Roptic EFg 2R i

BLEE®>

R L gL

VW 3 B R G AR AR S AR R AR
PRTECRE 3 i
A new heuristic based on local best solution

for Permutation Flow Shop Scheduling

&

AFETEE - B RS REEL AFOHEM (population-based) £ 3N iF
B2 (A HLBS) » &k ffziifzss £42 (flow shop) 2 # =~ jiAzpe fF e | i4 R
Ao B¢ o HLBS ¢ L2 % - BEINEHCA k51 0F 4] R8> F* B K0}
RIFFEHEFARELF A FEREROTR LT 05 70 € %
Bhod iR BpF o HLBS B ¢ pads gt ok RS es B B i B i 13 0 10~ ATeR
%2 F) L% #F HLBS if b 2 e Ay A1 F LenTaillard Rl AL E
KiE TR P FEP A W RS o R e b L R RS
#HP OHLBS o & w L HM N B g B 2 (A TR E 2 S REFLZ 02 R
FEE G TR E)2 i 5B

MAaEs @ URARNEAR) B A R AR P N2 2

Abstract

This research proposes population-based metaheuristic based on the local best
solution (HLBS) for the permutation flow shop scheduling problem (PFSP-makespan).
The proposed metaheuristic operates through three mechanisms: (i) it introduces a
new method to produce a trace-model for guiding the search, (ii) it applies a new filter
strategy to filter the solution regions that have been reviewed and guides the search to
new solution regions in order to keep the search from trapping into local optima, and
(iii) it initiates a new jump strategy to help the search escape if the search does
become trapped at a local optimum. Computational experiments on the well-known
Taillard's benchmark data sets will be performed to evaluate the effects of the
trace-model generating rule, the filter strategy, and the jump strategy on the
performance of HLBS, and to compare the performance of HLBS with all the
promising population-based metaheuristics related to Genetic Algorithms (GA), Ant

Colony Optimization (ACO) and Particle Swarm Optimization (PSO).

Keywords: Permutation Flow Shop Scheduling, Makespan, Metaheuristic

#

A2 181 nl;{«ﬂ = A ,{;;}»3— &R A > T]‘ﬁi L3 L Rk 4
e T d s kA Bt s PR ATIR L AT [§ PR T

SR ERLEY) TR AR L A R TR AhYEFHRFEP L A7
FEF A AR A - B F AN TR RIS e 8T 4y hd

et AW RIeN VY AR BEE LS o

HAERMHr FL A HABE L Fu TP Il g LAFl2ay
ZERB LI FIFE ORI R AB AN AT E R -

FER LI RRTERE v BB ORI P oL RER
W RAPIREDEF R TEFA NIRRT F AT T EEFARERL S R
ERHMNIAN- 2B E $2 0 5T BAAL N E KABSETRE T
AHEGHRBASP W R RN MR E T A RAARER
RS A B Sk A n

§Fm s

TABLE OF CONTENTS

Chapter 1. INtrodUCTION . .ciicccccreereeeetiiicscssnnneeeeeessssssssnnneesssessssssssnnnnsassssssssssssnnns 1
Chapter 2. LItErature FEVIEWeeeeeiiiiiiiiiisssnneeeiiiiniissssssnsssssssssssssssssssssssssssssssssnns 3
2.1 Problem statement: PFSP-mMakespancciceeeecccrrnnneeeeeeessssessssnnneeenens 3
2.2 Genetic Algorithms (GA) weeeeeeiiiiiiiinsssnneeeisiiniiissseseesssssssssssssssesns 4
2.3 Ant Colony Optimization (ACO) ..ccccccerreeriisiiiccsssnnneeseessssessssnnsseses 6
24 Particle Swarm Optimization (PSO)ccvviiivrvnmrnnniiiniiniissnnennennnnnnn. 7
Chapter 3. The proposed metaheuristic (HLBS) ...cccccovvmereiieiinicccirnnneneenennninnnn. 11
3.1 Trace-model generating rule and solution construction method....... 12
3.2 Filter Strategy.ceccieeeeecccsessnneeiiiisneecssssnneassasissesssssnnsesesssssssssssnsansssses 16
TR T [U1 0 0I5 1 = =T) U 18
Chapter 4. Computational experiments of HLBS.....ccccovveeiiiiiiiiiiiiirneeeeenenininnn. 20
4.1 Computational experiments of B-HLBS.........cccoceeeeiiiiniiiiiinsnnenennnn. 20
4.2 Computational experiments 0f A-HLBScccoveivvvveieeieiiinicccisnnnens 28
Chapter 5. Conclusions and further researchueeevieeieeeeeeieeieeieeeeeeeeeeeeeeeeeeeenn 35

RETEIENCES ieeeeiiieeiiriieeiieniieenereneetenssesssssesnseressssrsssssessssssssssssnsssesssssesssesenssssanes 37

LIST OF TABLES

Table 3.1.1 The example for illustrating the trace-model generating rule and the

solution construction Methodoociiiiiiiiiiii e 14
Table 4.1.1 EXPerimental factors.......ccoecvivieeieeiiieecereeee e e e e 21
Table 4.1.2 ANOVA table for testing the significance of the three factors. 23
Table 4.1.3 Results of Duncan’s test for different filter sizes.........c.cccooveriieienenncens 23
Table 4.1.4 Results of Duncan’s test for different jump-rates........ccccoecvveivviieeeinnnnenn. 23
Table 4.1.5 Computational Results of M-MMAS, PACO and B-HLBS (t30*)................. 25
Table 4.1.6 Computational Results of M-MMAS, PACO and B-HLBS (t60%)................. 25
Table 4.1.7 Computational Results of M-MMAS, PACO and B-HLBS (t90*)................. 26

Table 4.1.8 Results of the Paired Samples T-Test for M-MMAS, PACO and B-HLBS

under different computation tIMESccccuiveriiiiiiiiirieieee e 26
Table 4.1.9 Computational Results of PSOvns, NEGAvns and B-HLBScccceuuee.. 27
Table 4.2.1 EXPerimental factors.cccccueivireeiiee et ee e e e e e e eans 28
Table 4.2.2 ANOVA table for testing the significance of the five factors..................... 29
Table 4.2.3 Results of Duncan’s test for the five major factors.......ccccccceevevvveeeeieeennnns 30
Table 4.2.4 Computational Results of HGA_RMA, B-HLBS and A-HLBS (t30%*) 32
Table 4.2.5 Computational Results of HGA_RMA, B-HLBS and A-HLBS (t60%) 32
Table 4.2.6 Computational Results of HGA_RMA, B-HLBS and A-HLBS (t90%*) 33
Table 4.2.7 Results of the Paired Samples T-Test for HGA_RMA, B-HLBS and............. 33

Table 4.2.8 Computational Results of HGA_RMA, NEGAvns, PSOvns, B-HLBS and
A-HLBS (t=NXM/10 SECONAS) ..vvvreiiiiriieeeirrieeeerreeeeeciree e eerre e e eertre e e eerreeeeeeabareeeennes 34
Table 4.2.9 Results of the Paired Samples T-Test for NEGAvns, PSOvns, B-HLBS and

A-HLBS (t=NXM/10 SECONAS) ..vvvreiiiiriieeeiiieee ettt eetree e eerre e eeerare e e eeareeeeeeabaeeeeennes 34

LIST OF FIGURES

Figure 2.2.1 The pseudo-code for the general GA algorithmccccceevivvveviinieeeenieeennnn,
Figure 2.3.1 Pseudo-code for the general ACO algorithmccooccieviiviiieeinniieeeenieenn,

Figure 2.4.1 Pseudo-code for the general DPSO algorithm with local search...............

