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摘 要 

 本研究開發一個以區域最佳解為基礎的群體式 (population-based) 啟發式演

算法(簡稱 HLBS)，來求解流程式排程（flow shop）之最大流程時間的最小化問

題。其中，HLBS 會先建置一個跟隨模型來導引搜尋機制，然後，運用過濾策略

來預防重複搜尋相同解空間而陷入區域最佳解的困境；但搜尋仍有可能會陷入區

域最佳解，這時，HLBS 則會啟動跳脫策略來協助跳出區域最佳解，以進入新的

區域之搜尋；為驗證 HLBS 演算法的績效，本研究利用著名的 Taillard 測試題庫

來進行評估，除證明跟隨模型、過濾策略和跳脫策略的效用外，也提出實驗結果

證明 HLBS 較其他知名群體式啟發式演算法(如基因演算法、蟻群演算法以及粒

子群最佳化演算法)之效能為優。 

關鍵字：流程式排程，最大流程時間，啟發式方法 
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Abstract 

This research proposes population-based metaheuristic based on the local best 

solution (HLBS) for the permutation flow shop scheduling problem (PFSP-makespan). 

The proposed metaheuristic operates through three mechanisms: (i) it introduces a 

new method to produce a trace-model for guiding the search, (ii) it applies a new filter 

strategy to filter the solution regions that have been reviewed and guides the search to 

new solution regions in order to keep the search from trapping into local optima, and 

(iii) it initiates a new jump strategy to help the search escape if the search does 

become trapped at a local optimum. Computational experiments on the well-known 

Taillard's benchmark data sets will be performed to evaluate the effects of the 

trace-model generating rule, the filter strategy, and the jump strategy on the 

performance of HLBS, and to compare the performance of HLBS with all the 

promising population-based metaheuristics related to Genetic Algorithms (GA), Ant 

Colony Optimization (ACO) and Particle Swarm Optimization (PSO).  

 

Keywords: Permutation Flow Shop Scheduling, Makespan, Metaheuristic 
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Chapter 1. Introduction 
 

This research proposes a population-based metaheuristic based on the local best 

solution (HLBS) for the permutation flow shop Scheduling (PFSP-makespan). The 

candidate problem determines the best sequence of n jobs that are to be processed on 

m machines in the same order in order to minimize the complete time of the last job 

on the last machine (makespan). It has proved to be one of the most studied NP-hard 

scheduling problems in the strong sense (Garey et al. 1976) and has not been 

completely solved by exact algorithms. Therefore, the development of metaheuristics 

that find near-optimal solutions in a reasonable computational time has held the 

attention of many researchers in recent decades. These include genetic algorithm (GA) 

(Chen et al., 1995; Reeves & Yamada, 1998; Ruiz et al., 2006; Chen et al., 2011), ant 

colony optimization (ACO) (Stützle, 1998a; Rajendran & Ziegler 2004; Ying & Liao, 

2004), particle swarm optimization (PSO) (Tasgetiren et al. 2004; Rameshkumar et al. 

2005; Lian et al., 2006; Liao et al., 2007; Kuo et al., 2009; Zhang et al., 2010), 

differential evolution (DE) (Andreas & Omirou, 2006; Onwubolu & Davendra, 2006; 

Pan et al., 2008b), iterated greedy algorithm (IG) (Ruiz & Stützle, 2007), iterated 

local search (ILS) (Stützle, 1998b), simulated annealing (SA) (Osman & Potts, 1989; 

Ogbu & Smith, 1990; Lin & Ying, 2011), tabu search (TS) (Widmer & Hertz, 1989; 

Reeves, 1993; Nowicki & Smutnicki, 1996; Watson et al., 2002; Grabowski & 

Wodecki, 2004) and hybrid metaheuristics (Zobolas et al., 2009; Liu & Liu, 2011). 

Several research papers reviewing heuristics for the candidate problem can be found 

in Framinan et al. (2004), Hejazi & Saghafian (2005), and Ruiz & Maroto (2005).  

The major idea of the proposed metaheuristic (HLBS) is that we think the local 

best solution in an iteration possesses important information about the solution 

regions searched, so the trace-model generated based on the local best solution should 
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provide valuable information for guiding the search to promising solution regions. In 

addition, we develop a new filter strategy to keep the search from trapping into local 

optimums and a new jumping strategy to help the search escape if it does trap into a 

local optimum. Computational experiments on the well-known Taillard's benchmark 

data sets (Taillard 1993) will be performed to evaluate the effects of the trace-model 

generating rule, the filter strategy, and the jump strategy on the performance of HLBS, 

and compare the performance of HLBS with other population-based metaheuristics 

such as Genetic Algorithms (GA), Ant Colony Optimization (ACO) and Particle 

Swarm Optimization (PSO). A couple of new ideas will be further applied to 

thoroughly study the impact of the aforementioned strategies on the explorative 

capability and the exploitative capability of the proposed algorithm in order to 

improve its performance for solving PFSP-makespan. 

The remainder of this research is organized as follows: Chapter 2 gives the 

literature review, the proposed algorithm HLBS is described in Chapter 3. Chapter 4 

provides computational experiments, and conclusions and  further research of this 

study are summarized in Chapter 5.  
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Chapter 2. Literature review 
 

This research proposes a population-based metaheuristic for PFSP-makespan.  

Population-based metaheuristics share many common concepts of Evolutionary 

Algorithms (EA) which is a class of stochastic search and optimization techniques 

based on the principles of natural evolution. The basic process of population-based 

metaheuristics starts with a population of alternative solutions for a given problem in 

the initial generation. Then, the evolution operations of selection, replication and 

variation are applied to solutions chosen from the population to generate new 

solutions for the next generation. The idea of the evolution operations is based on the 

survival concept of genetic evolution. Therefore, the solutions can be improved 

generation to generation until a termination criterion is satisfied. Most of the 

population-based metaheuristics are nature-inspired algorithms. In the following 

sections, we will present the problem statement of PFSP-makespan and the literature 

review for three prominent population-based algorithms for PFSF-makepspan: 

Genetic Algorithms (GA), Ant Colony Optimization (ACO) and Particle Swarm 

Optimization (PSO). 

 

2.1 Problem statement: PFSP-makespan 

PFSP-makespan can be denoted as Fm||Cmax by Graham et al. (1979), where Fm 

represents a flow shop environment of m machines and Cmax refers to the makespan. 

We use the notation proposed by Graham et al. (1979); given a set J of n jobs, a set M 

of m machines and processing times pij for each job j on each machine i, the problem 

consists of scheduling all n jobs at each one of the m machines. The processing 

sequence of the jobs must be the same on all the machines and each job j can only 

start its execution on a machine i if both the previous job on the same machine i and 

the same job j on the previous machine i -1 have already been processed. Furthermore, 
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the order in which a job must pass through the machines is predefined and identical 

for all the jobs. The objective of this problem is to determine a job ordering that 

minimizes the completion time of the last job in the last machine, called the makespan. 

Although Garey et al. (1976) showed that the problem with two-machine can be 

solved in polynomial time, the general case with m machines is known to be NP-hard. 

