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I 

 

 

Abstract 

 

This thesis can be divided into two parts. In the first part, we review some basic 

properties of the complex networks. The most important features are: small world 

networks and scale-free degree distribution. Then, we introduce three complex 

models : BA model, EBA model, and W-S small world model. Next, we analyze a 

real data—CTTC network to test if it has the features we have mentioned above. 

By the EBA and BA model simulations, we try to illustrate why there are some 

similarities between the simulations and real data, but they are still so different in 

most of aspects.   

In the second part, we review the definitions of the topology and reliable 

efficiency of a network structure. Next, we discuss two cascading failure model 

based on different definitions of load of a transmission line in a power grid. Finally, 

we use three different ways: topology efficiency vulnerability, cascading failure 

triggered by betweenness overload, and cascading failure triggered by the transient 

dynamics overload to test the vulnerability of edges in an assuming power grid. The 

cascading failure triggered by the transient dynamic overload can be viewed as a 

simplified power flow model. We sort the most vulnerable edges in three different 

ways. By this, we can observe the difference of the vulnerability analysis based on 

the complex network and the characteristic of the power transmission..  

 

 

Keywords: small world, scale-free degree distribution, complex network, vulnerability, 

cascading failure 
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                          摘要 

 

  這篇論文主要可以分成兩個部分。第一部分，我們整理了關於複雜網路的

初步研討。最重要的特性有：小世界網路、無尺度度分布。並且介紹了三種模

型：BA 模型、EBA 模型，以及 W-S small world model。接者對於一份實際的

社會網路資料—台灣業餘桌球選手對戰網路，做網路的結構分析，試驗其是否

具有上述的兩種特性。透過兩種可以模擬出無尺度度分布特性的模型：BA 以

及 EBA 模型。我們藉由這兩種模型模擬的結果，以及和競賽網路的比較，試者

去闡述模型與理論間為何有些相似，卻又如此不同。並討論了賽制設計對於結

構的影響。 

 在第二部分裡，我們回顧了一些對於網路的拓樸性效率以及可靠度效率的

研討，並且討論了兩種不同負載定義下的連鎖故障行為。最後我們使用其中三

種方法：拓樸性效率脆弱性、參與中間度(betweenness)過載引發的連鎖性故

障行為，以及電力網路的動態電流變化造成的連鎖性故障，對於一個假想的電

網做傳輸線的弱點排序。其中由動態電流過載(transient dynamic overload)

造成的連鎖性故障可以視為一個簡化後的電力動態網路模型，藉由這三者間排

序的不同，我們可以看到複雜網路分析以及基於電力網路傳輸特性所模擬的結

果差異。 

 

 

關鍵字 : 小世界、無尺度度分布、複雜網路、脆弱性分析、連鎖故障行為 

 

 

  



III 

 

 

Content 

1 Introduction ............................................................................................................ 1 

1.1 Background ................................................................................................ 1 

2 About the network .................................................................................................. 5 

2.1 Math and tools in the network ................................................................... 5 

2.1.1 the basic structures of networks ..................................................... 5 

2.1.2 Adjacency matrix ........................................................................... 6 

2.1.3 Degree and average degree ............................................................ 8 

2.1.4 Path and Shortest path .................................................................... 9 

2.1.5 Clustering Coefficient .................................................................. 10 

2.1.6 Betweenness ................................................................................. 11 

2.1.7 Components and the largest component ...................................... 12 

2.2 Random network ...................................................................................... 13 

2.2.1 clustering coefficient .................................................................... 13 

2.2.2 degree distribution ....................................................................... 14 

2.2.3 shortest path and the largest component ...................................... 15 

2.2.4 Implementation of random network : shuffle method and 

configuration model ..................................................................................... 17 

2.3 Important properties in the real networks ................................................ 18 

2.3.1 high clustering , small world,  the small world quotient (Q) ..... 19 

2.3.2 Power-law degree distribution ..................................................... 20 

2.4 The models ............................................................................................... 22 

2.4.1 Watts and Strogatz small world model ........................................ 22 

2.4.2 Barabási–Albert model(BA model) ............................................. 25 

2.4.3 Extended BA model (EBA model) ............................................... 29 

2.5 Case study I: CTTC competition network and model simulations .......... 32 



IV 

 

 

2.5.1 Materials ...................................................................................... 32 

2.5.2 Analysis of real data..................................................................... 33 

2.5.3 BA model simulation ................................................................... 37 

2.5.4 extend BA model simulation ........................................................ 40 

2.5.5 discussion ..................................................................................... 43 

3 Vulnerability and cascading failure of a power grid ............................................ 47 

3.1 Efficiency ................................................................................................. 47 

3.1.1 topology efficiency ...................................................................... 47 

3.1.2 reliability efficiency ..................................................................... 48 

3.1.3 efficiency vulnerability ................................................................ 49 

3.2 Cascading failures .................................................................................... 50 

3.2.1 Betweenness overload .................................................................. 50 

3.2.2 transient dynamics ....................................................................... 54 

3.3 case study II: the imaginary British power grid ....................................... 62 

3.3.1 efficiency vulnerability ................................................................ 62 

3.3.2 the cascading failure triggered by the betweenness overload ...... 64 

3.3.3 the cascading failure triggered by the transient dynamics 

overload 66 

3.4 Discussion ................................................................................................ 68 

4 Conclusion and future work ................................................................................. 70 

References .................................................................................................................... 72 

 

 

 



V 

 

 

Figure 1 : Königsberg bridges problem and its network structure ................. 2 

Figure 2 : the basic structures of networks. ................................................... 5 

Figure 3 : this is an undirected and unweighted network. There are three 

shortest path between A and C. Two of them pass through B. We 

give each shortest path a weight 1/ 3 , and the pair A and C 

contribute 2 3  to the betweenness of B. ............................................ 12 

Figure 4 : two components in a network ...................................................... 12 

Figure 5 : the fraction of the largest component in a random network ........ 16 

Figure 6 : a search in a random network from a source. .............................. 17 

Figure 7 :  “stubs” and configuration model .............................................. 18 

Figure 8 : A power law distribution is plotted in two different scales. ........ 21 

Figure 9 : degree distributions for(A) the movie actor network. (B) the 

internet(www) network. (C) the power grid network .......................... 22 

Figure 10 :  Random rewiring procedure for interpolating between a 

regular ring ........................................................................................... 23 

Figure 11 : the W-S small world model ....................................................... 24 

Figure 12 :degree distribution in the Watts-Strogatz small world model .... 25 

Figure 13 : the degree distribution of model A at time step = 150000......... 28 

Figure 14 : the degree distribution of model B. N=1000. edge number = 

1000...................................................................................................... 28 

Figure 15 :  the degree distribution of model B. N=1000. edge number = 

150000.................................................................................................. 29 

Figure 16 : the three different degree distributions generated by different 

parameter values in EBA model, time step = 100000. ......................... 31 

Figure 17 : the CTTC tournament design .................................................... 32 



VI 

 

 

Figure 18 : CTTC networks degree distribution for every year ................... 35 

Figure 19 : The scatter diagram between ki and CCi from 2004 to 2011 ..... 36 

Figure 20 : The histogram for the CCi from 2004 to 2011 .......................... 36 

Figure 21 : degree distribution of BA model simulations ............................ 37 

Figure 22: The BA model simulation scatter diagram between ki and CCi 39 

Figure 23 : The histogram for the CCi from 2004 to 2011 in BA model 

simulation ............................................................................................. 39 

Figure 24 : extend BA model simulation power law ................................... 40 

Figure 25 : the CC-k diagrams for the extend BA model simulations ......... 42 

Figure 26 : The histograms of the clustering coefficients of the extend BA 

model simulations ................................................................................ 43 

Figure 27 : the “overlap” of three tournaments ........................................... 45 

Figure 28: the small world from “efficiency” view ..................................... 48 

Figure 29 : *V  test for the 2006 CTCC amateur table-tennis players 

competition network. ........................................................................... 50 

Figure 30 :  the flow chart the cascading failure triggered by the 

betweenness-overload .......................................................................... 51 

Figure 31 : Cascading failures in the random network (homogeneous 

networks) 3k   , 5000N  . The network is generated by the 

shuffle method. .................................................................................... 52 

Figure 32 :  Cascading failures described in a scale-free network. The 

network is generated by using BA model. The nodes number N = 

5000, 0 3m m   ............................................................................... 53 

Figure 33 : Cascading failure failure in the western U.S. power grid.. ....... 53 

Figure 34 : A small power grid. ................................................................... 54 



VII 

 

 

Figure 35 :  the imaginary British power grid............................................ 56 

Figure 36 : the load variation of edge D with the evolution of time ............ 57 

Figure 37 : the load variations of three different edges after the removal 

of edge D .............................................................................................. 58 

Figure 38 : the flow chart of the cascading failures triggered by the 

transient dynamics of a power grid. ..................................................... 59 

Figure 39 : the cascading failures triggered by transient dynamics of the 

power grid. The data is from [3] .......................................................... 60 

Figure 40 : the the group number variations of the removal of single edge 61 

Figure 41 : the ten most vulnerable edges according to th topological 

vulnerability evaluation ....................................................................... 63 

Figure 42 : the locations of the ten most vulnerable edges according to 

the cascading failures triggered by the betweenness overloads in the 

imaginary British power grid. .............................................................. 65 

