB

cDcA cB cC

dABCD

cDcA cB cC

dABCDdABD

cDcA cB cC

Figure 2. Candidate BNs in our experiments 



The chart shown in Fig-
ure 4 shows a comparison 
between the effects of us-
ing the heuristics, discussed 
in Section 3, and the 
search-based method. The 
horizontal axis shows the 
decimal parts of the values 
of fuzziness. The legend 
shows where the data for 
the curves came from and 
the decimal parts of 
groupInfluence. For in-
stance, ‘s05’ indicates that 
the search method was used 
when groupInfluence was 
0.05. The vertical axis shows the percentage of correct 
prediction of the hidden structures of the 3000 
(=5×600) different networks in an experiment.  

Experimental results indicated that both the heuris-
tics-based and search-based methods can predict the 
correct structure better than 90% of the time when both 
groupInfluence and fuzziness did not exceed 0.15. Be-
yond this range, both methods did not perform very 
well, but the search-based method offered similar or 
better predication than using only the heuristics.  

In the most challenging case when both groupInflu-
ence and fuzziness were set to 0.30, the accuracy for 
the heuristics-based method was only 20%, which is 
equal to what one would get for a random guess among 
five alternatives. This is an interesting observation, 
because we allowed our classifier to guess any of the 
fourteen possible ways shown in Figure 3, and a ran-
dom guess should have given about 7%. This phe-
nomenon is related to two factors: that we used basic 
concepts as the parent concepts of all composite con-
cepts, except dABCD; and that the basic concepts must 
be ancestors of dABCD, although they might not be the 
parent concepts of dABCD. As a consequence, com-
puting the EMIs as we defined in Section 3 offered a 
special favor to the structure A_B_C_D, and the accu-
racy happened to be equal to the results of random 
guess among the five true answers shown in Figure 2 
where the possible answers included A_B_C_D. If we 
had excluded the A_B_C_D cases from the test data, the 
accuracy would fall below 25%, which is the result of 
random guesses if there were four possible answers.  

It is also interesting to find that, when the degree of 
fuzziness reduced, the accuracy did not improve all the 
time (the upper left corner of the charts). After examin-
ing the confusion matrices, we found that our pro-
grams misclassified many A_B_CD and AB_C_D struc-
tures as AB_CD. Intuitively, this type of error is under-
standable because AB_CD is really close to the true 

answers. The percentage of this type of errors is related 
to the settings for other composite concepts in the Q 
matrix, which we will explain in an expanded version 
of this manuscript. 

5. Concluding remarks 
Learning how students learn 

composite concepts is an inter-
esting and challenging task. We 
need to infer about the internal 
process from students’ external 
behaviours that have only indi-
rect and probabilistic relation-
ship with the internal states. 
Experimental results showed 
that it is possible to guess the 
correct answer with the search-
based method if the degree of 
uncertainty is limited. When the 
degree of uncertainty is moder-
ately large, it is better to consult 
experts, apply experts’ knowl-
edge to train classifiers that employ artificial neural 
networks (ANNs) or support vector machines, and use 
the classifiers to guess the hidden structure. Figure 5 
shows a snapshot of the results of applying ANNs for 
this task that we will report in an extended report. 
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Abstract

This extended abstract summarizes an exploration of how computational tech-
niques may help educational experts identify fine-grained student models. In
particular, we look for methods that help us learn how students learn composite
concepts. We employ Bayesian networks for the representation of student mod-
els, and cast the problem as an instance of learning the hidden substructures of
Bayesian networks. The problem is challenging because we do not have direct
access to students’ competence in concepts, though we can observe students’
responses to test items that have only indirect and probabilistic relationships
with the competence levels. We apply mutual information and backpropagation
neural networks for this learning problem, and experimental results indicate
that computational techniques can be helpful in guessing the hidden knowledge
structures under some circumstances.