Given a permutation schedule j1, . . . , jn for an m-machine flow shop, the completion 

time of job jk at machine i , 
kjiC , , can be computed easily through a set of recursive 

equations: 

 

∑
=

=
i

l
jlji pC

1
,, 11

            i=1, 2,…,m           (1) 

∑
=

=
k

l
jj lk

pC
1

,1,1      k=1, 2,…,n       (2) 

kkkk jijijiji pCCC ,,,1, ),max(
1
+=

−−   i=2,…,m; k=2,…,n      (3) 

Then makespan, Cmax, is obtained by Cmax = 
njmC ,  

 

2.2 Genetic Algorithms (GA) 

Genetic Algorithms (GA), developed by John Holland in the 1970’s, are search 

algorithms that are based on the idea of genetic evolution. Genetic evolution implies 

that the optimum parents survive and generate better offspring. The same concept 

underlies the development of Genetic Algorithms (GA). In order to apply GA to a 

problem, generally the solution space of the problem is represented by a population of 

structures where each structure is a possible solution to the problem. Then, a certain 

number of structures are chosen to form the initial generation. The structures of the 

next generation are generated by applying simple genetic operators to the parent 

structures selected from the existing generation. According to the idea that "good 

parents produce better offspring", a structure with higher fitness value in the current 
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generation will have higher probability of being selected as a parent (similar to the 

concept of survival). When we repeat this process, we can observe a continuous 

improvement in the structures' performance from one generation to the next (Chen et 

al. 1996). Figure 2.2.1 presents brief pseudo-code of GA. 

  

 

 

 

 

 

 

 

 

 

Figure 2.2.1 The pseudo-code for the general GA algorithm 

 

GA has been proven to be efficient for many computationally complex problems. 

Several researchers also presented encouraging results by applying GAs to solve 

PFSP-makespan. The first proposed GA for the PFSP-makespan is proposed by Chen 

et al. (1995) in which only crossover is applied (no mutation). Reeves (1995) also 

proposed a GA with a different generational scheme called termination with prejudice 

which was one of the first GA to be tested against Taillard’s (1993) famous 

benchmark data sets. Some more recent noteworthy papers include Reeves & Yamada, 

(1998), Ruiz et al. (2006) and Chen et al. (2011).  

 

  

GA{ 
Generate the initial population. 
Do { 

Calculate the fitness value of each member. 

Calculate the selection probability for each member. 

Select parents for reproduction via the selection probability. 

Apply genetic operators (crossover, mutation, inversion) to the parents and 

replace the parents with the resulting offspring to form a new 

population. 

} While (Not Termination) } 
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2.3 Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO), proposed by Dorigo et al. (1992), is a 

metaheuristic inspired by nature in which a colony of artificial ants cooperate in 

finding good solutions. The main idea of ACO is that the self-organizing principles, 

which allow the highly coordinated behavior of real ants, can be exploited to 

coordinate populations of artificial ants that collaborate to solve computational 

problems (Dorigo and Stützle, 2004). More specifically, the core behavior of artificial 

ants is the indirect communication between the ants via chemical pheromone trails 

which enable them to find short paths between food sources and their nest. In general, 

the ACO approach attempts to solve an optimization problem by iterating the 

following two steps (Blum, 2005): constructing candidate solutions using initial 

pheromone trails and modifying the pheromone trails using the candidate solutions in 

a way that is deemed to bias future sampling toward high quality solutions. 

Figure 2.3.1 presents the pseudo-code of the ACO algorithm for scheduling 

problems (Dorigo & Stützle 2004). The algorithm constitutes four major phases: 

Initialization, AntConstruction, LocalSearch, and PheromonUpdate. In the 

Initialization phase, an initial schedule is generated and pheromone trails are 

calculated based on the initial schedule. In the AntConstruction phase, each artificial 

ant constructs a schedule using the pheromone trails. Once all artificial ants have 

constructed their own schedules, the schedules will be improved in the LocalSearch 

phase, an optional phase in early days, but a mandatory phase for most cases now. 

Then, in the PheromonUpdate phase, the pheromone trails are updated by applying 

properties of the schedules produced in the LocalSearch phase. The phases are 

iterated until a termination condition is satisfied. 
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Figure 2.3.1 Pseudo-code for the general ACO algorithm 

 

The ACO algorithm has been successfully applied to solve PFSP-makespan. 

Stützle (Stützle 1998a) proposed the first ACO algorithm, MAX-MIN Ant System 

(MMAS), for PFSP-makespan. After that Ying and Liao (Ying & Liao 2004) applied 

the Ant Colony System (ACS), developed by Dorigo and Gambardella (1997), for the 

same problem and showed that ACS outperformed Genetic Algorithms, Simulated 

Annealing and Tabu Search. Rajendran and Ziegler (2004) developed two ACO 

algorithms for PFSP-makespan: M-MMAS and PACO. The first algorithm, 

M-MMAS, modified the ideas of MMAS by incorporating the summation rule 

suggested by Merkle and Middendorf (2000) and a newly proposed local search 

technique. The second was a newly developed ant colony algorithm called PACO. On 

average, both M-MMAS and PACO perform better than MMAS and the ACS of Ying 

and Liao (2004). 

 
2.4 Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) was proposed by Kennedy and Eberhart in 

1995 ; it imitates the behavior of a swarm of birds searching for food. The searching 

process of PSO for an optimization problem starts with a population with randomly 

generated solutions (particles; the positions of the birds in the solution space). 

ACO{ 
Initialization 
Do { 

AntConstruction  
LocalSerach  
PheromoneUpdate  

} While (Not Termination) } 
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Applying the swarm learning mechanism, each particle in the population searches the 

solution space by considering the effect of the best solution that all the particles have 

ever searched (global best), the effect of the best solution that the particle has ever 

searched (personal best) and the effect of searching the current neighborhood of its 

own. The new position of a particle in the next population is determined by its current 

position plus the effect of the global best solution and the effect of the personal best. 

This process will continue until a termination criterion is satisfied.  

The standard PSO equations for updating positions for birds are real-valued 

equations; therefore, discrete PSO (DPSO) algorithms have been developed to solve 

PFSP-makespan. Figure 2.4.1 presents the main components of DPSO (Pan et al., 

2008a), which includes: (1) population initialization, (2) position update for particles, 

and (3) a local search for improving the solution quality. A discrete position update 

equation can be expressed as follows (Pan et al. 2008a): 

)),),((( 111
12132

−−−⊗⊗⊗= tt
i

t
i

t
i GPXFwFcFcX      

Given that the position of particle i in iteration t-1 is 1−t
iX , this equation first 

implements function F1 with a probability of w; function F1 searches the 

neighborhood of 1−t
iX . Then the equation implements function F2 with a probability of 

c1. Function F2 exchanges information with the solution generated by function F1 and 

the personal best solution of particle i ( 1−t
iP ); it refers to the condition that particle i 

will learn from its personal best solution. Finally, this equation implements function 

F3 with a probability of c2. Function F3 exchanges information between the solution 

generated by functions F2 and the global best solution; it refers to the condition that 

particle i will learn from the global best solution. Figure 3 presents the pseudo-code 

for the DPSO algorithm with local search (Pan et al. 2008a). 
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Figure 2.4.1 Pseudo-code for the general DPSO algorithm with local search 