Chapter 1. Introduction

This research proposes a population-based metaheuristic based on the local best
solution (HLBS) for the permutation flow shop Scheduling (PFSP-makespan). The
candidate problem determines the best sequence of n jobs that are to be processed on
m machines in the same order in order to minimize the complete time of the last job
on the last machine (makespan). It has proved to be one of the most studied NP-hard
scheduling problems in the strong sense (Garey et al. 1976) and has not been
completely solved by exact algorithms. Therefore, the development of metaheuristics
that find near-optimal solutions in a reasonable computational time has held the
attention of many researchers in recent decades. These include genetic algorithm (GA)
(Chen et al., 1995; Reeves & Yamada, 1998; Ruiz et al., 2006; Chen et al., 2011), ant
colony optimization (ACO) (Stutzle, 1998a; Rajendran & Ziegler 2004; Ying & Liao,
2004), particle swarm optimization (PSO) (Tasgetiren et al. 2004; Rameshkumar et al.
2005; Lian et al., 2006; Liao et al., 2007; Kuo et al., 2009; Zhang et al., 2010),
differential evolution (DE) (Andreas & Omirou, 2006; Onwubolu & Davendra, 2006;
Pan et al., 2008b), iterated greedy algorithm (IG) (Ruiz & Stutzle, 2007), iterated
local search (ILS) (Stutzle, 1998b), simulated annealing (SA) (Osman & Potts, 1989;
Ogbu & Smith, 1990; Lin & Ying, 2011), tabu search (TS) (Widmer & Hertz, 1989;
Reeves, 1993; Nowicki & Smutnicki, 1996; Watson et al., 2002; Grabowski &
Wodecki, 2004) and hybrid metaheuristics (Zobolas et al., 2009; Liu & Liu, 2011).
Several research papers reviewing heuristics for the candidate problem can be found
in Framinan et al. (2004), Hejazi & Saghafian (2005), and Ruiz & Maroto (2005).

The major idea of the proposed metaheuristic (HLBS) is that we think the local
best solution in an iteration possesses important information about the solution

regions searched, so the trace-model generated based on the local best solution should

provide valuable information for guiding the search to promising solution regions. In
addition, we develop a new filter strategy to keep the search from trapping into local
optimums and a new jumping strategy to help the search escape if it does trap into a
local optimum. Computational experiments on the well-known Taillard's benchmark
data sets (Taillard 1993) will be performed to evaluate the effects of the trace-model
generating rule, the filter strategy, and the jump strategy on the performance of HLBS,
and compare the performance of HLBS with other population-based metaheuristics
such as Genetic Algorithms (GA), Ant Colony Optimization (ACO) and Particle
Swarm Optimization (PSO). A couple of new ideas will be further applied to
thoroughly study the impact of the aforementioned strategies on the explorative
capability and the exploitative capability of the proposed algorithm in order to
improve its performance for solving PFSP-makespan.

The remainder of this research is organized as follows: Chapter 2 gives the
literature review, the proposed algorithm HLBS is described in Chapter 3. Chapter 4
provides computational experiments, and conclusions and further research of this

study are summarized in Chapter 5.

Chapter 2. Literature review

This research proposes a population-based metaheuristic for PFSP-makespan.
Population-based metaheuristics share many common concepts of Evolutionary
Algorithms (EA) which is a class of stochastic search and optimization techniques
based on the principles of natural evolution. The basic process of population-based
metaheuristics starts with a population of alternative solutions for a given problem in
the initial generation. Then, the evolution operations of selection, replication and
variation are applied to solutions chosen from the population to generate new
solutions for the next generation. The idea of the evolution operations is based on the
survival concept of genetic evolution. Therefore, the solutions can be improved
generation to generation until a termination criterion is satisfied. Most of the
population-based metaheuristics are nature-inspired algorithms. In the following
sections, we will present the problem statement of PFSP-makespan and the literature
review for three prominent population-based algorithms for PFSF-makepspan:
Genetic Algorithms (GA), Ant Colony Optimization (ACO) and Particle Swarm

Optimization (PSO).

2.1 Problem statement: PFSP-makespan

PFSP-makespan can be denoted as Fm||Cyax by Graham et al. (1979), where Fm
represents a flow shop environment of m machines and Cnax refers to the makespan.
We use the notation proposed by Graham et al. (1979); given a set J of n jobs, a set M
of m machines and processing times pj; for each job j on each machine i, the problem
consists of scheduling all n jobs at each one of the m machines. The processing
sequence of the jobs must be the same on all the machines and each job j can only
start its execution on a machine i if both the previous job on the same machine i and

the same job j on the previous machine i -1 have already been processed. Furthermore,
3

the order in which a job must pass through the machines is predefined and identical
for all the jobs. The objective of this problem is to determine a job ordering that
minimizes the completion time of the last job in the last machine, called the makespan.
Although Garey et al. (1976) showed that the problem with two-machine can be
solved in polynomial time, the general case with m machines is known to be NP-hard.

Given a permutation schedule jy, . . ., jn for an m-machine flow shop, the completion

time of job jx at machine i, C.. , can be computed easily through a set of recursive

iy ?

equations:

C,=> P, i=1, 2,....m (1)
1=1
k

Ci =DM k=1,2,...,n)
=1

C, =max(C_,,.C;)+p,; i=2,..mk=2,...n (3)

Then makespan, Cnax, IS obtained by Crax = C

m, j,

2.2 Genetic Algorithms (GA)
Genetic Algorithms (GA), developed by John Holland in the 1970’s, are search

algorithms that are based on the idea of genetic evolution. Genetic evolution implies
that the optimum parents survive and generate better offspring. The same concept
underlies the development of Genetic Algorithms (GA). In order to apply GA to a
problem, generally the solution space of the problem is represented by a population of
structures where each structure is a possible solution to the problem. Then, a certain
number of structures are chosen to form the initial generation. The structures of the
next generation are generated by applying simple genetic operators to the parent
structures selected from the existing generation. According to the idea that “"good

parents produce better offspring”, a structure with higher fitness value in the current
4

generation will have higher probability of being selected as a parent (similar to the
concept of survival). When we repeat this process, we can observe a continuous
improvement in the structures' performance from one generation to the next (Chen et

al. 1996). Figure 2.2.1 presents brief pseudo-code of GA.

GA{
Generate the initial population.
Do {

Calculate the fitness value of each member.

Calculate the selection probability for each member.

Select parents for reproduction via the selection probability.

Apply genetic operators (crossover, mutation, inversion) to the parents and
replace the parents with the resulting offspring to form a new
population.