Figure 43 : the locations of the ten most vulnerable edges according to 

the cascading failures triggered by the transient dynamics overloads . 67 

Figure 44: the two different cascading behaviors the two strategy of the 

removal of edges .................................................................................. 68 



VIII 

 

 

Table 1 : In [3], Duncan J. Watts and Steven H. Strogatz list the average 

shortest path lengths and the clustering coefficients for three 

empirical datas. .................................................................................... 20 

Table 2 : the scale-free properties of three different network ...................... 21 

Table 3 : the network sizes and the power-law exponent of the CTTC 

competition networks ........................................................................... 34 

Table 4 : CTTC network properties analysis ............................................... 34 

Table 5 : BA model simulation  result ....................................................... 38 

Table 6 : the extend BA model simulation results ....................................... 40 

Table 7 : the small world properties of the EBA simulation ........................ 41 

Table 8 : the ten most vulnerable edges according to the topological 

vulnerability evaluation ....................................................................... 63 

Table 9 : the ten most vulnerable edges in the imaginary British power 

grid according to the cascading failures triggered by the 

betweenness overloads. ........................................................................ 65 

Table 10 : the ten most vulnerable edges according to the cascading 

failures triggered by the transient dynamics overloads ........................ 67 



1 

 

 

1 Introduction 

1.1 Background 

During the past two decays, the “network science” has attracted many attentions 

from mathematician, physicist, and sociologist. All the structures we mentioned 

below are structures existing in nature and human activity. Internet, a collection of 

computers linked by data connections. Food web, depicts feeding connections in an 

ecological community. Social network, people are connected if one knows another 

one. Lexical networks, the words are linked if they exist in a sentence. Neural 

network, neurons are connected by synapses. Basically, all these structures can be 

viewed as a combination of the individuals, and there are interactions between those 

individuals.  “Network” is a science of a simplified representation to reduce a 

structure capturing only the topology properties. In this manner, we can identify their 

characteristics and simulate their behaviors in many different conditions.  

The history of network can be traced back to Königsberg Bridge Problem which 

was solved by Leonhard Euler. There were seven bridges across the river which is 

through the city of Königsberg. The problem is “does any single path crosses seven 

bridges exactly once which is called Eulerian path exist?”. Figure 1 shows the map 

and the network structure of the problem.  

Figure 1(a) is a map of 18th century Königsberg. Figure 1(b) is a simplified 

pattern of Königsberg. Figure 1(c) is the network structure of Königsberg Bridge 

Problem.  This figure is from [1] 
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Figure 1 : Königsberg bridges problem and its network structure 

In Figure 1(c), we can see the network structure of the Königsberg Bridge Problem. 

The solution of this problem can be simplified as below: the Eulerian path traverses 

each edge once. These kinds of paths should enter and leave the nodes which are 

passing through except the source node and the end node. It means there can be at 

most two nodes having odd numbers of degree in network language. However, all the 

nodes in Figure 1 have odd degrees so that there is no Euler path existing in the 

structure. 

The mathematical tools used to solve this problem is consider to be the first 

theorem in graph theory which is used to described the network structures by the 

researchers who study networks nowadays. These basic mathematical tools of 

network will be described reference in  2.1 and  2.2. These descriptions are mostly 

from [2]. In this manner, the well-known Erdős–Rényi model of random graph was 

developed by Paul Erdős and Alfréd Rényi. The properties of the random graph do 

not match the real data . We will discuss these differences in  2.3.      

There are some modern features of the science of network indicated in [1]., they 

are : 

 Focus on the real world network and concern the theoretical and empirical 

questions 
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 View networks as system evolving in time according dynamical rules 

  The example is like the “small world experiment”[3] in Sociology which is a 

empirical study. In 1998, Duncan J. Watts and Steven H. Strogatz published their 

famous paper, “Collective dynamics of small world networks”[4], and the model 

they presented is the first model realizing the properties of the small world networks 

via a simple dynamical rule. We will explain it clearly in 2.4.1. The other properties 

the researchers found in empirical data of networks is “scale-free degree distribution.” 

In 1999, Reka Albert and Albert-Laszlo Barabasi gave the first model in their paper 

“Emergence of Scaling in Random Networks” to reproduce the observed scale-free 

degree distribution in real data. The model is called BA model in the community of 

network science. The model is composed of a network structure and two generic 

mechanisms which we will discuss this more clearly in  2.4.2.  

There is another research domain about the robustness of the complex structure. It 

was found that the scale-free networks have a higher degree of error tolerance than 

random network (Erdős–Rényi model), but error tolerance comes at a price in that 

the scale-free networks are extremely vulnerable to attacks (that is, the removal of 

some nodes that play important roles in the network connectivity. For this purpose, 

we can remove the nodes having highest degree or betweenness.)[5, 6]. There are 

many infrastructures composed of network structures, such as telecommunications, 

gas and water supply, transportation, and power grid. Power grid can be represented 

as a network of n nodes and k edges. Nodes are generators, substations and 

transformers and the edges are transmission lines. The power grid is vulnerable to 

natural disasters and physical attacks. It means the nodes and edges having a high 

probability to be remove from the power grid because they fail. We will review 
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previous research about the vulnerability and cascading failure in power grids and 

apply them on a assuming power grid from [7].  

1.2 Purpose 

In this thesis, we review the history of the complex network and test that does 

CTTC network have the properties we observed in many real network data. Further, 

we apply three methodologies test the robustness of a imaginary power grid.    

The thesis can be divided into two parts: (1) analysis of CTTC network (2) 

vulnerability analysis of power grid. In (1), The purpose is to explain the structure of 

CTTC network and compare the real data with two models: BA model and EBA 

model. In (2), we apply the topology efficiency vulnerability and two cascading 

models in network science to see if we can identify the most vulnerable lines in an 

assuming power grid.   
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2 About the network 

2.1 Math and tools in the network 

2.1.1  the basic structures of networks 

 

Figure 2 : the basic structures of networks. 

In the Figure 2(a), the small network is consisted of five nodes and five edges. In 

mathematical language, we can label these nodes by integers from1 … 𝑛. For the 

example above, we can replace A for 1, B for 2, and C for 3…etc. In this way, we can 

denote an edge between nodes 𝑖  and 𝑗  by (𝑖, 𝑗) . The whole network can be 

represented by the value of 𝑛 and a list of all the edges. In the figure 2.1(a), the 

network has 𝑛 = 6 nodes and edges (1,2), (2,4), (3,4), (4,6) and(5,6). In (a), the 

edges have no directions. In fact, we can assign directions to edges to describe 

relations in networks. Like (b), the components in the network are all the same with 

the one in (a),but the edges have directions. The arrows denote the directions of the 



6 

 

 

edges. In (c), there are multi-edges between nodes B,D and nodes E,F. In(d), the 

circles on nodes D and nodes F are called self-edges. 

 

 

2.1.2  Adjacency matrix 

The adjacency matrix 𝑨 of a graph is the matrix with elements 𝐴𝑖𝑗 such as 

 

1            

0  

if there is an edge between node j and node i

ij otherwiseA      (1) 

  

For instance, the adjacency matrix of the network in Figure 2(a) is  

 

 

0 1 0 0 0 0

1 0 0 1 0 0

0 0 0 1 0 0

0 1 1 0 0 1

0 0 0 0 0 1

0 0 0 1 1 0

A

 
 
 
 

  
 
 
  
 

  

 

There are two things about the network we need to notice, first, the diagonal 

matrix elements are all zero and second, the matrix is symmetric. The reason of the 

first property is that there is no self-edge in the network. The self-edge means an 

edge start and end at the same node. And the reason of the second property is the 

network is undirected, which means if there is an edge between 𝑖 and 𝑗, there is an 

edge between 𝑗 and 𝑖  

   For a directed network 
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                  1             

0   

i f t h e r e i s a n e d g e f r o m n o d e j t o n o d e i

i j o t h e r w i s eA   (2) 

For the network in Figure 2 (b), which is to say  

  

 

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 1 1 0 0 0

0 0 0 0 0 0

0 0 0 1 1 0

A

 
 
 
 

  
 
 
  
 

  

 

In Figure 2(c), we may see two different cases called multiedges and self-edges. In 

adjacency matrix, a multiedge is represented by setting the corresponding matrix 

element 𝐴𝑖𝑗 equal to the multiplicity of the edge. For instance, in (c), the adjacency 

matrix is 

          

 

0 0 0 0 0 0

1 0 0 3 0 0

0 0 0 1 0 0

0 3 1 0 0 1

0 0 0 0 0 2

0 0 0 1 2 0

A

 
 
 
 

  
 
 
  
 

  

  

If there is a self-edge on a node 𝑖, the corresponding diagonal element 𝐴𝑖𝑖 is equal 

to 2. This is because every self-edge has two origins and ends. Like all 

non-self-edges appear twice in the adjacency matrix, an edge connecting node i and 

node j means 𝐴𝑖𝑗  and 𝐴𝑗𝑖 are 1. If we count edges equally, self-edges will appear 

twice. The adjacency matrix of the network in Figure 2(d) is 
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0 1 0 0 0 0

1 0 0 1 0 0

0 0 0 1 0 0

0 1 1 2 0 1

0 0 0 0 0 1

0 0 0 1 1 6

A

 
 
 
 

  
 
 
  
 

  

 

2.1.3  Degree and average degree 

The degree of a node in a network means the number of edges connected to it. 