 

There have been many PSO related algorithms proposed to solve the candidate 

problem recently. For example, a similar particle swarm optimization algorithm called 

SPSOA (Lian et al., 2006) was proposed to solve PFSP-makespan. Computational 

experiments showed that SPSOA outperformed a basic GA. A discrete PSO version 

called NPSO (Lian et al, 2008) was developed and successfully applied to the 

candidate problem, and the results showed that NPSO was more effective than a basic 

GA. HPSO (Kuoa et al, 2009) is a continuous version of PSO which integrated the 

random-key (RK) encoding scheme and the individual enhancement (IE) scheme into 

PSO. The experimental results showed that HPSO was superior to a basic GA and 

NPSO. ATPPSO (Zhang C. et al., 2010) was proposed with the integration of PSO 

with genetic operators and annealing strategy. The results showed that both the 

solution quality and the convergence speed of ATPPSO outperform NPSO. Zhang J. 

et al. (2010) proposed a circular discrete particle swarm optimization algorithm 

(CDPSO). The particle similarity changes adaptively with the iterations and an order 

based strategy is introduced to preserve the swarm diversity. If the adjacent particles’ 

similarity is bigger than its current similarity threshold, the mutation operator is used 

to mutate the inferior. Furthermore, a fast makespan computation method based on 

DPSO { 
     Initialize parameters 
     Initialize population 
     Evaluate 
  Do { 
     Find the personal best 
     Find the global best 
     Update position 
     Evaluate 
     Apply local search (optional) 
} While(Not Termination) } 
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matrix is designed to improve the efficiency of the algorithm. The result showed that 

the solution quality and the stability of CDPSO precede both GA and SPSOA. 
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Chapter 3. The proposed metaheuristic (HLBS) 
 

Although there have been many metaheuristics based on GA, ACO, and PSO for 

solving PFSP-makespan, most of them follow the basic principles of evolutionary 

algorithms to improve the solutions iteration by iteration. In this research, we propose 

a population-based metaheuristic based on the local best solution, denoted as HLBS, 

to solve PFSP-makespan. The major idea of HLBS is based on the conjecture that the 

local best solution in an iteration possesses important information about the solution 

regions searched. Therefore, given a local best solution, we propose a simple 

approach to generate a trace-model based on the local best solution for guiding the 

search to promising solution regions. In addition, we propose a novel filter strategy to 

keep the search from trapping into local optimums and a new jump strategy to help 

the search escape if the search does become trapped at a local optimum. The basic 

process of HLBS is presented as follows: 

1. Set t = 0. Generate an initial solution using NEHT and let it be the local best 

solution and the best-so-far solution. 

2. do { 

3. Generate a trace-model based on the local best solution for iteration t. 

4. Generate M new solutions according to the trace-model generated in Step 

3 by applying a solution construction method. 

5. Apply the filter strategy to the M solutions generated in Step 4; update the 

local best solution. 

6. Launch the jump strategy if the search traps into a local optimum. 

7. t = t + 1 

8. } while (Not Termination ) 

9. Return best-so-far solution 
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The HLBS algorithm, different from general population-based metaheuristics, 

produces only a solution using the heuristic NEHT (Taillard 1990) in the initial 

iteration and sets the solution to be the local best solution and the best-so-far solution. 

The major loop in HLBS (step3~step7) generates a trace-model based on the local 

best solution, constructs M new solutions according to the trace-model by applying a 

solution construction method, and updates the local best solution with the solution 

produced by applying the new filter function and a local search method to the M new 

solutions. If the local best solution is not able to improve the best-so-far solution in a 

certain number of iterations, it is assumed that the search has trapped into a local 

optimum. Then the new jump strategy is launched to find a new initial solution as the 

local best solution and the same loop (step3~step7) is performed on the new initial 

solution. The major components of HLBS, trace-model generating rule, solution 

construction method, filter strategy and jump strategy are discussed in detail in the 

following sections. 

 

3.1 Trace-model generating rule and solution construction method 

The new trace-model generating rule is applied to generate a trace-model when 

the local best solution is updated in every iteration. The following example illustrates 

the procedure of the generating rule. Given the updated local best solution in an 

iteration is Π’ = (3, 1, 2, 5, 4), let τ(i, u) denote the trace-value of job u on position i, 

the generating rule first assigns a trace-value τl. to each job on its position in Π’, that 

is τ(1, 3) = τ(2, 1) = τ(3, 2) = τ(4, 5) = τ(5, 4) = τl. Then, for each job, the new rule 

assigns a trace-value τp to the positions prior to its position in Π’ and assigns a 

trace-value τs to the positions succeeded to its position in Π’. For instance, job 2 is on 

position 3 in Π’, so τ(1, 2) = τ(2, 2) = τp and τ(4, 2) = τ(5, 2) = τs. These three 
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trace-values, τl, τp, and τs, have to be properly determined to allow the trace-model to 

keep the sequence of the jobs in the local best solution while constructing new 

solutions and to keep the valuable information of the sequence of the jobs in every 

iteration. The following solution construction method will clearly illustrate this idea. 

A solution construction in an iteration is composed of job-selections from the 

first position to the last position for the solution. A revised job-selection rule based on 

the probabilistic action rule of Dorigo and Gambardella (1997) is proposed in HLBS. 

Given a parameter value q0 (0 ≤ q0 ≤ 1), an individual, individual k, first generates a 

random number q from a uniform distribution ranged [0, 1]. If q is less than or equal 

to q0, then equation (4) is used to select a job; otherwise, a probabilistic action rule 

(equation (5)) is applied to select a job.  

j = { }
)(

),(maxarg
iSu k

ui
∈
τ , if q ≤  q0                   (4) 

∑ ∈

=
)( ),(

),(),(
iSu

k
k

ui
jijiP
τ

τ , if q > q0                 (5) 

where )(iS k  is the set of unscheduled jobs of individual k positioned on job i. 

To better understand the solution construction method, the previous local best 

solution, Π’ = (3, 1, 2, 5, 4), is used, and let τp = 1, τl = 100 and τs = 110; Table 3.1.1 

summarizes the trace-values for all the jobs on different positions. The solution 

construction method for this example is presented as follows. Job selection for 

position 1: if q ≤  q0, since )(iSk  = {1, 2, 3, 4, 5}, and τ(1, 3) = τl = 100 and τ(1, 1) = 

τ(1, 2) = τ(1, 4) = τ(1, 5) = τp = 1, job 3 (j = { }
)(

),(maxarg
iSu k

ui
∈
τ  = 3)) is selected for 

position 1; if q > q0, each job j will be selected with a probability of τ(1, j)/(100 + 

4×1), respectively, and a random number, between 0 and 1, is generated to select a job 

for position 1. Job selection for position 2 under the condition that job 5, not job 3, is 

selected for position 1: if q ≤  q0, since )(iSk = {1, 2, 3, 4}, and τ(2, 3) = 110, τ(2, 1)  
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= 100 and τ(2, 2) = τ(2, 4) = 1, job 3 (j = { }
)(

),(maxarg
iSu k

ui
∈
τ  = 3) is selected for position 

2; if q > q0, then job 3 has the highest probability, τ(2, 3)/ (110+100+1+1) = 110/(212), 

to be selected for position 2. This result shows that if job 3 is not selected for position 

1, its position in Π’, it will be selected for position 2 with the highest probability. This 

illustrates the idea of the new trace-model generating rule which will keep a job on its 

position in the local best solution while constructing new solutions. 