} While (Not Termination) }

Figure 2.2.1 The pseudo-code for the general GA algorithm

GA has been proven to be efficient for many computationally complex problems.
Several researchers also presented encouraging results by applying GAs to solve
PFSP-makespan. The first proposed GA for the PFSP-makespan is proposed by Chen
et al. (1995) in which only crossover is applied (no mutation). Reeves (1995) also
proposed a GA with a different generational scheme called termination with prejudice
which was one of the first GA to be tested against Taillard’s (1993) famous
benchmark data sets. Some more recent noteworthy papers include Reeves & Yamada,

(1998), Ruiz et al. (2006) and Chen et al. (2011).

2.3 Ant Colony Optimization (ACO)
Ant Colony Optimization (ACO), proposed by Dorigo et al. (1992), is a

metaheuristic inspired by nature in which a colony of artificial ants cooperate in
finding good solutions. The main idea of ACO is that the self-organizing principles,
which allow the highly coordinated behavior of real ants, can be exploited to
coordinate populations of artificial ants that collaborate to solve computational
problems (Dorigo and Stutzle, 2004). More specifically, the core behavior of artificial
ants is the indirect communication between the ants via chemical pheromone trails
which enable them to find short paths between food sources and their nest. In general,
the ACO approach attempts to solve an optimization problem by iterating the
following two steps (Blum, 2005): constructing candidate solutions using initial
pheromone trails and modifying the pheromone trails using the candidate solutions in
a way that is deemed to bias future sampling toward high quality solutions.

Figure 2.3.1 presents the pseudo-code of the ACO algorithm for scheduling
problems (Dorigo & Stutzle 2004). The algorithm constitutes four major phases:
Initialization, AntConstruction, LocalSearch, and PheromonUpdate. In the
Initialization phase, an initial schedule is generated and pheromone trails are
calculated based on the initial schedule. In the AntConstruction phase, each artificial
ant constructs a schedule using the pheromone trails. Once all artificial ants have
constructed their own schedules, the schedules will be improved in the LocalSearch
phase, an optional phase in early days, but a mandatory phase for most cases now.
Then, in the PheromonUpdate phase, the pheromone trails are updated by applying
properties of the schedules produced in the LocalSearch phase. The phases are

iterated until a termination condition is satisfied.

ACO{
Initialization
Do {
AntConstruction
LocalSerach
PheromoneUpdate
} While (Not Termination) }

Figure 2.3.1 Pseudo-code for the general ACO algorithm

The ACO algorithm has been successfully applied to solve PFSP-makespan.
Stltzle (Stutzle 1998a) proposed the first ACO algorithm, MAX-MIN Ant System
(MMAS), for PFSP-makespan. After that Ying and Liao (Ying & Liao 2004) applied
the Ant Colony System (ACS), developed by Dorigo and Gambardella (1997), for the
same problem and showed that ACS outperformed Genetic Algorithms, Simulated
Annealing and Tabu Search. Rajendran and Ziegler (2004) developed two ACO
algorithms for PFSP-makespan: M-MMAS and PACO. The first algorithm,
M-MMAS, modified the ideas of MMAS by incorporating the summation rule
suggested by Merkle and Middendorf (2000) and a newly proposed local search
technique. The second was a newly developed ant colony algorithm called PACO. On
average, both M-MMAS and PACO perform better than MMAS and the ACS of Ying

and Liao (2004).

2.4 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) was proposed by Kennedy and Eberhart in
1995 ; it imitates the behavior of a swarm of birds searching for food. The searching
process of PSO for an optimization problem starts with a population with randomly

generated solutions (particles; the positions of the birds in the solution space).

Applying the swarm learning mechanism, each particle in the population searches the
solution space by considering the effect of the best solution that all the particles have
ever searched (global best), the effect of the best solution that the particle has ever
searched (personal best) and the effect of searching the current neighborhood of its
own. The new position of a particle in the next population is determined by its current
position plus the effect of the global best solution and the effect of the personal best.
This process will continue until a termination criterion is satisfied.

The standard PSO equations for updating positions for birds are real-valued
equations; therefore, discrete PSO (DPSO) algorithms have been developed to solve
PFSP-makespan. Figure 2.4.1 presents the main components of DPSO (Pan et al.,
2008a), which includes: (1) population initialization, (2) position update for particles,
and (3) a local search for improving the solution quality. A discrete position update

equation can be expressed as follows (Pan et al. 2008a):

X! =¢,®F,(c, ® F,(W® F(X/™),P™),G"Y)

Given that the position of particle i in iteration t-1 is X, ™, this equation first

implements function F; with a probability of w; function F; searches the

neighborhood of X . Then the equation implements function F, with a probability of

c1. Function F, exchanges information with the solution generated by function F; and

the personal best solution of particle i (P'™); it refers to the condition that particle i

will learn from its personal best solution. Finally, this equation implements function
Fs with a probability of c,. Function F; exchanges information between the solution
generated by functions F, and the global best solution; it refers to the condition that
particle i will learn from the global best solution. Figure 3 presents the pseudo-code

for the DPSO algorithm with local search (Pan et al. 2008a).

8

DPSO {
Initialize parameters
Initialize population
Evaluate

Do {

Find the personal best
Find the global best
Update position
Evaluate
Apply local search (optional)

} While(Not Termination) }

Figure 2.4.1 Pseudo-code for the general DPSO algorithm with local search

There have been many PSO related algorithms proposed to solve the candidate
problem recently. For example, a similar particle swarm optimization algorithm called
SPSOA (Lian et al., 2006) was proposed to solve PFSP-makespan. Computational
experiments showed that SPSOA outperformed a basic GA. A discrete PSO version
called NPSO (Lian et al, 2008) was developed and successfully applied to the
candidate problem, and the results showed that NPSO was more effective than a basic
GA. HPSO (Kuoa et al, 2009) is a continuous version of PSO which integrated the
random-key (RK) encoding scheme and the individual enhancement (IE) scheme into
PSO. The experimental results showed that HPSO was superior to a basic GA and
NPSO. ATPPSO (Zhang C. et al., 2010) was proposed with the integration of PSO
with genetic operators and annealing strategy. The results showed that both the
solution quality and the convergence speed of ATPPSO outperform NPSO. Zhang J.
et al. (2010) proposed a circular discrete particle swarm optimization algorithm
(CDPSO). The particle similarity changes adaptively with the iterations and an order
based strategy is introduced to preserve the swarm diversity. If the adjacent particles’
similarity is bigger than its current similarity threshold, the mutation operator is used
to mutate the inferior. Furthermore, a fast makespan computation method based on

9

matrix is designed to improve the efficiency of the algorithm. The result showed that

the solution quality and the stability of CDPSO precede both GA and SPSOA.

10

Chapter 3. The proposed metaheuristic (HLBS)

Although there have been many metaheuristics based on GA, ACO, and PSO for
solving PFSP-makespan, most of them follow the basic principles of evolutionary
algorithms to improve the solutions iteration by iteration. In this research, we propose
a population-based metaheuristic based on the local best solution, denoted as HLBS,
to solve PFSP-makespan. The major idea of HLBS is based on the conjecture that the
local best solution in an iteration possesses important information about the solution
regions searched. Therefore, given a local best solution, we propose a simple
approach to generate a trace-model based on the local best solution for guiding the
search to promising solution regions. In addition, we propose a novel filter strategy to
keep the search from trapping into local optimums and a new jump strategy to help
the search escape if the search does become trapped at a local optimum. The basic
process of HLBS is presented as follows:

1. Sett = 0. Generate an initial solution using NEHT and let it be the local best

solution and the best-so-far solution.

