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摘  要 

本篇論文將厚尾分配（Heavy-Tailed Distribution）應用在財務及保險精算上。本

研究主要有三個部分：第一部份是用厚尾分配來重新建構Lee-Carter模型（1992），

發現改良後的 Lee-Carter 模型其配適與預測效果都較準確。第二部分是將厚尾分

配建構於具有世代因子（Cohort Factor）的 Renshaw and Haberman 模型（2006）

中，其配適及預測效果皆有顯著改善，此外，針對英格蘭及威爾斯（England and 

Wales）訂價長壽交換（Longevity Swaps），結果顯示此模型可以支付較少的長壽

交換之保費以及避免低估損失準備金。第三部分是財務上的應用，利用 Schmidt

等人（2006）提出的多元仿射廣義雙曲線分配（Multivariate Affine Generalized 

Hyperbolic Distributions; MAGH）於 Boyle 等人（2003）提出的低偏差網狀法（Low 

Discrepancy Mesh; LDM）來定價多維度的百慕達選擇權。理論上，LDM 法的數

值會高於 Longstaff and Schwartz（2001）提出的最小平方法（Least Square Method; 

LSM）的數值，而數值分析結果皆一致顯示此性質，藉由此特性，我們可知道多

維度之百慕達選擇權的真值落於此範圍之間。 

 

關鍵字：隨機死亡率模型；厚尾分配；長壽交換；百慕達選擇權；多元 Lévy 分

配；低偏差網狀法。 
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Abstract 

The thesis focus on the application of heavy-tailed distributions in finance and 

actuarial science. We provide three applications in this thesis. The first application is 

that we refine the Lee-Carter model (1992) with heavy-tailed distributions. The results 

show that the Lee-Carter model with heavy-tailed distributions provide better fitting 

and prediction. The second application is that we also model the error term of 

Renshaw and Haberman model (2006) using heavy-tailed distributions and provide an 

iterative fitting algorithm to generate maximum likelihood estimates under the Cox 

regression model. Using the RH model with non-Gaussian innovations can pay lower 

premiums of longevity swaps and avoid the underestimation of loss reserves for 

England and Wales. The third application is that we use multivariate affine 

generalized hyperbolic (MAGH) distributions introduced by Schmidt et al. (2006) and 

low discrepancy mesh (LDM) method introduced by Boyle et al. (2003), to show how 

to price multidimensional Bermudan derivatives. In addition, the LDM estimates are 

higher than the corresponding estimates from the Least Square Method (LSM) of 

Longstaff and Schwartz (2001). This is consistent with the property that the LDM 

estimate is high bias while the LSM estimate is low bias. This property also ensures 

that the true option value will lie between these two bounds. 

 

Keywords: Stochastic Mortality Models; Heavy-Tailed Distributions; Longevity 

Swaps; Bermudan Options; Multivariate Lévy Distributions; Low Discrepancy Mesh. 

 

  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

iv 
 

Contests 
 
Chapter 1. Introduction .................................................................................................. 1 

Chapter 2. Heavy-Tailed Distributions ........................................................................ 11 

2.1. Introductions of Heavy-Tailed Distributions .................................................... 11 

2.2. The Standardization Approaches for Heavy-Tailed Distributions .................... 17 

2.3. Estimation Scheme with Standardization .......................................................... 20 

Chapter 3. A Quantitative Comparison of the Lee-Carter Model under Different Types 
of Non-Gaussian Innovations ...................................................................................... 23 

3.1. The Lee-Carter Model with Heavy-Tailed Innovations .................................... 23 

3.2. Empirical Analysis ............................................................................................ 31 

3.3. Conclusions ....................................................................................................... 47 

Chapter 4. Mortality Modeling with Non-Gaussian Innovations and Applications to 
the Valuation of Longevity Swaps ............................................................................... 49 

4.1. Stochastic Mortality Models with Cox Error Structures ................................... 49 

4.2. Empirical Analysis ............................................................................................ 55 

4.3. Application: The Valuation of Longevity Swaps .............................................. 59 

4.4. Conclusions and Suggestions ............................................................................ 68 

Chapter 5. Pricing High-Dimensional Bermudan Options with Lévy Processes Using 
Low Discrepancy Mesh Methods ................................................................................ 71 

5.1. Multivariate Affine Generalized Hyperbolic Distributions .............................. 71 

5.2. Low Discrepancy Mesh (LDM) Method ........................................................... 75 

5.3. Empirical and Numerical Analyses ................................................................... 79 

5.4. Conclusions ....................................................................................................... 91 

Chapter 6. Conclusions ................................................................................................ 93 

Appendix A .................................................................................................................. 97 

Appendix B .................................................................................................................. 99 

Appendix C ................................................................................................................ 101 

Appendix D ................................................................................................................ 103 

Appendix E ................................................................................................................ 105 

Appendix F................................................................................................................. 107 

References .................................................................................................................. 109 

 

 

  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

v 
 

List of Figures 
 

Figure 3-1. The Probability Density Functions of Standardized Residuals ................. 26 

Figure 3-2. The Pattern of Mortality Indices ............................................................... 27 

Figure 3-3. The Probability Density Functions of the First Difference in Mortality 
Indices .......................................................................................................................... 28 

Figure 4-1. Swap Premium Curves for Distinct Level of Risk-Adjusted Parameter 
...................................................................................................................................... 64 

Figure 4-2. Probability Density Functions of Present Value of the Losses ................. 67 

 

 

 
 
 
 

  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

vi 
 

List of Tables 
 

Table 3-1. Skewness, Excess Kurtosis and the Jarque-Bera Test ................................ 29 

Table 3-2. Goodness-of-fit Measures for the Residuals of the Lee-Carter Model ...... 35 

Table 3-3. Goodness-of-fit Tests for the Residuals of the Lee-Carter Model ............. 37 

Table 3-4. Goodness-of-fit Tests for the First Difference in Mortality Indices ........... 40 

Table 3-5. Goodness-of-fit Tests for the First Difference in Mortality Indices ........... 42 

Table 3-6. Percentile of MAPE of Mortality Projection .............................................. 45 

Table 4-1. The Jarque-Bera Test .................................................................................. 51 

Table 4-2. Goodness-of-fit Measures for the Number of Deaths ................................ 56 

Table 4-3. Goodness-of-fit Tests for the First Difference in Mortality Indices ........... 57 

Table 4-4. Goodness-of-fit Tests for the Residuals of Cohort Effects ........................ 57 

Table 4-5. MAPE of Logarithm of Mortality Projection in 1984-2008 (Unit: %) ...... 59 

Table 4-6. Goodness-of-fit Measures for the Number of Deaths in 1900-2008 .......... 63 

Table 4-7. Swap Premiums for Different Interest Rates .............................................. 65 

Table 4-8. The MTM Values of Longevity Swaps ...................................................... 66 

Table 4-9. The VaR and CTE of the Losses for Different Maturation Times ............. 68 

Table 5-1. Descriptive Statistics .................................................................................. 79 

Table 5-2. Estimated Parameters for MAVG and MANIG ......................................... 80 

Table 5-3.   and Esscher Parameters
 


 
for MAVG and MANIG ........................ 80 

Table 5-4. Put Option on Single Asset (4 exercise points) .......................................... 85 

Table 5-5. Put Option on Single Asset (8 exercise points) .......................................... 86 

Table 5-6. Put Option on the Maximum of Two Assets (4 exercise points) ............... 87 

Table 5-7. Put Option on the Maximum of Two Assets (8 exercise points) ............... 88 

Table 5-8. Put Option on the Maximum of Three Assets (4 exercise points) ............. 89 

Table 5-9. Put Option on the Maximum of Three Assets (8 exercise points) ............. 90 

  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

1 
 

 
 
 
 

Chapter 1  

 
Introduction 
 

The heavy-tailed distributions have been used in financial field for many years. 

The scholars of insurance field use these distributions to discuss some problems step 

by step. First we want to refine existing two mortality models by some heavy-tailed 

distributions, and we then price high-dimensional Bermudan options using the low 

discrepancy mesh (LDM) with multivariate affine generalized hyperbolic (MAGH). 

Longevity represents an increasingly important risk for defined benefit pension 

plans and annuity providers, because life expectancy is dramatically increasing in 

developed countries. In 2007, exposures to improved life expectancy amounted to 

$400 billion for pension funds and insurance companies in the United Kingdom and 

United States (see Loeys et al., 2007). Stochastic mortality models quantify mortality 

and longevity risks, which makes mortality risk management possible and provides 

the foundation for pricing and reserving. Among all stochastic mortality models, the 

Lee-Carter model (LC), proposed in 1992, is one of the most popular choices because 

of its ease of implementation and acceptable prediction errors in empirical studies. 
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Various modifications of the LC model have been extended by Brouhns et al. (2002), 

Renshaw and Haberman (2003, 2006), Cairns et al. (2006), Li and Chan (2007), Biffis 

et al. (2010), and Hainaut (2012) to attain a broader interpretation. Cairns et al. (2006) 

propose a two-factor stochastic mortality model, the CBD model, in which a first 

factor affects mortality at all ages, whereas a second factor affects mortality at older 

ages much more than at younger ages. Modeling the number of deaths with the 

Poisson model, Cairns et al. (2009) classify and compare eight stochastic mortality 

models, including an extension of the CBD model, with mortality data from England 

and Wales and the United States. They find that an extension of the CBD model that 

incorporates the cohort effect fits the English and Welsh data best, whereas for the 

U.S. data, the Renshaw and Haberman (2006) model (RH), which also allows for a 

cohort effect, provides the best fit (Cairns et al., 2009). In addition to the cohort effect, 

short-term catastrophic mortality events, such as the influenza pandemic in 1918 and 

the Tsunami in December 2004, may lead to much higher mortality rates. Using 

empirical data from 1900 to 1983, we find that the residuals in the RH model for 

England and Wales, France, and Italy exhibit leptokurticity. It is crucial to address 

such mortality jumps in age–period–cohort mortality models. 

To the best of our knowledge, Hainaut and Devolder (2008) were the first to 

apply α-stable subordinators (infinite-activity, strictly positive, Lévy processes) to 

model mortality hazard rates. However, in the Lee-Carter model, the first difference 

of mortality indices may be negative, to reflect mortality improvements. Giacometti et 

al. (2009) consider both the error distributions of the Lee-Carter model and its 

mortality index, using the NIG distribution to model mortality for different age groups. 

They observe that the NIG distributional assumption for the residuals of the 

Lee-Carter model is better than the Gaussian one for some age groups. To take 
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non-Gaussian distributions into account in stochastic mortality models, Milidonis et al. 

(2011) use a Markov regime-switching model to analyze the U.S. mortality data and 

price mortality securities. In addition, some research use diffusion processes with 

jump components, one of the finite-activity Lévy processes, to describe the dynamics 

of mortality rates. Biffis (2005) uses affine jump diffusions and models asset prices 

and mortality dynamics, in the context of risk analysis and market valuation in life 

insurance contracts. Luciano and Vigna (2005) find, with Italian mortality data, that 

introducing a jump component provides a better fit than does a diffusion component 

for stochastic mortality processes. Cox, Lin, and Wang (2006) combine geometric 

Brownian motion with a compound Poisson process to model the age-adjusted 

mortality rates for the United States and United Kingdom, using an evaluation of the 

first pure mortality security, the Swiss Re Vita bond. In addition, Lin and Cox (2008) 

combine Brownian motion with a discrete Markov chain and log-normal jump size 

distribution to price mortality-based securities in an incomplete market framework. 

Chen and Cox (2009) incorporate a jump process into the Lee-Carter model and use it 

to forecast mortality rates and analyze mortality securitization. These studies all use 

diffusion processes with jump components (JD) and finite-activity Lévy processes to 

describe the dynamics of morality rates.  

However, non-normal innovations can be generated by heavy-tailed 

distributions. An alternative set of distributions thus involves infinite-activity, or pure 

jump, Lévy processes, such as the normal inverse Gaussian (NIG) distributions that 

appear repeatedly in financial applications as unconditional return distributions 

(Bølviken and Benth, 2000; Eberlein and Keller, 1995; Lillestøl, 2000; Prause, 1997; 

Rydberg, 1997) or the variance gamma (VG) distributions of Madan and Seneta (1987, 

1990). Another method relies on Student’s t-distribution (T) and its skew extensions, 
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such as the generalized hyperbolic skew Student’s t-distribution (GHST), as described 

by Prause (1999), Barndorff-Nielsen and Shepard (2001), Jones and Faddy (2003), 

Mencia and Sentana (2004), Demarta and McNeil (2004), and Aas and Haff (2006). 

Therefore, this study aims to examine whether mortality indices can be described by 

jump models, such as JD, NIG, and VG, or by the Student’s t family, including the T 

and GHST distributions.  

Therefore, in line with their work, the Chapter 3 incorporates the normal, t, JD, 

NIG, VG, and GHST distributions into the original Lee-Carter model, in an attempt to 

fit and forecast mortality rates. We rely on mortality data from six countries—Finland, 

France, the Netherlands, Sweden, Switzerland, and the United States—from 1900 to 

2007. We fit the model to mortality rates from 1900 to 1999 using the normal, t, JD, 

VG, NIG, and GHST distributions, then forecast the development of the mortality 

curve for the subsequent eight years. According to the Jarque-Bera (JB) test statistics, 

we must largely reject the assumptions of normality for the residuals of the Lee-Carter 

model and the mortality indices. The results of the Kolmogorov-Smirnov (KS), 

Anderson-Darling, and Cramér-von-Mises tests provide powerful evidence to support 

the rationality of using heavy-tailed distributions for the residuals of the Lee-Carter 

model and the first difference of mortality indices. Finally, according to the mean 

absolute percentage errors (MAPE) in the mortality projection, our empirical results 

indicate that the GHST distribution is the most appropriate choice for modeling 

long-term mortality indices for most countries.  

As proposed by Pitacco (2004), various disadvantages arise in connection with 

the LC model. To improve the LC model, it is possible to model the number of deaths 

as a Poisson model, as commonly employed in literature on mortality modeling (e.g., 

Wilmoth, 1993; Brouhns et al., 2002; Renshaw and Haberman, 2006; Cairns et al., 
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2009; Haberman and Renshaw, 2009). However, with the Poisson error structure, the 

intensity at age x and time t is determined by the death rate at age x and time t, which 

is broadly described by stochastic mortality models. Consequently, instead of using a 

Poisson model with a deterministic intensity function, an alternative means of fitting 

the number of deaths is to specify a doubly stochastic Poisson process, or Cox process 

(Cox, 1955), to capture the stochastic intensity. Biffis et al. (2010) first implement a 

doubly stochastic setup in the LC model, introducing a class of equivalent probability 

measures for pricing life insurance liabilities and mortality-indexed securities. 

Following the double stochastic setup proposed by Biffis et al. (2010), the second 

goal of this article is to provide an iterative fitting algorithm for estimating the Cox 

regression model in which mortality rates adhere to the RH model with non-Gaussian 

innovations. 

In Chapter 4, we use three mortality data sets—England and Wales, France, and 

Italy—from 1900 to 2008 as the observed data. We first fit the model to the mortality 

rates from 1900 to 1983 using the normal, JD, variance gamma (VG), and NIG 

distributions, and then we forecast the development of the mortality curve for the 

subsequent 25 years. According to the Jarque-Bera statistical test, the assumption of 

normality must be rejected for the logarithm of mortality rates. Finally, according to 

the mean absolute percentage errors (MAPEs) of the mortality projections, our 

empirical results indicate that the RH model with non-Gaussian innovations is the 

most appropriate choice for modeling long-term mortality data. In addition, as an 

application for England and Wales, we provide the fair values of longevity swaps and 

their value at risk (VaR) and conditional tail expectations (CTE). According to the RH 

model with non-Gaussian innovations, the swap premiums are lower, but the VaR and 

CTE are higher, which means that using the RH model with non-Gaussian 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

6 
 

innovations can reduce the costs of the longevity risk hedger and avoid the 

underestimation of loss reserves. 

In finance field, the past three decades has sparked the development of a large 

body of theory concerning multivariate probability distributions. Most studies about 

multivariate asset models are based on Brownian motions due to their simple structure. 

However, since the work of Mandelbrot and Taylor (1967) and Clark (1973), it has 

been widely recognized the presence of significant skewness and excess kurtosis in 

empirical asset return distributions; that is, the returns are non-normally distributed. 

To allow for both kurtosis and skewness for the multivariate probability distribution 

of assets returns, multivariate Lévy processes are also used as a tractable model for 

asset returns. 

There are essentially two multidimensional models for financial asset pricing: 

one is multivariate normal mixtures based on a common mixing distribution and the 

other is multivariate time-changed Brownian motions based on a common time 

change. Barndorff-Nielsen (2001), Cont and Tankov (2004), Luciano and Schoutens 

(2006) and Eberlein and Madan (2009) provide a multivariate time changed Brownian 

motion by a common subordinator. As noted in Luciano and Semeraro (2010), 

however, the common subordinator exerts a strict restriction on the joint process, 

which in turn leads to the lack of independence. Semeraro (2008) and Luciano and 

Semeraro (2007) propose a similar model with idiosyncratic and systematic 

subordinators to capture idiosyncratic and systematic jump shocks simultaneously. In 

this line, Luciano and Semeraro (2010) consider correlated Brownian motions with 

idiosyncratic and systematic subordinators to increase the range of dependence using 

correlated Brownian motions. However, as noted in Luciano and Semeraro (2010), 

this approach is still less flexible in terms of high correlation.  
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Since the introduction of the generalized hyperbolic distributions (GH) by 

Barndorff-Nielsen (1977, 1978), it has widely been used in many applications because 

it provides a flexible tool for modeling the empirical distribution of financial data 

exhibiting skewness, leptokurtosis and fat-tails. The GH distribution encompasses 

many other distributions as special case, which includes the well-known normal 

inverse Gaussian (NIG) distributions of Barndorff-Nielsen (1995) and the Variance 

Gamma (VG) distributions of Madan and Seneta (1987, 1990). Multivariate GH 

(MGH) distributions were introduced and investigated by Barndorff-Nielsen (1978) 

and Blasild and Jensen (1981) according to a variance–mean mixture of a multivariate 

normal distribution. Prause (1999) first uses the MGH distributions to fit financial 

market. However, as Schmidt et al. (2006) show, it is computational burdensome to 

estimate the MGH distribution parameters since all parameters must be estimated 

simultaneously. Also, the MGH distributions do not allow independent margins, and 

they are not able to model tail-dependence.  

