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摘要

愛荷華賭博作業是一個廣泛用來偵測可能決策缺失的認

知作業。透過以期望理論對愛荷華賭博作業進行認知模擬，

期望理論的參數分別對應了愛荷華賭博作業心理歷程的不同

影響成分。當比較兩個群體在愛荷華賭博作業上的歷程時，

典型的分析方式是二階段的。第一階段先以個別受試為單位

估計參數，第二階段則對此參數進行平均數的比較。本計畫

首先修正原始的期望模型，將個別受試參數視為由一分配中

抽出，亦即，考慮參數的隨機效果，並推導此時的估計方式。
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由於不同群體的決策歷程差異可能是許多心理學研究興趣所

在，偵測群體差異的檢定力議題不容忽視。本計畫目的並以

蒙地卡羅法比較兩階段與一階段分析的檢定力，初步發現修

正後模式之檢定力較高。

關鍵詞：愛荷華賭博作業、隨機效果、混合效果
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Abstract

Iowa Gambling Task is a cognitive task designed for exploring

the possible decision making deficit. By modeling this task,

parameters of the expectancy-valence model are correspondent the

components of psychological processes underlying the Iowa gambling

task. When comparing psychological process of different groups of

participants in the Iowa Gambling Task, the typical analysis is

two-staged. The first stage is to estimate the parameters individually.

The second stage is to compare the parameters from different groups.

In the study, we modified the original Expectancy-Valence model such

that parameters of different participants in the same group are

considered to be normal distributed. By doing so, comparison of

parameters from participants of different groups can be made in one

stage. For the difference of decision making processes of different

populations may be the main concern of many psychological studies,

power to detect the difference cannot be overlooked. We also

compared the powers of two-stage and one-stage analyses by Monte

Carlo method.
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Introduction

The study proposes to extend the expectancy-valence (EV)
learning model (Busemeyer & Stout, 2002) by incorporating
subject-specific random effects to account for individual differences in
performing the Iowa Gambling Task (Bechara, Damasio, Damasio &
Anderson, 1994). The extended model permits all participants’ 
performance to be analyzed simultaneously. Compared with fitting the
EV model to individual IGT performance, an analysis based on the
proposed model gains statistical power, for instance, in detecting
group difference in IGT. Given that the task has been widely used to
examine deficits in many areas of human decision making under
uncertainty, the improved ability of the extended model to detect
empirical differences in the IGT performance represents an important
methodological advance.

IGT is designed to simulate real-life decision making process.
At each trial of IGT, the participant is required to choose one card out
of four decks of cards each of which is associated with different
amount of (monetary) gain or loss. Feedback on the amount of gain or
loss is provided after the choice is made. Two of the four decks of
cards are associated with a large constant gain but with a negative
expected gain in the long run; on the other hand, the other two decks
of cards are associated with a lower constant gain, but with a positive
expected value in the long run. The participant is, therefore,
confronted with a tradeoff between immediate versus long term gains.

Typically, normal participants start off by choosing the decks
with immediate gains before shifting their preference to the decks with
long term gains after a few trials. In contrast, participants with
decision making deficits tend not to change their choices throughout
the course of trials even with feedback. IGT has been found to be
useful in differentiating young and healthy subjects from other target
groups such as elders (Wood, Busemeyer, Koling, Cox & Davis,
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2005), substance abusers (Busemeyer et al, 2007; Stout, Busemeyer,
Lin Grant & Bonson, 2004; Verdejo-Garcia et al., 2007; Yechiam,
Busemeyer, Stout & Bechara, 2005), patients with Huntington’s 
and/or Parkinson disease (Busemeyer & Stout, 2002), and patients
with damage of orbital frontal cortex (Busemeyer, Stout & Finn,
2007).

In analyzing the trial by trial choices among the four decks for an
individual participant, the EV model assumes that the decision maker
integrates gains and losses before and at any given trial in IGT to form
an expectancy valence for that trial on which probabilities of the next
trial depend.
To account for participants’performance in the task, parameters

of the EV model may be interpreted in correspondence to the
components of psychological processes underlying the task. These
model parameter estimates can then be used to compare healthy young
adults against other target groups. For example, Busemeyer & Stout
(2002) found higher learning rate parameter estimates for the
Huntington group than that in healthy group; Yechiam et al. (2005)
analyzed IGT data obtained from 10 different populations of
participants based on the EV model, and mapped parameter estimates
derived from each of the groups in the space of parameters.