Degree of node i  is denoted by 𝑘𝑖. In an undirected network, the degree can be 

represented in terms of the adjacency matrix as 

 

 

1

n

i ij

j

k A


  (3) 

Furthermore, in an undirected network, each edge had two ends and the sum of 

degrees is equal to the number of the ends of the edges in the network. if there are 𝑚 

edges , then 

 
1

1

2

n

i

i

m k


    (4) 

In the research of the network, there is an important value called the “average 

degree” of a network. The average degree k  is defined as 

 1

1 n

i

i

k k
n 

    (5) 

In a directed network, degree is divided into two kind, one is in-degree, and the 

other is out-degree. The in-degree is the number of ingoing edges connected to a 

node and the out-degree is the number of the outgoing edges connected to a node. 

Similar to the undirected network, in terms of the adjacency matrix, the in-degree 

and the out-degree can be written as 
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1

n
in

i ij

j

k A


    
1

n
out

j ij

i

k A


  (6) 

   

The number of edges 𝑚 in a directed network is equal to the total number of 

ingoing ends of edges or the total number of outgoing ends of edges at all nodes. That 

is 

 1 1

n n
in out

i j

i j

m k k
 

    (7) 

 

2.1.4  Path and Shortest path 

A path in a network is a sequence of nodes such that every successive pair of nodes 

in the sequence is connected by an edge in the network. In an unweighted and 

undirected network, the length of a path is equal to how many edges is the path 

composed with? Consider two nodes i and j. If there is a path from j to i via some 

node k, then the product  𝐴𝑖𝑘𝐴𝑘𝑗 is equal to 1, and the length of the path is 2. In this 

manner, the total number of paths of length 2 from j to i, via any other vertex can be 

written as 

 

( 2) 2

1

[ ]

n

ij ik kj ij

k

N A A A



    (8) 

In Figure 2(a), which path between nodes A and F is the shortest path if the network 

is undirected and unweighted? Obviously, the path  𝐴 → 𝐵 → 𝐷 → 𝐹  is the 

shortest path between nodes A and F. The shortest path between nodes i and j, also 

called geodesic path, can be described as the smallest value of l such that [𝐴𝑙]𝑖𝑗>0. 

We can define a “shortest path matrix ” d for a network. The element 𝑑𝑖𝑗 denotes 

the shortest path from node i to node j. Depending on the network is weighted or 

unweighted, there are several different algorithms to compute the shortest path. 
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Because in the study of the real cases in this paper, we focus on the unweighted and 

undirected networks only, only the BFS algorithms is adopted to calculate the 

shortest path and the largest component number in this paper.   

  The average shortest path length L  between all pairs can be defined as 

 1 1

( 1)

n n

ij

i j

d

L
n n

 





  (9) 

The shortest average path length can be called the average path length, or path 

length for simplicity. 

 

2.1.5  Clustering Coefficient 

Before we talk about the clustering coefficient, recall a relation in mathematics. 

For example, if a = c and c = b then it follows a = b also , because “ = ” is transitive. 

In social networks, we can ask a question like “What is the probability of my friend 

A also knows other one of my friends B” And we can view the question as the 

transitivity of the network. Because, in a network, the relation if people know each 

other can be expressed by if the nodes are connected by edges, we can quantify the 

transitivity as follow:     

 global clustering coefficient 

For an entire network, we can define a value to measure the probability. The 

value is called the global clustering coefficient gC .  

               
n u m b e r  o f  c l o s e d  p a t h s  o f  l e n g t h  t w o

n u m b e r  o f  p a t h s  o f  l e n g t h  t w o
gC              (10) 

It is to say 

 
number of triangles

number of paths of length two
gC       (11) 

 local clustering coefficient   
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For a single node in a network, the local clustering coefficient is  

   

 
numbers of pairs of neighbors of i that are connected

number of pairs of neighbors of i
lC 

 

 (12) 

 

2.1.6  Betweenness  

Betweenness of a node is the total number of data packets passing through the 

node when every pair of nodes send and receive a data packet along the path 

connecting the pair[8]. These data could be the messages, news, information, or 

rumors on a social network[2]. We can simply assume these data always take the 

shortest path through the network. Then the betweenness iB  of a node i is given 

by 

 i

i st

s t

B n


        (13) 

For a network, there are more than one shortest path between a pair, the 

betweenness of node i can be written as 

                           

 
i

s t
i

s t st

n
B

g





   (14) 

This means we assign each shortest path between the pair a weight equal to the 

inverse of the number of the shortest paths between the pair. And then the 

betweenness of node i is the sum of the weights of all shortest paths passing through 

the node. There is a simple example illustrated in Figure 3. There are three shortest 

path between A and C. Two of them pass through B. We give each shortest path a 

weight 1/ 3 , and the pair A and C contribute 2 / 3   to the betweenness of B.   
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Figure 3 : this is an undirected and unweighted network. There are three shortest path between A 

and C. Two of them pass through B. We give each shortest path a weight 1/ 3 , and the pair A and C 

contribute 2 3  to the betweenness of B.    

   

2.1.7  Components and the largest component 

In Figure 4, the network is divided into two groups. There is no path from any 

node in the left group to any node in the right. For example, there is no path from 

the node labeled 1 to the node labeled 2. A network like this is called disconnected. 

Conversely, if there is a path for each pair of nodes in the network, it is connected. 

In Figure 4 the two small groups are the components of the whole network. 

 

     

Figure 4 : two components in a network 

The largest component is the component having the most nodes in the network.  
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2.2 Random network 

A random network is a network in which there are some parameters taking fixed 

values, but in other respects, the network is random. For example, if we fix the 

number of the edges m and the number of the nodes n. That is to say, we take n 

nodes and place m edges among them randomly. This kind of random network 

model is usually referred to by its mathematical expression G(n, m). Because it is 

hard to calculate the properties of the random network in this kind of expression, 

the other expression is often adopted by the science and mathematics communities. 

The model is called G(n, p). In this model, the number of nodes, n, and the 

probability of edges existing between nodes, p, are fixed. Paul Erdős and Alfréd 

Rényi published a series of papers about the model in the 1950s. The model is often 

called the “Erdős–Rényi model”. The first property we can calculate is the average 

degree k . It is obvious that the average number of the nodes for a node i will 

connect is ( 1)p n . That is to say 

 ( 1)k p n    (15) 

 

2.2.1  clustering coefficient 

 

Recall in  2.1.5, the clustering coefficient in a social network can be viewed as the 

probability that two neighbors of a node are also neighbors of each other. And this 

relation is called transitivity. For a random network case, the probability that there is 

an edge between two neighbors of a node is equal to the probability that there is an 

edge between any two chosen pairs. As we know, the latter is equal to p . 

                     
1

rand

g

k
C p

n
 


  (16) 

http://en.wikipedia.org/wiki/Paul_Erd%C5%91s
http://en.wikipedia.org/wiki/Alfr%C3%A9d_R%C3%A9nyi
http://en.wikipedia.org/wiki/Alfr%C3%A9d_R%C3%A9nyi
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2.2.2  degree distribution     

 

Degree distribution kp  is the probability that a node connects other k  nodes 

in a network. The probability of a node connects other particular k  nodes but not 

to other 1n k   nodes is 
1(1 )k n kp p   . There are 1

k

nC   ways to choose the k  

nodes in other 1n  nodes. So the degree distribution kp  is given by 

1

1 (1 )k k n k

k np C p p  

             (17) 

From (15), we have  

1

k
p

n



          (18) 

 If the size of the network n  is large enough to make p  extremely small, then 

we can use the first order Taylor Series Expansion on the 
1ln(1 )n kp    term. It 

means  

  1ln(1 ) ( 1) ln(1 ) ( 1)
1 1

n k k k
p n k n k k

n n

         
 

            (19) 

 
1(1 )n k kp e                      (20) 

And once again, for large n ,   

 
1

( 1)! ( 1)

( 1 )! ! !

k
k

n

n n
C

n k k k


 
 

 
                    (21) 

Combine Equation(18)(20)(21), Equation(17) can be written as 

1

1

( 1)! ( 1)
(1 )

( 1 )! ! ! 1

k
k

k k n k k k k

k n

n n k
p C p p p e e

n k k k n

   



  
     

   
 

  
!

k

kk
e

k

              (22) 
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As we can see, this is actually a Poisson distribution.   

2.2.3  shortest path and the largest component 

 

Here we only show the estimation about the average shortest path in a random 

network[2]. First, the size of the largest component in the random network can be 

computed exactly as the network size n . Assume u  is the fraction of nodes 

in the random network that do not belong to the largest component. We can view 

u as the probability a node i  not being connected to the largest component via any 

other 1n  nodes. There are two conditions for the node j  in the other 1n  

nodes. The first is node i  does not connect to node j , and the second is node i  

connects to node j , but j  does not belong to the largest component. For node i

and node j , the probability can be written as 1 p pu  , But now we consider 

node j  is chosen from the other 1n  nodes, so now we have 

 1(1 )nu p pu     (23) 

By using Eq (18) 

 

1

1 (1 )
1

n

k
u u

n



 
   

 
  (24) 

Take logs of both sides and use the first order Taylor Series Expansion for large n    

 ln ( 1) (1 ) (1 )
1

k
u n u k u

n
     


  (25) 

And then 

   ( 1 )k uu e                      (26)  

let L  be the fraction of the nodes in the largest component, that is 

1L u   ,  

                      1 kLL e                     (27) 

we take differential of both sides 
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                              1 kLke   (28) 

As we can see, equation (28) implies that equation (27) has a solution 0L   if 

1k  .  