Schmidt et al. (2006) introduced multivariate affine generalized hyperbolic 

(MAGH) distributions. Because MAGH distributions are defined as an affine 

transformation of independent GH margins, these distributions possess four desirable 

features: easier for estimation and simulation algorithms, the existence of 

characteristic functions in closed form, better goodness-of-fit that MGH distributions, 

and the ability to capture a wide range of dependence structure. More recently, 

Fajardo and Farias (2010) price multidimensional European derivatives by obtaining 

the density resulting from the convolution of MAGH distributions. Distinct from 

Schmidt et al. (2006) and Fajardo and Farias (2010) who use the univariate GH 

distributions with zero location and unit scaling to construct MAGH distributions, we 

use standard GH margins to construct MAGH distributions.  
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The demand on more sophistical multivariate distributions on modeling asset 

prices poses implies that in many cases, closed form solutions does not exist on the 

price of the derivative securities. It is numerically even more challenging to price 

Bermudan/American options. While there exists many numerical methods for pricing 

Bermudan/American options when there is only one underlying asset price, many of 

these methods are breakdown when the option depends on more than one asset. An 

example is the multinomial tree of Këllezi and Webber (2004) and Maller et al. (2006) 

which is known to be very efficient for pricing Bermudan/American options when 

there is one underlying asset in Lévy process models. However, if the option depends 

on more than one asset, the multinomial tree becomes computational infeasible. For 

derivative pricing under multivariate Brownian motion, a possible method is the 

stochastic mesh (Monte Carlo mesh; for short MCM) method of Broadie and 

Glasserman (2004) and low discrepancy mesh (LDM) method of Boyle, et al. (2003). 

In Boyle et al. (2003), they have shown that the LDM method can be a competitive 

method to price multivariate Bermudan/American options. Their studies, however, 

have confined to assuming that the returns of the assets are multivariate normally 

distributed. 

In Chapter 5, we are concerned with an efficient algorithm of pricing 

multivariate Bermudan options assuming that the underlying asset returns follow 

MAGH distributions. To the best of our knowledge, there is no other numerical works 

that have used these distributions to price Bermudan derivatives. Here we demonstrate 

that LDM method can be extended to price Bermudan options even when the 

underlying asset returns follow MAGH distributions. In addition, in consistent with 

the results of Boyle et al. (2003), the LDM estimates are higher bias while the 

estimates from the Least Square Method (LSM) of Longstaff and Schwartz (2001) are 
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low bias. This property also ensures that the true value will lie between these two 

bounds. 

The remainder of this thesis is organized as follows. In Chapter 2, we introduce 

heavy-tailed distributions. We then illustrate the Lee-Carter model with t, JD, VG, 

NIG, and GHST innovations, as well as provide the dynamics of the mortality indices 

in Chapter 3. In Chapter 4, we provide a an iterative fitting algorithm to generate the 

maximum likelihood estimates of the Cox regression model under which the residuals 

of the RH model, the mortality indices and the cohort effects adhere to heavy-tailed 

distributions. And we employ the RH model with non-Gaussian innovations to price a 

longevity swap and calculate its VaR and CTE using England and Wales mortality 

data. The final application is in Chapter 5. We present the MAGH distributions as 

well as the estimation algorithm, and we employ the MAGH processes for asset 

returns, providing the multivariate Esscher transform for the MAGH asset model. 

However, we demonstrates the convergence of our proposed method by using some 

high dimensional Bermudan options when the underlying assets follow a MAGH 

distribution. In the end of thesis, we have some conclusions.  
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Chapter 2   

 
Heavy-Tailed Distributions  
 

2.1 Introductions of Heavy-Tailed Distributions 

If a random variable X  adheres to a JD distribution, then 

1

N

i
i

a Z YX 


   ,                         (2-1) 

where N follows the Poisson distribution with intensity N ; Z  is a standard normal 

random variable; and each iY , independent of z and N, is a normal distribution with 

mean Y  and variance 2
Y . Therefore, the probability density function takes the 

form: 

     2 2

0

, , , , ; , ProbJD N Y Y Y Y
i

f x a x a N N N i N i      




      ,          

 2 2

0

; ,
!

Ni
N

Y Y
i

e
x a i i

i

   




    ,                (2-2) 

where 2( ; , )x      is a normal probability density function with mean   and 
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variance 2 . The characteristic function of the JD distribution is of the form: 

   2 20.52 2ex, , , , p 0.5 1Y Y
JD N

i
Y Y Nia ea                

  .      (2-3) 

However, the first two moments of the JD distribution are  

  N YX aE   ,                          (2-4) 

   22 2
N Y YVar X      .                  (2-5) 

The moment-generating function is  , , , ,JD N Y Yi a     .

 The t, VG, NIG, and GHST distributions are the special cases of the generalized 

hyperbolic (GH) model proposed by Barndorff-Nielsen (1977, 1978) and offer 

flexible tools for modeling the empirical distribution of financial data that exhibit 

skewness, leptokurtosis, and fat tails.1 The generalized hyperbolic probability density 

function, following Prause (1999), is  

 
  

 
  

 

2 2
22

1

2
1

2 2
222

, , , ,
2

GH
x

K x

xf e
K

x



 




 
  

    
     







 
    
 

    
 
 

, (2-6) 

where K  is the modified Bessel function of the second kind with index  ;   is 

the scale parameter;   is the shift parameter; and  ,   and   determine the 

shape of the GH distribution. The parameters must fulfill the following constraints:  

0  ,    if 0  . 

0  ,    if 0  . 

0  ,    if 0  .                   (2-7) 

                                                       
1 In the empirical analyses, we also use the GH distribution to fit the mortality data of our six countries. 
However, the calibration results of the GH distribution always reduce to those of the GHST distribution, 
so we focus on this special case instead of the broader GH distribution. 
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The characteristic function of the GH distribution is of the form: 

 
 

  
 

22
22 2

22 2 2
, , , ,GH

i
K i

e
i K








         
     


 

 
 



 





.     (2-8) 

However, the first two moments of the GH distribution are  

 
 
 

2 2
1

2 2 2 2

K

K
E X





  
    







 
,             (2-9) 

 

 
 
 
 

 
 

2 2
1

2 2 2 2

2
2

2 2 2 2
2 2 1

2 2 2 2 2 2

K

Va
K

K K

K K

r X





 

 

  

     


     
       



 



 

                


 
 
 
 

  
 
 

   




. (2-10) 

The moment-generating function is  , , , ,GH i      .

 
If we let 0,  0    in Equation (2-6), using 1( ) ~ ( )2K x x 

     as 0   

and 0x  , we can obtain the VG distribution, with the following density function:  

 
   

   
  

0.5

0.5

0.5

2 2

, , , exp
2

VG

x K x
f x x








    
     

  






  
 


. (2-11) 

Note that when   2G M   ,   2G M   , and C  , we obtain the VG 

distribution, which is a special case of the CGMY distribution defined by Carr et al 

(2002). The characteristic function of the VG distribution is of the form: 

 
 

2 2

22
, , ,VG

ie
i



      
  


 
 
 





.             (2-12) 

However, the first two moments of the VG distribution are  

  2 2

2
E X


 




 ,                       (2-13) 
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 
2

2 2 2 2

2 2
1Var X

 
   

 
  

  
.                 (2-14) 

The moment-generating function is  , , ,VG i     .

 

The another popular 

representation of the VG distribution is provided in Appendix A. 

 When 0.5   , realizing that 0.5
0.5( ) 2 xK x x e    and ( ) ( )K x K x   , 

we obtain the NIG distribution with the following density function:  

   
 

 

1
22

2 2, , , exp
22

NIG

K x

f x x
x

  
        
  

 
         

   
. (2-15) 

The characteristic function of the NIG distribution is of the form: 

    22 2 2, , , expNIG i i                 
 

.  (2-16) 

However, the first two moments of the NIG distribution are  

 
2 2

E X


 



 ,                      (2-17) 

 
 1.2 2 5

2

Var X


 
 .                      (2-18) 

The moment-generating function is  , , ,NIG i     . This distribution is one of 

the most promising versions of the GH distribution for asset returns, because it 

possesses several attractive theoretical properties and analytical tractability. It 

therefore appears frequently in financial applications as an unconditional return 

distribution (Bølviken and Benth, 2000; Eberlein and Keller, 1995; Lillestøl, 2000; 

Prause, 1997; Rydberg, 1997) and for stochastic mortality modeling (Giacometti et al., 

2009). The another representation of the NIG distribution is provided in Appendix B. 

If instead we let / 2v    and  
 
in Equation (2-6), and we realize that 
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1( ) ~ ( )2K x x 
      as 0   and 0x  . In addition, ( ) ( )K x K x  . We 

can obtain the density of the GH skew Student’s t-distribution (GHST), proposed by 

Aas and Haff (2006), as follows: 

 
   

 

1

2

1
1 2

2

1

2

22 e

, , ,

2 ( 2)

22                                 ,  0.

v

v
v

xv

GHST

v

x

f x v

v

K x

    
  



   










 
  

 


 
    

 

        (2-19) 

The characteristic function of the GHST distribution is of the form: 

 
   

1
2

22 2

2, , ,

2 2

,  0.

2 ( 2)
v

i
GHST

K

v e

v

i i





       
    


 



 
  (2-20) 

However, the first two moments of the GHST distribution are  

 
2

2
E X







 ,                         (2-21) 

 
   

2 4 2

2

2

22 4
Var X

  
 

 
 

.               (2-22) 

The moment-generating function of the GHST distribution is undefined.

  The GHST distribution is one of the skew extensions of Student’s t-distribution. 

Letting v   and 0   in Equation (2-19), we obtain the non-central Student’s 

t-distribution with v  degrees of freedom, as follows:  

   
 1

2 2

-distribution

1
( )

2, 1
( )
2

v

t

v
x

f x v
v vv






 
  

  
   

.  

         

(2-23) 

The characteristic function of the non-central Student’s t-distribution is of the form: 
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 
   

1
2

-distribution

22 2

2,

2 ( 2)
v

i
t

v K v

v e

v






 
 





,

             

 (2-24) 

However, the first two moments of the non-central Student’s t-distribution are  

  ,  1E X    ,                       (2-25) 

  ,  2
2

Var X
 


 


.                    (2-26) 

In order to standardization, we first introduce the three parameters of Student's 

t-distribution (Bishop, 2006). We illustrate how to implement the Student's 

t-distribution in next subsection. The probability density function of three parameters 

of Student's t-distribution is 

   
 1

2 2

-distribution

1
( )

2, , 1

( )
2

v

t

v
x

f x v
vv v

 
 




 
  

  
  

.  

         

(2-27) 

where 

 

is called the precision of the Student's t-distribution. The characteristic 
function of the three parameters of Student’s t-distribution is of the form: 

 
1

2
-distributi

2

n

2

2

o

2

, ,

2 ( 2)
vt

i

v v
K

v e

v







 


 

  


   
      
   


,

             

 (2-28) 

However, the first two moments of the three parameters of Student’s t-distribution are  

  ,  1E X    ,                       (2-29) 

   
,  2

2
Var X

 
 

 


.                    (2-30) 

The moment-generating function of the Student’s t-distribution is undefined.  
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2.2 The Standardization Approaches for Heavy-Tailed Distributions 

 In the subsection, we introduce the standardizations of the JD, GH, VG, NIG, 

GHST and Student's t-distribution . We let 

X a b    ,                        (2-31) 
 

where   are standardized random variables (i.e.   0E    and   1Var   , imply 

 E X a  and   2Var X b ). 
 
can be one of the standardized Lévy Processes. 

We can choose a finite-activity jump process, the jump-diffusion model of Merton 

(1976), and an infinite-activity jump process, the GH model.  

 From Equation (2-4) and (2-5), if   follows a standardized JD distribution, then 

 2 2

1

1
N

N Y N Y Y i
i

Z Y     


       ,              (2-32) 

where N is the Poisson distribution with intensity N ; Z  is a standard normal 

random variable; each iY , independent with Z
 
and N, is a normal distribution with 

mean Y  and variance 2
Y . The 

 
setting satisfies   0E    and   1Var   . 

The probability density function of   is of the form 

      ,  ,  JD N Y Yf y     

   2 2 2

0

- ,  1
!

N i
N

N Y Y N Y Y Y
i

e
y i i

i

        




      ,      (2-33) 

where  2,  y      is the probability density function with mean   and variance

2  for y. 

 Barndorff-Nielsen (1977, 1978) proposes the generalized hyperbolic (GH) model 

and the t, VG, NIG and GHST distributions are the special cases of the GH model.  

From Equation (2-9) and (2-10), if   follows a standardized GH distribution, then 
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 
  

 
  

 

2 2
22

1

2
1

2 2
222

, ,
2

y
GH

K y

f y e
K

y



 




 
  

  
     







 
    
 

    
 
 

,  (2-34) 

where   and   must satisfy the first two moments: 

 
 

1

2 2
( ) 0

K
E

K





 

   


,                (2-35) 

 
 

 
 

 
 

222 2
1 2 1( ) 1

K K K
V

K K K
  

  

   
    

   
                 

,   (2-36) 

where K   is the modified Bessel function of the second kind with index λ; 

2 2     ;   is the shift parameter and   is the scale parameter. In 

accordance with λ, α and β we can describe the shape of the GH distribution. When 

0  , the shape is symmetric. In addition, these parameters obey the following 

constraints: 0  
 
and R .  

 From Equation (2-13) and (2-14), we can obtain   follows a standardized VG 

distribution: 

     
   

 
0.52 2

0.5

0.5,
2

y
VG

y K y
f y e

 
  



    
 

  


 



  



,       (2-37) 

where 
2 2

2
 

 


 and 
 
 

22 2

2 22

 


 





 such that   0tE    and   1tVar   .  

 From Equation (2-17) and (2-18), we also obtain that t  follows a standardized 

NIG distribution: 
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   
 

 

1
22

2 2, exp
22

NIG

K y

yf y
y

  
      
  

 
         

   
, (2-38) 

where 
2 2


 

 


 and 
 2 2 1.

2

5
 







 such that   0E    and 

  1Var   .  

 From Equation (2-21) and (2-22), we have standardized GHST distribution, as 

follows: 

 
   

 

1

2

1
1 2

2

1

2

22 e

,

2 ( 2)

22                                 ,  0.

v

v
v

yv

GHST

v

y

f y v

v

K y

    




   










 
  

 


 
    

 

        (2-39) 

where   and   must satisfy the first two moments: 

 
2

0
2

E
 





  ,                        (2-40) 

 
   

2 4 2

2

2
1

22 4
Var

  
 

  
 

.                (2-41) 

For standardized Student's t-distribution, we employ the three parameters of Student's 

t-distribution to transfer. From Equation (2-29) and (2-30), we obtain that t  follows 

a standardized Student's t-distribution: 

   
 1

2 2

-distribution

1
( )

2 1

( )
2

v

t

v
y

f y v
vv v

 



 
  

  
  

,            (2-42) 

where  10,    and 
2

,  2
 



   such that   0E    and   1Var   .  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

20 
 

2.3 Estimation Scheme with Standardization 

 To estimate parameters of these models, we use the maximum likelihood method. 

Let a time series   1

n

t t
X


, and they are independent and identically distributed (i.i.d.), 

as follows: 

 
. . .

2,
i i d

t XX f a b  ,                    (2-43) 

where X is a random variable with parameters  ; a represents the mean of X and b 

represents the standard derivation of X. Or equivalently, we have  

t tX a b    ,                          (2-44) 
 

where t  are standardized random variables (i.e.   0tE    and   1tVar   , 

imply  tE R a  and   2
tVar R b ) and independent and identically distributed 

(i.i.d.). The log-likelihood function with respect to   is  

  
1

ln
n

X t
t

LLF f X


                      (2-45) 

where d  ; d  is the number of the unknown parameters. From Equation (2-44), 

we have  

t
t

X a

b
 
 .                          (2-46) 

Using transformation of random variable, if the probability density function of 

random variable U  is given by ( )Uf x  and h
 
is a monotonic function and we 

know the probability density function of  V h U  is 

       1

1
V U

d h v
f v f h v

dv


                    (2-47) 
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where 1h  denotes the inverse function. So equivalently, we let  1 t
t

X a
h X

b
 

  

and rewrite Equation (2-47) as follows: 

  1t
X

X a
f x f

b b
   

 
                      (2-48) 

Considering Equation (2-48), substituting into Equation (2-45) we obtain 

 
1

ln ln
n

t

t

X a
LLF f b

b 


    
    

    
                (2-49) 

Originally we estimate parameters with respect to random variable tR , using the 

method of standardization, we change to random variable t  when estimating. It is 

an advantage for reducing the number of estimated parameters. For example, assume 

the logarithm returns follow GH distribution, we need estimate five parameters  , 

 ,  ,  ,   if we do not use standardization approach. But we just estimate three 

parameters  ,  ,   when we employ standardization approach. 

 

 

  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

22 
 

  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

23 
 

 

 

 

 

Chapter 3  

 
A Quantitative Comparison of the 
Lee-Carter Model under Different 
Types of Non-Gaussian 
Innovations 
 

3.1 The Lee-Carter Model with Heavy-Tailed Innovations 

In this Chapter, we first review the classical Lee-Carter model, under which the 

mortality index follows an ARIMA model with normal innovations. Using the 

mortality data of six countries, we find that all the residuals of the Lee-Carter model 

and the mortality indices exhibit non-zero skewness and excess kurtosis. Therefore, 

we use the Lee-Carter model with five non-Gaussian distributions—t, JD, VG, NIG, 

and GHST—to model both the residuals and the dynamics of the mortality indices. 

The Lee-Carter Model 

 We analyze the changes in mortality as a function of both age x and time t. The 
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mortality forecast relies on the classical Lee-Carter model, namely, 

 , ,x t x x t x tln m k e    ,                        (3-1) 

where ,x tm  is the central death rate for age x in calendar year t, defined as the span 

from time t  to time 1t  . This structure is designed to capture age–period effects; 

x  describes the average pattern of mortality for the age group; x  represents the 

age-specific patterns of mortality change, indicating the sensitivity of the logarithm of 

the force of mortality at age x to variations in the time index tk ; tk  explains the 

time trend of the general mortality level; and ,x te  represents the deviation of the 

model from the observed log-central death rates, which should be a normal 

distribution with zero mean and a relatively small variance (Lee, 2000).  

We use approximation to fit the three parameters. According to two constraint 

conditions, 0t
t

k   and 1x
x

  , ˆ x  is simply the average value over time of 

 ,x tln m , and ˆ
tk  is the sum over various ages of  ,

ˆ
x t xln m  . Using  ,

ˆ
x t xln m   

as the dependent variable and ˆ
tk  as the explanatory variable, we can obtain ˆ

x  by 

using a simple regression model without an intercept parameter. Finally, we 

re-estimate the ˆ
tk  by iteration, using actual number of deaths, population, ˆ x , and 

ˆ
x , such that the actual number of deaths is close to the estimated number of deaths, 

and the adjusted ˆ
tk  is denoted as *ˆ

tk . 

To forecast future mortality dynamics, Lee and Carter (1992) assume that x  

and x  remain constant over time and therefore forecast the dynamics of adjusting 

the mortality index *
tk  using an ARIMA(0,1,0) model, as follows: 

* *
1t t tk k     ,                          (3-2) 
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where   is a drift term, and t  is a sequence of independent and identically 

Gaussian random variables with mean 0 and variance 2 . 