Comparison of model parameter estimates on a map may reveal
differences of decision making processes of distinct groups which is
unattainable from the analysis of percentages of decks chosen alone.
It may well be that the differences of parameter estimates between
groups is the main concern of the empirical studies undertaken. Thus,
the ability of a model to detect group difference in IGT must be
considered.

Traditionally, the analysis of IGT based on the EV model is a
two-stage process. First, estimates of model parameters are obtained,
separately, from fitting the EV model to data from each individual.
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The values (usually the central locations) of these individual
parameter estimates then serve as raw data for comparing group
differences via standard parametric statistical procedures such as the
Student’s t-test or analysis of variance.

The two-stage process of analyzing the IGT data is clearly
inefficient since, for example, information contained in the standard
errors of parameter estimates is ignored in the second comparison
stage. Here, instead of analyzing IGT data in two stages, we propose a
mixed-effects expectancy valence model by incorporating both
subject-specific random effect parameters and group-specific
fixed-effect parameters so that parameter estimation and group
comparison can be achieved within a single statistical framework. By
pooling information from groups of individuals, the mixed-effects EV
model gains statistical power for detecting group differences when
such differences exist in the populations.

Mixed Effects Expectancy-Valence Model
The mixed-effects EV model is specified as follows:
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where t is the valence at trial t, iw is the attention weight for the

ith individual, tG and tL indicate gain and loss at trial t. ,t kE

denotes the expectancy-valence of choosing deck k at trail t, ia is the

learning rate for the ith individual. The indicator variable ,t kD is one
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if at trial t the deck k is chosen, otherwise , 0t kD  . ,t kp denotes the

probability of choosing deck k at trail t, and ic is the sensitivity of ith

individual‘s choice behavior to expectancy-valence.
Equation (1), (2), (3) are identical to the original formulation of

the EV model (Busemeyer & Stout, 2002) except the model
parameters: w, which is the attention weight parameter, indicating a
decision maker’s attention to loss relative to gain, a, which represents
the rate at which expectance valence is updated, and c, which specifies
the sensitivity of the choice probability to expectancy, are assumed to
be subject-specific random effects and are indexed by i, for the ith
participant.

In order to stabilize numerical routines and facilitate computation
during parameter estimation, equation (3) is reparameterized with
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We further assume that the random-effect parameters are sampled
from independent and identically distributed multivariate normal
distributions whose mean vector and covariance matrix are specified
as follows:
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where X is a design matrix with fixed covariates. For example, with
only two distinct groups of participants, the group membership is
coded by an indicator X, resulting in the between-group difference
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being represent through model parameters 1w , 1a , and '
1c . ww ,

aa and ' 'c c indicate variances of parameters of w, a, and c’

respectively. Covariance between two parameters is denoted by

XY whose subscripts indicate the parameters.

Estimation

Parameter Estimation of the EV Model
Buesmeyer and Stout (2002) estimated parameters of the EV

model by the maximum likelihood method with Nelder-Mead simplex
optimization (O’Neill, 1971). In fitting the original EV model to
IGT data, our experience showed that the parameters estimated by the
simplex method were very susceptive to their start values. In particular,
the sensitivity parameter c is the exponent of a power function which,
in turn, is exponentiated; tiny differences in the amplitude of c can
produce wildly different choice probabilities. Replacing c with c’, we
found most optimization routines such as simplex, conjugate-gradient
optimization and double dogleg optimization (SAS, 2004) converge to
a single value when different starting values were set for parameters
during modeling fitting. In addition, the latter two methods appeared
to be computationally faster than simplex optimization.

We note that the EV model can be seen as a nonlinear regression
model. Equations (1)-(3) can be reformulated as a single equation
(since equation (2) is recursively specified):
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The probability of choosing deck k at trial t + 1 is clearly a
nonlinear function of cumulative gains and losses as well as the
responses of previous trials. In practice, the parameters can be
estimated by nonlinear regression packages such as PROC NLIN
(SAS, 2004).

Parameter Estimation of the Mixed-effects EV model
Given that the EV model is a nonlinear regression model, the

extended EV model with subject-specific random effect is a nonlinear
mixed-effects model (Pinheiro & Bates, 1995). In the study, the
NLMIXED procedure (SAS, 2004), which is designed to fit nonlinear
mixed models, is used to estimate parameters of the mixed-effects EV
model.