 

Figure 5 : the fraction of the largest component in a random network 

 Next, imagine the search from a node in a random network like we illustrated in 

Figure 6. If there are u  nodes in the nth level , then the number of nodes outside 

the nth level connected by a node in the nth level in a random network G(n, p) is  

 

                   ( )
1

n u
p n u k k

n


 


                   (29)      

 

As n , the approximation will be valid. And it implies the number of nodes in 

the next level will be k  times than in level which the search is on. That is to say 
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the number of nodes s  steps away from a randomly chosen node in the random 

network is 
s

k . We can use 
s

k n  to estimate the average shortest path in the 

random network. 

 
ln

ln

n
s

k
 (30)  

                       

 

Figure 6 : a search in a random network from a source. 

 

2.2.4  Implementation of random network : shuffle method and 

configuration model  

 

 Shuffle method 

Assume the node number of the random network is n and the edge number is m . 

Hence we know there are ( 1) 2n n  locations which we can choose to put the 

edges in. Next, we choose an empty location between a pair in the network and put 

an edge between the pair until there are m  edges in this network. This is what we 

call the shuffle method.  
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 Configuration model 

In [9], the authors proposed a method called “configuration model” to creat 

networks having any kind of degree distribution. There are n  nodes in a network, 

and we want the “degree sequence ”(i.e. the degrees of all the nodes) obey the 

degree distribution kp  we desire. All we need to do is very simple. There are N  

nodes and no edges in the network in a network. Next, we put stubs on all of the 

nodes like Figure 7. The numbers of each node are the same with the degree 

sequence (generated from the degree distribution we want). Then we choose a pair 

of the stubs randomly and connect them until all the stubs are chosen. The network 

we want will be formed. Of course, the sum of the stub numbers must be even.  

 

 

  Figure 7 :  “stubs” and configuration model 

 

2.3 Important properties in the real networks  

 In the section  2.2, we list three properties in the random networks. But the real 

networks have some difference properties comparing with the random network.   
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2.3.1  high clustering , small world,  the small world quotient (Q) 

 

Recall that in the section  2.2.1, the global clustering coefficient in a random 

network can be computed as ( 1)rand

gC k n  . If we use this formula to calculate 

the global clustering coefficient in real network data, the values will be far smaller 

than the values via using Eq (11). The history of the small world problem can be 

traced back to sixty years ago. In the 1950s, Kochen and de Sola Pool wrote a paper, 

which was eventually published in 1978, which tackled what is known today as the 

“small world” problem[10]: If two persons are chosen randomly from a population, 

what are the probability that they would know each other. In other words, how long a 

chain of acquaintances would be required to connect them? In 1967, Stanley 

Milgram designed an experiment to answer the problem[3]. In brief, Milgram sent 

packages to 196 people in Omaha, Nebraska, with a request that they forward them 

to the intended recipient, but he provided no address. Someone receiving the package 

were asked to send the packages to friends, acquaintances who they felt might send 

the packages to the right destination, until the package is received by the intended 

recipient. The result revealed that about five and a half intermediaries were needed 

for the packages received by the intended recipient. This told us the “small world” 

property in the real networks. Actually, most of the real networks show this two 

properties. In [4] the authors list the average shortest paths and the clustering 

coefficients of the empirical data(Table 1).  
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Table 1 :  the average shortest path lengths and the clustering coefficients of three empirical data. 

          Sactual      Srandom       Cactual      Crandom 

Films actors 3.65 2.99 0.79 0.00027 

power grids 18.7 12.4 0.08 0.005 

C.elegans 2.65 2.25 0.28 0.05 

 

  If a network has this two kind properties, then it is called the small work 

network. There is a simple index called “small world quotient”[11] to quantize 

these phenomena.  

 

( )

( )
random

random

C p

C
Q

L p

L

   

                         

 The higher the small quotient is, the more small world properties it has. 

 

2.3.2   Power-law degree distribution  

 

From the data published by Taiwan government, we can know the average male 

height of the ages from 19 to 30 years old during the years from 2005 to 2008 was 

172.4 cm. in this example, we can say the average height is the typical value which 

individual measurements are centered. It means there is some variation around the 

value, but we can’t find any person who is 1000 cm or 10 cm. But not all values we 

measure are peaked around a typical value, for example, a power law distribution. 

A power law distribution has the form 
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  p x Cx    (31) 

The constant   is called the exponent of the power law. we make a data to obey 

the power law distribution and plot the distribution in Fig. 2-8. For the data, 1C  , 

2  , and we plot the numbers in a normal histogram. But if we want to reveal the 

power law distribution, it is better to plot the numbers in a log-log scale like we did in 

the right of Fig 2-8. As we can see, the slope of the straight line is   .  

 

 

Figure 8 : A power law distribution is plotted in two different scales.  

  In  2.2.2, the degree distribution kp  in a  Erdős–Rényi model is actually a 

Poisson distribution, but in the real complex network data, the researchers found 

most of them having power-law degree distribution with different   values. In[12], 

the authors list the scale-free exponent   of  three networks (Table 2), and draw 

them(Figure 9).   

  

Table 2 : the scale-free properties of three different network  

    N       k                

movie actors 21250 28.78 2.3 

internet(www) 325729 5.46 2.1 
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power grid 4941 2.67 4 

 

 

Figure 9 : degree distributions for(A) the movie actor network. (B) the internet(www) network. (C) 

the power grid network 

 The scale-free property is common in complex research but not universal[13]. 

For example, the electric power grid of Southern California and the airport network 

in the world have a form called “exponential decay” which decays faster than the 

power-law distribution.  

 

2.4 The models 

2.4.1  Watts and Strogatz small world model 

In 1998, Duncan J. Watts and Steven H. Strogatz devised a method for converting 

a fully connected ordered network into a fully connected random network[4]. This 

method is called random rewiring. The researchers began with the simplest ordered 

network structure: a lattice ring. There are n nodes in the lattice ring, and each of 

them connects with its k nearest neighbor by undirected and unweight edged. In a 

clockwise sense, they choose a node and the edge connecting it to its nearest 

neighbor. With probability p, they reconnect this edge to a node chosen randomly 

over the ring, consider each node in turn until one lap is completed. Next, they 
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consider the edges connecting nodes to their second-nearest neighbors. clockwise, 

and randomly rewire each of the edges with probability p. they continue this process 

proceeding outward to more distant neighbors after each lap, until every edge in the 

original lattice ring has been concerned once. Figure 10 shows how the graph 

changes with different rewiring probability. For 𝑝 = 0, it is obvious the network is 

regular, and for 𝑝 = 1 the network is a random network.  

 

Figure 10 :  Random rewiring procedure for interpolating between a regular ring 

lattice and a random network 

In Figure 11, we show the random rewiring procedure how to convert a ring of 

nodes from an ordered network into a random one. For a small variation of the 

random rewiring probability p., the value of the shortest path length falls rapidly to 

one typical value of a random network while the network still retains a high 

clustering coefficient. In this range of p, the network has small shortest path length 

and large clustering coefficient, and the coexistence of these two properties is what 

makes a network a small world.   
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Figure 11 : the W-S small world model 

 

In , we plot the degree distribution of the Watts-Strogatz small world model to see 

if the distribution obeys the power law. In the first, the random rewire probability 

𝑝 = 0, and all the degree is a fixed value 10. When 𝑝 is getting higher,  𝑝  is still 

peaked around 𝑘 = 10 but it gets broader. Via the observation, we can realize the 

Watts-Strogatz model doesn’t reveal the power-law degree distribution existing in 

many real network data(Figure 12).  
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Figure 12 :degree distribution in the Watts-Strogatz small world model 

 

2.4.2  Barabási–Albert model(BA model) 

 

In 1999, Albert-László Barabási and Réka Albert published their famous paper 

“Emergence of Scaling in Random Networks.”. In this paper, they declared there are 

two generic mechanisms would make the power-law degree distribution happen. 

These two generic mechanisms are written as follow Networks expand continuously 

via the addition of the new nodes and new nodes connect preferentially to the 

existing nodes have higher degree.  

  In this model, there are 𝑚0 nodes at the beginning. At every time step, a new 

node is added into the network. The new node connects 𝑚 existing nodes in the 

network. And the probability of the new node connecting the old node 𝑖 is 

 ( ) i
i

j

j

k
k

k



  (32) 

 Where ∑ 𝑘𝑗𝑗  is the sum of all the nodes degree at that time step. 