Normality Tests for the Residuals and Mortality Indices 

In this subsection, we apply the JB (Jarque and Bera, 1980) test to determine 

empirically the normality of the mortality data of six countries (Finland, France, 

Netherlands, Sweden, Switzerland, U.S.) from 1900 to 2007. The mortality data for 

the first five countries come from the Human Mortality Database (HMD) website,2 

whereas the U.S. data come from the National Center Health Statistics (NCHS) 

website.3  

First, we examine the normality test for the residuals in Equation (3-1). Figure 

3-1 depicts the probability density function of the standardized residuals. Clearly, the 

empirical residuals peak around the mean and fatter tails; that is, the residuals are 

non-normally distributed. Second, Figure 3-2 reveals the patterns of mortality indices, 

offering evidence of mortality improvements. We also find a lot of jump points. Chen 

and Cox (2009) attribute jump points in the U.S. mortality rate to influenza epidemics 

and argue against the naïve belief that a pandemic is a one-time event that cannot 

happen again. We thus cannot just ignore such extreme events. In addition, as we 

show in Figure 3-3, the probability density functions of the first differences in the 

mortality indices exhibit higher central peaks and larger tails than does a normal 

distribution. Therefore, we can fit the mortality indices to the non-Gaussian 

distributions.  

                                                       
2 http://www.mortality.org/. 
3 http://www.cdc.gov/nchs/nvss/mortality_tables.htm. Death rate files: HIST290 and GMWK290R. 
Death files: HIST290A and GMWK23F. 
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Finland                          France 

 

Netherlands                        Sweden 

 

Switzerland                          U.S. 
 

Figure 3-1. The Probability Density Functions of Standardized Residuals 
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Finland                          France 

 

Netherlands                        Sweden 

 

Switzerland                          U.S. 
 

Figure 3-2. The Pattern of Mortality Indices 
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Finland                           France 

 

Netherlands                         Sweden 

 

Switzerland                         U.S. 
 

Figure 3-3. The Probability Density Functions of the First Difference in 

Mortality Indices 
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To examine the assumption of normality of mortality rates in the Lee-Carter 

model, we also use the JB test statistic, a goodness-of-fit measure of the departure 

from normality: 

        
 22 3

6 24

ks
JB n

 
  

  
,                        (3-3) 

where n  is the sample size, s  is sample skewness, and k  is sample kurtosis. 

Table 3-1 provides the results of the JB test, together with the skewness and excess 

kurtosis values, for the residual of the Lee-Carter model and the first difference of the 

six countries’ mortality indices from 1900 to 1999. The skewness is significantly 

different from zero, and the excess kurtosis is large. The JB statistics also are 

significantly large, which means we must reject the assumption of normality. In turn, 

we use the heavy-tailed distributions—t, JD, VG, NIG, and GHST—to model the 

non-Gaussian property of the error terms in Equations (3-1) and (3-2). 

Table 3-1. Skewness, Excess Kurtosis and the Jarque-Bera Test 

 Panel A: the Residuals of the Lee-Carter Model 

Country Finland France Netherlands Sweden Switzerland U.S. 

Skewness 
0.394  0.950 -0.298 -0.100 0.273  0.444 

(0.053 ) (0.053 ) (0.053 ) (0.053 ) (0.053 ) (0.074 )

Excess Kurtosis 
6.813  7.168 6.058 3.071 4.925  4.018 

(0.107 ) (0.107 ) (0.107 ) (0.107 ) (0.107 ) (0.148 )

JB Test 
4116  4811  3242  829  2148  776  

[< 0.001] [< 0.001] [< 0.001] [< 0.001] [< 0.001] [< 0.001]

The table presents the skewness and excess kurtosis of the standardized residuals of the Lee-Carter 

model. Standard errors of the skewness and excess kurtosis given in the parentheses are calculated as 

6 n  and 24 n , respectively. n  denotes the number of observations. The p-values of 

Jarque-Bera (JB) test are given in bracket. 
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Panel B: the First Difference in Mortality Indices 

Country Finland France Netherlands Sweden Switzerland U.S. 

Skewness 
0.665  0.441 -2.525 0.470 0.827  -0.661 

(0.246 ) (0.246 ) (0.246 ) (0.246 ) (0.246 ) (0.246 )

Excess Kurtosis 
4.439  5.339 18.396 4.601 11.446  13.476 

(0.492 ) (0.492 ) (0.492 ) (0.492 ) (0.492 ) (0.492 )

JB Test 
89  121  1501  91  552  756  

[< 0.001] [< 0.001] [< 0.001] [< 0.001] [< 0.001] [< 0.001]

The table presents the skewness and excess kurtosis of the first difference in mortality indices. 

Standard errors of the skewness and excess kurtosis given in the parentheses are calculated as 6 n  

and 24 n , respectively. n  denotes the number of observations. The p-values of Jarque-Bera (JB) 

test are given in bracket. 

 

The Lee-Carter Model with Non-Gaussian Distributions 

Because the residuals of the Lee-Carter model and the mortality indices are 

non-normally distributed, we model the error term, ,x te  and t , using the five 

heavy-tailed distributions: t, JD, VG, NIG, and GHST. These distributions are refered 

to Chapter 2. 

For mortality data at age 1,...,x g  and time period 1,...,t T , the calibrated 

parameters of the Lee-Carter model can be obtained by maximizing the sample 

log-likelihood function (LLF),  

  
1 1

g T

xt
x t

LLF ln f e
 

  ,                     (3-4) 

with respect to  , which satisfies two constraint conditions, 0t
t

k   and 

1x
x

  .4 As suggested by Lee and Carter (1992), we re-estimate the tk  factors by 

iteration, given the values of x  and x  we obtained in the maximum likelihood 

                                                       
4 Let a     in the JD model and     2 2 2 2 2 2

1K K                in 

the special cases of the GH model. Thus, we ensure that the mean of error terms equals 0. 
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estimation, such that the implied number of deaths equals the actual number of deaths, 

or 

 , exp ,    1,...,t x t x x t
x

D N k t T    ,               (3-5) 

where tD  is the total number of deaths in year t , and ,x tN  is the total population 

of age group x  at time t . Using the re-estimated mortality indices, we can calculate 

the parameters of Equation (3-2) by maximizing the log-likelihood function, as 

follows: 

  
1

T

t
t

ln f 

 .                         (3-6) 

3.2 Empirical Analysis 

In this section, we illustrate the mortality data and investigate the goodness-of-fit 

distributions for the residuals of the Lee-Carter model and the first difference of 

mortality indices. Using the mortality data from 1900 to 1999, we first fit the residuals 

of the Lee-Carter model with our six distributions: normal, t, JD, VG, NIG, and 

GHST. We then fit the first difference of tk  from the best goodness-of-fit model, 

according to the Bayesian information criterion (BIC), to the same six distributions 

and project the subsequent eight-year mortality rates. 

Model Comparison  

For the sake of comparison, we use the log-likelihood function (LLF), Akaike 

information criterion (AIC; Akaike, 1974), BIC (Schwarz, 1978), KS test 

(Kolmogorov, 1933), Anderson-Darling (AD) test (Stephens, 1974), and 

Cramér-von-Mises (CvM) test (Anderson, 1962) as goodness-of-fit measures. The 

AIC is defined as 
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AIC LLF NPS   ,                       (3-7) 

where NPS  is the effective number of parameters being estimated. The BIC is 

defined as 

 0.5 logBIC LLF NPS NOS     ,                (3-8) 

where NOS  is the number of observations. For these criteria, a higher value of LLF 

and a smaller value of AIC and BIC indicate a better goodness of fit for the mortality 

model.  

For the KS test, the null hypothesis is    0 : ;H G x F x   for all sample data x 

and the parameters   of the distribution, where  G x  represents the empirical 

distribution function of the sample mortality index, and  ;F x   is the hypothesized 

cumulative density distribution (CDF). The test statistic is defined as  

 
   sup ;

x
KS F x G x   .                   (3-9) 

Thus a higher p-value in the KS test means a better goodness of fit for the mortality 

model. 

The AD test is a modification of the KS test, which also determines whether a 

sample of data come from a specific distribution. However, unlike the KS test, the AD 

test focuses on the weight of the tail. Its null hypothesis is that the data follow a 

specific distribution. The AD test statistic is defined as 

2AD NOS S   ,                      (3-10) 

where 

      1
1

2 1
ln ; ln 1 ;

NOS

i NOS i
i

i
S F y F y

NOS  



       ;           (3-11) 

F is a cumulative distribution function of the specified distribution; and iy  are the 

observed values in increasing order. A lower value of the test statistic indicates a 
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higher possibility that the mortality data come from the distribution F. 

The CvM test, an alternative to the KS test, is a criterion used to judge the 

goodness of fit of a probability distribution, compared with a given empirical 

distribution function. The test statistic CvM is defined as  

2

1

1 2 1
( ; )

12 2

NOS

i
i

i
CvM F y

NOS NOS

      
 .               (3-12) 

A lower value of this test statistic indicates a higher possibility that the mortality data 

come from the distribution F. Each test offers some benefits. That is, the KS test is 

known for the independence of its critical values from the tested distribution. 

Compared with the KS test, the main advantage of the AD test is that it assigns more 

weight to the tails of the distribution. Similarly, the CvM test incorporates information 

about the total sample and is insensitive to a slight dislocation of the empirical CDF. 

However, a major disadvantage of the CvM and AD tests is that the critical values 

depend on the analyzed distribution.5 

In-Sample Goodness of Fit 

Using mortality data from Finland, France, the Netherlands, Sweden, 

Switzerland, and the United States, Table 3-2 provides the LLF, AIC, and BIC results, 

together with their corresponding ranks. All three criteria indicate that the normal 

distribution is the worst model for all our mortality data. However, the JD model is 

the best model for the French mortality data; the NIG model is the best for the 

mortality data of Finland, the Netherlands, and Switzerland; and the VG model is the 

best option for Sweden. For the U.S. mortality data, the JD model offers the best fit 

according to the LLF and AIC values, but the t model is the best according to the BIC.  

In Table 3-3 we report the results for the KS, AD, and CvM tests, together with 

                                                       
5 We obtain the critical values through a Monte Carlo simulation with the estimated parameters (see 
Chernobai et al., 2007, p. 219). 
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their critical values for all six countries. For each country, the three test statistics are 

greater than the 5% critical value, so the empirical distribution of the residuals does 

not follow a normal distribution. For the Netherlands and Sweden, no test results 

reject the null hypothesis that the residuals come from non-Gaussian distributions. In 

addition, except for the U.S. mortality data, the results of the three tests support the 

null hypothesis that the residuals come from the best BIC models. For the U.S. 

mortality data though, the KS statistic rejects the t model, which is the best model 

according to the BIC, at a 1% significance level. Thus the difference between the 

theoretical and empirical CDF appears significant. However, if we ignore the 

dislocation of the empirical CDF, the t model offers better goodness of fit for the U.S. 

residuals, from the standpoint of the AD and CvM tests. Because the AD and CvM 

test results do not reject the claim that the error terms in Equation (3-1) come from the 

best models, according to the BIC, we use the mortality indices obtained from the best 

BIC model to investigate the pattern of innovations in Equation (3-2).  
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Table 3-2. Goodness-of-fit Measures for the Residuals of the Lee-Carter Model 

Panel A: the Finland Mortality Data 

Model LLF AIC  BIC  LLF Rank AIC Rank BIC Rank

Normal 789.78  -646.78 -242.82 6 6 6 

t 1088.73  -944.72 -537.95 4 4 3 

JD 1094.23  -948.23 -535.80 3 3 4 

VG 1073.33  -928.33 -518.73 5 5 5 

NIG 1105.54  -960.54 -550.94 1 1 1 

GHST 1097.20  -952.20 -542.59 2 2 2 

 

Panel B: the France Mortality Data 

Model LLF AIC  BIC  LLF Rank AIC Rank BIC Rank

Normal 826.85  -683.85 -279.90 6 6 6 

t 1279.79  -1135.79 -729.02 4 4 4 

JD 1344.31  -1198.31 -785.88 1 1 1 

VG 1277.39  -1132.39 -722.78 5 5 5 

NIG 1336.77  -1191.77 -782.17 2 2 2 

GHST 1296.69  -1151.69 -742.08 3 3 3 

 

Panel C. the Netherlands Mortality Data 

Model LLF AIC  BIC  LLF Rank AIC Rank BIC Rank

Normal 1878.08  -1735.08 -1331.13 6 6 6 

t 2094.57  -1950.57 -1543.79 5 5 4 

JD 2103.27  -1957.27 -1544.84 2 3 3 

VG 2102.66  -1957.66 -1548.06 3 2 2 

NIG 2118.45  -1973.45 -1563.85 1 1 1 

GHST 2095.81  -1950.81 -1541.21 4 4 5 
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Panel D: the Sweden Mortality Data 

Model LLF AIC  BIC  LLF Rank AIC Rank BIC Rank

Normal 1856.17  -1713.17 -1309.21 6 6 6 

t 1918.32  -1774.32 -1367.54 5 5 2 

JD 1920.62  -1774.64 -1362.22 2 4 5 

VG 1922.51  -1777.51 -1367.91 1 1 1 

NIG 1919.66  -1774.66 -1365.06 4 3 4 

GHST 1920.00  -1775.00 -1365.40 3 2 3 

 

Panel E: the Switzerland Mortality Data 

Model LLF AIC  BIC  LLF Rank AIC Rank BIC Rank

Normal 1612.69  -1469.69 -1065.74 6 6 6 

t 1806.21  -1662.21 -1255.43 5 4 4 

JD 1815.79  -1669.79 -1257.36 3 3 3 

VG 1826.48  -1681.48 -1271.88 2 2 2 

NIG 1843.55  -1698.55 -1288.95 1 1 1 

GHST 1806.74  -1661.74 -1252.14 4 5 5 

 

Panel F: the U.S. Mortality Data 

Model LLF AIC  BIC  LLF Rank AIC Rank BIC Rank

Normal 1199.95  -1074.95 -756.82 6 6 6 

t 1273.77  -1147.77 -827.09 4 3 1 

JD 1277.47  -1149.47 -823.71 1 1 4 

VG 1271.16  -1144.16 -820.94 5 5 5 

NIG 1274.83  -1147.83 -824.61 2 2 2 

GHST 1274.19  -1147.19 -823.97 3 4 3 
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Table 3-3. Goodness-of-fit Tests for the Residuals of the Lee-Carter Model 

Panel A: the Finland Mortality Data 

Model 

KS AD CvM 

Statistic 
Critical Value

Statistic 
Critical Value

Statistic 
Critical Value

5% 1% 5% 1% 5% 1% 

Normal 0.061** 0.029 0.035 21.681** 2.443 3.914 3.365** 0.458 0.746 

t 0.031* 0.029 0.035 2.624* 2.486 3.868 0.423 0.463 0.737 

JD 0.024 0.029 0.035 1.769 2.491 3.799 0.252 0.452 0.716 

VG 0.022 0.029 0.035 1.352 2.473 3.909 0.190 0.466 0.747 

NIG 0.016 0.030 0.035 1.028 2.516 3.906 0.104 0.464 0.753 

GHST 0.024 0.029 0.036 1.590 2.494 4.098 0.188 0.457 0.786 

Note: * and ** denote significance at the 5% and 1% level, respectively. 

 

Panel B: the France Mortality Data 

Model 

KS AD CvM 

Statistic 
Critical Value

Statistic 
Critical Value

Statistic 
Critical Value

5% 1% 5% 1% 5% 1% 

Normal 0.094** 0.029  0.035 35.657** 2.443 3.914 5.671** 0.458  0.746 

t 0.041** 0.029  0.035 7.765** 2.516 3.829 0.970** 0.463  0.724 

JD 0.021  0.029  0.035 1.329  2.465 3.780 0.176  0.456  0.716 

VG 0.040** 0.029  0.036 4.513** 2.467 3.852 0.462* 0.459  0.727 

NIG 0.026  0.029  0.035 2.420  2.511 3.951 0.275  0.461  0.754 

GHST 0.031* 0.029  0.035 4.020* 2.511 4.026 0.425  0.456  0.772 

Note: * and ** denote significance at the 5% and 1% level, respectively. 

 

Panel C: the Netherlands Mortality Data 

Model 

KS AD CvM 

Statistic 
Critical Value

Statistic 
Critical Value

Statistic 
Critical Value

5% 1% 5% 1% 5% 1% 

Normal 0.062** 0.029  0.035 18.743** 2.443 3.914 3.118** 0.458  0.746 

t 0.023  0.029  0.035 1.705  2.533 3.807 0.210  0.466  0.726 

JD 0.018  0.029  0.035 0.858  2.473 3.762 0.130  0.458  0.710 

VG 0.024  0.029  0.035 2.336  2.448 3.742 0.272  0.454  0.727 

NIG 0.013  0.030  0.035 0.335  2.547 3.899 0.038  0.470  0.741 

GHST 0.019  0.029  0.035 1.692  2.483 3.897 0.194  0.460  0.758 

Note: * and ** denote significance at the 5% and 1% level, respectively. 
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Panel D: the Sweden Mortality Data 

Model 

KS AD CvM 

Statistic 
Critical Value 

Statistic
Critical Value 

Statistic 
Critical Value 

5% 1% 5% 1% 5% 1% 

Normal 0.031* 0.029  0.035 3.721* 2.443 3.914 0.590* 0.458  0.746 

t 0.015  0.029  0.035 0.571  2.488 3.881 0.084  0.466  0.751 

JD 0.014  0.029  0.035 0.429  2.472 3.857 0.060  0.452  0.736 

VG 0.024  0.029  0.035 1.805  2.477 3.909 0.282  0.466  0.747 

NIG 0.014  0.029  0.035 0.379  2.495 3.893 0.047  0.461  0.740 

GHST 0.013  0.029  0.035 0.370  2.488 3.879 0.043  0.468  0.732 

Note: * and ** denote significance at the 5% and 1% level, respectively. 

 

Panel E: the Switzerland Mortality Data 

Model 

KS AD CvM 

Statistic 
Critical Value

Statistic 
Critical Value

Statistic 
Critical Value

5% 1% 5% 1% 5% 1% 

Normal 0.058** 0.029  0.035 17.921** 2.443 3.914 3.033** 0.458  0.746 

t 0.025  0.029  0.035 2.720* 2.470 3.948 0.327  0.460  0.742 

JD 0.027  0.029  0.035 2.621* 2.483 3.714 0.421  0.454  0.719 

VG 0.016  0.029  0.035 0.865  2.456 3.805 0.108  0.454  0.730 

NIG 0.017  0.030  0.036 0.699  2.579 3.978 0.081  0.473  0.756 

GHST 0.025  0.029  0.035 2.677* 2.514 3.885 0.323  0.464  0.746 

Note: * and ** denote significance at the 5% and 1% level, respectively. 