2. do{

3. Generate a trace-model based on the local best solution for iteration t.

4. Generate M new solutions according to the trace-model generated in Step
3 by applying a solution construction method.

5. Apply the filter strategy to the M solutions generated in Step 4; update the
local best solution.

6. Launch the jump strategy if the search traps into a local optimum.

1. t=t+1

8. }while (Not Termination)

9. Return best-so-far solution

11

The HLBS algorithm, different from general population-based metaheuristics,
produces only a solution using the heuristic NEHT (Taillard 1990) in the initial
iteration and sets the solution to be the local best solution and the best-so-far solution.
The major loop in HLBS (step3~step7) generates a trace-model based on the local
best solution, constructs M new solutions according to the trace-model by applying a
solution construction method, and updates the local best solution with the solution
produced by applying the new filter function and a local search method to the M new
solutions. If the local best solution is not able to improve the best-so-far solution in a
certain number of iterations, it is assumed that the search has trapped into a local
optimum. Then the new jump strategy is launched to find a new initial solution as the
local best solution and the same loop (step3~step7) is performed on the new initial
solution. The major components of HLBS, trace-model generating rule, solution
construction method, filter strategy and jump strategy are discussed in detail in the

following sections.

3.1 Trace-model generating rule and solution construction method

The new trace-model generating rule is applied to generate a trace-model when
the local best solution is updated in every iteration. The following example illustrates
the procedure of the generating rule. Given the updated local best solution in an
iteration is I’ = (3, 1, 2, 5, 4), let (i, u) denote the trace-value of job u on position i,
the generating rule first assigns a trace-value ;. to each job on its position in IT’, that
is (1, 3) = (2, 1) = (3, 2) = (4, 5) = (5, 4) = 1;, Then, for each job, the new rule
assigns a trace-value 7, to the positions prior to its position in IT" and assigns a
trace-value 75 to the positions succeeded to its position in IT°. For instance, job 2 is on

position 3 in IT’, so (1, 2) = (2, 2) = 7, and (4, 2) = (5, 2) = 7. These three

12

trace-values, 7, 7p, and z;, have to be properly determined to allow the trace-model to
keep the sequence of the jobs in the local best solution while constructing new
solutions and to keep the valuable information of the sequence of the jobs in every
iteration. The following solution construction method will clearly illustrate this idea.
A solution construction in an iteration is composed of job-selections from the
first position to the last position for the solution. A revised job-selection rule based on
the probabilistic action rule of Dorigo and Gambardella (1997) is proposed in HLBS.
Given a parameter value go (0 < go < 1), an individual, individual k, first generates a
random number g from a uniform distribution ranged [0, 1]. If g is less than or equal
to go, then equation (4) is used to select a job; otherwise, a probabilistic action rule

(equation (5)) is applied to select a job.

j= argmax{r(i,u)},ifq < qo (4)
ues, (i)
i) == i g ©)

tesk(i)T(i’u)
where s, (i) is the set of unscheduled jobs of individual k positioned on job i.

To better understand the solution construction method, the previous local best
solution, IT" = (3, 1, 2, 5, 4), is used, and let 7, = 1, 7 = 100 and zs = 110; Table 3.1.1
summarizes the trace-values for all the jobs on different positions. The solution

construction method for this example is presented as follows. Job selection for
position 1:if g = qp, since s () ={1,2,3,4,5} and (1, 3) = =100 and (1, 1) =

(1, 2) = 7(1, 4) = «(1, 5) = 5, = 1, job 3 (j =argmax{z(i,u)} = 3)) is selected for

ueSy (i)
position 1; if g > qo, each job j will be selected with a probability of z(1, j)/(100 +
4x1), respectively, and a random number, between 0 and 1, is generated to select a job

for position 1. Job selection for position 2 under the condition that job 5, not job 3, is

selected for position 1: if g = qg, since s, ()={1, 2, 3, 4}, and (2, 3) = 110, (2, 1)
13

=100 and 7(2, 2) = 7(2, 4) = 1, job 3 (j =argmax{z(i,u)} = 3) is selected for position

ues, (i)
2; if g > o, then job 3 has the highest probability, z(2, 3)/ (110+100+1+1) = 110/(212),
to be selected for position 2. This result shows that if job 3 is not selected for position
1, its position in IT’, it will be selected for position 2 with the highest probability. This
illustrates the idea of the new trace-model generating rule which will keep a job on its

position in the local best solution while constructing new solutions.

Table 3.1.1 The example for illustrating the trace-model generating rule and the
solution construction method

Job 3 1 2 5 4
position
1 100 1 1 1 1
2 110 100 1 1 1
3 110 110 100 1
4 110 110 110 100 1
5 110 110 110 110 100

This simple example also shows that a large ratio of z; and 7, values and a high o
value will cause the job selection rule to highly retain the job sequence in the local
best solution and cause premature convergence. In order to investigate this problem, a
study on the relationship among the 7, 7, and zs values and a variable qo setting
method are considered in HLBS. The relationship among the 7, 7, and zs values can be
described using two simple equations: 7 = 7pxX and zs = 71+ 7pXy = XX+ 17Xy = 7pX(X
+Y), so the relationship among the 7, 7, and s values can be determined by the two
parameters x and y. As the values of these two parameters x and y become larger, there
exists a higher possibility that the job sequence in the local best solution will be
retained in constructing new solutions. Therefore, a number of the combinations of x
and y will be considered in order to study the effect of the trace-model on the

14

performance of HLBS. The variable qo setting method is to construct solutions using
different go values. Given that there are M solutions constructed in a population and g
varies from gnign 10 Qiow, the go for the k-th solution is calculated as follow:

o,k =0high— [(Qnigh—Cliow) *k/M].

For example, if we set M to be equal to 10, k is between 0 to 9, and qo varies from
0.96 (Qhigh) to 0.66 (Cliow), the set of qox is {0.96, 0.93, 0.90, ..., 0.69}. Note that the
higher the gox value, the higher the exploitative capability the individual has, and the
lower the qox value, the higher the explorative capability the individual has. Therefore,
including the solutions with different go values in a population may balance the
exploitative capability and the explorative capability while searching the solution
space.

In addition, a block property of PFSP-makespan is applied in the construction
method. Several recent works (Grabowski and Pempera, 2001, Grabowski and
Wodecki, 2004, and Jin et al. 2007) have shown that the block property of the
PFSP-makespan can be developed and used to reduce the size of neighborhood.
Therefore, the block property of PFSP-makespan will be considered in the
construction method to improve the efficiency of HLBS. A solution of a
PFSP-makespan problem can be presented as a PERT graph, and the length of the
critical path of the graph is the makespan of the solution. A block is a sequence of
consecutive jobs on a machine in a critical path; therefore, if a PFSP-makespan has m
machines, the critical path of a solution will have m blocks. To apply the block
property in the construction method for a PFSP-makespan problem with m machines,
the HLBS will construct m solutions in each iteration. The first solution is constructed
by choosing the first block from the local best solution and applying equations (4) and
(5) to determine the jobs for the rest of the positions in the solution; the second

solution is constructed by choosing the second block from the local best solution and
15

applying equations (4) and (5) to determine the jobs for the rest of the positions in the
solution and so forth. Since the number of positions to be filled out while constructing
a solution is decreased, applying the block property in the construction method will

improve the efficiency of the HLBS.