 Furthermore, consider a node 𝑖 after 𝑡 time steps with a degree  𝑘𝑖(𝑡) when the 

total number of edges is 𝑚𝑡 . When a new node is added to the network, the 
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probability that it is joined to 𝑖  is    
𝑚𝑘𝑖

∑ 𝑘𝑗𝑗
=

𝑚𝑘𝑖

2𝑚𝑡
 , by taking expectations, the 

equation transform into 

𝑘𝑖(𝑡 + 1) − 𝑘𝑖(𝑡) =
𝑚𝑘𝑖

2𝑚𝑡
=

𝑘𝑖

2𝑡
 

then 

𝜕𝑘𝑖

𝜕𝑡
=

𝑘𝑖

2𝑡
 

By using the initial condition, as 𝑡 = 𝑡𝑖 , 𝑘𝑖(𝑡𝑖) = 𝑚,  𝑡𝑖 means the time when the 

node 𝑖 is added to the network . We get the solution 

𝑘𝑖(𝑡) = 𝑚(
𝑡

𝑡𝑖
)0.5 

From the equation we can realize the degree of the older nodes with a smaller 𝑡𝑖 

grow faster than the degree of young nodes. Take one step ahead, the probability that 

a node 𝑖 has a degree smaller than 𝑘, 

Using the equation above, it become 

                 𝑃[𝑘𝑖(𝑡) < 𝑘]   = 𝑃 [𝑡𝑖 >
𝑚2𝑡

𝑘2
] = 1 − 𝑃 (𝑡𝑣 ≤

𝑚𝑡2

𝑘2
)

= 1 −
𝑚2𝑡

𝑘2(𝑡 + 𝑚0)
 

The last equality assumes that nodes are added at equal time intervals to the 

network, so the density (𝑡𝑣) = 1
(𝑚0 + 𝑡)⁄  . 

Recall that 

 𝑃(𝑘) =
𝜕𝑃[𝑘𝑖(𝑡) < 𝑘]

𝜕𝑘
 (33) 

Which leads to the solution 

𝑃(𝑘) =
2𝑚2𝑡

(𝑡 + 𝑚0)
𝑘−3 

   Over long time duration it becomes a stationary solution 

 𝑃(𝑘) =
2𝑚2

𝑘3
 (34) 

This is obviously a power law distribution with scale-free exponent 3  . 

Furthermore, the authors of [12] indicate that the scale-free degree distribution will 
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be invalid for any absence of Growth of the network and preferential attachment. 

They use two models described below to show this. 

Model A keeps the growing character of the network, but preferential attachment 

is eliminated by assuming a new node is connected with equal probability to any 

node in the network. That is to say 

                               
0

1
( )

1
ik

m t


 
  (35) 

The authors of [12] find this model will generate an exponential degree distribution. 

We realize model A and plot the degree distribution for different 0  m and m  values 

in Figure 13. 

Model B assumes there are N  nodes and no edges in the network at first. At each 

time step, they randomly choose a node and connect it to another node in the network 

with probability 

   

                                ( ) i
i

j

j

k
k

k



                        (36) 

They find that the degree distribution ( )p k  is not stationary. We realize model B 

and plot the degree distribution of the network for different time steps in Figure 14 

and Figure 15.   
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Figure 13 : the degree distribution of model A at time step = 150000.   
   

 

 

 

 

 

 

Figure 14 : the degree distribution of model B. N=1000. edge number = 1000  
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Figure 15 :  the degree distribution of model B. N=1000. edge number = 150000 

 

2.4.3  Extended BA model (EBA model) 

 

In 1999, Réka Albert and Albert-László Barabási presented a model[14] to adjust 

the shortcomings of the BA model they brought up earlier. There are more 

parameters to describe the evolution of a complex network generation. In the paper, 

the authors called it a extended model. That’s why the following researchers call it 

the extended BA model. Recall the BA model mechanism, in every time step, the 

new node is added to the network, and connects to 𝑚 existed nodes. In extended BA 

model, there are three different possible situations during each time step. In EBA 

model, there are 𝑚0 isolated nodes in the initial condition. At each time step, one of 

these operations below could happen: 

 Addition of new edges: With probability 𝑝, 𝑚 edges are added to the network. 

The one end of the new edge is selected randomly, and the other end is selected with 

probability  
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  
1

1

i
i

jj

k
k

k


 


  (37) 

reflecting the fact that new edge preferentially point to popular nodes . 

 rewiring of old edges : with probability 𝑞, m edges are rewired. The edges are 

selected randomly by a node 𝑖 and a edge 𝑙𝑖𝑗 connecting to the node are selected 

randomly. Next the edges are removed, and a new edge 𝑙𝑖𝑗′ replacing the old edge. 

The new edge connect the node 𝑖  and node 𝑗′ . The node 𝑗′  is chosen with 

probability 𝛱(𝑘𝑖′). 

 Addition of new nodes : With probability 1 − 𝑝 − 𝑞, a new node is added to the 

network. The new node connects to 𝑚 nodes already present in the network.  The 

node 𝑖 which the new node connect is selected with probability 𝛱(𝑘𝑖). 

To explain the generic mechanisms of the network evolution, the undirected edges 

are used which means the edges are non-directional. In the model the probabilities 𝑝 

can be varied in the interval 0 ≤ 𝑝 < 1 , and 𝑞  can be varied in the interval 

0 ≤ 𝑞 < 1 − 𝑝,since 0 ≤ (𝑝 + 𝑞) < 1 . By using the continuum theory   

and assuming 𝑘𝑖  changes continuously. The degree distribution has a power-law 

form  

   ( , , )[ ( , , )] p q mP k k p q m     (38) 

               where 

    , , , , 1p q m A p q m    (39) 

    , , , , 1p q m B p q m    (40)  

                      

 
2 (1 )

( , , ) ( )( 1)
1

m q
A p q m p q

p q


  

 
 (41) 
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2 (1 ) 1

( , , )
m q p q

B p q m
m

   
   (42) 

 

Figure 16 : the three different degree distributions generated by different parameter values in EBA 

model, time step = 100000.  

In Figure 16, we plot the different degree distribution with different parameter.  
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2.5 Case study I: CTTC competition network and model 

simulations    

2.5.1  Materials 

 

 

Figure 17 : the CTTC tournament design 

  The datasets are from CTTC (http://www.cybertabletennis.com/portal/) in 

Taiwan. CTTC has tried to promote table-tennis rating games for amateur players in 

Taiwan over the last decade. In the left, the game is divided into the round-robin 

and single elimination stages. In the right, it is shown that the network is formed by 

the competition design. The competition games in each tournament include 

round-robin and single elimination (i.e., knockout) stages. As we mentioned above, 

there are 8 players in the first round of the single elimination stage. Only the 

winners can enter the next round. The left part in Figure 17 illustrates the 

tournament design including round robin, quarterfinals, semi-finals, and final. Note 

that the number of groups and the number of players in a group may be different for 

http://www.cybertabletennis.com/portal/
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different tournaments. Owing to the justice, directors will keep the same number of 

participants in a preliminary group. 

2.5.2  Analysis of real data 

   In  2.5, the clustering coefficient will be remark as CC  to substitute for C . In Table 3 

and Table 4 , we illustrate the scale-free and small world properties for the CTCC 

table tennis competition networks every year. We can see the node number of the 

largest component node number (LC size), scale-free exponent   for the degrees 

of the nodes are at least larger than 5. We plot the degree distribution in Figure 18, 

we can see the degree distribution obeys power-law distribution. The local and 

global clustering coefficients, average path length are also computed and listed. 

Furthermore, we compute the small world quotient (Q). It is obvious to find that 

both local and global small world quotients are much larger than 1 for every year. 

Thus competition networks display well-optimized efficient structures between 

table-tennis players. In addition, local Q is larger than global Q because of 
globalCC   

with a lower value compared to that of 
globalCC , and PL is quite similar for both 

cases of competition and random networks. The higher transitivity for competition 

networks rather than that of random networks is due to the preliminaries based 

upon the round-robin match. All players are fully connected cliques in the same 

group (Figure 17), which will cause local and global clustering coefficients with 

much higher values. Concerning on the previous researches about movie actor 

collaboration network [15], localCC , PL, and γ  is 0.79, 3.65, and 2.3 0.1 , 

respectively. Thus we may say that movie actor collaboration network exhibits a 

more well-optimized efficient structure compared to that of the CTTC network. 
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Table 3 : the network sizes and the power-law exponent of the CTTC competition networks 

Year Network Size γ  
ik 5γ  

2004 3166 1.96 2.19 

2005 5901 1.85 2.00 

2006 7622 1.77 1.90 

2007 9193 1.78 1.90 

2008 9001 1.75 1.87 

2009 8650 1.68 1.77 

2010 8802 1.74 1.88 

2011 4979 1.79 2.08 

 

 

 

 

 

Table 4 : CTTC network properties analysis 

Year LC size 
Clustering Coefficient (CC)  Path Length (L)  Small World Q 

Local Global Random*  Actual Random*  Local Global 

2004 3166 0.2394 0.1297 0.0017  5.55 5.00  126.4 68.4 

2005 5901 0.2387 0.1154 0.0013  4.83 4.48  169.2 82.2 

2006 7622 0.2598 0.1105 0.0012  4.69 4.24  190.8 80.6 

2007 9193 0.2727 0.1123 0.0012  4.42 4.09  215.7 89.2 

2008 9001 0.3454 0.1104 0.0013  4.29 3.91  235.6 75.3 

2009 8650 0.3757 0.1190 0.0016  4.11 3.75  216.8 68.6 

2010 8802 0.3472 0.1149 0.0015  4.23 3.78  204.8 68.1 

2011 4979 0.4176 0.1484 0.0022  4.39 3.79  162.2 57.4 

* The average of one hundred simulations 
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Figure 18 : CTTC networks degree distribution for every year 

 

 

 

The scatter diagrams for iCC  versus ik  from 2004 to 2011 are illustrated in 

Figure 19. In general, a smaller (larger) ik  is corresponding to a higher (lower) 

iCC . The smallest ik  with iCC 1  represents those players were losers who 

never played single elimination games. In contrary, excellent players should have 

much more connections with other players. Thus a lower iCC  for excellent 

players can be expected. According to the results shown in Fig. 3, we plot the 

histogram of iCC  for competition networks in Figure 21 and the expected 

U-shape-like spectra are observed from 2004 to 2011. 
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Figure 19 : The scatter diagram between ki and CCi from 2004 to 2011 

 

 

 

Figure 20 : The histogram for the CCi from 2004 to 2011 

 

 

 



37 

 

 

2.5.3  BA model simulation 

 

In this section, we use the mechanism of the BA model to simulate the CTTC 

competition networks every year. That is to say, we create networks having the 

same sizes with the largest component of the real data, and we use different m    

values to make the average degree k   of these networks approximate the real 

data. Figure 21 illustrates the degree distributions for the BA model simulation 

networks, and it is obvious to find power law degree distribution from 

double-logarithm plots.   