 

Table 3.1.1 The example for illustrating the trace-model generating rule and the 
solution construction method 

       job 
position 

3 1 2 5 4 

1 100 1 1 1 1 
2 110 100 1 1 1 
3 110 110 100 1 1 
4 110 110 110 100 1 
5 110 110 110 110 100 

 

This simple example also shows that a large ratio of τl and τp values and a high q0 

value will cause the job selection rule to highly retain the job sequence in the local 

best solution and cause premature convergence. In order to investigate this problem, a 

study on the relationship among the τl, τp and τs values and a variable q0 setting 

method are considered in HLBS. The relationship among the τl, τp and τs values can be 

described using two simple equations: τl = τp×x and τs = τl＋τp×y = τp×x＋τp×y = τp×(x

＋y), so the relationship among the τl, τp and τs values can be determined by the two 

parameters x and y. As the values of these two parameters x and y become larger, there 

exists a higher possibility that the job sequence in the local best solution will be 

retained in constructing new solutions. Therefore, a number of the combinations of x 

and y will be considered in order to study the effect of the trace-model on the 
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performance of HLBS. The variable q0 setting method is to construct solutions using 

different q0 values. Given that there are M solutions constructed in a population and q0 

varies from qhigh to qlow, the q0 for the k-th solution is calculated as follow: 

q0,k =qhigh – [ (qhigh–qlow)*k/M]. 

For example, if we set M to be equal to 10, k is between 0 to 9, and q0 varies from 

0.96 (qhigh) to 0.66 (qlow), the set of q0,k is {0.96, 0.93, 0.90, …, 0.69}. Note that the 

higher the q0,k value, the higher the exploitative capability the individual has, and the 

lower the q0,k value, the higher the explorative capability the individual has. Therefore, 

including the solutions with different q0 values in a population may balance the 

exploitative capability and the explorative capability while searching the solution 

space. 

In addition, a block property of PFSP-makespan is applied in the construction 

method. Several recent works (Grabowski and Pempera, 2001, Grabowski and 

Wodecki, 2004, and Jin et al. 2007) have shown that the block property of the 

PFSP-makespan can be developed and used to reduce the size of neighborhood. 

Therefore, the block property of PFSP-makespan will be considered in the 

construction method to improve the efficiency of HLBS. A solution of a 

PFSP-makespan problem can be presented as a PERT graph, and the length of the 

critical path of the graph is the makespan of the solution. A block is a sequence of 

consecutive jobs on a machine in a critical path; therefore, if a PFSP-makespan has m 

machines, the critical path of a solution will have m blocks. To apply the block 

property in the construction method for a PFSP-makespan problem with m machines, 

the HLBS will construct m solutions in each iteration. The first solution is constructed 

by choosing the first block from the local best solution and applying equations (4) and 

(5) to determine the jobs for the rest of the positions in the solution; the second 

solution is constructed by choosing the second block from the local best solution and 
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applying equations (4) and (5) to determine the jobs for the rest of the positions in the 

solution and so forth. Since the number of positions to be filled out while constructing 

a solution is decreased, applying the block property in the construction method will 

improve the efficiency of the HLBS.  

 

3.2  Filter strategy 

Local search methods are crucial for improving the effectiveness of 

population-based metaheuristics. They usually are applied to the best solution in an 

iteration or the global best solution to improve the quality of the solution; however, 

this may cause a search trap into local optima. The proposed filter strategy is applied 

when all the individuals (M) finish constructing their solutions in an iteration. It first 

applies a filter function to find a solution from the M solutions, and then applies a 

local search method to the chosen solution. The purpose of the filter function is to 

filter the solution regions that have been reviewed and guide the search to new 

solution regions in order to keep the search from trapping into local optima. We 

define a filter-list as a first-in, first-out queue to store the makespan of the chosen 

solution in each iteration and set a parameter called filter-size to define the size of the 

queue. The queue is set to be empty initially. When all the M solutions are constructed, 

the solutions are sorted according to their makespans in ascending order, and the filter 

function is applied from the top of the M solutions until the first solution, whose 

makespan is different from all the makespans in the filter-list, is found and store the 

makespan of the solution in the filter list. If none of the M solutions has a different 

makespan from the makespans in the filter-list, the last of the M solutions is chosen 

(but the makespan will not be stored in the filter-list). The purpose of comparing 

makespans instead of job-sequences of solutions while using the filter function is 

two-fold. Firstly, it may guide the search to the solution regions which have not been 
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examined. Secondly, it can significantly reduce computation time by comparing the 

solution constructed by an individual and the solutions stored in the filter-list; this is 

especially critical when the number of jobs considered in a problem is large. In 

addition, the idea of choosing the solution with the largest makespan when none of 

the M solutions has a different makespan from the makespans in the filter-list is that it 

may prevent the search of HLBS from quick convergence. 

Once a solution is chosen using the filter function, the local search method 

(denoted as NEHT_LS) is applied to improve the makespan of the solution. 

NEHT_LS integrates Taillard’s Modified-NEH method (Taillard 1990) with Ruiz and 

Stützle’s (2007) iterative improvement method. Given that Π is the job sequence of 

the chosen solution, NEHT_LS first randomly chooses a job k and removes it from Π; 

then it inserts job k into the first position, the last position, and the positions between 

every two consecutive jobs in Π to generate n different solutions, and lets Π’’ be the 

best of the n generated solutions. If the makespan of Π’’ is smaller than that of Π, 

NEHT_LS will update Π with Π’’ and will repeat the same procedure until Π cannot 

be further improved. If the makespan of Π is smaller than that of the local best 

solution, it will update the local solution with Π; if the makespan of Π is smaller than 

that of the best-so-far solution, it will update the best-so-far solution with Π. The 

procedure integrating the filter function and NEHT_LS is denoted as filtered local 

search (FLS).  

The filter strategy that implements FLS only once is denoted as F-Strategy1. The 

second filter strategy, denoted as F-Strategy2, first implements FLS, then determines 

if the makespan of the schedule generated by FLS dominates the best-so-far solution. 

If so, it will stop; otherwise, it will implement FLS one more time by using the filter 

function to find a solution different from the one found by the filter function in the 

first FLS.       
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3.3 Jump strategy 

The main idea of the jump strategy is to guide the search to jump to another 

solution region when the search is trapped in a local optimum. We define the search 

trapped in a local optimum when the search is not able to improve the best-so-far 

solution in a number of iterations. The solution generated by the jump strategy is 

considered to be a new initial solution, and the search procedure is restarted.  

Two jump strategies are proposed in this research. The first jump strategy, 

J-Strategy1, defines two jumping distances: objective-value distance and sequence- 

structure distance. Objective-value distance implies that a threshold value is set to 

guarantee that a jump is far enough from the current local best solution. We set a 

parameter, Jump-rate, to calculate the objective-value distance, objective-value 

distance = Jump-rate * objective value of the current local best solution. When a 

local optimum is detected, an objective-value distance is calculated and the 

makespans of the M solutions constructed in the current iteration are compared with 

the objective-value distance. Only the solutions that have makespans larger than the 

objective-value distance are considered to be the candidates for a new initial solution. 