3.2 Filter strategy

Local search methods are crucial for improving the effectiveness of
population-based metaheuristics. They usually are applied to the best solution in an
iteration or the global best solution to improve the quality of the solution; however,
this may cause a search trap into local optima. The proposed filter strategy is applied
when all the individuals (M) finish constructing their solutions in an iteration. It first
applies a filter function to find a solution from the M solutions, and then applies a
local search method to the chosen solution. The purpose of the filter function is to
filter the solution regions that have been reviewed and guide the search to new
solution regions in order to keep the search from trapping into local optima. We
define a filter-list as a first-in, first-out queue to store the makespan of the chosen
solution in each iteration and set a parameter called filter-size to define the size of the
queue. The queue is set to be empty initially. When all the M solutions are constructed,
the solutions are sorted according to their makespans in ascending order, and the filter
function is applied from the top of the M solutions until the first solution, whose
makespan is different from all the makespans in the filter-list, is found and store the
makespan of the solution in the filter list. If none of the M solutions has a different
makespan from the makespans in the filter-list, the last of the M solutions is chosen
(but the makespan will not be stored in the filter-list). The purpose of comparing
makespans instead of job-sequences of solutions while using the filter function is

two-fold. Firstly, it may guide the search to the solution regions which have not been

16

examined. Secondly, it can significantly reduce computation time by comparing the
solution constructed by an individual and the solutions stored in the filter-list; this is
especially critical when the number of jobs considered in a problem is large. In
addition, the idea of choosing the solution with the largest makespan when none of
the M solutions has a different makespan from the makespans in the filter-list is that it
may prevent the search of HLBS from quick convergence.

Once a solution is chosen using the filter function, the local search method
(denoted as NEHT_LS) is applied to improve the makespan of the solution.
NEHT_LS integrates Taillard’s Modified-NEH method (Taillard 1990) with Ruiz and
Stitzle’s (2007) iterative improvement method. Given that IT is the job sequence of
the chosen solution, NEHT _LS first randomly chooses a job k and removes it from IT;
then it inserts job k into the first position, the last position, and the positions between
every two consecutive jobs in IT to generate n different solutions, and lets IT be the
best of the n generated solutions. If the makespan of IT is smaller than that of II,
NEHT_LS will update IT with IT" and will repeat the same procedure until IT cannot
be further improved. If the makespan of IT is smaller than that of the local best
solution, it will update the local solution with IT; if the makespan of IT is smaller than
that of the best-so-far solution, it will update the best-so-far solution with II. The
procedure integrating the filter function and NEHT _LS is denoted as filtered local
search (FLS).

The filter strategy that implements FLS only once is denoted as F-Strategyl. The
second filter strategy, denoted as F-Strategy?2, first implements FLS, then determines
if the makespan of the schedule generated by FLS dominates the best-so-far solution.
If so, it will stop; otherwise, it will implement FLS one more time by using the filter
function to find a solution different from the one found by the filter function in the

first FLS.
17

3.3 Jump strategy

The main idea of the jump strategy is to guide the search to jump to another
solution region when the search is trapped in a local optimum. We define the search
trapped in a local optimum when the search is not able to improve the best-so-far
solution in a number of iterations. The solution generated by the jump strategy is
considered to be a new initial solution, and the search procedure is restarted.

Two jump strategies are proposed in this research. The first jump strategy,
J-Strategyl, defines two jumping distances: objective-value distance and sequence-
structure distance. Objective-value distance implies that a threshold value is set to
guarantee that a jump is far enough from the current local best solution. We set a
parameter, Jump-rate, to calculate the objective-value distance, objective-value
distance = Jump-rate * objective value of the current local best solution. When a
local optimum is detected, an objective-value distance is calculated and the
makespans of the M solutions constructed in the current iteration are compared with
the objective-value distance. Only the solutions that have makespans larger than the
objective-value distance are considered to be the candidates for a new initial solution.
If none of the M solutions has makespan larger than the objective-value distance,
randomly choose a solution from the M solutions and use it as the new initial
solution. If there is more than one candidate, a sequence-structure distance is applied
to select a suitable one. A sequence-structure distance measures the structure
similarity between two job-sequences, S; and S,. Let (i, u;) be the job on position i in
S; and (i, uy) be the job on position i in S, and define the distance between S; and S,
on position i, d(i, u), be 0 if u; = uy and be 1 if u; # u,. The sequence-structure
distance between S; and S, is then defined to be the sum of d(i, j) for all the

positions.

18

The second jump strategy, J-Strategy2, first applies the Destruction and
Construction Operation (Ruiz and Stutzle, 2007) to the detected local optimum M
times to generate M new solutions. The solution with the minimum makespan, which
satisfies the following conditions: (i) the makespan is less than or equal to a
pre-determined objective-value distance and (ii) the job sequence of the solution is
different from the job sequence of the local optimum, is chosen and used as the new
initial solution. If none of the M solutions satisfies the conditions, the same procedure
will be implemented until a solution is produced. In order to apply the Destruction
and Construction Operation to a schedule, S, first randomly choose n; jobs from S and
let the job sequence of the ny jobs be s; and the job sequence of the rest of the jobs in
S be s;. Then, insert the first job in s; into the first position, the last position and the
positions between every two consecutive jobs in s, and choose the sequence with the
smallest makespan; repeat the same process until all the n; jobs in s; are inserted in s;.
In this research, the Destruction and Construction Operation is implemented three

times with n; = 5 in J-Strategy?2.

19

Chapter 4. Computational experiments of HLBS

Two HLBS-based metaheuristics are proposed by using different filter strategy,
jump strategy, go Ssetting method and trace-value. The basic HLBS, denoted as
B-HLBS, is a HLBS that applies the filter strategy F-Startegyl, the jump strategy
J-Strategyl, the variable qo setting method and the trace-values, 7, = 1, 7 = 950 and z;
= 1000, are determined by trial-and-error. The advanced HLBS, denoted as A-HLBS,
is a HLBS using the filter strategy F-Startegy2, the jump strategy J-Strategy?2, a fixed
go method, and the trace-values are determined by properly studying the parameters x
and y; the block property is used as well. The computational experiments are

conducted for B-HLBS and A-HLBS respectively in the following sections.

4.1 Computational experiments of B-HLBS
The well-known Taillard's test problems for PFSP-makespan (Taillard 1993) are

used to evaluate the performance of B-HLBS. The test problems are composed of 12
different problem sets with different numbers of jobs and different numbers of
machines. Twelve instances, selecting the first instance from each of the 12 problem
sets, denoted as Test;, are used to investigate the effects of the three major factors of
B-HLBS: the variable qq setting method, F-Startegyl and J-Strategyl. Then, B-HLBS
with the best combination of the major factors will be applied to solve all the test
problems, and its performance will be compared with promising population-based
metaheuristics such as Genetic Algorithms (GA), Ant Colony Optimization (ACO)
and Particle Swarm Optimization (PSO). Note that all the algorithms in this research
are coded in C language and executed on the Linux operating system.