  

 

Figure 21 : degree distribution of BA model simulations  

In Table 5, we list the simulation results and the small world quotient (Q).  The 

average values of    are about 2.63 0.09  which is larger than that of the 

competition network (i.e. 1.98 0.2
ik    ). Both local/global Q are larger than 1 for 

every year. However, all the small world quotients are much smaller than the real 

datasets. In addition, local Q is larger than global Q because of 
globalCC  with a 

lower value compared to that of localCC  and average path length is quite similar 
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for both cases of BA model simulations and random networks. Based upon results 

shown in Table 4 and Table 5 , we may conclude that BA networks cannot well 

explain the results of table-tennis competition networks. The small world Q in BA 

networks is much lower than that of the competition networks. The main reason is 

resulted from local and global clustering coefficients with much lower values in BA 

networks. 

 

Table 5 : BA model simulation result 

Year l size k  
fitγ  

Clustering Coefficient  Path Length  Small World Q 

Local Global Random*  BA model Random*  Local Global 

2004 3166 6 2.72 0.010 0.0038 0.0020  3.89 4.60  5.91 2.25 

2005 5901 8 2.63 0.009 0.0061 0.0017  3.74 4.41  6.24 4.23 

2006 7622 10 2.62 0.008 0.0061 0.0013  3.59 4.13  7.08 5.40 

2007 9193 10 2.61 0.007 0.0054 0.0011  3.64 4.22  7.38 5.69 

2008 9001 12 2.59 0.008 0.0064 0.0014  3.47 3.92  6.46 5.16 

2009 8650 14 2.57 0.009 0.0078 0.0017  3.31 3.72  5.95 5.16 

2010 8802 14 2.48 0.009 0.0076 0.0016  3.32 3.72  6.30 5.32 

2011 4979 12 2.54 0.013 0.0100 0.0027  3.30 3.69  5.38 4.14 

* The ensemble average of one hundred simulations 

 

Figure 22 shows the scatter diagrams for iCC  versus ik . The maximum iCC  

obtained from 2004 to 2011 of BA model simulations is below 0.4 which indicates no 

fully connected cliques can be observed in BA networks.  

Figure 23 illustrates the histograms of iCC  for BA networks, and L-shape-like 

spectra are observed for every year. 
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Figure 22: The BA model simulation scatter diagram between ki and CCi 

 

 

Figure 23 : The histogram for the CCi from 2004 to 2011 in BA model simulation 

 

 

 

 

 



40 

 

 

2.5.4  extend BA model simulation 

 

In the extend BA model simulations for the CTTC networks, we tune the 

parameters to make the power law exponent    approximate the values in CTTC  

networks. 

 

Figure 24 : extend BA model simulation power law 

 

Table 6 : the extend BA model simulation results 

year size realk   0m m   p q fit    k   

2004 3166 5.33 1 0.22 0.53  2.36  3.81 

2005 5901 7.71 1 0.32  0.56  2.21   7.31 

2006 7622 9.41 1 0.36  0.58  2.13  9.89  

2007 9193 10.84 1 0.36  0.58  2.18  13.35 

2008 9001 12.11 1 0.33  0.60  2.08  11.45 

2009 8650 13.65 1 0.29  0.64  2.08  11.73 

2010 8802 13.32 1 0.32  0.60  2.09  13.89 

2011 4979 11.13 1 0.42  0.50  2.06  12.21 
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In Table 7, the global and local clustering coefficients are higher than the values 

in BA model simulations, and so are the small world quotients. But they are still 

much smaller than the values of CTTC networks. 

 

Table 7 : the small world properties of the EBA simulation 

year 
Clustering Coefficient (C)   Path Length (L)   Small World Q 

Local Global Random*   Actual Random*   Local Global 

2004 0.0180  0.0170  0.0020 
 

4.42  4.60  
 

9.37  8.85  

2005 0.0300  0.0230  0.0017 
 

3.84  4.41  
 

20.27  15.54  

2006 0.0410  0.0350  0.0013 
 

3.60  4.13  
 

36.18  30.89  

2007 0.0410  0.0320  0.0011 
 

3.59  4.22  
 

43.81  34.20  

2008 0.0310  0.0260  0.0014 
 

3.54  3.92  
 

24.52  20.56  

2009 0.0330  0.0280  0.0017 
 

3.46  3.72  
 

20.87  17.71  

2010 0.0260  0.0230  0.0016 
 

3.55  3.72  
 

17.03  15.06  

2011 0.0450  0.0390  0.0027   3.49  3.69    17.62  15.27  

 

 

In Figure 25, we see a major difference between EBA and BA mode simulations 

is that there are some nodes in EBA simulations having local clustering coefficients 

larger than 0.4  .  
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Figure 25 : the CC-k diagrams for the extend BA model simulations 

 

  The histograms of the local clustering coefficients for EBA model(Figure 26) 

simulations shows the L-shape-like spectra which is similar to what we observe in 

BA model simulation. The only difference is there are some fractions of nodes 

having higher local clustering coefficients than BA model simulations.  
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Figure 26 : The histograms of the clustering coefficients of the extend BA model simulations 

 

2.5.5  discussion  

In BA model simulations, the preferential attachment is a key mechanism to 

generate the scale-free degree distribution (Figure 21). However, in competition 

networks scaling crossover phenomena are observed in Figure 18. In the high k 

regime it represents players won more games, thus who had more opportunities to 

compete with more opponents. We call this phenomenon as “strong-get-stronger”. 

Compared to social competitive systems, “rich-get-richer” is a well-accepted result, 

and which indeed reflects the result of preferential attachment. 

On the other hand, the EBA model simulations have higher clustering coefficients 

than the BA model simulations have, and the scale-fee exponent   are closer to the 

value of CTTC networks than BA model simulations. We think that is because the 
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additions of new edges are more contrast to the reality in CTTC networks. And the 

rewiring of old edges also contributes on the increase of the clustering coefficients.   

However, in CTTC networks the preliminary is a special design for generating the 

group winner, which enforces players to join the round-robin match. Therefore, the 

concept of “strong-get-stronger” cannot be applied to the round-robin match. Owing 

to that, it can be expected that this tournament design will disturb the scale-free 

degree distribution in the low k regime. The critical degree (i.e., as k=5) shown in 

Figure 18 represents the maximum number of players in the round-robin match 

should be equal to 6. And this is why we consider 
5ik 
 is a more suitable parameter 

to explain the preferential attachment in CTTC networks. Moreover, the preliminary 

will make high transitivity (clustering) between players and the small world Q would 

be much larger than 1. 

Round-robin and knockout matches constitute competition networks. In network 

topology round-robin matches will make players fully connected. Thus, there are 

small regular networks embedded in competition networks. Knockout matches are 

for finding excellent players with the consideration of shortening the competition 

time. Topological connections from knockout matches would be different from 

regular connections in round-robin matches. High clustering and low degree can be 

observed in round-robin matches. On the contrary, knockout matches will result in 

low clustering and high degree. In Figure 20, U-shape-like histograms well reflect 

these two designs for table-tennis competitions.  
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Figure 27 : the “overlap” of three tournaments    

 

 

Figure 27 schematically illustrates the network topology including three 

tournaments based upon our datasets. The numbers of players in the round-robin 

match for these three tournaments are 3, 4, and 5, respectively. Thus small regular 

networks including triangle, square, and pentagon patterns can be observed. When 

group winner and runner up are generated, knockout matches will come up. Hence 

the dynamics of “strong-get-stronger” proceeds till to the final competition. Besides, 

the overlap players inmeans that these players have high interest in table-tennis 

competitions. The overlap players shown in these three tournaments are crucial for 

the network topology. Because of them, a giant/optimized network can be expected. 