 

Panel F: the U.S. Mortality Data 

Model 

KS AD CvM 

Statistic 
Critical Value 

Statistic
Critical Value 

Statistic 
Critical Value 

5% 1% 5% 1% 5% 1% 

Normal 0.050** 0.039  0.046 7.501** 2.491 3.902 1.229** 0.464  0.748 

t 0.047** 0.039  0.047 1.711  2.551 4.045 0.296  0.473  0.763 

JD 0.047** 0.039  0.047 1.346  2.459 3.933 0.234  0.461  0.757 

VG 0.038  0.039  0.046 2.291  2.488 3.880 0.361  0.460  0.745 

NIG 0.038  0.039  0.046 1.430  2.479 4.001 0.246  0.455  0.756 

GHST 0.039* 0.039  0.046 1.523  2.541 3.868 0.249  0.474  0.744 

Note: * and ** denote significance at the 5% and 1% level, respectively. 
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Table 3-4 contains the results for the LLF, AIC, and BIC and their corresponding 

ranks in terms of the normal, t, JD, VG, NIG, and GHST distributions for the first 

difference of mortality indices. The Gaussian model is the worst, according to the 

LLF, AIC, and BIC. The LLF criterion also indicates that the best goodness-of-fit 

derives from the NIG model for the Netherlands but from the JD model for the five 

other countries. Because it introduces a penalty term for the effective number of 

parameters, the best in-sample goodness of fit changes for the t distribution, except 

for France and the Netherlands. According to the BIC, the NIG model again is the 

best fit for the Netherlands, the JD model is the best for France, and the t model is the 

best one for Finland, Sweden, Switzerland, and the United States. Table 3-5 lists the 

results for the KS, AD, and CvM tests, together with their critical values, pertaining to 

the error terms of the mortality indices. The results reject the notion that the error 

terms of the mortality indices for France, the Netherlands, and the United States come 

from a normal distribution. All three test results confirm that the error terms of the 

mortality indices come from non-Gaussian distributions. Therefore, the 

goodness-of-fit tests consistently indicate that non-Gaussian distributions provide 

better in-sample goodness of fit for the error terms of the mortality indices.  
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Table 3-4. Goodness-of-fit Tests for the First Difference in Mortality Indices 

Panel A: the Finland Mortality Index 

Model LLF AIC  BIC  LLF Rank AIC Rank BIC Rank

Normal -208.78  210.78 213.38 6 6 6 

t -195.83  198.83 202.72 4 2 1 

JD -192.28  197.28 203.77 1 1 2 

VG -197.68  201.68 206.87 5 5 5 

NIG -195.34  199.34 204.53 2 3 3 

GHST -195.63  199.63 204.82 3 4 4 

 

Panel B: the France Mortality Index 

Model LLF AIC  BIC  LLF Rank AIC Rank BIC Rank

Normal -222.77  224.77 227.36 6 6 6 

t -204.48  207.48 211.38 4 4 3 

JD -195.99  200.99 207.48 1 1 1 

VG -204.51  208.51 213.70 5 5 5 

NIG -198.66  202.66 207.85 2 2 2 

GHST -202.81  206.81 212.01 3 3 4 

 

Panel C: the Netherlands Mortality Index 

Model LLF AIC  BIC  LLF Rank AIC Rank BIC Rank

Normal -209.29  211.29 213.88 6 6 6 

t -184.02  187.02 190.91 5 5 3 

JD -181.28  186.28 192.77 2 4 5 

VG -181.98  185.98 191.17 4 3 4 

NIG -179.93  183.93 189.12 1 1 1 

GHST -181.40  185.40 190.59 3 2 2 
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Panel D: the Sweden Mortality Index 

Model LLF AIC  BIC  LLF Rank AIC Rank BIC Rank

Normal -183.24  185.24 187.84 6 6 6 

t -175.64  178.64 182.53 3 1 1 

JD -174.79  179.79 186.28 1 4 5 

VG -176.59  180.59 185.78 5 5 4 

NIG -175.65  179.65 184.84 4 3 3 

GHST -175.49  179.49 184.68 2 2 2 

 

Panel E: the Switzerland Mortality Index 

Model LLF AIC  BIC  LLF Rank AIC Rank BIC Rank

Normal -168.78  170.78 173.37 6 6 6 

t -150.54  153.54 157.43 3 2 1 

JD -147.09  152.09 158.58 1 1 2 

VG -153.58  157.58 162.77 5 5 5 

NIG -151.70  155.70 160.89 4 4 4 

GHST -150.37  154.37 159.56 2 3 3 

 

Panel F: the U.S. Mortality Index 

Model LLF AIC  BIC  LLF Rank AIC Rank BIC Rank

Normal -92.74  94.74  97.34  6 6 6 

t -69.39  72.39  76.28  3 2 1 

JD -65.90  70.90  77.38  1 1 2 

VG -70.89  74.89  80.08  5 5 5 

NIG -70.73  74.73  79.92  4 4 4 

GHST -69.35  73.35  78.54  2 3 3 
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Table 3-5. Goodness-of-fit Tests for the First Difference in Mortality Indices 

Panel A: the Finland Mortality Index 

Model 

KS AD CvM 

Statistic 
Critical Value 

Statistic
Critical Value 

Statistic 
Critical Value 

5% 1% 5% 1% 5% 1% 

Normal 0.122  0.130  0.158 2.351  2.477 3.933 0.329  0.461  0.737 

t 0.052  0.131  0.158 0.364  2.502 3.944 0.043  0.462  0.746 

JD 0.053  0.130  0.159 0.218  2.529 3.941 0.037  0.457  0.753 

VG 0.063  0.130  0.159 0.555  2.481 3.994 0.068  0.465  0.769 

NIG 0.053  0.130  0.158 0.355  2.470 3.700 0.051  0.457  0.707 

GHST 0.054  0.131  0.157 0.313  2.509 3.923 0.038  0.459  0.728 

Note: * and ** denote significance at the 5% and 1% level, respectively. 

 

Panel B: the France Mortality Index 

Model 

KS AD CvM 

Statistic 
Critical Value 

Statistic
Critical Value 

Statistic 
Critical Value 

5% 1% 5% 1% 5% 1% 

Normal 0.156*  0.130  0.158 4.333** 2.477 3.933 0.720*  0.461  0.737 

t 0.104  0.131  0.158 1.438  2.476 3.932 0.233  0.458  0.735 

JD 0.065  0.131  0.158 0.411  2.513 3.980 0.077  0.459  0.762 

VG 0.106  0.131  0.158 1.275  2.532 3.961 0.224  0.469  0.768 

NIG 0.064  0.130  0.157 0.458  2.484 3.845 0.073  0.457  0.724 

GHST 0.077  0.131  0.157 0.754  2.509 3.923 0.093  0.459  0.728 

Note: * and ** denote significance at the 5% and 1% level, respectively. 

 

Panel C: the Netherlands Mortality Index 

Model 

KS AD CvM 

Statistic 
Critical Value 

Statistic
Critical Value 

Statistic 
Critical Value 

5% 1% 5% 1% 5% 1% 

Normal 0.144*  0.130  0.158 4.236** 2.477 3.933 0.720*  0.461  0.737 

t 0.092  0.131  0.157 1.226  2.509 3.887 0.206  0.464  0.735 

JD 0.069  0.131  0.159 0.361  2.551 3.899 0.070  0.469  0.760 

VG 0.064  0.131  0.157 0.640  2.480 3.881 0.077  0.455  0.744 

NIG 0.052  0.131  0.157 0.218  2.481 3.884 0.027  0.459  0.749 

GHST 0.058  0.130  0.156 0.348  2.508 3.825 0.046  0.456  0.728 

Note: * and ** denote significance at the 5% and 1% level, respectively. 
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Panel D: the Sweden Mortality Index 

Model 

KS AD CvM 

Statistic 
Critical Value 

Statistic
Critical Value 

Statistic 
Critical Value 

5% 1% 5% 1% 5% 1% 

Normal 0.093  0.130  0.158 1.192  2.477 3.933 0.164  0.461  0.737 

t 0.054  0.131  0.158 0.289  2.503 3.944 0.036  0.462  0.746 

JD 0.062  0.131  0.158 0.215  2.493 3.935 0.034  0.469  0.739 

VG 0.058  0.131  0.160 0.302  2.500 3.893 0.041  0.469  0.758 

NIG 0.058  0.130  0.156 0.254  2.487 3.916 0.038  0.454  0.726 

GHST 0.054  0.131  0.157 0.238  2.509 3.924 0.034  0.459  0.728 

Note: * and ** denote significance at the 5% and 1% level, respectively. 

 

Panel E: the Switzerland Mortality Index 

Model 

KS AD CvM 

Statistic 
Critical Value 

Statistic
Critical Value 

Statistic 
Critical Value 

5% 1% 5% 1% 5% 1% 

Normal 0.104  0.130  0.158 2.244  2.477 3.933 0.310  0.461  0.737 

t 0.060  0.131  0.157 0.345  2.511 3.887 0.052  0.467  0.735 

JD 0.063  0.130  0.158 0.243  2.515 3.902 0.047  0.464  0.746 

VG 0.066  0.131  0.157 0.552  2.521 3.940 0.073  0.465  0.761 

NIG 0.064  0.131  0.157 0.411  2.443 3.830 0.061  0.457  0.733 

GHST 0.061  0.130  0.156 0.323  2.507 3.825 0.055  0.456  0.728 

Note: * and ** denote significance at the 5% and 1% level, respectively. 

 

Panel F: the U.S. Mortality Index 

Model 

KS AD CvM 

Statistic 
Critical Value 

Statistic
Critical Value 

Statistic 
Critical Value 

5% 1% 5% 1% 5% 1% 

Normal 0.140*  0.130  0.158 3.123* 2.477 3.933 0.456  0.461  0.737 

t 0.077  0.131  0.157 0.508  2.508 3.887 0.083  0.466  0.733 

JD 0.094  0.130  0.158 0.484  2.510 4.052 0.098  0.461  0.757 

VG 0.109  0.132  0.159 0.926  2.552 4.004 0.136  0.474  0.767 

NIG 0.076  0.130  0.157 0.546  2.477 3.867 0.076  0.460  0.743 

GHST 0.076  0.130  0.156 0.493  2.507 3.824 0.081  0.456  0.728 

Note: * and ** denote significance at the 5% and 1% level, respectively. 
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Mortality Projection 

For out-of-sample performance, we apply the parameters estimated from 

1900–1999 and obtain the mortality projection with 1,000,000 simulation paths. For 

each path, we can calculate the mean absolute percentage error (MAPE) as follows: 

1

1
100%

n
i i

i i

A F
MAPE

n A


   ,                   (3-13) 

where iA  is the historical mortality rate and iF  is the forecast mortality rate. When 

we apply the calibrated parameters of the Lee-Carter model with the best BIC 

goodness-of-fit innovations, we find the impacts on different distributions of the 

mortality projection for the mean, 90th percentile, and 95th percentile of MAPE from 

2000 to 2007, as we show in Table 3-6. Lower values indicate better predictive power 

for the fitted distribution. According to the average rank of the MAPE criterion, the 

normal distribution provides poor mortality projection performance; the t and its skew 

extension GHST provide the best mortality projection for all mortality data. Thus, the 

Lee-Carter model with non-Gaussian distributions provides a better mortality 

projection than that obtained from a normal distribution, in terms of the MAPE 

criterion. 
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Table 3-6. Percentile of MAPE of Mortality Projection 

Panel A: the Finland Mortality Data (Unit: %) 

Model Mean 90% 95% 
Mean  

Rank 

90%  

Rank 

95%  

Rank 

Average 

Rank 

NIG-Normal 8.273  10.406  11.132 2 6 6 4.67  

NIG-t 8.356  10.270  11.016 6 5 4 5.00  

NIG-JD 8.301  10.195  11.047 5 2 5 4.00  

NIG-VG 8.259  10.240  10.987 1 4 2 2.33  

NIG-NIG 8.282  10.226  11.011 3 3 3 3.00  

NIG-GHST 8.284  10.085  10.755 4 1 1 2.00  

Note: X-Y model means that the error terms in Equations (3-1) and (3-2) are the X 
and Y models, respectively.  
 

Panel B: the France Mortality Data (Unit: %) 

Model Mean 90% 95% 
Mean 

Rank 

90%  

Rank 

95%  

Rank 

Average 

Rank 

JD-Normal 4.866  6.797  7.833  6 4 4 4.67  

JD-t 4.772  6.562  7.692  2 2 3 2.33  

JD-JD 4.862  6.893  8.359  5 6 5 5.33  

JD-VG 4.789  6.579  7.644  3 3 2 2.67  

JD-NIG 4.853  6.858  8.435  4 5 6 5.00  

JD-GHST 4.475  5.808  6.655  1 1 1 1.00  

Note: X-Y model means that the error terms in Equations (3-1) and (3-2) are the X 
and Y models, respectively.  
 

Panel C: the Netherlands Mortality Data (Unit: %) 

Model Mean 90% 95% 
Mean 

Rank 

90%  

Rank 

95%  

Rank 

Average 

Rank 

NIG-Normal 3.696  5.289  6.116  6 4 3 4.33  

NIG-t 3.548  5.003  5.926  3 2 2 2.33  

NIG-JD 3.588  5.334  6.573  4 5 6 5.00  

NIG-VG 3.641  5.355  6.511  5 6 5 5.33  

NIG-NIG 3.516  5.041  6.199  2 3 4 3.00  

NIG-GHST 3.227  4.253  4.938  1 1 1 1.00  

Note: X-Y model means that the error terms in Equations (3-1) and (3-2) are the X 
and Y models, respectively.  
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Panel D: the Sweden Mortality Data (Unit: %) 

Model Mean 90% 95% 
Mean 

Rank 

90%  

Rank 

95%  

Rank 

Average 

Rank 

VG-Normal 8.020  9.853  10.446 4 6 4 4.67  

VG-t 7.922  9.617  10.251 1 1 1 1.00  

VG-JD 8.024  9.829  10.574 6 5 6 5.67  

VG-VG 8.015  9.780  10.419 3 3 2 2.67  

VG-NIG 8.020  9.789  10.473 5 4 5 4.67  

VG-GHST 8.013  9.731  10.419 2 2 3 2.33  

Note: X-Y model means that the error terms in Equations (3-1) and (3-2) are the X 
and Y models, respectively.  
 

Panel E: the Switzerland Mortality Data (Unit: %) 

Model Mean 90% 95% 
Mean 

Rank 

90%  

Rank 

95%  

Rank 

Average 

Rank 

NIG-Normal 3.816  4.798  5.321  5 6 5 5.33  

NIG-t 3.783  4.652  5.187  4 4 4 4.00  

NIG-JD 3.817  4.656  5.341  6 5 6 5.67  

NIG-VG 3.763  4.601  5.046  2 2 2 2.00  

NIG-NIG 3.765  4.616  5.107  3 3 3 3.00  

NIG-GHST 3.741  4.542  5.012  1 1 1 1.00  

Note: X-Y model means that the error terms in Equations (3-1) and (3-2) are the X 
and Y models, respectively.  
 

 Panel F: the U.S. Mortality Data (Unit: %) 

Model Mean 90% 95% 
Mean  

Rank 

90%  

Rank 

95%  

Rank 

Average 

Rank 

t-Normal 3.266  4.247  4.676  6 6 6 6.00  

t-t 3.191  3.971  4.357  2 2 2 2.00  

t-JD 3.244  4.039  4.668  4 3 5 4.00  

t-VG 3.265  4.118  4.548  5 5 4 4.67  

t-NIG 3.228  4.047  4.457  3 4 3 3.33  

t-GHST 3.180  3.943  4.314  1 1 1 1.00  

Note: X-Y model means that the error terms in Equations (3-1) and (3-2) are the X 
and Y models, respectively.  
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3.3 Conclusions 

Recently, many researchers have examined mortality rates and explored different 

models. Some studies demonstrate that mortality rate improvements also exhibit jump 

properties. We therefore attempt to incorporate five heavy-tailed distributions—t, JD, 

VG, NIG, and GHST—into the Lee-Carter model. Using mortality data from six 

countries, we apply the BIC and KS, AD, and CvM tests and find consistent support 

for the non-Gaussian residuals of the Lee-Carter model. Specifically, when we 

calibrate the parameters of the Lee-Carter model, the JD-JD model6 is the best one 

for French mortality data, the NIG-NIG model is best for the Netherlands, the VG-t 

model offers the best goodness of fit for Swedish mortality data, the t-t model is best 

for the U.S. mortality data, and the NIG-t model is the best one for the mortality data 

from Finland and Switzerland. For forecasting mortality rates, we find that the normal 

distribution provides weak mortality projection performance, whereas t and its skew 

extension provide good mortality projections. Therefore, for applications of the 

Lee-Carter model, the heavy-tailed distributions appear to be the most appropriate 

choices for modeling long-term mortality data. 

 

  

                                                       
6 The terminology “X-Y model” refers to the error terms in Equations (3-1) and (3-2), respectively. 
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Chapter 4  

 
Mortality Modeling with 
Non-Gaussian Innovations and 
Applications to the Valuation of 
Longevity Swaps 
 

4.1 Stochastic Mortality Models with Cox Error Structures 

In this section, we first review the RH model, in which the mortality index and 

cohort effect follow ARIMA models with normal innovations. However, according to 

the mortality data, the residuals exhibit non-Gaussian distribution. Consequently, we 

assume that the number of deaths follows a Cox process and that the death rates 

adhere to the RH model in which the residuals, the mortality indices, and the cohort 

effects follow three non-Gaussian distributions: JD, VG, and NIG. We also develop 

an iterative process for calibrating the corresponding parameters of the Cox process 

with leptokurtic intensity.  
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Renshaw and Haberman’s (2006) Model 

We analyze changes in mortality as a function of both age x and time t. For 

mortality forecasting, the cohort-based extension to the LC model proposed by 

Renshaw and Haberman (2006) is as follows: 

 , ,x t x x t x t x x tln m k e        ,                   (4-1) 

where ,x tm  is the death rate for age x in calendar year t, defined as running from 

time  to time 1t  ; x  describes the average pattern of mortality over an age 

group; tk  explains the time trend of the general mortality level; x  represents 

age-specific patterns of mortality change, indicating the sensitivity of the logarithm of 

the force of mortality at age x to variations in tk ; t x   is a cohort effect; x  

controls age-specific cohort contributions to the mortality projection; and ,x te  

represents the error term, which is normally distributed with mean 0 and variance 2
e . 

This structure is designed to capture age–period–cohort effects. 

To forecast future mortality dynamics, the mortality index tk  follows a 

one-dimensional random walk with drift (Lee and Carter, 1992), as follows: 

1t t tk k     ,                        (4-2) 

where   is a drift term and t  is a sequence of independent and identically 

zero-mean Gaussian random variables. Let the year of birth be equal to c t x  . 

Following the model setup of Renshaw and Haberman (2006) and Cairns et al. (2010), 

we model the cohort factor c  as an ARIMA(1,1,0) process that is independent of 

tk : 

 1c c cz              ,                    (4-3) 

t
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where cz   is a sequence of independent and identically standard normal random 

variables.
 