For a nonlinear mixed model, estimation of parameters is to
maximize an approximation to the likelihood integrated over the
random effects (Pinheiro & Bates, 1995; SAS, 2004). Conceptually,
we obtain estimates of the nonlinear model from incorporating
random effects via integral approximations. In fitting the
mixed-effects EV model, we applied the maximum likelihood
procedure with conjugate-gradient optimization and adaptive Gaussian
quadrature. The reader may consult the article by Sheu, Chen, Su and
Wang (2005) on how to implement mixed-effects models in PROC
NLMIXED.

Gender differences in IGT
We investigated gender differences in IGT performance of a

sample of 14 male and 14 female Taiwanese college students in IGT
using both the original and extended versions of the EV model.
Results based on the original EV model are shown on the left of Table
1; no gender differences were found by comparing the three parameter
estimates. In contrast, results based on the mixed-effects EV model
shown on the right of Table 1; parameter estimates for w and a were
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found to be different across genders.

----------------------------------------------------------
Insert Table 1 here

----------------------------------------------------------

Discussions
A mixed-effects EV model is proposed to efficiently account for

human performance in IGT by extending the standard EV model.
Results from the analysis of a small dataset suggested that the
extended model was more sensitive at detecting group difference by
efficiently pooling information from all individuals. Since IGT has
been applied in many target groups to explore differences in the
decision making process among these populations, a more general
formulation of the EV model proposed here can potentially unify
diverse empirical findings within a single statistical framework.

Although the current study focuses on testing for group
differences in IGT, other aspects of the decision making process in
IGT can also be investigated using the extended mixed-effects EV
model. For instance, the extended model can easily be applied to
account for the relationship between decision-making ability and
personality traits as discussed in Davis, Patte, Tweed & Curtis (2007).
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Table 1
Comparisons of parameter estimates of the two versions of the expectancy-valence model between female (N = 14) and male (N =14) college
students

Expectancy-Valence model + t test for two independent
samples Mixed-effects expectancy-valence model

Female Male Female Male
M SD M SD

Diff t
(26)

95% CI of
Diff M SD M SDa Diff t (25)b 95% CI of

Diff
w .830 .175 .840 .153 .010 .154 (-.118, .137) .823 .211 .854 .211 .031 2.583* (.006, .056)

a .008 .005 .008 .008 -.000 -.015 (-.005, .005) .008 .001 .004 .001 -.003 -2.329* (-.006,
-.0003))

c' .265 .363 .293 .487 .028 .171 (-.306, .361) .357 .828 .367 .828 .010 .554 (-.027, .047)
Note: M and SD is mean and standard deviation of estimates of parameters of individuals. Diff is the mean difference across genders, and 95%

CI of Diff is the 95% confidence interval of mean difference.
a Covariance patterns in the mixed-effects EV model are assumed to be the same for both gender.
b To test whether the parameter is different from 0.
* p < .05.



出國報告

本次計畫中，前往芝加哥，參與 The 38th annual meeting of the Society for

Computers in Psychology。該會議主要是關於電腦在心理學中的應用，可以約略分

為兩大類，一類是利用電腦或相關儀器進行心理學實驗，另一類利用電腦的功

能，進行模擬或計算。此一會議固定在 Annual Meeting of Psychonomic Society 的

同一地點，但在前一天舉行，因此在同一地點，可以連續參加兩個會議。

本次會議中，有研究者開發利用手機進行心理學實驗，並在不同手機中測

試，初步發現如果實驗不牽涉精密計時，可以在手機上實驗，如此，可以拓展將

來心理學實驗收集資料的管道。此外，著名的檢定力程式 G*Power 開發團隊亦

於本會發表第三版。我個人的報告是考慮模擬愛荷華賭局作業的期望價值模型中

的隨機效果，利用 SAS \ NLMIXED 模組協助估計。此一會議之論文全文可以直

接投到 Psychonomic Society 的 Behavioral Research Method 期刊，因此我也在會

前完成，一併投稿，並獲接受。

會議於當天傍晚結束，緊接著的是 Annual Meeting of Psychonomic Society 的

開幕演講，本次請到 Daniel Kahneman，隔開開始一連三天，便是Annual Meeting

of Psychonomic Society 的口頭報告。我也聽了若干場次，特別是關於實驗資料的

處理，利用貝式的方式從新考慮目前的常用分析方法。本次會議除發表論文外，

亦結識若干研究電腦在心理學中應用的學者，交換訊息。