If none of the M solutions has makespan larger than the objective-value distance, 

randomly choose a solution from the M solutions and use it as the new initial 

solution. If there is more than one candidate, a sequence-structure distance is applied 

to select a suitable one. A sequence-structure distance measures the structure 

similarity between two job-sequences, S1 and S2. Let (i, u1) be the job on position i in 

S1 and (i, u2) be the job on position i in S2, and define the distance between S1 and S2 

on position i, d(i, u), be 0 if u1 = u2 and be 1 if u1 ≠ u2. The sequence-structure 

distance between S1 and S2 is then defined to be the sum of d(i, j) for all the 

positions. 
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The second jump strategy, J-Strategy2, first applies the Destruction and 

Construction Operation (Ruiz and Stützle, 2007) to the detected local optimum M 

times to generate M new solutions. The solution with the minimum makespan, which 

satisfies the following conditions: (i) the makespan is less than or equal to a 

pre-determined objective-value distance and (ii) the job sequence of the solution is 

different from the job sequence of the local optimum, is chosen and used as the new 

initial solution. If none of the M solutions satisfies the conditions, the same procedure 

will be implemented until a solution is produced. In order to apply the Destruction 

and Construction Operation to a schedule, S, first randomly choose n1 jobs from S and 

let the job sequence of the n1 jobs be s1 and the job sequence of the rest of the jobs in 

S be s2. Then, insert the first job in s1 into the first position, the last position and the 

positions between every two consecutive jobs in s2 and choose the sequence with the 

smallest makespan; repeat the same process until all the n1 jobs in s1 are inserted in s2. 

In this research, the Destruction and Construction Operation is implemented three 

times with n1 = 5 in J-Strategy2.   
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Chapter 4. Computational experiments of HLBS 
 

Two HLBS-based metaheuristics are proposed by using different filter strategy, 

jump strategy, q0 setting method and trace-value. The basic HLBS, denoted as 

B-HLBS, is a HLBS that applies the filter strategy F-Startegy1, the jump strategy 

J-Strategy1, the variable q0 setting method and the trace-values, τp = 1, τl = 950 and τs 

= 1000, are determined by trial-and-error. The advanced HLBS, denoted as A-HLBS, 

is a HLBS using the filter strategy F-Startegy2, the jump strategy J-Strategy2, a fixed 

q0 method, and the trace-values are determined by properly studying the parameters x 

and y; the block property is used as well. The computational experiments are 

conducted for B-HLBS and A-HLBS respectively in the following sections.  

 

4.1 Computational experiments of B-HLBS 

The well-known Taillard's test problems for PFSP-makespan (Taillard 1993) are 

used to evaluate the performance of B-HLBS. The test problems are composed of 12 

different problem sets with different numbers of jobs and different numbers of 

machines. Twelve instances, selecting the first instance from each of the 12 problem 

sets, denoted as Test1, are used to investigate the effects of the three major factors of 

B-HLBS: the variable q0 setting method, F-Startegy1 and J-Strategy1. Then, B-HLBS 

with the best combination of the major factors will be applied to solve all the test 

problems, and its performance will be compared with promising population-based 

metaheuristics such as Genetic Algorithms (GA), Ant Colony Optimization (ACO) 

and Particle Swarm Optimization (PSO). Note that all the algorithms in this research 

are coded in C language and executed on the Linux operating system. 

The levels considered for the three major factors of B-HLBS are summarized in 

Table 4.1.1. Six levels are set for qhigh~qlow: 0.98~0.68, 0.96~066, 0.92~0.62, 

0.88~0.58, 0.84~0.54, 0.8~0.5; six levels are set for the filter size (f-size) of 
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F-Startegy1: none, 1, 4, 9, 14, and 18, where none refers to no filter strategy is applied; 

eight levels are set for jump-rate of J-Strategy1: none, 0.0, 1.03, 1.06, 1.09, 1.12, 1.15 

and 1.18, where none refers to no jump strategy is applied and 0.0 refers to the 

condition that only sequence-structure distance is considered. The remaining factors 

of B-HLBS are described as follows: the number of solutions (M) constructed in each 

iteration is set to be 10; the τ values used in the new pheromone generating rule, τp, τl, 

and τs, are set to be 1, 950, and 1000 respectively; the number of iterations without 

improvement for defining trapping at a local optimum is set to be the number of 

machines of the instances solved. All these factors are determined by trial-and-error. 

Therefore, there are a total of 288 different combinations of the three factors. B-HLBS 

is then applied with each of the 288 combinations to solve the 12 instances in Test1 

with a limited computation time, n×(m/2)×30 milliseconds (Ruiz et al. 2006), for 

three trials, where n refers to the number of jobs and m refers to the number of 

machines for the instances. The performance of B-HLBS with a combination of the 

three factors for an instance is evaluated using Average Relative Performance (ARP): 

ARP = ∑
=

×
−R

i sol

soli
R

Heu
Best

Best
1

)100( , where Heui is the makespan obtained by any of 

the three trials of B-HLBS with the combination of the factors, and Bestsol is the best 

makespan that all the research has found for the instance provided by Zobolas et al. 

(2009). 

Table 4.1.1 Experimental factors 

Factors Levels Total Levels 

qhigh~qlow 
0.98~0.68, 0.96~066, 0.92~0.62, 0.88~0.58, 0.84~0.54 and 

0.8~0.5 
6 

f-size None, 1, 4, 9, 14, and 18 6 

Jump-rate None, 0.0, 1.03, 1.06, 1.09, 1.12, 1.15 and 1.18 8 

 Total factor combinations 288 
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The analysis of variance (ANOVA) is applied to analyze the ARPs produced by 

B-HLBS with all the 288 combinations. Table 4.1.2 presents the results of the 

ANOVA table. The results show that F-Startegy1 and J-Startegy1 significantly affect 

the ARP of the test problems. Therefore, the Duncan's test is applied to test if the 

performance of any two levels of F-Startegy1 and of the J-Startegy1 is significantly 

different. Table 4.1.3 presents the results of the Duncan's test for F-Startegy1. The 

results show that the major difference is between the level “none” and each of the 

other levels. This concludes that B-HLBS using F-Strategy1 significantly dominates 

B-HLBS without using F-Strategy1; however, the effect of the filter size is 

insignificant. Table 4.1.4 presents the results of the Duncan's test for J-Strategy1. The 

results show that the major difference is between the level “none” and each of the 

other levels and between the level “0.0” and each of the other levels. This concludes 

that B-HLBS using J-Strategy1 significantly dominates B-HLBS without using 

J-Strategy1; however, the effect of the jump-rate is insignificant. Therefore, the 

condition that generates the best solution: qhigh~qlow = 0.98~0.68, f-size = 14 and 

Jump-rate = 1.12, is considered to be the optimal condition for B-HLBS. Furthermore, 

B-HLBS is applied to the same test problems under the condition: fixed q0 = 0.98, 

f-size = 14 and Jump-rate = 1.12, in order to evaluate the effect of the variable q0 

setting method. Computational results show that the average ARP produced by 

B-HLBS using fixed q0 is 0.639, which is about 9% ((0.639-0.579)/0.639) worse than 

the average ARP produced by B-HLBS using variable q0 (qhigh~qlow = 0.98~0.68). 