 

Normality Test for the RH Model  

According to table 1 in Dowd et al.’s (2010) article, the residuals of the Renshaw 

and Haberman (2006) model exhibit leptokurticity. In this subsection, we therefore 

apply the JB statistic (Jarque and Bera, 1980) to test empirically the normality of the 

three mortality data sets from England and Wales, France, and Italy for subjects aged 

60–89 years during the period 1900–1983. The mortality data came from the Human 

Mortality Database (HMD) website.7 Table 4-1 contains the results of the JB test for 

the residuals of the RH model, the first difference of the three countries’ mortality 

indices, and the corresponding cohort effects from 1900 to 1983. The JB statistic 

rejects the assumption of normality for the residuals of the RH model and the cohort 

effects. Therefore, we use the heavy-tailed distributions—JD, VG and NIG—to model 

the non-Gaussian nature of the error terms of the RH model. 

Table 4-1. The Jarque-Bera Test 

  England and Wales France Italy 

Residuals  

of the RH Model 

373.952 1489.534 15531.672 

[< 0.001] [< 0.001] [< 0.001] 

First Difference 

 in Mortality Indices 

1.175 0.638 2.532 

[0.477]  [0.500]  [0.182]  

the Residuals of 343.557 43.933 295.214 

Cohort Effects [< 0.001] [< 0.001] [< 0.001] 

Note: The p-values of the Jarque-Bera test are in brackets. 

 

  

                                                       
7 See http://www.mortality.org/. 
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Heavy-Tailed Distributions 

We model the error terms of the RH model, ,x te , t , and t xz  , using the three 

heavy-tailed distributions: JD, VG and NIG. In the subsequent subsection, we take 

,x te  as an example to describe the properties of these heavy-tailed distributions; 

analogous results are obtained for t  and t xz  . We refer to these distributions in 

Chapter 2. 

A Cox Process with Leptokurtic Intensity  

We assume that ,x tD , or the number of deaths at age x during year t, adheres to 

a Cox process, also known as a doubly stochastic Poisson process. That is, 

 , ,~x t x tD Cox  , where , , ,x t x t x tE m   is a non-negative stochastic intensity process, 

and
 ,x tE  is the exposure to risk at age x during year t. When death rates adhere to the 

RH model, ,x t
 
can be modeled as  

 , , , , ,expx t x t x t x t x x t x t x x tE m E k e          ,           (4-4) 

where ,x te  is assumed to be an age- and period-homogeneous heavy-tailed 

distribution that captures leptokurticity. Let ,x td  be the corresponding number of 

deaths actually observed. Conditional on ,x te y , the number of deaths ,x tD  

becomes a Poisson distribution with intensity  expxt x x t x t xE k y       . As a 

result, the log-likelihood function based on the Cox regression model is defined as 

   
,, , ,

,

log |
x tx t x t x t e

x t

LLF f D d e y f y dy



   ,         

  
(4-5) 

where 
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 , , ,log |x t x t x tf D d e y   

      , ,,, exp exp loglog !x t x x t x t x x t x x t x t xx t x tE k y Ed dk y               .
 
(4-6) 

Thus, to find the maximum likelihood estimates of the parameters of the Renshaw and 

Haberman (2006) model, we can maximize Equation (4-5) with respect to x , x , 

tk , x , t x  , and the error term distribution parameters. The closed-form solution of 

the log-likelihood function in Equation (4-5) is derived as follows: 

      
,, - , -

.

- exp 1
x tx t x x t t x x t x x t tx ex

t
x

x

LLF d E k Mk              + C, (4-7) 

where  
,x teM u  is the moment-generating function of ,x te , and C represents a 

constant term equal to  , , ,
.

log log !x t x t x t
x t

d E d   . The proof of Equation (4-7) is in 

Appendix C. Note that when ,x te  is ignored while modeling the number of deaths 

(i.e.,  
,

1 1
x teM  ), the log-likelihood function defined in Equation (4-7) is precisely 

the same as that proposed by Wilmoth (1993), Brouhns et al. (2002), and Cairns et al. 

(2009).  

Similar to the two-step procedures of Lee and Carter (1992), Brouhns et al. 

(2002), and Renshaw and Haberman (2006), we first calibrate the parameters x , 

x , tk , x , and -t x  with an updating scheme. Then, we estimate  ,  ,  , 

 , and the distribution parameters of the residuals of the mortality indices and 

cohort effects. In the first step, there are six sets of parameters, namely, the x , x , 

tk , x , and -t x  parameters, as well as the ,x te  distribution parameters. Following 

Brouhns et al. (2002) and Renshaw and Haberman (2006), we use the following 

updating scheme: Let xn  be the total number of ages. Starting with 1/x xn   and 
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- 0t x   and then obtaining x , x , and tk  from the approximation method of the 

LC model, we calibrate the corresponding ,x te  distribution parameters by 

maximizing the sample log-likelihood function:  

  
, -

,

log , , ,,
x te xt x t x x t

x t
xLLF f e k   .              (4-8) 

Then, with the ,x te  distribution parameters estimated from Equation (4-8), we 

employ an iterating method to estimate the corresponding parameters of the RH 

model according to the elementary Newton method (Goodman, 1979; Brouhns et al., 

2002; Renshaw and Haberman, 2006).  

Following the estimating procedure of Renshaw and Haberman (2006), the 

parameters are estimated by iteration. In each iteration step, we update a single set of 

parameters; the other parameters are fixed at their current estimates using the 

following updating scheme: 

2 2
( ) ( )update u

LLF

LLF

 



 






.                 (4-9) 

Consequently, the updating scheme is as follows: 

 
 

 
,

,

, ,

,

exp (1)

exp (1)

x t

x t

x t x t x x t t x e
t

x x

x t x x t x

x

xt e
t

d E k

E k

M
u

M

  
 

 









    
 

   




,          (4-10) 

 

   

   

,

,

2

, ,
,

,
,

exp 1

exp 1

x t

x t

x t x t x x t z e
x t

z t x
z z

x t x x t z

x x x

x e
x

x
t

z t x

M

u
M

d E k

E k

  



  

 
  

 

 

    

 
   




,       (4-11)

 

 
   

   
,

,

, ,

2
,

exp 1

exp 1

x t

x t

x t t x x t t x x x t t xx

x x

e
t

x t t x x x t t x e
t

x

d E k

E
u

Mk

M
 

    

   

  

 

    
 

   




,     (4-12)
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 
   

   
,

,

, ,

2
,

exp 1

exp 1

x t

x t

x t x x t x x x t t x e
x

t t

x t x x x t t x e

x

x
x

d E k
k k

E k

M
u

M

    

   









    
 

   




, and    (4-13) 

 
   

   
,

,

, ,

2
,

exp 1

exp 1

x t

x t

x t t x t t x x t t x e
t

x

x

x x

x t t x x t t x e
t

d k E k
u

k M

ME k k





  
 

  





    
 

   




.       (4-14) 

We repeat the updating cycle (Equations (4-8)–(4-14)) and stop when the 

log-likelihood function in Equation (4-7) converges.8 Model identification can be 

conveniently achieved with parameter constraints: 0t
t

k  , 1x
x

  , 1x
x

  , 

and 0t x
t

   .9 

After obtaining the mortality indices and cohort effects, we can calculate the 

parameters of Equations (4-2) and (4-3) by maximizing the log-likelihood function, as 

follows: 

  log t
t

f   and   log s
s t x

f z
 
 ,             (4-15) 

where  tf   and  sf z  are the probability density functions of t  and sz , 

respectively. 

4.2 Empirical Analysis 

In this section, we investigate the goodness-of-fit distributions for the number of 

deaths, the first differences of the mortality indices, and the cohort effects. Using the 

                                                       
8 The criterion used to stop the iterative fitting procedure is a very small relative change in the 
log-likelihood function. We adopt 10−7 as the default value. 
9 Similar to Brouhns et al. (2002), after updating the tk  parameters, we impose a centering constraint 

0t
t

k   by removing 
t

t

k  from tk . After updating the x  parameters, a scaling constraint 

1x
x

 
 

must be imposed by dividing the estimates for x  by 
x

x

  and multiplying the 

estimates for tk  by the same number. Following the analogical procedure, the constraints of 
x  and 

t x   are also achieved. 
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mortality data from 1900–1983, we fit the residuals of the RH model to four 

distributions: normal, JD, VG, and NIG. We then fit the mortality indices and cohort 

effects from the best-fitting model according to the Bayesian information criterion 

(BIC) to the same four distributions. Finally, we project the subsequent 25-year 

mortality rates (1984–2008). 

In-Sample Goodness of Fit 

Using mortality data from 1900 to 1983, we first investigate the goodness-of-fit 

distributions of the number of deaths for England and Wales, France, and Italy. Table 

4-2 presents the LLF, Akaike information criterion (AIC), and BIC statistics10 for the 

number of deaths at which the residuals of the RH model adhere to the normal, JD, 

VG, and NIG models. All three criteria indicate that the normal distribution is the 

worst fitting model for the number of deaths. They also indicate that the VG model is 

consistently the best model for the number of deaths in the three mortality data sets. 

Therefore, we use the mortality indices and cohort effects obtained from the VG 

model to investigate the pattern of the error terms of the time and cohort effects.  

Table 4-2. Goodness-of-fit Measures for the Number of Deaths 

Model 
  England and Wales      France    Italy 

LLF AIC  BIC LLF AIC BIC LLF AIC  BIC 

Normal -32727 33011 33839 -30356 30640 31468 -45130 45414 46242

JD -32557 32844 33681 -30237 30524 31361 -43719 44006 44843

VG -32554 32840 33674 -30084 30370 31204 -42900 43186 44020

NIG -32556 32842 33676 -30236 30522 31356 -44314 44600 45434

 
The test results for the first difference in mortality indices are in Table 4-3, which 

contains the LLF, AIC, and BIC statistics for the normal, JD, VG, and NIG 

distributions. The Gaussian model is the worst according to the LLF criterion, which 

                                                       
10 AIC LLF NP   and  0.5 logBIC LLF NP NS     , where NP  is the effective number 

of parameters being estimated and NS  is the number of observations. 
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also indicates that the best fit for the three mortality data sets derives from the JD 

model. The best in-sample goodness of fit for mortality indices changes for the 

normal distribution of all mortality data, because the BIC introduces a penalty term 

for the effective number of parameters. 

Table 4-3. Goodness-of-fit Tests for the First Difference in Mortality Indices 

Model 
England and Wales     France    Italy 

LLF AIC  BIC LLF AIC BIC LLF AIC  BIC 

Normal -164.87 166.87 169.29 -174.07 176.07 178.49 -179.71 181.71 184.13

JD -161.89 166.89 172.93 -173.71 178.71 184.75 -178.59 183.59 189.64

VG -162.67 166.67 171.50 -173.85 177.85 182.69 -178.67 182.67 187.51

NIG -163.49 167.49 172.33 -173.84 177.84 182.68 -178.68 182.68 187.52
 

  In Table 4-4 we present the LLF, AIC, and BIC statistics for the normal, JD, VG, 

and NIG distributions for cohort effects. The LLF, AIC, and BIC statistics consistently 

indicate that the best fit for Italy derives from the JD model, but for England and 

Wales, it derives from the NIG model. For France, the best model for cohort effects is 

the JD model according to LLF, but in terms of the AIC and BIC, the best is the VG 

model. All three criteria indicate that the normal distribution is the worst fitting model 

for the cohort effects. Consequently, with mortality data from three countries over the 

period 1900–1983, in-sample model selection criteria indicate a preference for 

modeling the RH model with non-Gaussian innovations.  

Table 4-4. Goodness-of-fit Tests for the Residuals of Cohort Effects 

Model 
England and Wales     France     Italy 

LLF AIC  BIC LLF AIC BIC LLF AIC  BIC 

Normal -96.11 99.11 103.18 -107.63 110.63 114.69 -125.75 128.75 132.81

JD -84.27 90.27 98.4 -97.57 103.57 111.69 -105.31 111.31 119.44

VG -83.83 88.83 95.6 -97.79 102.79 109.57 -115.01 120.01 126.79

NIG -83.48 88.48 95.25 -97.86 102.86 109.64 -111.45 116.45 123.22
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Mortality Projection 

To assess out-of-sample performance, we apply the parameters estimated from 

the time period 1900–1983 to obtain 25-year mortality projections, calculating the 

mean absolute percentage error (MAPE) as follows: 

,                          (4-16) 

where iA  is the logarithm of the historical mortality rate; iF  is the natural 

logarithm of the forecast mortality rate; and n is the number of observations.  

By applying the calibrated parameters of the RH model to the VG innovations 

(the best model according to BIC), we reveal the impact of the different distributions 

on the mortality projection for MAPE from 1984 to 2008 (Table 4-5). A lower value 

indicates better predictive power for the distribution. For comparison, we also provide 

the mortality projection of the original RH model with four forecasting 

distributions—normal, JD, VG and NIG (the original RH-Normal model corresponds 

to the M2 model of Cairns et al., 2009). The VG-NIG model11 is the best mortality 

projection for the mortality data of England and Wales. The VG-VG model provides 

the best one for the mortality data from France and Italy. As a result, in terms of the 

MAPE criterion, the RH model with non-Gaussian innovations provides better 

mortality projection than that obtained from the original RH model with normal 

innovations. 

 

 

 

 

                                                       
11 A VG-NIG model corresponds to a VG error term in the RH model and to NIG distributions for the 
time and cohort effects. 

1

1 n
i i

i i

A F
MAPE

n A


 
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Table 4-5. MAPE of Logarithm of Mortality Projection in 1984-2008 (Unit: %) 

Model England and Wales France Italy 

Original RH-Normal 4.9344 5.1999 7.2268 

Original RH-JD 4.9343 5.1915 7.2822 

Original RH-VG 4.9393 5.1000 7.9326 

Original RH-NIG 4.9319 5.1891 7.2983 

VG-Normal 4.8072 5.1719 7.0612 

VG-JD 4.8064 5.1619 7.1135 

VG-VG 4.807 5.0595 6.9687 

VG-NIG 4.8063 5.1598 7.1293 

Note: Original RH-Normal is the same as M2 of Cairns et al. (2009). The X-Y model corresponds to an 

X error term in the RH model and to Y distributions for the time and cohort effects. 

4.3 Application: The Valuation of Longevity Swaps 

 In this section, we first price a longevity swap. Using the mortality data of 

England and Wales from 1900 to 2008, we then re-fit the RH model to attain the fair 

swap premium of the longevity swap for both the original RH model (M2) and the 

best projection model. Finally, we provide the VaR and CTE of the longevity swaps.  

Pricing Longevity Swaps 

The traditional method of transferring longevity risk in a pension plan or an 

annuity book is to sell the liability through an insurance or reinsurance contract, 

known as pension buyouts. These tactics have attracted increasing attention since 

2006, especially in the United Kingdom. However, such transactions involve the 

transfer of all risks, including longevity and investment risk. To transfer longevity risk 

only to capital markets, Blake and Burrows (2001) first advocate the use of longevity 

bonds, whose coupon payments depend on the proportion of the population surviving 

to particular ages. Bauer (2006) and Barbarin (2008) also apply the 

Heath-Jarrow-Morton methodology (see Heath et al., 1992) to price longevity bonds. 

The EIB/BNP longevity bond was the first securitization instrument designed to 
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transfer longevity risk but ultimately was withdrawn. The lack of success in issuing 

longevity bonds led to new securitization instruments, such as longevity swaps,12 

which were pioneered in capital markets by J.P. Morgan and Canada Life in July 2008. 

As Blake et al. (2012) show, 16 publicly announced longevity swaps were executed 

between 2007 and 2012 in the United Kingdom. In this context, the valuation of 

longevity swaps represents an important research topic for developing capital market 

solutions for longevity risk.  

Longevity swaps have been widely explored in prior literature (Dawson, 2002; 

Lin and Cox, 2005; Dowd et al., 2006; Dawson et al., 2010; Biffis et al., 2011; Wang 

and Yang, 2012). Dowd et al. (2006) introduce the mechanism for transferring 

longevity risk; this instrument involves exchanging actual pension payments for a 

series of pre-agreed fixed payments. On each payment date, the fixed-rate payer (e.g., 

pension plan) receives from the hedge supplier a random mortality-dependent 

payment and, in return, makes a fixed payment to the hedge supplier. Dowd et al. 

(2006) demonstrate that the hedge is almost perfect when the reference index is based 

on the survivor experience of the insurer’s annuity book. If the expected reference 

indices and insurers’ own survivor experiences are highly correlated, the longevity 

swap can still hedge the insurer against a considerable amount of the aggregate 

longevity risk it faces. In this article, following the vanilla longevity swap structure 

analyzed by Dowd et al. (2006) and Dawson et al. (2010), we discuss a T-year 

bespoke longevity swap linked to a benchmark cohort of a given initial age for the 

England and Wales mortality data.13 

For a given time horizon T, we consider a filtered probability space 

                                                       
12 For the recent development of longevity-linked securities, see Blake et al. (2012) and reference 
therein. 
13 To bear no basis risk, the variable payments in bespoke longevity swaps are designed to match 
precisely the mortality experience of each individual hedger. 
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  0
, , ,

T

t t
P


    on which the death time is modeled as a stopping time   with 

respect to t . As mentioned by Biffis et al. (2010) and Hainaut (2012),   is the 

enlarged filtration ℋ  where ℋ is the filtration related to risk factors and  is the 

complement, such that   is a stopping time on  . Conditional on the path followed 

by the mortality rates, the t-year survival probability that a 65-year-old person in 

calendar year 2008+t reaches age 65+t is of the form: 

   65 ,20080
xp( ) eT

t

s sS t P t m ds      .           (4-17) 

We assume that the mortality rates are constant within certain age and time windows 

but may vary from one window to the next. Specifically, given any integer age  

and calendar year , we presume that  

, ,x t x tm m     for .              (4-18) 

Thus,  

1

65 ,2008
0

( ) exp( )
t

h h
h

S t m


 


  .                  (4-19) 

To transfer longevity risk, on each of the payment dates t, the fixed-rate payer 

pays the notional principal multiplied by a prespecified fixed proportion (1 ) ( )H t  

to the floating-rate payer and receives the notional principal multiplied by ( )S t , 

where ( )H t  is anticipated by using the best estimate of the underlying mortality 

model, and   is the swap premium that would be set so that the initial value of the 

swap is zero for each party.  