Summary

Behavior models of activity participants are crucial to the success of computer
systems that interact with human users. When using Bayesian networks (BNs)
as the language for model construction, Mislevy et al. asked where we could
obtain the numbers for the conditional probability tables (CPTs) [1]. We could
ponder where we could obtain the structures of the BNs in the first place. For
educational practitioners, an obvious and practical answer to this inquisitiveness
may be that we should consult experts of the targeted domains to provide the
knowledge structures, such as the prerequisite relationships between concepts,
for building student and instructor models. Indeed this is an effective and the
de facto approach to building computer-assisted educational software in general.
Can computers be more helpful than finding the detailed numbers in the CPTs
for student modeling? More specifically, can computers assist in any way for
finding the structures of student models? Given a composite concept, say dABC,
that requires knowledge about three basic concepts, say cA, cB, and cC, how can
we tell how students learn dABC from cA, cB, and cC? Do students combine cA
and cB into an intermediate product, dAB, and then combine dAB and cC into
dABC? Or, do students integrate the basic concepts directly to learn dABC?

In this exploration, we assume that students learn the composite concept
from ingredient constructs that do not include overlapping basic concepts. For
instance, we subjectively exclude the possibility of learning dABC from two



intermediate composite concepts dAB and dBC, because they both include cB.
This assumption simplifies the search space. However, the size of the search space
still grows explosively with the number of basic concepts included in the target
composite concept, and is related to the Stirling number of the second kind.

We assume that educational experts provide a set of possible ways that stu-
dents may, implicitly or explicitly, employ to learn the composite concept, and
our job is to help experts identify which of these learning patterns is the most
likely answer. Hence, the process of learning how students learn begins with the
acquisition of a set of candidate answers. We use the set of candidate learning
patterns to build BNs for simulating possible student behaviors, and employ the
simulated data to train backpropagation neural networks (BPNs). The learned
BPNs can then be used to classify the unobservable learning pattern, based on
students’ item responses, into one of the candidate answers.

Following the steps of many researchers who explored methodologies for
building computer-assisted tutoring systems, we employ simulated students in
this study. Simulated students were generated from Liu’s simulation system that
considers the probabilistic relationships between students’ responses to test items
and students’ competence levels in concepts [2]. The degree of uncertain relation-
ship between these two factors was controled by a parameter called fuzziness. We
set fuzziness to a larger value when we simulated a more uncertain relationship
between responses to items and competence in concepts. The other parameter,
named groupInfluence, affected the uncertain relationship between the students’
actual behaviors and students’ stereotypical behaviors. We set groupInfluence to
a larger value to make students more likely to deviate from their typical behav-
iors. In short, it became harder to guess the real mental states of a student when
either fuzziness or groupInfluence were set to larger values in the simulation.

Students’ responses to test items and students’ competence levels were repre-
sented with different, though directly connected, nodes in the BNs that were used
to generate simulated students. States of nodes that represented competence lev-
els in concepts were not observable, and only states of nodes that represented
correctness of item responses were accessible. Hence, our job was to guess the
substructure of the unobservable nodes based on the data that had only indirect
and probabilistic relationships with the true answers. Due to this reason, known
algorithms for learning structures of Bayesian networks, such as the PC algo-
rithm implemented in Hugin, were not directly viable for this learning problem.

We employed estimated mutual information (EMI) for comparing the candi-
date solutions. If students learn dABC from dAB and cC rather than from cA
and dBC, the EMI between the nodes for both dAB and cC and the node for
dABC may be larger than the EMI between the nodes for both cA and dBC
and the node for dABC. (In this case, EMI(dAB, cC|dABC) is expected to be
larger than EMI(cA, dBC|dABC).) Namely, we used the EMI to represent the
merits of a competing substructure. We had to estimate the mutual information
between two sets of nodes, since we did not have direct access to the states of
the nodes that represented concepts. We estimated the state for the node that
represented a concept with the percentage of correct responses to test items de-
signed for the concept, and used the estimated states of nodes to calculate the



EMIs. In addition to the EMIs for all competing substructures, we introduced
ratios between the EMIs for training the BPNs. Experience indicated that ratios
between the EMIs, e.g., the ratios between the EMIs and the largest EMI, were
useful for improving the prediction quality of the trained BPNs.