The levels considered for the three major factors of B-HLBS are summarized in
Table 4.1.1. Six levels are set for Onigh~Qiow: 0.98~0.68, 0.96~066, 0.92~0.62,

0.88~0.58, 0.84~0.54, 0.8~0.5; six levels are set for the filter size (f-size) of
20

F-Startegyl: none, 1, 4, 9, 14, and 18, where none refers to no filter strategy is applied,;
eight levels are set for jump-rate of J-Strategyl: none, 0.0, 1.03, 1.06, 1.09, 1.12, 1.15
and 1.18, where none refers to no jump strategy is applied and 0.0 refers to the
condition that only sequence-structure distance is considered. The remaining factors
of B-HLBS are described as follows: the number of solutions (M) constructed in each
iteration is set to be 10; the z values used in the new pheromone generating rule, z,, 7,
and s, are set to be 1, 950, and 1000 respectively; the number of iterations without
improvement for defining trapping at a local optimum is set to be the number of
machines of the instances solved. All these factors are determined by trial-and-error.
Therefore, there are a total of 288 different combinations of the three factors. B-HLBS
is then applied with each of the 288 combinations to solve the 12 instances in Test;
with a limited computation time, nx(m/2)x30 milliseconds (Ruiz et al. 2006), for
three trials, where n refers to the number of jobs and m refers to the number of
machines for the instances. The performance of B-HLBS with a combination of the

three factors for an instance is evaluated using Average Relative Performance (ARP):

R —
ARP = ;(%xloo) R where Heu; is the makespan obtained by any of
1= sol

the three trials of B-HLBS with the combination of the factors, and Bestg is the best

makespan that all the research has found for the instance provided by Zobolas et al.

(2009).
Table 4.1.1 Experimental factors
Factors Levels Total Levels
0.98~0.68, 0.96~066, 0.92~0.62, 0.88~0.58, 0.84~0.54 and
Uhigh~Jlow 6
0.8~0.5
f-size None, 1, 4, 9, 14, and 18 6
Jump-rate None, 0.0, 1.03, 1.06, 1.09, 1.12, 1.15 and 1.18 8
Total factor combinations 288

21

The analysis of variance (ANOVA) is applied to analyze the ARPs produced by
B-HLBS with all the 288 combinations. Table 4.1.2 presents the results of the
ANOVA table. The results show that F-Startegyl and J-Startegyl significantly affect
the ARP of the test problems. Therefore, the Duncan's test is applied to test if the
performance of any two levels of F-Startegyl and of the J-Startegyl is significantly
different. Table 4.1.3 presents the results of the Duncan's test for F-Startegyl. The
results show that the major difference is between the level “none” and each of the
other levels. This concludes that B-HLBS using F-Strategyl significantly dominates
B-HLBS without using F-Strategyl; however, the effect of the filter size is
insignificant. Table 4.1.4 presents the results of the Duncan's test for J-Strategyl. The
results show that the major difference is between the level “none” and each of the
other levels and between the level “0.0” and each of the other levels. This concludes
that B-HLBS using J-Strategyl significantly dominates B-HLBS without using
J-Strategyl; however, the effect of the jump-rate is insignificant. Therefore, the
condition that generates the best solution: ghighi~Ciow = 0.98~0.68, f-size = 14 and
Jump-rate = 1.12, is considered to be the optimal condition for B-HLBS. Furthermore,
B-HLBS is applied to the same test problems under the condition: fixed gy = 0.98,
f-size = 14 and Jump-rate = 1.12, in order to evaluate the effect of the variable q
setting method. Computational results show that the average ARP produced by
B-HLBS using fixed qo is 0.639, which is about 9% ((0.639-0.579)/0.639) worse than
the average ARP produced by B-HLBS using variable go (Qhigh~Ciow = 0.98~0.68).
This illustrates that using different qo values for the M solutions constructed in an

iteration is able to improve the explorative capability for B-HLBS.

22

Table 4.1.2 ANOVA table for testing the significance of the three factors

Type 111 Sum of

Source df Mean Square F Sig.
Squares

o .049 5 .010 130 .086
f-size 154.917 5 30.983 412.140 .000%
Jump-rate 6.395 7 914 12.153 .000°
instance 1975.264 11 179.569 2388.628 .000%
Error 257.631 3427 .075
Total 4339.697 3456
Corrected Total 2394.256 3455

“Difference in the effects at the significance level of 0.01.

Table 4.1.3 Results of Duncan’s test for different filter sizes

Subset
f-size Average ARP
1 2
18 .6436 A
14 .6493 A
9 .6499 A
4 .6614 A
1 .6743 A
none 1.2232 B
Table 4.1.4 Results of Duncan’s test for different jump-rates
Subset
Jump-rate Average ARP
1 2
1.09 7192 A
1.18 .71206 A
1.15 7211 A
1.12 1243 A
1.06 7325 A
1.03 .7363 A
0.0 .8209
none .8273

23

B-HLBS with the optimal condition is then applied to solve the test problems in
all the problem sets, and its performance is compared with two ACO algorithms,
M-MMAS and PACO (Rajendran & Ziegler 2004), a PSO algorithm, PSOvns and
two hybrid GA related metaheuristics, NEGAvns (Zobolas 2009) and HGA RMA
(Ruiz et al. 2006), which reported very promising solutions for PFSP-makespan.

Ruiz et al. (2006) compared the performance of M-MMAS, PACO and
HGA_RMA based on the same number of replication runs (R=5) and the same
computation times: nx(m/2)x30, nx(m/2)x60, and nx(m/2)x90 milliseconds. All the
algorithms were run on a PC with Intel Pentium IV at 2.8 GHz. Therefore, we
compare the performance of B-HLBS with M-MMAS, PACO and HGA_RMA based
on the same computation times using a PC with the same computing power. Tables
4.1.5 to 4.1.7 present the average ARPs produced by M-MMAS, PACO, HGA RMA
and B-HLBS for the twelve problem sets with each of the three computation times,
respectively. The Paired Samples T-test is applied to test if the performance of
B-HLBS significantly dominates M-MMAS, PACO and HGA_RMA respectively.
Table 4.1.8 summarizes the results of all the Paired Samples T-tests. The results show
that B-HLBS significantly dominates M-MMAS and PACO under all the different
computation times, but the difference of the performance between B-HLBS and

HGA_RMA is insignificant.