 The distribution function of ( )S t  under the real-world (physical) probability 

measure P is  

( ) ( ( ) )t PF y Prob S t y  .                   (4-20) 

x

t

0 , 1  
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Wang (2000) proposes a distortion operator to change the probability measure from 

the real-world probability measure P to an equivalent martingale measure Q, with the 

following transformation:14 

  1( ) ( )t tF y F y     ,                 (4-21) 

where   is a parameter called the market price of risk, and  is the standard 

normal distribution function. Therefore, as shown by Denuit et al. (2007), the 

expectation value of ( )S t  under the equivalent martingale measure Q is defined as  

       1 1 1

0 0
( ) 1 ( ) 1 ( )Q t tE S t F y dy F y dy       .    (4-22) 

Let  be the total annuities issued to an initial population that consists of 

persons aged 65 years who also are alive in 2008. Under the equivalent martingale 

measure Q, the fair value of a pay-fixed longevity swap at issue year 2009, denoted 

by 0LS , can be calculated as  

   0 0
1

exp ( ) ( ) (1 ) ( )
T t

Q
t

LS =E r u du M S t H t


 
   

 
  ,         (4-23) 

where  is the risk-free rate. We also consider the term structure of the interest 

rate in our valuation framework. Let  denote the price of a zero-coupon bond 

issued at time t that pays $1 at time T, . With the assumption that mortality rates 

and financial risk are independent, the fair value of a pay-fixed longevity swap takes 

the form: 

 0
1 1

(0, ) ( ) (1 ) (0, ) ( )
T T

Q
t t

LS =M B t E S t M B t H t
 

   .       (4-24) 

                                                       
14 The Wang transform represents only one possible choice among several incomplete market pricing 
methods. For example, Biffis et al. (2010) provide the equivalent changes of measures that preserve the 
structure of the LC model and the tractability of the doubly stochastic setup. The specification of both a 
real-world and an equivalent martingale measure raises the issue of whether the doubly stochastic 
setting applies under the two measures. For more details, please refer to the Proposition 3.2 in Biffis et 
al. (2010). 



M

( )r t

( , )B t T

t T
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The fair swap premium  , which is set when the initial value of the swap equals zero, 

is given by 

 
1

1

(0, ) ( )
1

(0, ) ( )

T

Q
t

T

t

B t E S t

B t H t
 



 



.                 (4-25) 

The analytical computation of  ( )QE S t  is difficult to implement. We explain briefly 

the Monte Carlo algorithm to compute the expected value of the t-year survival 

probability under the equivalent martingale measure Q in Appendix D. 

Numerical Analysis 

To simulate the mortality rates, we first re-fit the RH model with four 

distributions—normal, JD, VG, and NIG—to the mortality data of England and Wales 

from 1900 to 2008 in Table 4-6. Similar to the results based on the 1900–1983 period, 

the best model for England and Wales is still the VG model. Consequently, we use the 

best prediction models presented in Table 4-5 to simulate mortality rates, which is the 

VG-NIG model for England and Wales.  

Table 4-6. Goodness-of-fit Measures for the Number of Deaths in 1900-2008 

Model 
England and Wales 

LLF AIC BIC 

Normal -41760 42094 43111 

JD -41616 41953 42980 

VG -41524 41860 42883 

NIG -41526 41862 42886 
 

In this section, we provide a numerical example of the longevity swaps based on 

a cohort of 65-year-old persons in calendar year 2008. The initial term structure is 

obtained from the U.S. Department of the Treasury.15 We also assume that M = 1. 

                                                       
15 See http://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx? 
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Figure 4-1 depicts the swap premium curve by varying the level of the risk-adjusted 

parameter  . The fair swap premium is higher for a longer duration swap, because 

long-duration contracts are usually more expensive for covering longevity risk. The 

lower   implies higher survival probabilities, so the fair swap premiums should be 

bigger for lower  . In addition, the fair swap premiums of the RH model (the M2 

model of Cairns et al., 2009) are higher than those of the best prediction model, which 

means that the fixed-rate payer (longevity risk hedger) can pay lower swap premium, 

according to the best prediction model.  

 

Figure 4-1. Swap Premium Curves for Distinct Level of Risk-Adjusted 

Parameter   
 

Table 4-7 reveals the fair swap premiums with time to maturity equal to 25 years 

when  is -0.1, -0.15, and -0.2, with parallel shifts upward of 0%, 2%, and 4% in 

the yield curve. From Table 4-7, we see that the lower the  and the interest rate are, 

the higher is the fair swap premium. Similarly, the fair swap premiums of the RH 

                                                                                                                                                           
data=yieldYear& year=2008. The 1-year, 2-year, 3-year, 5-year, 7-year, 10-year, 20-year, and 30-year 
yield rates are 0.37%, 0.76%, 1%, 1.55%, 1.87%, 2.25%, 3.05%, and 2.69% on December 31, 2008, 
respectively. We use the linear interpolation to obtain other yield rates. 
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model are higher than those of the best prediction model, even when the yield curve 

moves up in parallel. Longevity risk hedgers can use the best prediction model to 

price longevity swaps and pay lower swap premiums. 

Table 4-7. Swap Premiums for Different Interest Rates (Units: bps) 

Yield Rates Model λ = -0.1 λ = -0.15 λ = -0.2 

Original yield curve 
RH 7.15 19.07 30.91 

Best 6.08 18.42 30.67 

Parallel shift up of 2% 
RH 6.11 16.32 26.48 

Best 5.15 15.73 26.24 

Parallel shift up of 4% 
RH 5.21 13.94 22.63 

Best 4.36 13.40 22.38 

Note: Time to maturity is 25 years. 

 

As market conditions change (e.g., mortality patterns, a parallel shift in yield 

curve), the marking-to-market (MTM) procedure could mean that the longevity swap 

switching status in the hedger’s balance sheet falls between that of an asset and that of 

a liability. Assume that   is -0.1 and the maturation time is 25 years, as in our 

baseline case. The initial swap premiums are 7.15 bps and 6.08 bps for the RH and 

best prediction models in the baseline case, respectively. In Table 4-8, applying 

Equation (4-24), we report the impacts of market condition changes (a parallel shift in 

yield curve and different risk-adjustment parameters  ) on the MTM profits or losses 

of the longevity swaps. When the yield curve moves up in parallel, ceteris paribus, 

the fair value of the longevity swap decreases, which means that a parallel shift up in 

the yield curve leads to a loss for the fixed-rate payer (hedger). In addition, a lower 

level of the risk-adjustment parameter results in a higher expected value of survival 

probability (higher mortality improvement), which in turn leads to a higher value of 

the longevity swap. Because the U.S. Fed reiterated its plan to keep its key short-term 

interest rate near zero until at least late 2014, it may be not favorable for the hedgers 
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(e.g., pension funds, annuity providers) to hedge their exposure to longevity risk 

through longevity swaps in this low interest rate environment. However, as shown in 

Table 4-8, the risk-adjustment parameter has a larger impact than the parallel shift up 

in the yield curve on the fair value of the longevity swap. Consequently, as life 

expectancy increases dramatically in developed countries, it is reasonable to find the 

recent surge in transactions in longevity swaps. 

Table 4-8. The MTM Values of Longevity Swaps  

Model Yield Rates 
λ 

-0.1 -0.15 -0.2 

RH 

Original yield curve 0 0.0184 0.0366 

Parallel shift up of 2% -0.0013 0.0116 0.0245 

Parallel shift up of 4% -0.0021 0.0072 0.0164 

Best 

Original yield curve 0 0.0190 0.0379 

Parallel shift up of 2% -0.0012 0.0122 0.0255 

Parallel shift up of 4% -0.0018 0.0077 0.0172 

Note: Assume that λ is -0.1 and maturation time is 25 years in the baseline case. 

 

From the standpoint of the pay-fixed payer of a longevity swap, the unexpected 

loss at time t is of the form: 

 ( ) (1 ) ( ) ( )L t M H t S t   , 1,...,t T .             (4-26) 

The present value of the total unexpected loss, denoted as PVL , is given by 

1

(0, ) ( )
T

t

PVL B t L t


 .                     (4-27) 

Figure 4-2 depicts the pdf of PVL  for the RH model and the best prediction 

model of England and Wales mortality data; it also marks the areas for the other three 

subplots in the upper left-hand panel. We find that the pdf of PVL  for the best 

prediction model possesses leptokurticity and a high tip. In addition, Table 4-9 

presents the VaR and CTE of the PVL  with maturation times of up to 25 years. It is 
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clear that, compared with the RH model, the best prediction model has higher VaR 

and CTE. Because shorter-duration contracts cover less longevity risk, the VaR and 

CTE values are smaller for shorter duration longevity swaps. The differences of RH 

and the best prediction model are larger for longer durations. Therefore, the loss 

distribution of longevity swaps is centralized and heavy-tailed, especially for longer 

duration contracts. It is critical to have a good mortality model to calculate accurate 

loss distributions. 

 
Figure 4-2. Probability Density Functions of Present Value of the Losses 

( 0.1   , 25T  ) 
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Table 4-9. The VaR and CTE of the Losses for Different Maturation Times 

(λ = -0.1) 

Time to Maturity Model VaR95 VaR99 CTE95 CTE99 

10 
RH 0.0800 0.1188 0.1047  0.1380  

Best 0.0847 0.1355 0.1171  0.1656  

15 
RH 0.2136 0.3061 0.2713  0.3596  

Best 0.2254 0.3452 0.3002  0.4176  

20 
RH 0.4137 0.5940 0.5256  0.6951  

Best 0.4355 0.6590 0.5757  0.7926  

25 
RH 0.6720 0.9563 0.8497  1.1165  

Best 0.7057 1.0526 0.9233  1.2528  

 

4.4 Conclusions and Suggestions 

Many researchers have examined mortality rates and explored various models. 

Some studies have demonstrated that improvements in the LC model occur when the 

model is adjusted by fitting the Poisson regression model to the number of deaths and 

considering an age–period–cohort extension of the LC model. Under the Poisson error 

structure though, intensity consists of the death rate, which is commonly modeled by 

stochastic mortality models. In addition, empirical results demonstrate that mortality 

rate improvements exhibit jump properties. We therefore attempt to provide an 

iterative fitting algorithm for estimating the Cox regression model, under which death 

rates adhere to the RH model with three heavy-tailed distributions—JD, VG, and 

NIG.  

Using three mortality data sets from England and Wales, France, and Italy, we 

find consistent support for the non-Gaussian residuals of the RH model. Specifically, 

when we calibrate the parameters of the RH model, the VG model provides the best 

fit for the three countries according to the BIC criterion. For mortality projection from 
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the three mortality data sets, we find that the normal distribution provides weak 

mortality projection performance, whereas the non-Gaussian distributions provide 

good mortality projections. In the longevity swap application, we demonstrate that the 

swap curves of the original RH model are higher than those of the RH model with 

non-Gaussian innovations, which means that a longevity risk hedger, a fixed-rate 

payer of a longevity swap, can pay lower swap premium by using the RH model with 

non-Gaussian innovations. In addition, the VaR and CTE of the original RH model are 

lower than those of the RH model with non-Gaussian innovations. Choosing an 

appropriate leptokurtic model is critical to avoiding an underestimation of the loss 

reserve. As a result, when applying the RH model to long-term mortality data, the 

non-Gaussian distributions appear to be the most appropriate choices. 
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Chapter 5  

 
Pricing High-Dimensional 
Bermudan Options with Lévy 
Processes Using Low Discrepancy 
Mesh Methods 
 

5.1 Multivariate Affine Generalized Hyperbolic Distributions 

 Let  1,..., nZ Z Z   be a random vector which consists of n mutually 

independent random variables with univariate standard GH distributions16 and we 

denote by  ;j jZ stdGH z  , where  : , ,j j j j     Then, we can define 

MAGH distributions as follows. 

Definition 5-1 (MAGH distribution). Let  1,..., nX X X   be an n-dimensional 

                                                       
16 See Chapter 2 for the definition of standard GH distributions. 
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MAGH distributed with mean vector nM R  and covariance matrix n n  if X 

can be expressed as an affine transformation of a vector Z: X M AZ  , where 

n nA   is a lower triangular matrix such that AA   . 17  We denote by 

 , ,X MAGH M  , where the parameter vectors  1: ,..., n    . 

   As Schmidt et al. (2006) and Fajardo and Farias (2010) pointed out, this 

definition is responsible for simplifying the estimation procedure and allows us to 

model more leptokurtic data. Following the similar algorithm used by Schmidt et al. 

(2006) and Fajardo and Farias (2009, 2010), we use the following steps to estimate 

the parameter of MAGH distributions.  

Step 1: Get  Z B X M  , where B is the inverse Cholesky factorization of the 

covariance matrix . Then Z is a set of independent  jstdGH  . 

Step 2: Estimate the univariate stdGH by using maximum likelihood estimation. 

The procedure leads to a simplification on the parameter estimation and allows 

us to estimate n one-dimensional distributions, instead of the simultaneous estimation 

of 5 ( 1) / 2n n n   parameters. 

According to Definitions 5-1, using the Jacobian determinant, the density 

function of X adhering to an MAGH density can be represented as  

   1

1
j

n

X Z j
j

f x A f z




  ,                        (5-1) 

where  1,..., nx x x   and    1,..., nz z z B x M   . In addition, the characteristic 

function (CF) of X is given by  

                                                       
17 Distinct form Schmidt et al. (2006) and Fajardo and Farias (2011) who use the univariate GH 
distributions with zero location and unit scaling to construct MAGH distributions, we use standard GH 
margins to construct MAGH distributions. As a result, this setup is easier to understand because M and 
  are directly the mean vector and covariance matrix, respectively. 
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        
1

exp exp
k

n

X Z k
k

E i X i M     


    ,             (5-2) 

where  1,..., n     and  1,..., n A      . We prove Equation (5-2) in 

Appendix E.  

Remark 5-1. Because the variance gamma (VG) distribution is the limiting case of 

GH distribution, when  ; ,j j jZ stdVG z   , we obtain  1,..., nX X X  follows 

an n-dimensional multivariate affine variance gamma random vector, denoted by 

 , ,X MAVG M  , where  1: ,..., n     and  : ,j j j   . Similarly, normal 

inverse Gaussian (NIG) distribution is a special case of the GH distribution with 

0.5   . When  ; ,j j jZ stdNIG z   , we obtain  1,..., nX X X  adheres to an 

n-dimensional multivariate affine normal inverse Gaussian (MANIG) random vector, 

denoted by  , ,X MANIG M  , where  1: ,..., n     and  : ,j j j   .  

MAGH Processes for Asset Returns 

In this section, we would introduce the MAGH model for the assets returns. The 

risky asset returns over a small time interval are defined as follows: 

       log log 1j j jR t S t S t   , 1,..., 1j n  , 1,...,t T       (5-3) 

where  jS t  is the thj asset price at time t . The return on the risk-free asset over the 

same time interval equals fr . Following the work of Fajardo and Farias (2010), we 

construct the assets returns using the MAGH distributions; that is  

 

11
1 1 1

21 22

1 2

0 0
( )

0
( )n n n

n n nn

a
R t m Z

a a
R t M AZ

R t m Z
a a a

 
      
                
           

 


 

  
  



,        (5-4) 
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where jm  is mean of the asset return  jR t  and A  is a lower triangular matrix 

such that the covariance matrix  is equal to AA . According to Equation (5-2), the 

CF of the logarithm of assets returns is of the form: 

        
1

exp ( ) exp
k

n

R Z k
k

E i R t i M     


    ,            (5-5) 

For Derivative pricing, we have to construct a risk-neutral measure to ensure that 

there is no arbitrage opportunities in the market described by the model (see Harrison 

and Kreps, 1979; Harrison and Pliska, 1981, 1983). Gerber and Shiu (1994) first 

employ the use of the Esscher transform for option valuation in an incomplete market. 

In this line, Fajardo and Mordecki (2006) and Fajardo and Farias (2010) extend 

one-dimensional Esscher transform to multidimensional derivative pricing18.  

Let 0( )T
t th =  is a stochastic process defined as  

1

T

T t
t

h x
=

= ,                            (5-6) 

where  

( )( )
( )( )( )

exp

exp
t

P

R t

RE t

q
x

q

¢
=

¢
,                       (5-7) 

and  1,..., n    . It is then straightforward to verify that ( ) 1P TE h =  and 

( )P T t tE Fh h= , where P is the physical probability measure (i.e., real-world 

probability measure). Or equivalently, 0( )T
t th =  is a martingale under P. Define a new 

martingale measure Qq  by 

                                                       
18 Distinct from Fajardo and Farias (2010), we provide explicitly a procedure to obtain the Esscher 
transform parameters as well as the corresponding MAGH parameter setup under the risk-neutral 
measure. 
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1
T

T

T t
tF

dQ

dP
q h x

=

= = .                          (5-8) 

We provide the multidimensional Esscher transform for MAGH in Proposition 

5-1. 

Proposition 5-1. Under the martingale measure Qq , the distribution of jZ  adheres 

to a ,( , , , )j j j jj jGH        law, where  1 ,..., n A 
     . In addition, to 

ensure that the discounted stock price process is a Qq -martingale, the Esscher 

transform parameter j  is chosen to satisfy the following equation: 

      
1

log ( ) log
k k

j

f j k jZ Zk k
k

r m i a i   


      .          (5-9) 

The detailed proof is shown in Appendix F. 

5.2 Low Discrepancy Mesh (LDM) Method 

 The LDM method of Boyle et al. (2003) is similar to the MCM method of 

Broadie and Glasserman (2004) except it exploits explicitly the greater uniformity of 

the low discrepancy sequence for generating the mesh points, but the MCM method 

generates the mesh points by crude Monte Carlo points. Boyle et al. (2003) 

demonstrated the power of the LDM method for pricing high-dimensional American 

style options when the underlying asset prices follow multivariate lognormal 

processes. In this paper, we show that the LDM method can also be extended to the 

MAVG and MANIG distributions. 

Let  1( ) ( ),..., ( )nS t S t S t  be a vector-valued process which denotes the prices 

of the n underlying asset at time t with fixed initial price (0)S . The payoff of 

derivative security depends on these underlying asset prices. We assume that 
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derivative security can be exercised at one of the d possible exercise time points 

0 10 ... dt t t T     , excluding initial time. From the standard option pricing theory, 

the value of the Bermudan option V  can be formulated as an optimization problem 

of the form (see Duffie, 1996) 

 max , ( )QV E h S


     ,                     (5-10) 

where   is a stopping time taking values in the set  1,...,t T , and  , 0h t x   is the 

payoff at time t  in state x  if the option is exercised. It is well known that the above 

optimization problem can be solved using the principle of dynamic programming. By 

defining  ,V t x  as the value of the Bermudan option at time t in state x , the 

dynamic programming can be described as follows:  

Step 1: Starting from the maturity T of the option and set    , ,V T x h T x . 

Step 2: For 1,...,1,i d   recursively calculate  

        1 1 1 1, max , , , , ( ) ( ) ,   1,...,1,i i i i Q i i iV t x h t x B t t E V t S t R t x i d
            

(5-11) 

where  1,i iB t t   is the discounting factor from it  to jt , , 0,...,i j d  and i j . 

Here    1 1 1 1, , ( ) ( )i i Q i i iB t t E V t S t R t x
        can be interpreted as the continuation 

value of the option if it is kept alive. Hence,  ,V t x  corresponds to the maximum of 

the exercise value and the continuation value.  