The network topology created by round-robin matches is very similar as that of the 

artist collaboration network[11]. However,
globalC  is, respectively, equal to

0.345 0.029  and 0.120 0.013 for the artist collaboration network and the 

competition network. The lower clustering coefficient in our case is mainly resulted 

from the dynamics of “strong-get-stronger” in knockout matches, which will reduce 

the clustering effect. It shall be noted that the overlap artists in the artist collaboration  
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network reveals these artists are quite famous, thus the preferential collaboration as 

well as a giant/optimized network can be expected. In the point of view in topology, 

we may understand the overlap players in the competition network play the same role 

as the overlap artists in the artist collaboration network. Therefore, there are two 

different kinds of preferential attachment in human-made competition networks. One 

is the “strong-get-stronger” process to find excellent players in a tournament, which 

is named inner-tournament preferential attachment. The other is inter-tournament 

preferential attachment because of the connection of different tournaments through 

overlap players. Owing to that, the topology of table-tennis competitions is a 

network with different communities, where groups of nodes within the same 

community connections are dense, but between different communities connections 

are sparser. So far, many social and biological networks with community structure 

have been reported [16-18]). More recently, Li and Maini (2005) proposed an 

evolving network model with community structure based on the inner-community 

preferential attachment and inter-community preferential attachment mechanisms 

[19]. A scale-free distribution ( γ = 3 ) in the whole k regime can be generated from 

their theoretical results as well as numerical simulations. Therefore, their community 

model still cannot well explain the topology of table-tennis competitions in Taiwan. 
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3 Vulnerability and cascading failure 

of a power grid 

3.1 Efficiency 

3.1.1  topology efficiency 

 

The concept of  “efficiency” of a network is a measure of how efficiently it 

exchanges information..[20] The efficiency 𝜀𝑖𝑗 is the information exchanging from 

node i to node j in a network G can be defined to be inversely proportional to the 

shortest path distance, i.e 1/ij ijd  . When there is no path from node i to node j, 

0ij  , because of 
ijd   . The efficiency of the network can be expressed by the 

average efficiency of the total pairs in the network, that is to say: 

       

1

( )
( 1) ( 1)

i j Giji j G ij

glob

d
E G

N N N N

  
 

 
 



        

(43) 

         

 

The efficiency of a network is usually called the global efficiency. That is why we 

denote it by 
globE . Next, we consider how efficient of the information exchanging is 

between the neighbors of node i when i is removed. If a sub network 𝐺𝑖 is formed  

by the neighbors of node I, then  

 

( )
( 1)

i
nmn m G

i

i i

E G
k k


 





  (44) 

then, we can define locE  as follow 

 

 

1
( )loc i

i G

E E G
N 

   (45)   
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the local efficiency reveals how much the network G is fault tolerant, thus it shows 

how efficient the information exchanging is between the neighbors of i when i 

is removed. If we use Watts-Strogatz model to observe these quantities, then we 

will find the global and local efficiency change with the variation of the random 

rewire probability p, like Figure 28. 

 

 

Figure 28: the small world from “efficiency” view 

3.1.2  reliability efficiency 

If we consider the transmission reliability between pairs of node i  and j  in a 

network structure, such as a power grid, then the shortest reliable path { }ijd  can be 

computed as[21] 

 1
min

ij

ij

ij

mnmn

d
P



 
 
 
 

  (46) 

{ }mnP  is the transmission reliability between node i  and j  and 0 1ijp  .
ij is 

the path which connects nodes i and j. Note that 1 ijd   , the lower value 
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corresponding to the existence of a perfectly reliable path connecting i and j (no 

failure will occur in the links involving this path, that is to say, 1mnp   
ijmn    ) 

and the upper value corresponding to the situation of no paths connecting i  and j   

efficiency vulnerability, that is to say, there is at least failure in all connections from 

i  to j . By Taking the shortest reliable path { }ijd  into (43) and (45), we can 

calculate the local and global reliability efficiency of the network.           

               

3.1.3  efficiency vulnerability 

 

If we remove some edges or nodes in a network G, then the value of 
ijd  will 

change. So does the global efficiency ( )globE G . In this manner, we can measure how 

great the removals impact the structure of the whole network G by using the value 

called vulnerability 
*V [21]. 

*

*
( ) ( )

V
( )

glob glob

glob

E G E G

E G


  (47) 

*G  is the new network resulting from the removals of some edges or nodes in the 

network G. For example, Figure 29 shows the 2006 CTCC amateur table-tennis 

players competition network, the network can be viewed as two subgroup connected 

by an edge from node 2307 to node 5872. If we remove an edge in turn and compute 

the 
*V  value for every new graph. The 

*V  value of the edge from node 2307 to 

node 5872 is the highest one in the 2006 CTCC amateur table-tennis players 

competition network. As we can see, the efficiency vulnerability is a useful index to 

find the most important (vulnerable) edge in a large network. In this case, we only 

calculate the topology efficiency.  



50 

 

 

 

 

Figure 29 : 
*V  test for the 2006 CTCC amateur table-tennis players competition network.(This 

figure is draw by Pajek.)  

 

3.2   Cascading failures 

3.2.1  Betweenness overload  

 

For a given network G, assume that at each time step, one unit of the relevant 

quantity, like energy, information etc., is exchanged between all pairs of nodes and 

transmitted along the shortest path connecting them. The load iL  of a node is the 

total number of shortest path passing through it, that is to say , the betweenness. And 

the capacity is defined as follow [6], 

 

 (1 )            i = 1,2,......N ,    0i iC L      (48) 
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  is called the “tolerance parameter”, which reflect the ability of a node to handle 

the additional increases of the load.  

  If we remove a node j, then the redistribution of currents will occur. If the new 

load of node j, '

jL   becomes larger than the capacity of node j, this will make node 

j fail. The failure will lead to a new redistribution of the load in the network. As a 

result, subsequent failures can occur, the process is what we call the “cascading 

failure.”[6]    

 

 

Figure 30 :  the flow chart the cascading failure triggered by the betweenness-overload 

 

 There are three strategies of the removals of the nodes in [6]. They are the 

removal of nodes chosen at random, the removal among those with largest degrees 

(attack), and the removal among those with largest load (attack). We plot the 

different cascading failure of the random network ( homogeneous network) in Figure 

31, scale-free network in Figure 32, and the western  U.S. power grid in Figure 33. 
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Among these three figures, each curve corresponds to the average over five triggers 

and ten realizations for the attack on the nodes having the largest betweenness (load) 

and degrees. For random removals of nodes, the curve corresponds to the average 

over 50 triggers.    

 

Figure 31 : Cascading failures in the random network (homogeneous networks) 3k   ,

5000N  . The network is generated by the shuffle method.   
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Figure 32 :  Cascading failures described in a scale-free network. The network is generated by using 

BA model. The nodes number N = 5000, 0 3m m   . 

 

Figure 33 : Cascading failure failure in the western U.S. power grid.  The legends are 

as defined in Figure 32 

   

These results conform with [6] : The random networks appear to be more robust 

against attacks( removal among the nodes having the largest degrees or load ) than 

the networks having a power-law degree distribution(Figure 30 and Figure 33) . The 

damage caused by the removals among the nodes having the largest load or degree is 

much larger than that by random removal, as shown in Figure 32.  
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3.2.2  transient dynamics  

 

Another cascading failure model containing the time-dependent adjustments has 

been presented.[7] Assume there is a power grid consisting of N nodes, and some of 

them are generators, transmission stations, and utilities like the small power grid in 

Figure 34.  

 

 

Figure 34 : A small power grid.  

Node A is the generator which is the current source and the green node F is the 

utility where the current sinks. The other nodes in the small power grid are 

transmission stations. The question will be how to describe the electric current 

flowing in the power grid. Image the current flows from node A and then passes 

through node B to node D. The current on node D will be divided into two parts, 

one will follow the direction to the utility node F, and the other will flow into the 

transmission station node C. This behavior can be described as follow. The current 

on an edge from j I at time t can be expressed as below[22] 

 

 

( )
( ) ( )

j

ij ij ij j

kjk

C t
C t W T C t

W
 

  (49) 
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The factor ij kj ijk
W W T is the fraction of the current on node j outflows to 

node i. So the total current on node i at time t+1 can be written as the sum of all the 

currents on the edge connecting the neighbors of node i.   

 

1 1
( 1) ( )         ,      ,     

N Nij

i ij j ij i ijj i
i

W
C t T C t j T W W

W



 
                (50) 

 

j  is the possible source( j >0) or sink( j <0) term. The load of an edge between 

node i and j can be defined via 

 

 
( ) ( ) ( )ij ij jiL t C t C t 

  (51)
  

 

These allow us to study the wavelike spreading of the redistribution of the load in the 

power grid. For example, if we remove edge D in the imaginary British power 

grid[7], we will see different perturbations of the load on node A, B ,and C. The 

imaginary British power grid assume the topology of the UK high-voltage power 

transmission grid consisting of 120 nodes (generators, utilities, and transmission 

stations), and 160 edges (transmission lines) like Figure 35. In addition, the 10 red 

nodes in the network are the generators, the 10 green nodes are the utilities. 
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Figure 35 :  the imaginary British power grid 

 

At the first (time=0), the currents on all edges and nodes are zero. With the evolution 

of time, the currents flow from the source nodes and distribute farther and farther 

from the source nodes, finally sink on the sink nodes. In this imaginary power grid, 

all the edges are unweighted. The currents (and the loads) on every nodes and edges 

will finally reach a stationary state which means the currents or loads will be 

constants. The load of the edge between node i and j when it is stationary is denoted 

as S

ijL . In Figure 36, we plot the stabilizing process of edge D. The normalized edge 

load is defined as ( ) / S

ij ijL t L   
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Figure 36 : the load variation of edge D with the evolution of time 

 