We tested the proposed procedure for guessing how stu-
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dents learn dABC. There were four possible answers. We ran-
domly sampled 500 network instances that had different un-
derlying joint probability distributions for each of these four
answers, and simulated item responses of 10000 students that
were generated from these 2000(=4×500) networks. Each sim-
ulated students responded to three items for seven concepts,
i.e., cA, cB, cC, dAB, dAC, dBC, dABC, and the responses
must be either correct or incorrect. We calculated the EMIs
and their ratios for each network instance for training BPNs,
so we trained the BPNs with 2000 training instances. We then
applied the trained BPNs to predict the learning patterns of
400 groups of students—100 groups generated for each of the
four answers. We repeated the above procedure for 36 combinations of fuzziness
and groupInfluence, each ranging between 0.05 to 0.30. The figure on this page
shows the results. The horizontal axis shows the decimal part of fuzziness, the
legend shows the values of groupInfluence, and the vertical axis shows the per-
centage of correct identification of hidden structures in 400 test cases. The results
suggest that it is possible to identify the hidden structure better than 80 per-
cent of the time, if fuzziness and groupInfluence are not large and if educational
experts’ guess list does include the correct structure.

Do we really need student models of better quality? Experimental results re-
ported by Carmona et al. suggested that student models of higher quality could
help us improve the effectiveness of computerized adaptive tests [3]. Hence, we
hope results outlined in this extended abstract can be useful. We have expanded
our experiments to cases where we learned how students learn composite con-
cepts that included four basic concepts [4]. The accuracy remained above 75% in
unfavorable conditions. We thank reviewers for their invaluable comments on the
original manuscript. This work was partially supported by the research contract
94-2213-E-004-008 of National Science Council of Taiwan.
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3. Carmona, C., Millán, E., Pérez-de-la-Cruz, J.L., Trella, M., Conejo, R.: Introducing
prerequisite relations in a multi-layered Bayesian student model. Lecture Notes in
Computer Science 3538 (2005) 347–356

4. Liu, C.L., Wang, Y.T.: An experience in learning about learning composite con-
cepts. 6th IEEE ICALT (2006) to appear



行政院國家科學委員會補助專題研究計畫 出國報告 
 

分類技術與貝氏網路之應用： 
法學文件之語意標記與人機互動之使用 

 

 

計畫類別：■ 個別型計畫  □ 整合型計畫 

計畫編號：NSC 98－2213－E-004－008 

執行期間： 94 年 8 月 1 日至 95 年 10 月 31 日 

 

計畫主持人：劉昭麟 

共同主持人： 

計畫參與人員： 黃珮雯、鄭人豪、陳禹勳及林仁祥 

 

成果報告類型(依經費核定清單規定繳交)：□精簡報告  □完整報告 

 

本成果報告包括以下應繳交之附件： 

□赴國外出差或研習心得報告一份 

□赴大陸地區出差或研習心得報告一份 

■出席國際學術會議心得報告及發表之論文各一份 

□國際合作研究計畫國外研究報告書一份 

 

 

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外，得立即公開查詢 

          □涉及專利或其他智慧財產權，□一年□二年後可公開查詢 

          

執行單位：國立政治大學 資訊科學系 

 

中   華   民   國  95 年   10 月    4 日 



Report for Attending ISMIS 2006 
Chao-Lin Liu 

Department of Computer Science, National Chengchi University 

ISMIS 2006 was held in Bari, Italy between 27 and 29 September 2006. I presented two 
papers during this conference on student modeling and legal informatics, and this is a 
brief report for the trip to ISMIS 2006. 

About ISMIS 
The International Symposium on Methodologies for Intelligent Systems (ISMIS) has a long 

history, and this sixteenth ISMIS was held in Bari Italy between 27 and 29 September 2006. 
Normally, there are two ISMISes for every three years. The main initiator and organizer of this 
series of conferences is Professor Ras of the University of North Carolina at Charlotte. The next 
ISMIS will take place in Toronto Canada in May of 2008.  

According to the report provided by the program chair of ISMIS 2006, 192 papers were 
submitted from 34 countries. Among these 192 submitted papers, 66 papers were accepted as 
long papers, and 15 papers were accepted as short papers. The acceptance rate for long papers 
was about 34%. Including the short papers, the overall acceptance rate for ISMIS 2006 reached 
50%.  

Taiwan, followed immediately by Japan, ranked sixth in terms of submitted papers. The 
leading countries are China, Italy, South Korea, USA, and France. Surprisingly the acceptance 
rate achieved by the Chinese papers was just about 10%, suggesting that there were just about 5 
papers authored by people with Chinese identity. The acceptance rate for Taiwanese papers was 
about 70%, meaning that five papers were accepted. If you have access to the conference 
proceedings, you will find that they consist of four long papers and one short paper. In addition, 
these five Taiwanese papers were authored by three groups. NCCU had two long papers, KAUS 
had one long and one short papers, and TKU had one long paper. Unfortunately, NCCU is the 
only group that did show up and present the papers.  