This illustrates that using different q0 values for the M solutions constructed in an 

iteration is able to improve the explorative capability for B-HLBS.  
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Table 4.1.2 ANOVA table for testing the significance of the three factors 

Source 
Type III Sum of 

Squares 
df Mean Square F Sig. 

q0 .049 5 .010 .130 .986 

f-size 154.917 5 30.983 412.140 .000a 

Jump-rate 6.395 7 .914 12.153 .000a 

instance 1975.264 11 179.569 2388.628 .000a 

Error 257.631 3427 .075     

Total 4339.697 3456       

Corrected Total 2394.256 3455       
aDifference in the effects at the significance level of 0.01. 

 
 

Table 4.1.3 Results of Duncan’s test for different filter sizes 

f-size Average ARP 
Subset 

1 2 

18 .6436 A  

14 .6493 A  

9 .6499 A  

4 .6614 A  

1 .6743 A  

none 1.2232  B 

 
 

Table 4.1.4 Results of Duncan’s test for different jump-rates 

Jump-rate Average ARP 
Subset 

1 2 

1.09 .7192 A  

1.18 .7206 A  

1.15 .7211 A  

1.12 .7243 A  

1.06 .7325 A  

1.03 .7363 A  

0.0 .8209  B 

none .8273  B 
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B-HLBS with the optimal condition is then applied to solve the test problems in 

all the problem sets, and its performance is compared with two ACO algorithms, 

M-MMAS and PACO (Rajendran & Ziegler 2004), a PSO algorithm, PSOvns  and 

two hybrid GA related metaheuristics, NEGAvns (Zobolas 2009) and HGA_RMA 

(Ruiz et al. 2006), which reported very promising solutions for PFSP-makespan.  

Ruiz et al. (2006) compared the performance of M-MMAS, PACO and 

HGA_RMA based on the same number of replication runs (R=5) and the same 

computation times: n×(m/2)×30, n×(m/2)×60, and n×(m/2)×90 milliseconds. All the 

algorithms were run on a PC with Intel Pentium IV at 2.8 GHz. Therefore, we 

compare the performance of B-HLBS with M-MMAS, PACO and HGA_RMA based 

on the same computation times using a PC with the same computing power. Tables 

4.1.5 to 4.1.7 present the average ARPs produced by M-MMAS, PACO, HGA_RMA 

and B-HLBS for the twelve problem sets with each of the three computation times, 

respectively. The Paired Samples T-test is applied to test if the performance of 

B-HLBS significantly dominates M-MMAS, PACO and HGA_RMA respectively. 

Table 4.1.8 summarizes the results of all the Paired Samples T-tests. The results show 

that B-HLBS significantly dominates M-MMAS and PACO under all the different 

computation times, but the difference of the performance between B-HLBS and 

HGA_RMA is insignificant.  
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Table 4.1.5 Computational Results of M-MMAS, PACO and B-HLBS (t30*) 

Test Problems M-MMAS PACO HGA_RMA B-HLBS 

20x5 0.11 0.2 0.05 0.04 

20x10 0.15 0.32 0.10 0.07 

20x20 0.09 0.31 0.10 0.10 

50x5 0.02 0.08 0.00 0.02 

50x10 1.30 0.90 0.77 0.75 

50x20 2.10 1.46 1.19 1.25 

100x5 0.03 0.04 0.02 0.06 

100x10 0.46 0.35 0.26 0.39 

100x20 2.59 2.17 1.59 1.55 

200x10 0.37 0.26 0.16 0.24 

200x20 2.34 2.00 1.42 1.58 

500x20 1.06 0.98 0.87 0.81 

Average 0.885 0.756 0.55 0.572 

*: t30 = n×(m/2)×30 millisec 

 
 

Table 4.1.6 Computational Results of M-MMAS, PACO and B-HLBS (t60*) 
Test Problems M-MMAS PACO HGA_RMA B-HLBS 

20x5 0.08 0.16 0.03 0.00 

20x10 0.09 0.30 0.09 0.07 

20x20 0.07 0.15 0.07 0.06 

50x5 0.02 0.03 0.01 0.01 

50x10 1.14 0.87 0.64 0.74 

50x20 2.06 1.39 1.07 1.10 

100x5 0.02 0.03 0.01 0.04 

100x10 0.42 0.32 0.23 0.28 

100x20 2.50 1.99 1.33 1.45 

200x10 0.32 0.26 0.13 0.18 

200x20 2.18 1.86 1.30 1.43 

500x20 1.09 0.92 0.76 0.73 

Average 0.833 0.690 0.47 0.508 

*: t60= n×(m/2)×60 millisec 
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Table 4.1.7 Computational Results of M-MMAS, PACO and B-HLBS (t90*) 
Test Problems M-MMAS PACO HGA_RMA B-HLBS 

20x5 0.04 0.18 0.04 0.00 

20x10 0.07 0.24 0.02 0.04 

20x20 0.06 0.18 0.05 0.04 

50x5 0.02 0.05 0.00 0.00 

50x10 1.08 0.81 0.72 0.63 

50x20 1.93 1.41 0.99 1.01 

100x5 0.02 0.02 0.01 0.04 

100x10 0.39 0.29 0.16 0.24 

100x20 2.42 1.93 1.30 1.30 

200x10 0.30 0.23 0.14 0.18 

200x20 2.15 1.82 1.26 1.39 

500x20 1.02 0.85 0.69 0.69 

Average 0.792 0.668 0.45 0.463 

*: t90= n×(m/2)×90 millisec 

 
Table 4.1.8 Results of the Paired Samples T-Test for M-MMAS, PACO and B-HLBS 

under different computation times 

Time Algorithm 

Paired Differences 

t Sig. 
Mean 

Std. Error 

Mean 

95% Confidence 

Interval 

Lower Upper 

t30 

M-MMAS vs. 

B-HLBS 
0.31000 0.11091 0.06590 0.55410 2.795 0.017 

PACO vs. B-HLBS 0.18083 0.05442 0.06106 0.30061 3.323 0.007 

HGA_RMA vs. 

B-HLBS 
-0.02750 0.06877 -0.07120 0.01620 -1.385 0.193 

t60 

M-MMAS vs. 

B-HLBS 
0.32500 0.11198 0.07853 0.57147 2.902 0.014 

PACO vs. B-HLBS 0.18250 0.04838 0.07601 0.28899 3.772 0.003 

HGA_RMA vs. 

B-HLBS 
-0.03500 0.01645 -0.07120 0.00120 -2.128 0.057 

t90 

M-MMAS vs. 

B-HLBS 
0.32833 0.11471 0.07587 0.58080 2.862 0.015 

PACO vs. B-HLBS 0.20417 0.05501 0.08308 0.32525 3.711 0.003 

HGA_RMA vs. 