Next, we consider if we remove edge D, the flow of the currents on the network will 

redistribute like we plot in Figure 37.As time<0, the loads on each edge are stationary, 

and the removal happen at time=0. At time=0 , the loads on every edges are defined 

as S

ijL , and we can use normalized edge load ( ) / S

ij ijL t L  to observe the load 

variation behaviors on every edge. The variation behaviors of the load on each edge 

are very different (Figure 37).  It is observable that after 300-400 time steps away 

from the time when the removal happened, the loads will be almost stationary again.  
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Figure 37 : the load variations of three different edges after the removal of edge D 

 

As time t=0, we can define the edges capacities as[6] 

 (1 ) S

ij ijC L    (52) 

  is which we call tolerance parameter. It reflects the ability of the edge to bear the 

load. Now we concern the overload situations that may occur before the new 

stationary state is reached. We define a new parameter  , which is called “overload 

time”, such that an edge will fail if the time duration of the edge overload exceeds a 

time period  . More detail, for edge A we mentioned in Figure 37, if the value of 

the tolerance parameter  is 0.01, then we can define the capacity value is 1.01 

which is the red line in Figure 37. The overload lasts for about 10 time steps. In this 
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situation, if   is equal to 50, the edge will not fail, because the overload time is not 

long enough to make it happen. In the opposite, if the value of   is only 5, edge A 

fails. In this manner, we can model the cascading failures like Figure 30, and the only 

difference is the definitions of the load based on the betweeness centrality and the 

transient dynamics of the power grid. The process of the cascading failure triggered 

by a removal of an edge in the transient dynamics model is drawn in Figure 38. 

 

 

Figure 38 : the flow chart of the cascading failures triggered by the transient dynamics of a power 

grid. 

Furthermore, we can evaluate the effect of the cascading failures by studying the  

fraction of edges remaining in the giant component max( ) /G G . 

  In [7], the authors use this cascading failure model to test the robustness of the 

western US power grid[4]. The edges are assigned weights, drawn from a uniform 



60 

 

 

distribution on the interval [1,10] , and 100 generators and 100 utility nodes 

810j   are assigned randomly. The results were obtained by averaging over all 

possible removal of single edge. In Figure 39 we plot the cascading failures 

behaviors in western US power grid for different tolerance parameters  , and 

different curves represent the cascading failures behaviors for different values of 

  . 

  

 

Figure 39 : the cascading failures triggered by transient dynamics of the power grid. The data is 

from [4] 

As the tolerance parameter 0.1  , we observe the cascading failure triggered by 

the transient dynamic model for different removals of edge, and plot some of them in 

Figure 39. In most of the removals, the value of max( ) /G G  will be extremely small 

corresponding a complete collapse, and the other removals will make the size of the 
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power grid almost unchanged. We plot the largest component number variations of 

the removal of single edge in Figure 40.          

  

 

Figure 40 : the largest component number variations of the removal of single edge 

 

This is a cascading failure for a specified weight distribution. For ranking the 

vulnerability of edges and excluding the influence of the distribution of the weight, 

we average the cascading failure triggered by the removal of an edge under different 

distribution of weight on the interval [1,10] . That is to say, for every realizations, the 

weights of every edges are generated randomly on the interval [1,10] , and the 

cascading failures triggered by the removal of each edge, max( ) /G G , are recorded. 

Then the average largest group node number will be the realization average of 

max( ) /G G .     



62 

 

 

3.3 case study II: the imaginary British power grid 

In a power grid network, the nodes represent generators, transformers and 

substations, and edges represent high-voltage transmission lines between them. 

Now we have three different ways to test the vulnerability for a power grid. They 

are efficiency vulnerability, betweenness-cascading failures, transient-dynamics 

cascading failures. We still use the assuming British power grid as the example. For 

the three different ways to test the vulnerability of the power grid, we focus on the 

attack or errors of the transmission lines, that is to say, the removals of the edges. 

As a result, we sort the 10 most vulnerability edges for each way.   

 

3.3.1  efficiency vulnerability 

 

In this case, we neglect the properties of a node, that is to say, no matter what 

roles (sources or utilities) the nodes play, we only care about the global topological 

efficiencies variation after each removal of edge.  We calculate the 
*V  values for 

each removal of edge and rank them to find the most vulnerable edges in the 

imaginary British power grid. We list the tem most vulnerable edges in Table 8 and 

plot them in Figure 41. 

 

 

 

 

 

 

 



63 

 

 

Table 8 : the ten most vulnerable edges according to the topological vulnerability evaluation in the 

assuming British power grid 

 

 

 

Figure 41 : the ten most vulnerable edges according to the topological vulnerability evaluation in 

the assuming power grid 
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3.3.2  the cascading failure triggered by the betweenness overload 

 

We remove one of the edges in the imaginary British power grid and use the 

cascading failure model discuss in  3.2.1 to see if the edge removed played an 

important role in the power grid. For this purpose, after each cascading failure 

triggered by an removal of edge has come to its end, we record the node number of 

the largest component of this power grid. We list the ten most vulnerable edges in 

this kind of cascading failure in Table 9 and plot them in Figure 42. The tolerance 

parameter 0.1  .  
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Table 9 : the ten most vulnerable edges in the assuming British power grid 

according to the cascading failures triggered by the betweenness overloads. 

 

 

 

 

Figure 42 : the locations of the ten most vulnerable edges according to the cascading failures 

triggered by the betweenness overloads in the assuming British power grid.  

23  58       64

23                     82       83

21 35      36

22 50      61

23   8       10

19 11     16

19 89     90

20 36      40

the largest group node number after cascading failure starting node       arriving node  

13 40      41

14 111      115
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3.3.3  the cascading failure triggered by the transient dynamics 

overload 

 

   We use the method in  3.2.2. The realizations of weight is 2000 to exclude the 

influence of the distribution of weight. The tolerance parameter 0.1  and the 

overload time  =1. The ten most vulnerable edges are listed in Table 10 and we 

plot their locations in Figure 43. 
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Table 10 : the ten most vulnerable edges according to the cascading failures triggered by the 

transient dynamics overloads in the assuming British power grid 

 

 

 
Figure 43 : the locations of the ten most vulnerable edges according to the cascading failures 

triggered by the transient dynamics overloads in the assuming British power grid 
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3.4 Discussion 

 That is reasonable for the three methodologies show different results. They view 

the vulnerability of a power grid in different concepts. But they show the reliability 

or vulnerability of a power grid can be study by complex network analysis. For 

efficiency vulnerability, we think the most vulnerable lines are the removals of the 

edges will make the network be divided into two parts or make the shortest path 

between many pairs increasing a lot.  

For the cascading failure triggered by the betweenness overload, we can measure 

the average fraction of the largest component after different kind removal of edges, 

like[6].       

 

Figure 44: the two different cascading behaviors the two strategy of the removal of edges  
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In Figure 44, the red line represents the group change of 500 random removals of 

edges. The black line is the attack on the edges having high betweenness. Every 

realization there are five triggers, and the edges are chosen from the 20 edges having 

highest betweenness. For different   values, there are 100 realizations. In Figure 

44, the cascading failure triggered by the removals of high betweenness edges are 

larger than the random removals. We think the behaviors of the two lines indicate that 

the removals of the nodes having high betweenness play an important role in 

triggering cascading failure in this power grid.    

  The cascading failure triggered by the transient dynamics overloads model is the 

most complicated case among the three methodologies. The factors which affect the 

cascading failure behaviors include the properties of the nodes which the edges 

connect, the locations of the edges, the tolerance parameter , overload time  .       

Although the size of the assuming network is small, but we show how to analyze 

the vulnerability of edges by using three different aspects.    
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4 Conclusion and future work 

 

  In case study I, we use two models: BA model and EBA model to simulate the 

CTTC network. By comparing real data and the simulation results, we find the 

impacts of the tournament design on the network structures. But there is still much 

analysis we hope to do in the future. For example, in the case study, the networks 

are all undirected and unweighted, thus these are all simple topology network 

structures. The information they carry is limited. If we can define the direction and 

the strength of an edge in CTTC networks, we can know more about the CTTC. 

In case study II, we apply three different methodologies on an assuming power 

grid, and sort the 10 most vulnerable edges in  3.3. As we can see, the result will be 

different because we take different parameters into account in three different ways. 

This may indicate two things. First it will be more realistic to use complex network 

for vulnerability analysis by taking into consideration about actual electrical 

parameters. For example, the electrical distance is composed of the power 

transmission distribution factor and impedance[23],and there will be more ‘realistic’ 

analysis of vulnerability of power grid[23, 24]. Second, the further research should 

focus on how to merge the different insights of the different approaches, and 

combining with very realistic modeling(including physical laws and system 

dynamics)[21]. For example, The authors of [7] declared that the simple dynamical 

approach gives insights into the systems in which network topology is combined 

with flow, conservation of flow, and distribution laws. The cascading failure 

triggered by the transient dynamic model is simpler than the fully realistic 

state-of-the-art simulation, that is, power grids that include capacities, inductors, 

power generation, etc. The fully realistic state-of-the art simulation will spent a lot 
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of time and they are very expensive. In this aspect, the transient dynamic model 

could quickly and economically give an overview of the system for more detailed 

and realistic simulations.[7] This kind of idea was also proposed in [21]. In the 

future, these differences between these methodologies should be discussed further. 

Furthermore, in our analysis we only discuss the vulnerability of single edge, but in 

real world some edges could fail at the same time. This kind of vulnerability should 

be studied in the future.             
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