There was a lady who actually came from the Hampton University in Virginia USA, but she 
went to USA from Taiwan. Li-Shiang Tsay is a fresh professor at Hampton and a former student 
or Professor Ras of the UNC.  

About Chinese presence  
Due to the relationship between Taiwan and China, I thought it is appropriate to say 

something about Chinese presence in this report.  
During this conference, I did not have chances to contact with any Chinese who came directly 

from China. However, I did have chances to meet people who left China for other countries. I met 
two from Japan, two from USA, and one from German. 

If we boldly take the status of attendance as a sign, Taiwanese presence is significantly lower 
than Chinese presence. Chinese people have worked very hard in the past years to increase their 
international presence, supported by their huge population and strengthening economic situations. 
The status quo at ISMIS 2006 can be just one of the signs.  



About the quality of ISMIS 2006 papers 
It is almost impossible to summarize the quality of 81 papers with just a simple statement. 

Generally speaking, I think ISMIS could be ranked as a leader in the second tier AI conferences. 
The organization of the papers is generally good. Like many second tier conference, most papers 
discussed applications of known techniques or marginal changes to known techniques. The worst 
thing that I would mention is that there are people who did not show up for their presentation.  

The keynote speeches were interesting. I attended one given by Steffen Staab and one given 
by Ivan Bartko. The main theme of Staab’s talk was semantics for multimedia annotation, and the 
main theme of Bartko’s talk was agent-based machine learning. Staab discussed current and 
possibly future approach to annotating multimedia material with semantic information. Bartko 
presented his work on using agent’s low level experience in help rule learning, which sounded 
like explanation-based learning discussed in general AI textbooks. 

The proceedings of ISMIS 2006 was published by Springer Verlag in Lecture Notes of 
Computer Science 4203. It should be easy to look into more details for the ISMIS 2006 
presentations in digital libraries. 

About English and Italian 
It seems that Italy is not a country that likes to talk in English. This is definitely a contrary 

example against how Taiwan has tried to push her people to learn and speak English. After 
entering Bari and leaving the Bari airport, English became useless. Even after I checked into the 
Hotel Campus, I did not find any TV channels that speak English. Checking FM radios, I did not 
hit any luck either. I asked an American who also attended ISMIS about his hotel, located in the 
city, about this situation. He showed his unhappiness that he could not find English-speaking 
channels in a high quality hotel. 

This phenomenon is interesting because we find an industrialized country that does not 
emphasize English. Before I left Italy, I learned few everyday words in Italy, and I think they are 
useful. (Note: Returning to Rome, the situation changes, and more people can speak and 
understand English.) 

About the similarity between Italy and Taiwan 
Before I went to Italy, I heard that Italian and Chinese are similar. After coming to Rome and 

Bari in person, I observed supporting evidence. I mention some of them here. 
You can see many horning cars on Italian streets like you might many years in Taiwan. People 

in Italy may have walk through the traffic to cross streets. That was not always because cars do 
not yield to pedestrians every time, but because not all pedestrians want to wait for the green 
lights.  

Many people I met in Bari were very kind. They tried to tell me how to go to the University 
of Bari, even though they could not speak English.  

In addition, you may find dogs’ shit on Italian streets, though I did see people clean their 
dogs’ remains. This embarrassing problem also exists in Taiwan. 

About the venue of ISMIS 2006 
Bari is located on the eastern coast of Italy. It is a city for both industry and trade. Due to the 

importance of its location, this city was once occupied by Greece. The city also hosts the tomb of 



San Nicola, who represents the origin of the Christmas. I had the chance to visit the church in the 
name of San Nicola, but it is forbidden to take pictures in there. The church has paining on the 
ceiling, and is quite a place to visit. Because of its geographic location and importance in the area, 
Bari also has a fort in the city. It is also recommended to visit this fort if at all possible. 

About funding researchers for international presence 
Once again, I would like to take this opportunity to recommend that the governments should 

support researchers for attending international conferences. Even if they do not publish papers, 
the government should also provide limited fund for them to observe international conferences. 
This does help internationalization and people’s mutual understanding. With sufficient incentives, 
researchers may have a stronger motivation to work harder and publish good papers. 

 

 