B-HLBS 
-0.01500 0.01598 -0.05017 0.02017 -0.939 0.368 
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Table 4.1.9 presents the average ARPs generated by NEGAvns, PSOvns, and 

B-HLBS, on a PC with Intel Pentium IV at 2.4 GHz under the same computation time, 

n×m/10 seconds, and the same number of replication runs (R=10) (Zobolas et al. 

2009). The Paired Samples T-test is applied to compare the performance between 

B-HLBS and each of algorithms: NEGAvns and PSOvns. These tests show that 

B-HLBS does not significantly dominate any of NEGAvns and PSOvns. However, 

the results show that B-HLBS is superior to NEGAVNS in 6 out of the 12 problem sets 

and ties in 3 out of the 12 problem sets. Overall, B-HLBS dominates NEGAVNS by 

9% ((0.466-0.424)/0.466). Also, B-HLBS outperforms PSOvns in 7 out of the 11 

problem sets and ties in 1 out of the 11 problem sets, and B-HLBS dominates PSOvns 

by 15%. 

 
Table 4.1.9 Computational Results of PSOvns, NEGAvns and B-HLBS 

Test Problems NEGAvns PSOvns B-HLBS 

20x5 0.00 0.03 0.00 

20x10 0.01 0.02 0.01 

20x20 0.02 0.05 0.01 

50x5 0.00 0.00 0.00 

50x10 0.82 0.57 0.60 

50x20 1.08 1.36 0.90 

100x5 0.00 0.00 0.04 

100x10 0.14 0.18 0.21 

100x20 1.40 1.45 1.25 

200x10 0.16 0.18 0.12 

200x20 1.25 1.35 1.30 

500x20 0.71 * 0.65 

Average 0.466 0.472 0.424 

*: The authors do not provide results for the 500 × 20 instance group. 
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4.2 Computational experiments of A-HLBS 

The same procedure of data analysis used for B-HLBS is used for A-HLBS. 

Table 4.2.1 summarizes the levels considered for the major factors of A-HLBS. Three 

levels are set for x: 1, 50, 100 and six levels are set for y: 1, 50, 100, 200, 400, 600; 

four levels are set for q0: 0.0, 0.7, 0.8, 0.9; two levels are set for the f-size of 

F-Startegy2: none and 7, where none refers to no filter strategy is applied; two levels 

are set for jump-rate of J-Strategy2: none and 1.02, where none refers to no jump 

strategy is applied. The f-size with 7 and the jump-rate with 1.02 are determined by 

trial-and-error. The remaining factors of A-HLBS are the number of the solutions (M) 

constructed in each iteration, the number of iterations without improvement for 

defining trapping at a local optimum, and the termination criterion. The first two 

factors are determined by trial-and-error and set to be the number of machines of the 

instances solved, and the execution time, like most of the other researches, is chosen 

to be the termination criterion. Therefore, there are a total of 288 different 

combinations of the five factors.  

 
Table 4.2.1 Experimental factors 

Factors                  Levels Total Levels 

x           1, 50 and 100 3 

y           1, 50, 100, 200, 400 and 600 6 

q0           0.0, 0.7, 0.8 and 0.9 4 

f-size           None and 7 2 

Jump-rate           None and 1.02 2 

           Total factor combinations 288 

 

The A-HLBS is applied with each of the 288 combinations to solve the 12 
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instances in Test1 with limited computation times, n×(m/2)×30 milliseconds (Ruiz et 

al. 2006), for three trials, and the analysis of variance (ANOVA) is applied to analyze 

the ARPs produced. Table 4.2.2 presents the results of the ANOVA table. The results 

show that all the factors significantly affect the ARP of the test problems. Therefore, 

the Duncan’s test is applied to test all the factors. Table 4.2.3 summarizes the results 

of the Duncan's test for all the five factors; the minimum average ARP for each factor 

is: q0 = 0.9, x = 50, y = 400, f-size = 7 and jump-rate =1.02. This condition is very 

close to the condition that generates the best solution: q0 = 0.8, x = 50, y = 400, f-size 

= 7 and jump-rate =1.02. Since the difference between the average ARP of q0 = 0.8 

(0.5985) and the average ARP of q0 = 0.9 (0.5981) is negligible, the optimal 

combination of the five factors for A-HLBS is determined to be q0 = 0.9, x = 50, y = 

400, f-size = 7 and jump-rate =1.02. 

 

Table 4.2.2 ANOVA table for testing the significance of the five factors 

Source 
Type III Sum of 

Squares 
df 

  Mean 

Square 
       F        Sig. 

q0 .407 3 .136 9.129 .000a 

f-size .264 1 .264 17.741 .000a 

Jump-rate 1.712 1 1.712 115.089 .000a 

x .254 2 .127 8.527 .000a 

y .256 5 .051 3.443 .004a 

instance 1627.599 11 147.964 9948.798 .000a 

Error 51.042 3432 .015   

Total 2950.158 3456    

Corrected Total 1681.534 3455    
aDifference in the effects at the significance level of 0.01. 
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Table 4.2.3 Results of Duncan’s test for the five major factors 

q0 Average ARP 
Subset 

1 2 

.90 .5981 A  

.80 .5985 A  

.70 .6025 A  

0.0 .6244  B 

x Average ARP 
Subset 

1 2 

50 .5972 A  

100 .6029 A  

1 .6175  B 

y Average ARP 
Subset 

1 2 

400 .5966 A  

200 .5971 A  

600 .6026 A  

100 .6064 A  

50 .6109 A B 

1 .6216  B 

f-size Average ARP 
Subset 

1 2 

7 .5970 A  

none .6150  B 

Jump-rate Average ARP 
Subset 

1 2 

1.02 .5840 A  

none .6280  B 
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 The A-HLBS with the optimal combination of the five factors is then applied to 

solve the test problems in all the problem sets. Since the analysis in Section 4.1 has 

shown that B-HLBS significantly dominates M-MMAS and PACO, the performance 

of A-HLBA is first compared only with HGA_RMA and B-HLBS under different 

computation times: n×(m/2)×30, n×(m/2)×60, and n×(m/2)×90 milliseconds, and then 

with NEGAvns, PSOvns and B-HLBS under the same computation time, n×m/10 

seconds.  

Tables 4.2.4 to 4.2.6 present the average ARPs produced by HGA_RMA, 

B-HLBS and A-HLBS for the twelve problem sets with each of the three computation 

times, respectively. The Paired Samples T-test is applied to test if the performance of 

A-HLBS significantly dominates HGA_RMA and B-HLBS, respectively. Table 4.2.7 

summarizes the results of all the Paired Samples T-tests. The results show that 

A-HLBS significantly dominates HGA_RMA and B-HLBS under all the different 

computation times.  