24

Table 4.1.5 Computational Results of M-MMAS, PACO and B-HLBS (t30%*)

Test Problems M-MMAS PACO HGA_RMA B-HLBS
20x5 0.11 0.2 0.05 0.04
20x10 0.15 0.32 0.10 0.07
20x20 0.09 0.31 0.10 0.10
50%5 0.02 0.08 0.00 0.02
50x10 1.30 0.90 0.77 0.75
50x20 2.10 1.46 1.19 1.25
100x5 0.03 0.04 0.02 0.06
100x10 0.46 0.35 0.26 0.39
100x20 2.59 2.17 1.59 1.55
200x10 0.37 0.26 0.16 0.24
200x20 2.34 2.00 142 1.58
500x20 1.06 0.98 0.87 0.81

Average 0.885 0.756 0.55 0.572

*: 130 = nx(m/2)x30 millisec

Table 4.1.6 Computational Results of M-MMAS, PACO and B-HLBS (t60%*)

Test Problems M-MMAS PACO HGA_RMA B-HLBS
20x5 0.08 0.16 0.03 0.00
20x10 0.09 0.30 0.09 0.07
20x20 0.07 0.15 0.07 0.06
50%5 0.02 0.03 0.01 0.01
50x10 1.14 0.87 0.64 0.74
50x20 2.06 1.39 1.07 1.10
100x5 0.02 0.03 0.01 0.04
100x10 0.42 0.32 0.23 0.28
100x20 2.50 1.99 1.33 1.45
200x10 0.32 0.26 0.13 0.18
200x20 2.18 1.86 1.30 143
500x20 1.09 0.92 0.76 0.73

Average 0.833 0.690 0.47 0.508

*: 160= nx(m/2)x60 millisec

25

Table 4.1.7 Computational Results of M-MMAS, PACO and B-HLBS (t90%*)

Test Problems M-MMAS PACO HGA_RMA B-HLBS
20x5 0.04 0.18 0.04 0.00
20x10 0.07 0.24 0.02 0.04
20x20 0.06 0.18 0.05 0.04
50%5 0.02 0.05 0.00 0.00
50x10 1.08 0.81 0.72 0.63
50x20 1.93 141 0.99 1.01
100x5 0.02 0.02 0.01 0.04
100x10 0.39 0.29 0.16 0.24
100x20 242 1.93 1.30 1.30
200x10 0.30 0.23 0.14 0.18
200x20 2.15 1.82 1.26 1.39
500%20 1.02 0.85 0.69 0.69

Average 0.792 0.668 0.45 0.463

*:190= nx(m/2)x90 millisec

Table 4.1.8 Results of the Paired Samples T-Test for M-MMAS, PACO and B-HLBS
under different computation times

Paired Differences

95% Confidence
Time Algorithm Std. Error t Sig.
Mean Interval
Mean
Lower Upper
M-MMAS vs.
0.31000 0.11091 0.06590 0.55410 2.795 0.017
B-HLBS
t30 PACO vs. B-HLBS 0.18083 0.05442 0.06106 0.30061 3.323 0.007
HGA_RMA vs.
-0.02750 0.06877 -0.07120 0.01620 -1.385 0.193
B-HLBS
M-MMAS vs.
0.32500 0.11198 0.07853 0.57147 2.902 0.014
B-HLBS
t60 PACO vs. B-HLBS 0.18250 0.04838 0.07601 0.28899 3.772 0.003
HGA_RMA vs.
-0.03500 0.01645 -0.07120 0.00120 -2.128 0.057
B-HLBS
M-MMAS vs.
0.32833 0.11471 0.07587 0.58080 2.862 0.015
B-HLBS
190 PACO vs. B-HLBS 0.20417 0.05501 0.08308 0.32525 3.711 0.003
HGA_RMA vs.
-0.01500 0.01598 -0.05017 0.02017 -0.939 0.368
B-HLBS

26

Table 4.1.9 presents the average ARPs generated by NEGAvns, PSOvns, and
B-HLBS, on a PC with Intel Pentium IV at 2.4 GHz under the same computation time,
nxm/10 seconds, and the same number of replication runs (R=10) (Zobolas et al.
2009). The Paired Samples T-test is applied to compare the performance between
B-HLBS and each of algorithms: NEGAvns and PSOvns. These tests show that
B-HLBS does not significantly dominate any of NEGAvns and PSOvns. However,
the results show that B-HLBS is superior to NEGAyns in 6 out of the 12 problem sets
and ties in 3 out of the 12 problem sets. Overall, B-HLBS dominates NEGAyns by
9% ((0.466-0.424)/0.466). Also, B-HLBS outperforms PSOvns in 7 out of the 11
problem sets and ties in 1 out of the 11 problem sets, and B-HLBS dominates PSOvns

by 15%.

Table 4.1.9 Computational Results of PSOvns, NEGAvns and B-HLBS

Test Problems NEGAvns PSOvns B-HLBS
20x5 0.00 0.03 0.00
20x10 0.01 0.02 0.01
20x20 0.02 0.05 0.01
50x5 0.00 0.00 0.00
50x10 0.82 0.57 0.60
50x20 1.08 1.36 0.90
100x5 0.00 0.00 0.04
100x10 0.14 0.18 0.21
100x20 1.40 1.45 1.25
200x10 0.16 0.18 0.12
200x20 1.25 1.35 1.30
500x20 0.71 * 0.65
Average 0.466 0.472 0.424

*: The authors do not provide results for the 500 x 20 instance group.

27

4.2 Computational experiments of A-HLBS
The same procedure of data analysis used for B-HLBS is used for A-HLBS.

Table 4.2.1 summarizes the levels considered for the major factors of A-HLBS. Three
levels are set for x: 1, 50, 100 and six levels are set for y: 1, 50, 100, 200, 400, 600;
four levels are set for qgo: 0.0, 0.7, 0.8, 0.9; two levels are set for the f-size of
F-Startegy2: none and 7, where none refers to no filter strategy is applied; two levels
are set for jump-rate of J-Strategy2: none and 1.02, where none refers to no jump
strategy is applied. The f-size with 7 and the jump-rate with 1.02 are determined by
trial-and-error. The remaining factors of A-HLBS are the number of the solutions (M)
constructed in each iteration, the number of iterations without improvement for
defining trapping at a local optimum, and the termination criterion. The first two
factors are determined by trial-and-error and set to be the number of machines of the
instances solved, and the execution time, like most of the other researches, is chosen
to be the termination criterion. Therefore, there are a total of 288 different

combinations of the five factors.

Table 4.2.1 Experimental factors

Factors Levels Total Levels
X 1, 50 and 100 3
y 1, 50, 100, 200, 400 and 600 6
Qo 0.0,0.7,0.8and 0.9 4
f-size None and 7 2
Jump-rate None and 1.02 2
Total factor combinations 288

The A-HLBS is applied with each of the 288 combinations to solve the 12

28

instances in Testl with limited computation times, nx(m/2)x30 milliseconds (Ruiz et
al. 2006), for three trials, and the analysis of variance (ANOVA) is applied to analyze
the ARPs produced. Table 4.2.2 presents the results of the ANOVA table. The results
show that all the factors significantly affect the ARP of the test problems. Therefore,
the Duncan’s test is applied to test all the factors. Table 4.2.3 summarizes the results
of the Duncan'’s test for all the five factors; the minimum average ARP for each factor
is: 9o = 0.9, x = 50, y = 400, f-size = 7 and jump-rate =1.02. This condition is very
close to the condition that generates the best solution: go = 0.8, x =50, y = 400, f-size
= 7 and jump-rate =1.02. Since the difference between the average ARP of qo = 0.8
(0.5985) and the average ARP of go = 0.9 (0.5981) is negligible, the optimal
combination of the five factors for A-HLBS is determined to be go = 0.9, x =50,y =

400, f-size = 7 and jump-rate =1.02.

Table 4.2.2 ANOVA table for testing the significance of the five factors

Type 11 Sum of Mean
Source df F Sig.
Squares Square
o 407 3 136 9.129 .000%
f-size .264 1 .264 17.741 .000?
Jump-rate 1.712 1 1.712 115.089 .000°
X .254 2 127 8.527 .000?
y .256 5 .051 3.443 .004%
instance 1627.599 11 147.964 9948.798 .000%
Error 51.042 3432 .015
Total 2950.158 3456
Corrected Total 1681.534 3455

®Difference in the effects at the significance level of 0.01.