Step 3: For 0i  , calculate  

     1 1 10, (0) 0, , ( ) (0) ln (0)QV S B t E V t S t R S


     ,
            

(5-12) 

the time-0 value of the Bermudan option is given by  0, (0)V V S . 

 The difficulty in the above backward recursive algorithm is to provide an 
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effective algorithm to estimate the continuation value; i.e. the conditional expectations 

  1 1, ( ) ( )Q i i iE V t S t R t x
                           (5-13) 

The essence of the MCM method or the LDM method is provide an effective 

approach of approximating (5-13) using only the N mesh points ( )
it

R j , 1,...,j N , 

at each time point.  

To explain this, it is convenient to first define the transition probability of 

underlying asset as  

   1 1Prob ( ) ( ) ( ) , ( ), ;
i iQ i i t i t iA

S t A R t R j f t R j t u du
      ,        (5-14) 

where ( )
it

R j  is the thj  node at time it ;  1, ( ), ;
ii t if t R j t u  represents the 

transition probability from node ( )
it

R j  at time it  to node u  at time 1it  . By 

construction, 
0
( )tR   corresponds to the logarithm of initial underlying asset price 

ln (0)S . Then, as shown by Broadie and Glasserman (2004), the conditional 

expectations for all j  and 1,...,1i d   is  

     1 1 1 1
ˆ, ( ) ( ) ( ) , , ( ), ;

ni iQ i i i t i i t iE V t S t R t R j V t u f t R j t u du
    
      

 
 

   1

1 1
1

, ( ), ;
ˆ , ;

;
i

n

i t i

i i
i

f t R j t u
V t u g t u du

g t u


 



       

    
 

1

1

1

1
1 1

, ( ), ; ( )1 ˆ ,
; ( )

i i

i

i

N
i t i t

i t
k i t

f t R j t R k
V t X k

N g t R k







 

  ,              (5-15) 

where    
1 11 1, ( ), ; ( ) ; ( )

i i ii t i t i tf t R j t R k g t R k
    is the Radon-Nikodym derivatives. 

By the simple change of measure approach, the above result indicates that if the mesh 

points were simulated from an arbitrary  1;ig t    instead of  1, ( ), ;
ii t if t R j t   , then 

the conditional expectation can be approximated by (5-15).  
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 What remains is the specification of the mesh density  1;ig t   . As argued in 

Boyle et al. (2003), a reasonable choice of the mesh density is the marginal density. In 

our case, we similarly use the marginal density. We simulate mesh points at each time 

step using a simpler method; i.e. choose marginal distribution as  1;ig t   , the first 

and second moments of which match those of  10, (0), ;if R t    but the distribution of 

jZ , j=1,...,n, remain the same. In addition, in order to implement the framework easily, 

we simulate the underlying prices by the view of logarithm underlying returns. 

Because we assume the underlying returns follow MAVG or MANIG distribution, 

instead of underlying price.  

 To summarize, the LDM method can be implemented using the following two 

steps: 

Step 1 (Generate mesh points):  

 At time 1t , we use low discrepancy sequence and inverse method of cumulative 

density function to simulate the state variables 
1 1
(1),..., ( )t tR R N  from MAVG or 

MANIG distributions with the density, as follows, 

1( )R t M AZ  .                      (5-16) 

 At time it , 1i  , we use low discrepancy sequence and inverse method of 

cumulative density function to simulate these state variables (1),..., ( )
i it tR R N  from 

MAVG or MANIG distributions with the density, as follows, 

1 1 1( )i i itMR t t A Z   .                  (5-17) 

Step 2 (Backward recursion):  

 We calculate the Equation (5-15) according to transition probabilities and the 
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underlying payoffs. Then, we can obtain the value of Bermudan option following the 

backward recursion from Equation (5-11). 

5.3 Empirical and Numerical Analyses 

The Data Description   

In this paper, we first calibrate the MAVG and MANIG parameters of the daily 

stock returns of Apple (AAPL), Yahoo (YHOO) and Google (GOOG) for pricing 

Bermudan options. Our sample period runs from August 1st, 2007 to July 31th, 2012, 

with data from the Yahoo Finance. Table 5-1 presents the descriptive statistics for the 

raw data. 

Table 5-1. Descriptive Statistics 

Apple Yahoo Google 

Mean 0.1198% -0.0305% 0.0167% 

Median 0.1529% 0.0000% 0.0414% 

Maximum 13.0194% 39.1817% 18.2251% 

Minimum -19.7470% -23.4025% -12.3402% 

Std. Dev. 2.4052% 2.9359% 2.2229% 

Skewness -0.4244 1.3125 0.3782 

Excess Kurtosis 6.0008 30.0603 8.3703 

JB test 1928.32 47801.91 3708.28 

Observation 1260 1260 1260 
 

The descriptive statistics present that all risky assets we used exhibit non-zero 

skewness and positive excess kurtosis. Based on the Jarque–Bera (JB) test statistics, 

the null hypothesis is significantly rejected, which means that the empirical 

distribution of the return series do not follow the normality assumption. 

Parameter Calibration 

We first obtain the sample mean vector M̂  and sample covariance matrix ̂ . 
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Based on the sample covariance matrix, we can obtain its inverse Cholesky 

factorization, together with three residual series. We then estimate the corresponding 

univariate stdVG and stdNIG distributions by using maximum likelihood estimation.  

The results are presented in Table 5-2.  

Table 5-2. Estimated Parameters for MAVG and MANIG 

 Model Name a  b  M̂    Ŝ    Loglikehood

Apple 24.8844 -0.8460 0.3019 0.1458 0.0731 0.0862 -1693.17 

MAVG Yahoo 20.8623 0.6451 -0.0768 0.0731 0.2172 0.0652 -1553.69 

Google 20.8135 -0.8580 0.0421 0.0862 0.0652 0.1245 -1582.33 

Apple 13.5471 -0.9611 0.3019 0.1458 0.0731 0.0862 -1688.76 

MANIG Yahoo 9.6213 0.2875 -0.0768 0.0731 0.2172 0.0652 -1528.79 

  Google 9.6980 -0.3460 0.0421 0.0862 0.0652 0.1245 -1559.01 
 

For derivative pricing, we calculate   and the Esscher parameter  . As we 

mention in proposition 5-1, we solve numerically the Equation (5-9) to obtain   as 

well as the Esscher parameter  . The estimation results, when the risk-free interest 

rate is equal to 2%, are in Table 5-3. 

Table 5-3.   and Esscher Parameters
 


 
for MAVG and MANIG 

Model Name     

MAVG 

Apple -0.9262 -3.6788 

Yahoo 0.3892 0.7343 

Google 0.3980 1.4952 

MANIG 

Apple -0.9236 -3.6713 

Yahoo 0.3887 0.7331 

Google 0.3979 1.4950 

Note: The risk-free interest rate is 2%. 

Numerical Results 

In this section we provide some numerical evidence on the effectiveness of the 

LDM method. We consider the following Bermudan options:  
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 Put option on single asset:  max ,0tK S  

 Put option on the maximum of two assets:   1 2max max , ,0t tK S S  

 Put option on maximum of three assets:   1 2 3max max , , ,0t t tK S S S  

We further assume that K = $100 and r = 2%, these options have 4 and 8 

exercisable opportunities and that the underlying asset prices follow either MAVG or 

MANIG. For each option, LDM method and MCM method are implemented with 

mesh points N = {512, 1024, 2048, 4096} and using the mesh density as described in 

Equation (5-16) and (5-17). For the LDM method, the scrambled Sobol’ sequence is 

used to generate the necessary mesh points and this procedure is replicated 30 times in 

order to provide an estimate of the standard error of the LDM estimate. The same 

procedure is applied to the MCM method except that random sequences are used. The 

results are reported in Tables 5-4 ~ 5-9. 

When the number of asset is equal to one, the MAVG or MANIG processes 

reduce to the VG or NIG processes. Let us first focus on Tables 5-4 and 5-5. Because 

the contingent claim in this case is a standard put option which depends only on a 

single asset, their option prices can be approximated to a high degree of precision 

using the multinomial tree (MT), proposed by Këllezi and Webber (2004), even 

though the underlying asset follows a complicated process such as VG or NIG. In 

what follow, we assume that the Bermudan put option prices obtained from the MT 

with 4096 nodes are the “correct” prices so that these prices are used as benchmark 

against the simulated mesh estimates. Based on these results, we draw the following 

remarks: 

1. In agreement with Boyle et al. (2003), both the mesh estimates of LDM and 

MCM are high biased. In addition, the mesh estimates decline as we increase the 
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mesh points. 

2. The bias of the LDM method is remarkably small, assuming the prices from the 

MT is the correct value. Consequently, the LDM method is extremely effective. 

For example, when N = 4096, the maximum relative error is no more than 0.1% 

for both 4 and 8 exercises points and under both VG and NIG processes. 

3. The MCM method, on the other hand, is clearly inferior, as signified by the 

much larger standard errors and relative errors. More specifically, consider the 

case with S0 = 90 where the MT yields an option price of 12.9839 for the NIG 

process. The LDM method with 4096 mesh points gives the closer estimate with 

standard error of 0.0002. The error relative to the MT is therefore 0.0054%. In 

contrast, the corresponding MCM estimate is 13.1974 with standard error 0.0552. 

This leads to a relative error of 1.6443% and comparing to the LDM method, the 

standard error of the MCM method is about 305 times larger.  

Let us consider the results in the remaining table. The options in these cases 

depend on more than one asset and this brings out the weakness of the MT. The MT 

becomes computational inefficient when there is more than one asset. The LDM 

method, on the other hand, is more flexible in that it can easily be accommodated 

even when there is more than one underlying asset. This is the advantage of the LDM 

method.  

By considering option that depends on more than one asset also poses additional 

challenge on assessing the relative efficiency of the mesh estimates due to the lack of 

appropriate benchmark. Here we can only compare to LSM estimates of Longstaff 

and Schwartz (2001) based on 1,000,000 simulated paths and 30 trials. It should be 

emphasized that the mesh estimate and the least square estimate may not be directly 

comparable for at least the following two reasons. One is that the mesh estimate is 
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high bias while the least square estimate is low bias. The other is that for a given 

number of sample points, the magnitude of bias is not known and hence their 

accuracies can be difficult to gauge. On the other hand, the numerical results in the 

case of single asset examples are encouraging. These results indicate that the bias of 

the LDM method is extremely insignificant. This provides some confidence on the 

reliability of the LDM method and thus its accuracy in high-dimensional applications. 

The extensive numerical examples conducted by Boyle et al. (2003) also supported 

this even though the underlying state variables in their examples are multivariate 

normally distributed.  

From the results in Tables 5-6 ~ 5-9, we draw the following remarks:  

1. The mesh estimates are higher than the corresponding least square estimates. 

This is consistent with the property that the mesh estimate is high bias while the 

least square estimate is low bias. This property also ensures that the true value 

will lie between these two bounds. 

2. Even with more complicated options with payoffs depend on the maximum of 

multiple assets, the LDM method consistently outperforms MCM method, as 

signified by the much smaller standard errors under both MAVG and MANIG 

and 4d   and 8. This suggests that LDM method can be effective for pricing 

high-dimensional Bermudan option even though the underlying asset follows a 

more complicated multivariate processes.  

 In conclusion, the above numerical examples have demonstrated the relative 

efficiency of the LDM method. This method not only has competitive advantage for 

pricing high-dimensional Bermudan option, the method is flexible to accommodate 

any complicated stochastic process. This is a clear advantage of the LDM method as 

many of the existing numerical methods will breakdown when we move from 
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univariate to multivariate case. An example is the MT which is proven to be effective 

as long as the option depends on a single asset. When the option depends on more 

than one asset, the MT is no longer feasible.  
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Table 5-4. Put Option on Single Asset (4 exercise points) 

Underlying asset is assumed to follow VG process 

S0 
Multinomial 

Tree 
Nodes 

Low Discrepancy Mesh Monte Carlo Mesh 

Estimate Std. err. Rel. err. Estimate Std. err. Rel. err.

90 12.9793 

512 13.0027 0.0036 0.1809% 13.9341 0.1598 7.3567%

1024 12.9892 0.0026 0.0763% 13.4425 0.1065 3.5687%

2048 12.9824 0.0006 0.0242% 13.2185 0.0646 1.8432%

4096 12.9800 0.0002 0.0059% 13.1895 0.0550 1.6196%

100 7.3786 

512 7.4044 0.0035 0.3496% 8.0490 0.1405 9.0859%

1024 7.3901 0.0024 0.1548% 7.6847 0.0888 4.1480%

2048 7.3825 0.0006 0.0520% 7.5256 0.0570 1.9925%

4096 7.3799 0.0002 0.0168% 7.5293 0.0446 2.0421%

110 3.8334 

512 3.8562 0.0033 0.5957% 4.2943 0.1207 12.0226%

1024 3.8443 0.0023 0.2833% 4.0474 0.0750 5.5831%

2048 3.8371 0.0005 0.0978% 3.9202 0.0471 2.2644%

4096 3.8349 0.0002 0.0390% 3.9323 0.0330 2.5794%

 

Underlying asset is assumed to follow NIG process 

S0 
Multinomial 

Tree 
Nodes 

Low Discrepancy Mesh Monte Carlo Mesh 

Estimate Std. err. Rel. err. Estimate Std. err. Rel. err.

90 12.9839 

512 13.0060 0.0039 0.1702% 13.9336 0.1559 7.3149%

1024 12.9918 0.0019 0.0612% 13.4433 0.1056 3.5387%

2048 12.9862 0.0004 0.0179% 13.2217 0.0646 1.8320%

4096 12.9846 0.0002 0.0054% 13.1974 0.0552 1.6443%

100 7.3991 

512 7.4238 0.0038 0.3328% 8.0677 0.1369 9.0349%

1024 7.4087 0.0018 0.1291% 7.7008 0.0886 4.0772%

2048 7.4022 0.0005 0.0408% 7.5458 0.0566 1.9822%

4096 7.4003 0.0002 0.0152% 7.5536 0.0449 2.0874%

110 3.8684 

512 3.8907 0.0037 0.5777% 4.3283 0.1174 11.8910%

1024 3.8779 0.0018 0.2460% 4.0798 0.0744 5.4674%

2048 3.8714 0.0005 0.0799% 3.9549 0.0463 2.2367%

4096 3.8697 0.0003 0.0347% 3.9709 0.0332 2.6506%
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Table 5-5. Put Option on Single Asset (8 exercise points) 

Underlying asset is assumed to follow VG process 

S0 
Multinomial 

Tree 
Nodes 

Low Discrepancy Mesh Monte Carlo Mesh 

Estimate Std. err. Rel. err. Estimate Std. err. Rel. err.

90 12.9901 

512 13.0591 0.0094 0.5306% 14.6584 0.2761 12.8425%

1024 13.0132 0.0025 0.1776% 13.9463 0.1507 7.3606%

2048 12.9982 0.0011 0.0621% 13.6739 0.1132 5.2640%

4096 12.9927 0.0007 0.0201% 13.3532 0.0820 2.7948%

100 7.3850 

512 7.4521 0.0089 0.9080% 8.5045 0.2280 15.1593%

1024 7.4104 0.0025 0.3433% 7.9991 0.1297 8.3154%

2048 7.3949 0.0011 0.1334% 7.8607 0.0880 6.4417%

4096 7.3884 0.0007 0.0458% 7.6017 0.0707 2.9336%

110 3.8366 

512 3.8962 0.0082 1.5543% 4.5906 0.1856 19.6533%

1024 3.8608 0.0023 0.6325% 4.2262 0.1072 10.1563%

2048 3.8465 0.0010 0.2586% 4.1448 0.0635 8.0331%

4096 3.8402 0.0007 0.0945% 3.9660 0.0549 3.3728%

 

Underlying asset is assumed to follow NIG process 

S0 
Multinomial 

Tree 
Nodes 

Low Discrepancy Mesh Monte Carlo Mesh 

Estimate Std. err. Rel. err. Estimate Std. err. Rel. err.

90 12.9946 

512 13.0536 0.0079 0.4544% 14.6545 0.2652 12.7741%

1024 13.0125 0.0024 0.1381% 13.9448 0.1483 7.3126%

2048 13.0003 0.0009 0.0438% 13.6914 0.1141 5.3626%

4096 12.9959 0.0003 0.0105% 13.3628 0.0813 2.8336%

100 7.4054 

512 7.4637 0.0075 0.7878% 8.5156 0.2191 14.9916%

1024 7.4256 0.0024 0.2727% 8.0120 0.1264 8.1917%

2048 7.4127 0.0009 0.0980% 7.8919 0.0891 6.5695%

4096 7.4073 0.0004 0.0254% 7.6259 0.0704 2.9780%

110 3.8715 

512 3.9242 0.0071 1.3613% 4.6131 0.1771 19.1551%

1024 3.8913 0.0022 0.5118% 4.2532 0.1025 9.8605%

2048 3.8789 0.0009 0.1914% 4.1878 0.0644 8.1712%

4096 3.8736 0.0004 0.0536% 4.0023 0.0545 3.3796%
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Table 5-6. Put Option on the Maximum of Two Assets (4 exercise points) 

Underlying assets follow MAVG process  

S0 LSM Std. err Nodes 
Low Discrepancy Mesh Monte Carlo Mesh 

Estimate Std. err. Estimate Std. err.

90 9.3129 0.0013 

512 9.4167 0.0194 9.7923 0.0977 

1024 9.3639 0.0065 9.5016 0.0459 

2048 9.3449 0.0047 9.4264 0.0345 

4096 9.3366 0.0035 9.3724 0.0240 

100 4.3920 0.0010 

512 4.4534 0.0149 4.7246 0.0836 

1024 4.4276 0.0062 4.5164 0.0378 

2048 4.4087 0.0027 4.4558 0.0299 

4096 4.4031 0.0021 4.4219 0.0217 

110 1.8642 0.0007 

512 1.8942 0.0135 2.0841 0.0729 

1024 1.8865 0.0068 1.9539 0.0277 

2048 1.8750 0.0029 1.9007 0.0218 

4096 1.8691 0.0023 1.8832 0.0157 

 

Underlying assets follow MANIG process  

S0 LSM Std. err Nodes 
Low Discrepancy Mesh Monte Carlo Mesh 

Estimate Std. err. Estimate Std. err.

90 9.3238 0.0013 

512 9.4351 0.0204 9.8055 0.0939 

1024 9.3781 0.0070 9.5169 0.0458 

2048 9.3578 0.0050 9.4427 0.0343 

4096 9.3488 0.0037 9.3878 0.0240 

100 4.4069 0.0010 

512 4.4745 0.0158 4.7432 0.0809 

1024 4.4460 0.0066 4.5334 0.0384 

2048 4.4250 0.0028 4.4734 0.0299 

4096 4.4190 0.0022 4.4400 0.0218 

110 1.8831 0.0007 

512 1.9169 0.0141 2.1055 0.0708 

1024 1.9084 0.0066 1.9718 0.0281 

2048 1.8951 0.0028 1.9194 0.0215 

4096 1.8884 0.0024 1.9034 0.0158 
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Table 5-7. Put Option on the Maximum of Two Assets (8 exercise points) 

Underlying assets follow MAVG process  

S0 LSM Std. err Nodes 
Low Discrepancy Mesh Monte Carlo Mesh 

Estimate Std. err. Estimate Std. err.