 Table 4.2.8 presents the average ARPs generated by NEGAvns, PSOvns, 

B-HLBS and A-HLBS. The Paired Samples T-test is also applied to compare the 

performance between A-HLBS and each of the algorithms: HGA_RMA, NEGAvns, 

PSOvns and B-HLBS. Table 4.2.9 summarizes the results of all the Paired Samples 

T-tests. The results show that A-HLBS significantly dominates NEGAvns, PSOvns 

and B-HLBS.   
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Table 4.2.4 Computational Results of HGA_RMA, B-HLBS and A-HLBS (t30*) 
Test Problems HGA_RMA B-HLBS A-HLBS 

20x5 0.05 0.04 0.04 

20x10 0.10 0.07 0.00 

20x20 0.10 0.10 0.02 

50x5 0.00 0.02 0.00 

50x10 0.77 0.75 0.61 

50x20 1.19 1.25 1.01 

100x5 0.02 0.06 0.04 

100x10 0.26 0.39 0.22 

100x20 1.59 1.55 1.36 

200x10 0.16 0.24 0.11 

200x20 1.42 1.58 1.35 

500x20 0.87 0.81 0.64 

Average 0.55 0.57 0.45 

*: t30 = n×(m/2)×30 millisec 
 

Table 4.2.5 Computational Results of HGA_RMA, B-HLBS and A-HLBS (t60*) 
Test Problems HGA_RMA B-HLBS A-HLBS 

20x5 0.03 0.00 0.03 

20x10 0.09 0.07 0.00 

20x20 0.07 0.06 0.01 

50x5 0.01 0.01 0.00 

50x10 0.64 0.74 0.60 

50x20 1.07 1.10 0.84 

100x5 0.01 0.04 0.04 

100x10 0.23 0.28 0.19 

100x20 1.33 1.45 1.09 

200x10 0.13 0.18 0.09 

200x20 1.30 1.43 1.24 

500x20 0.76 0.73 0.55 

Average 0.47 0.51 0.39 

*: t60= n×(m/2)×60 millisec 
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Table 4.2.6 Computational Results of HGA_RMA, B-HLBS and A-HLBS (t90*) 
Test Problems HGA_RMA B-HLBS A-HLBS 

20x5 0.04 0.00 0.03 

20x10 0.02 0.04 0.00 

20x20 0.05 0.04 0.00 

50x5 0.00 0.00 0.00 

50x10 0.72 0.63 0.55 

50x20 0.99 1.01 0.74 

100x5 0.01 0.04 0.04 

100x10 0.16 0.24 0.16 

100x20 1.30 1.30 1.00 

200x10 0.14 0.18 0.07 

200x20 1.26 1.39 1.09 

500x20 0.69 0.69 0.49 

Average 0.45 0.46 0.35 

*: t90= n×(m/2)×90 millisec 

 
Table 4.2.7 Results of the Paired Samples T-Test for HGA_RMA, B-HLBS and 

A-HLBS under different computation times 

Time Algorithm 

Paired Differences 

t Sig. 
Mean 

Std. 

Error 

Mean 

95% Confidence 

Interval 

Lower Upper 

t30 
B-HLBS vs. A-HLBS 0.12167 0.02389 0.06907 0.17426 5.092 0.000 

HGA_RMA vs. A-HLBS 0.09417 0.02512 0.03888 0.14945 3.749 0.003 

t60 
B-HLBS vs. A-HLBS 0.11750 0.03305 0.04475 0.19025 3.555 0.005 

HGA_RMA vs. A-HLBS 0.08250 0.02669 0.02376 0.14124 3.091 0.010 

t90 
B-HLBS vs. A-HLBS 0.11583 0.03491 0.03899 0.19268 3.318 0.007 

HGA_RMA vs. A-HLBS 0.10083 0.03223 0.02990 0.17176 3.129 0.010 
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Table 4.2.8 Computational Results of HGA_RMA, NEGAvns, PSOvns, B-HLBS and 
A-HLBS (t=n×m/10 seconds) 

Test Problems NEGAvns PSOvns B-HLBS A-HLBS 

20x5 0.00 0.03 0.00 0.00 

20x10 0.01 0.02 0.01 0.00 

20x20 0.02 0.05 0.01 0.00 

50x5 0.00 0.00 0.00 0.00 

50x10 0.82 0.57 0.6 0.56 

50x20 1.08 1.36 0.9 0.67 

100x5 0.00 0.00 0.04 0.04 

100x10 0.14 0.18 0.21 0.13 

100x20 1.40 1.45 1.25 0.92 

200x10 0.16 0.18 0.12 0.05 

200x20 1.25 1.35 1.30 1.01 

500x20 0.71 * 0.65 0.46 

Average 0.466 0.472 0.424 0.324 

*: The authors do not provide results for the 500 × 20 instance group. 

 
Table 4.2.9 Results of the Paired Samples T-Test for NEGAvns, PSOvns, B-HLBS 

and A-HLBS (t=n×m/10 seconds) 

Algorithm 

Paired Differences 

t Sig. 
Mean 

Std. Error 

Mean 

95% Confidence Interval 

Lower Upper 

NEGA_VNS vs. A-HLBS 0.146 0.051 0.033 0.258 2.851 0.016 

PSOvns vs. A-HLBS 0.16455 0.07383 0.00003 0.32906 2.229 0.050 

B-HLBS vs. A-HLBS 0.104 0.035 0.026 0.182 2.947 0.013 
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Chapter 5. Conclusions and further research 
 

This research proposes two population-based metaheuristics based on the local 

best solution, B-HLBS and A-HLBS, for the permutation flow shop scheduling 

problem (PFSP-makespan). The computational results in Chapter 4 have shown that 

A-HLBS is an effective heuristic for PFSP-makespan. It dominates all the promising 

population-based metaheuristics related to ACO, PSO and GA (M-MMAS, PACO, 

PSOvns, HGA_RMA, and NEGAvns). However, our results demonstrate that the 

operation of A-HLBS can be further improved. Our analyses illustrate that the 

performance of HLBS is highly influenced by the three major factors: the trace-model, 

the filter strategy, and the jump strategy. With proper selection of x, y and q0 of the 

trace-model and application of different filter strategy and jump strategy, A-HLBS 

significantly dominates B-HLBS. Therefore, further studies on the interaction of these 

three factors are worthwhile. For instance, the path relinking method (Glover, 1996) 

can be applied to the solutions in the populations generated by J-Startegy1 and 

J-Strategy2 to produce new initial solutions. Since the path relinking has been proved 

to be effective for generating promising solutions for PFSP-makespan (Nowicki and 

Smutnicki, 1996), it is believed that the method is able to produce effective initial 

solutions and improve the performance of HLBS. In addition, since the flow shop 

problem is a special case of the job shop problem, the proposed heuristic can also be 

applied towards job shop problems. 

It is important to note that although computation time needed in a PC is a major 

termination criterion used to compare the performance of most of the metaheuristics 

developed for PFSP–makespan, this criterion is inappropriate because the 

computation time using a PC is affected by several factors of the PC such as the level 

of CPU, the size of memory and the operating system. It is very difficult to find equal 
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computing-power machines when comparing the performance of different 

metaheuristics. In addition, the coding skill of the computer program will also 

significantly affect the performance of the metaheuristics, given computation time as 

the termination criterion, because it will affect the number of solutions searched in a 

limited computation time. Therefore, it is believed that the number of solutions 

searched using a metaheuristic could be a more appropriate metric to evaluate its 

effectiveness. Assuming analysis under this new criterion, the effectiveness of 

A-HLBS may be comparable or even better than the current optimal metaheuristics. 

Therefore in order to more accurately assess the effectiveness of metaheuristics, 

future studies considering this criterion is warranted.     
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