90 9.6176 0.0014 

512 10.4165 0.1556 10.6105 0.1295 

1024 9.9317 0.0732 10.2371 0.0699 

2048 9.7773 0.0235 9.9601 0.0486 

4096 9.7176 0.0148 9.8262 0.0335 

100 4.5026 0.0012 

512 5.1152 0.1290 5.1846 0.0988 

1024 4.7630 0.0535 4.9176 0.0648 

2048 4.6309 0.0200 4.7540 0.0499 

4096 4.5838 0.0138 4.6485 0.0349 

110 1.9141 0.0007 

512 2.1548 0.0507 2.2997 0.0631 

1024 2.1103 0.0349 2.1608 0.0502 

2048 2.0139 0.0187 2.0740 0.0360 

4096 1.9784 0.0137 2.0100 0.0267 

 

Underlying assets follow MANIG process  

S0 LSM Std. err Nodes 
Low Discrepancy Mesh Monte Carlo Mesh 

Estimate Std. err. Estimate Std. err.

90 9.6218 0.0014 

512 10.4384 0.1324 10.6749 0.1329 

1024 9.9446 0.0773 10.2744 0.0693 

2048 9.7965 0.0256 9.9886 0.0509 

4096 9.7300 0.0159 9.8367 0.0339 

100 4.5139 0.0012 

512 5.1409 0.1059 5.2386 0.1021 

1024 4.7821 0.0554 4.9467 0.0630 

2048 4.6565 0.0221 4.7872 0.0520 

4096 4.6028 0.0147 4.6651 0.0351 

110 1.9314 0.0008 

512 2.1818 0.0502 2.3424 0.0672 

1024 2.1316 0.0360 2.1831 0.0477 

2048 2.0403 0.0208 2.1059 0.0376 

4096 2.0000 0.0143 2.0298 0.0264 
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Table 5-8. Put Option on the Maximum of Three Assets (4 exercise points) 

Underlying assets follow MAVG process  

S0 LSM Std. err Nodes 
Low Discrepancy Mesh Monte Carlo Mesh 

Estimate Std. err. Estimate Std. err.

90 7.6986 0.0010 

512 7.9565 0.0400 8.1163 0.0738 

1024 7.8522 0.0181 8.0086 0.0642 

2048 7.7897 0.0119 7.7956 0.0277 

4096 7.7503 0.0044 7.7705 0.0183 

100 3.0933 0.0008 

512 3.2602 0.0312 3.3545 0.0594 

1024 3.1867 0.0140 3.3000 0.0527 

2048 3.1645 0.0129 3.2074 0.0248 

4096 3.1232 0.0044 3.1426 0.0143 

110 1.0887 0.0007 

512 1.1854 0.0233 1.2236 0.0444 

1024 1.1495 0.0106 1.2025 0.0422 

2048 1.1245 0.0086 1.1521 0.0167 

4096 1.1065 0.0037 1.1099 0.0101 

 

Underlying assets follow MANIG process  

S0 LSM Std. err Nodes 
Low Discrepancy Mesh Monte Carlo Mesh 

Estimate Std. err. Estimate Std. err.

90 7.7247 0.0010 

512 7.9900 0.0396 8.1534 0.0724 

1024 7.8802 0.0186 8.0289 0.0552 

2048 7.8186 0.0123 7.8286 0.0279 

4096 7.7776 0.0044 7.8009 0.0182 

100 3.1145 0.0009 

512 3.2852 0.0309 3.3844 0.0588 

1024 3.2083 0.0139 3.3141 0.0433 

2048 3.1872  0.0123  3.2338  0.0256 

4096 3.1446 0.0044 3.1674 0.0144 

110 1.1063 0.0007 

512 1.2056 0.0232 1.2465 0.0442 

1024 1.1652 0.0094 1.2110 0.0317 

2048 1.1431  0.0082  1.1725  0.0175 

4096 1.1234 0.0036 1.1300 0.0103 
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Table 5-9. Put Option on the Maximum of Three Assets (8 exercise points) 

Underlying assets follow MAVG process  

S0 LSM Std. err Nodes 
Low Discrepancy Mesh Monte Carlo Mesh 

Estimate Std. err. Estimate Std. err.

90 8.1648 0.0012 

512 9.2977 0.0946 9.5514 0.1752 

1024 8.8570 0.0781 8.8936 0.0669 

2048 8.5516 0.0356 8.6437 0.0462 

4096 8.3509 0.0130 8.4415 0.0336 

100 3.2085 0.0011 

512 3.8896 0.0614 4.0688 0.1175 

1024 3.7233 0.0446 4.0192 0.1156 

2048 3.5160 0.0281 3.5742 0.0411 

4096 3.3758 0.0125 3.4239 0.0351 

110 1.1295 0.0007 

512 1.4140 0.0435 1.4878 0.0614 

1024 1.3549 0.0368 1.3544 0.0397 

2048 1.2934 0.0250 1.3177 0.0278 

4096 1.2265 0.0100 1.2564 0.0248 

 

Underlying assets follow MANIG process  

S0 LSM Std. err Nodes 
Low Discrepancy Mesh Monte Carlo Mesh 

Estimate Std. err. Estimate Std. err.

90 8.1899 0.0012 

512 9.4202 0.0998 9.6708 0.1776 

1024 8.9340 0.0894 8.9673 0.0679 

2048 8.6019 0.0383 8.7218 0.0527 

4096 8.3893 0.0133 8.4782 0.0328 

100 3.2271 0.0011 

512 3.9609 0.0622 4.1446 0.1199 

1024 3.7211 0.0519 3.7251 0.0552 

2048 3.5530 0.0288 3.6342 0.0459 

4096 3.4068 0.0137 3.4517 0.0345 

110 1.1461 0.0007 

512 1.4514 0.0433 1.5384 0.0668 

1024 1.3770 0.0354 1.3844 0.0379 

2048 1.3149 0.0236 1.3584 0.0318 

4096 1.2500 0.0108 1.2782 0.0241 
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5.4 Conclusions 

The current challenge to price high dimensional Bermudan derivatives is to 

obtain a procedure that is computationally efficient. In addition, due to the styled facts 

such as nonnegative skewness and excess kurtosis, large negative returns have been 

demonstrated to occur more frequently than predicted under the assumption of 

normality. Consequently, an inappropriate asset model may result in a serious 

mispricing of derivatives. In this paper we attempt to handle these two problems 

simultaneously by incorporating the MAGH models of Schmidt et al. (2006) and the 

LDM method of Boyle et al. (2003) to price the multidimensional Bermudan 

derivatives. For derivative pricing, we also derive the MAGH parameter setup under 

the risk-neutral measure. From the numerical results, we demonstrate that our method 

is computationally efficient and easy to implement. Furthermore, for pricing 

multidimensional Bermudan derivatives, the LDM estimates are high bias which the 

LSM estimates are low bias, this property also ensures that the true value will lie 

between these two bounds. 

 It is a clear advantage of the LDM method as many of the existing numerical 

methods will breakdown when we move from univariate to multivariate case for 

pricing high-dimensional Bermudan options. Consequently, because the LDM method 

is flexible to accommodate any complicated stochastic process with a stochastic 

interest rate, it will be a topic for future research. In addition, in this paper we focuses 

directly on the method itself, we did not include any types of variance reduction 

techniques. However our approach could also be enhanced by including variance 

reduction techniques.  
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Chapter 6  

 
Conclusions 
 

This thesis offers three applications with heavy-tailed distributions. In Chapter 3, we 

attempt to incorporate five heavy-tailed distributions—t, JD, VG, NIG, and 

GHST—into the Lee-Carter model. Using mortality data from six countries, the 

JD-JD model19 is the best one for French mortality data, the NIG-NIG model is best 

for the Netherlands, the VG-t model offers the best goodness of fit for Swedish 

mortality data, the t-t model is best for the U.S. mortality data, and the NIG-t model is 

the best one for the mortality data from Finland and Switzerland. For forecasting 

mortality rates, t and its skew extension provide good mortality projections.  
In Chapter 4, we refine the model, proposed by Renshaw and Haberman (2006), 

with heavy-tailed distributions. Under the Poisson error structure, however, the 

intensity is composed of the death rate, which is commonly modeled by stochastic 

mortality models. We attempt to provide an iterative fitting algorithm for estimating 
                                                       
19 The terminology “X-Y model” refers to the error terms in Equations (3-1) and (3-2), respectively. 
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the Cox regression model under which death rates adhere to the RH model with three 

heavy-tailed distributions—JD, VG and NIG. Using three mortality datasets from 

England and Wales, France and Italy, we find consistent support for the non-Gaussian 

residuals of the RH model. Specifically, when we calibrate the parameters of the RH 

model, the VG model provides the best fit for the three countries according to the BIC 

criterion. For mortality projection from the three mortality datasets, we find that the 

non-Gaussian distributions provide good mortality projections. In the longevity swap 

application, we demonstrate that the swap curves of the original RH model are higher 

than those of the RH model with non-Gaussian innovations, which means that a 

longevity risk hedger, a fixed-rate payer of a longevity swap, can pay lower swap 

premium by using the RH model with non-Gaussian innovations. In addition, the VaR 

and CTE of the original RH model are lower than those of the RH model with 

non-Gaussian innovations. Choosing an appropriate leptokurtic model is critical to 

avoiding an underestimation of the loss reserve. Therefore, for applications of the 

Lee-Carter model and RH model, the heavy-tailed distributions appear to be the most 

appropriate choices for modeling long-term mortality data. 

In Chapter 5, we attempt to handle these two problems simultaneously by 

incorporating the MAGH models of Schmidt et al. (2006) and the LDM method of 

Boyle et al. (2003) to price the multidimensional Bermudan derivatives. For 

derivative pricing, we also derive the MAGH parameter setup under the risk-neutral 

measure. From the numerical results, we demonstrate that our method is 

computationally efficient and easy to implement. Furthermore, for pricing 

multidimensional Bermudan derivatives, the LDM estimates are high bias which the 

LSM estimates are low bias, this property also ensures that the true value will lie 

between these two bounds. It is a clear advantage of the LDM method as many of the 
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existing numerical methods will breakdown when we move from univariate to 

multivariate case for pricing high-dimensional Bermudan options. Consequently, 

because the LDM method is flexible to accommodate any complicated stochastic 

process with a stochastic interest rate, it will be a topic for future research.  
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Appendix A 

 We introduce another popular representation of the VG distribution and its 

standardization in Appendix A. According to the following relationships of 

parameters: 

2
2

2

2 




 ,                          (A-1) 

2




 ,                              (A-2) 

1


 ,                              (A-3) 

we can rewrite the Equation (2-11) as follows: 

 

 

 
 

 
2

1
0.252 2 2

22
2 2

1 0.5 21

2
2

, , ,
1

2
x

VG

x
x

f x e K



 




      
   

   







                   
 
 

. 

(A-4) 

However, the characteristic function of the VG distribution is of the form: 

   
1

2 2, , , 1 0.5VG
ie i        



   .            (A-5) 

The first two moments of the VG distribution are 

 E X    ,                          (A-6) 

  2 2Var X    .                       (A-7) 

 Let    and 21    such that   0E X 
 
and   1Var X  . The 

standardized VG distribution can be represented by two parameters, we write 
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 
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   
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  

 
   








                   
    
 
 

 (A-8) 

However, the characteristic function of the VG distribution is of the form: 

    
1

2 2, 1 0.5 1i
VG e i        


    .            (A-9) 

This is another form of the VG distribution and its standardization. 
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Appendix B 

 We introduce another popular representation of the NIG distribution and its 

standardization in Appendix B. According to the following relationships of 

parameters: 

2
2

2

 




 ,                         (B-1) 

2




 ,                            (B-2) 




 ,                            (B-3) 

we can rewrite Equation (2-15) as follows: 

   

 

 

2

22

2

2 2

1 2 2

2

1
1

, , , exp

1 1 2

                                .
2

NIGf x x

K x

x


     

  

  
  

 


  
   

 
         

 
       

(B-4) 

However, the characteristic function of the NIG distribution is of the form: 

   2 21
, , , exp 1 1 2NIG i i        


  

 


   


 .         (B-5) 

The first two moments of the NIG distribution are 

 E X    ,                          (B-6) 

  2 2Var X    .                       (B-7) 

 Let    and 21    such that   0E X 
 
and   1Var X  . The 
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standardized NIG distribution can be represented by two parameters, we write 

   
   

     

 

2

2 2

2

1 2 2

2

1

1 1
, exp

1

1 1 1 2
1 1

                        .
1 2

NIG xf x

K x

x


     

  


  

 



 
   
  

  
   
      


 

       (B-8) 

However, the characteristic function of the VG distribution is of the form: 

    2 21
, exp 1 1 2 1NIG i i       


        

 
 

     (B-9) 

This is another form of the NIG distribution and its standardization. 
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Appendix C 

When the death rates follow the RH model, the explicit solution of the 

log-likelihood function in Equation (4-5) can be rewritten as follows: 

   

   
,

,

, , ,
,

, ,
.

log |

        log

x t

x t

x t x t x t e

x t

x t

x t x t x e
x

x t x
t

LLF f D d e y f y dy

d E f dk y y y   









  

  



 
 

       ,, ,exp exp log !
x tx t x x t ex t x x tE k y f y dy d  



    .     (C-1) 

Because  , 0x tE e  , we have 

 

       
,

, ,
,

, ,

log

exp exp log !
x t

x t x t x
x t

x t x x t e x

x t x t x

t tx x

LLF d E

E k y f y d d

k

y

  

 



 








  


   




 

      
,, ,

.

       exp 1
x tx t x x t x t x x t e

x t
x t x x t xd k E k M       

      

  , , ,
.

log log !x t x t x t
x t

d E d    .                                            

(C-2)  

This completes the proof of Equation (4-7). 
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Appendix D 

The procedure of computing the expected value of the t-year survival probability 

under the equivalent martingale measure Q is as follows. 

Step 1: After calibrating the parameters of the RH model, we use a Monte Carlo 

simulation with N iterations to generate the futures mortality rates and the survival 

probabilities under the real-world probability measure P. According to the N 

simulated values of t-year survival probabilities, we can construct the corresponding 

empirical cumulative distribution function (cdf) ( )tF   and its inverse cdf 1( )tF    

under P.  

Step 2: We know that the probability-integral transform of a random variable is 

distributed as standard uniform. Consequently, we have, according to Equation (4-21), 

  1( ( )) ( ( ))t tF S t U F S t      ,              (D-1) 

where U  is a standard uniform random variable. Rearranging Equation (D-1) and 

drawing N random numbers from a standard uniform distribution, we can generate N 

possible values of the t-year survival probabilities under the equivalent martingale 

measure Q, as follows: 

   1 1( ) tS t F U      .                (D-2) 

Averaging the N values of the t-year survival probabilities produces the expected 

value of t-year survival probability under Q. A higher value of N leads to a more 

precise setup for ( )tF  , 1( )tF   , and  ( )QE S t . We use N = 100,000. 
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Appendix E 

 Let  1,..., n    , the characteristic function of X is of the form:  

    expX E i X    

        exp exp expE i AZ M i M E i AZ       .      (E-1) 

Let  1,..., nA      , because  1,..., nZ Z Z   is a random vector which 

consists of n mutually independent random variables, we have  

        exp expX i M E i Z      

        
1 1

exp exp exp
k

n n

k k Z k
k k

i M E i Z i M    
 

    .      (E-2) 

This completes the proof of Appendix E. 
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Appendix F 

 According to Lemma 5.2.2 of Shreve (2004), the characteristic function of 

logarithm of stock return under the martingale probability measure Qq  is given by  

       1 1 1
1

exp ( ) exp ( ) exp ( )t
Q t P t P t t

t

E i R t F E i R t F E i R t F


   
  



 
     

 
 

  
     

   
   1

exp ( )exp
exp ( )

exp exp

P

P t

P P

E i i
E i R

R tR t

R t R
t F

E E t

 


 

  
  
  
 

 

   

   
   

 
1

1

1

exp ( )
exp

exp

k
k

k
k

n

Z k n
Z k

k
k

k
k

k
n

k Z
Z

k

i i M i i
i M

iM i







     


 

 






   
  
   





.   (F-1) 

Because kZ
 
adheres to a ( , , )k k kstdGH     law, by using Equation (2-8), and   

and   fulfill Equations (2-35) and (2-36), we have 

 
 

 
 

 
 

2 2 2
2 2

2 2 2 2

2 2 2
2

)

2

(

2

2 2 2

( )( )
e

( )

( )
e

(

( )

)

( )

( )

k

k
k k

kk

k
k k

k

k

k

k

k kk k ki

k k kZ k

Z k k

k k

i k k

k k k kk

k k k
k k

k k k k

K i

i K

K i

i

i

i

i K

ii

i





 



 






  








 



    
     

     
     


  

    






 



 

  
     

 
 
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2 2 2 2

( )( )
e

( ) ( )

k

k
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k
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i

i

K

K

 






 



     
     





   
     



  
 .      (F-2) 

In view of Equation (F-2), kZ
 
adheres to a ,( , , , )k k k kk kGH        law under 

the risk-neutral measure Qq .  

Based on the risk-neutral pricing theory, pricing the contingent claims is done 

under the martingale probability measure Qq  which makes the discounted stock 
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price into a Qq -martingale, which can be represented as    1 1 expt fQ t tE S S r   , 

that is  

      
 1 11

1
exp ln j

j jt
j

Q Q t

S t
S t S t

S t
E E 

   
           




 

       1 1exp1 f

Q t

r

j j jS t t S tE R F e
    .              (F-3) 

Or equivalently, we have 

           
   1 1
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f
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e E R F E R F
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E
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  
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    

  
  

( )

1

exp ( ) exp ( ) exp ( 1 )

expexp exp

j

nj P j P jk j kk

k kk

km

PP

I M E I A Z E a Z
e
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  
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   

  

  
  1
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P jk km
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



 
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 
 


  ,                                    (F-4) 

where jI  is a column vector which the jth coordinate is one and the other is zero and  

( )1   is indicator function. Consequently, we obtain the parameter j
  by using the 

following equation: 

      
1

log ( ) log
k k

j

f j k jZ Zk k
k

r m i a i   


      .         (F-5) 

Because A    , we have 
n

j mj m
m j

a 


 . As a result, after obtaining j
 , j=1…,n, 

we can obtain n n nna   and  
1

1
n

j jj j mj m
m j

a a  
 

 
  

 
  for j=1…,n-1. This 

completes the proof of Appendix F.  
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