29

Table 4.2.3 Results of Duncan’s test for the five major factors

Subset
Jdo Average ARP 1
.90 5981 A
.80 .5985 A
.70 .6025 A
0.0 .6244
Subset
X Average ARP)
50 5972 A
100 .6029 A
1 .6175
Subset
y Average ARP 1
400 .5966 A
200 5971 A
600 .6026 A
100 .6064 A
50 .6109 A
1 .6216
Subset
f-size Average ARP /
7 .5970 A
none .6150
Subset
Jump-rate Average ARP 1
1.02 .5840 A
none .6280

30

The A-HLBS with the optimal combination of the five factors is then applied to
solve the test problems in all the problem sets. Since the analysis in Section 4.1 has
shown that B-HLBS significantly dominates M-MMAS and PACO, the performance
of A-HLBA is first compared only with HGA_RMA and B-HLBS under different
computation times: nx(m/2)x30, nx(m/2)x60, and nx(m/2)x90 milliseconds, and then
with NEGAvns, PSOvns and B-HLBS under the same computation time, nxm/10
seconds.

Tables 4.2.4 to 4.2.6 present the average ARPs produced by HGA RMA,
B-HLBS and A-HLBS for the twelve problem sets with each of the three computation
times, respectively. The Paired Samples T-test is applied to test if the performance of
A-HLBS significantly dominates HGA_RMA and B-HLBS, respectively. Table 4.2.7
summarizes the results of all the Paired Samples T-tests. The results show that
A-HLBS significantly dominates HGA_RMA and B-HLBS under all the different
computation times.

Table 4.2.8 presents the average ARPs generated by NEGAvns, PSOvns,
B-HLBS and A-HLBS. The Paired Samples T-test is also applied to compare the
performance between A-HLBS and each of the algorithms: HGA_RMA, NEGAvns,
PSOvns and B-HLBS. Table 4.2.9 summarizes the results of all the Paired Samples
T-tests. The results show that A-HLBS significantly dominates NEGAvns, PSOvns

and B-HLBS.

31

Table 4.2.4 Computational Results of HGA_RMA, B-HLBS and A-HLBS (t30%*)

Test Problems HGA_RMA B-HLBS A-HLBS
20x5 0.05 0.04 0.04
20x10 0.10 0.07 0.00
20x20 0.10 0.10 0.02
50x5 0.00 0.02 0.00
50x10 0.77 0.75 0.61
50x20 1.19 1.25 1.01
100x5 0.02 0.06 0.04
100x10 0.26 0.39 0.22
100x20 1.59 1.55 1.36
200x10 0.16 0.24 0.11
200x20 142 1.58 1.35
500x20 0.87 0.81 0.64
Average 0.55 0.57 0.45

*: 130 = nx(m/2)%30 millisec

Table 4.2.5 Computational Results of HGA_RMA, B-HLBS and A-HLBS (t60*)

Test Problems HGA RMA B-HLBS A-HLBS
20x5 0.03 0.00 0.03
20x10 0.09 0.07 0.00
20x20 0.07 0.06 0.01
50x5 0.01 0.01 0.00
50x10 0.64 0.74 0.60
50x20 1.07 1.10 0.84
100x5 0.01 0.04 0.04
100x10 0.23 0.28 0.19
100x20 1.33 1.45 1.09
200x10 0.13 0.18 0.09
200x20 1.30 1.43 124
500x20 0.76 0.73 0.55
Average 0.47 0.51 0.39

*: t60= nx(m/2)x60 millisec

32

Table 4.2.6 Computational Results of HGA_RMA, B-HLBS and A-HLBS (t90%*)

Test Problems HGA_RMA B-HLBS A-HLBS
20x5 0.04 0.00 0.03
20x10 0.02 0.04 0.00
20x20 0.05 0.04 0.00
50x5 0.00 0.00 0.00
50x10 0.72 0.63 0.55
50x20 0.99 1.01 0.74
100x5 0.01 0.04 0.04
100x10 0.16 0.24 0.16
100x20 1.30 1.30 1.00
200x10 0.14 0.18 0.07
200x20 1.26 1.39 1.09
500x20 0.69 0.69 0.49
Average 0.45 0.46 0.35

*:190= nx(m/2)x90 millisec

Table 4.2.7 Results of the Paired Samples T-Test for HGA_RMA, B-HLBS and
A-HLBS under different computation times

Paired Differences

Time Algorithim Std. 95% Confidence . sig.
Mean Error Interval
Mean Lower Upper
B-HLBS vs. A-HLBS 0.12167 0.02389 0.06907 0.17426 5.092 0.000
180 HGA_RMA vs. A-HLBS ~ 0.09417 0.02512 0.03888 0.14945 3.749 0.003
B-HLBS vs. A-HLBS 0.11750 0.03305 0.04475 0.19025 3.555 0.005
160 HGA_RMA vs. A-HLBS 0.08250 0.02669 0.02376 0.14124 3.091 0.010
B-HLBS vs. A-HLBS 0.11583 0.03491 0.03899 0.19268 3.318 0.007
0 HGA_RMA vs. A-HLBS ~ 0.10083 0.03223 0.02990 0.17176 ~ 3.129 0.010

33

Table 4.2.8 Computational Results of HGA_RMA, NEGAvns, PSOvns, B-HLBS and
A-HLBS (t=nxm/10 seconds)

Test Problems NEGAvns PSOvns B-HLBS A-HLBS
20x5 0.00 0.03 0.00 0.00
20x10 0.01 0.02 0.01 0.00
20x20 0.02 0.05 0.01 0.00
50x5 0.00 0.00 0.00 0.00
50x10 0.82 0.57 0.6 0.56
50x20 1.08 1.36 0.9 0.67
100x5 0.00 0.00 0.04 0.04
100x10 0.14 0.18 0.21 0.13
100x20 1.40 1.45 1.25 0.92
200x10 0.16 0.18 0.12 0.05
200x20 1.25 1.35 1.30 1.01
500x20 0.71 * 0.65 0.46
Average 0.466 0.472 0.424 0.324

*: The authors do not provide results for the 500 x 20 instance group.

Table 4.2.9 Results of the Paired Samples T-Test for NEGAvns, PSOvns, B-HLBS
and A-HLBS (t=nxm/10 seconds)

Paired Differences

Algorithm Std. Error 95% Confidence Interval t Sig.
Mean
Mean Lower Upper
NEGA_VNS vs. A-HLBS 0.146 0.051 0.033 0.258 2.851 0.016
PSOvns vs. A-HLBS 0.16455 = 0.07383 0.00003 0.32906 2.229 0.050
B-HLBS vs. A-HLBS 0.104 0.035 0.026 0.182 2947 0.013

34

Chapter 5. Conclusions and further research

This research proposes two population-based metaheuristics based on the local
best solution, B-HLBS and A-HLBS, for the permutation flow shop scheduling
problem (PFSP-makespan). The computational results in Chapter 4 have shown that
A-HLBS is an effective heuristic for PFSP-makespan. It dominates all the promising
population-based metaheuristics related to ACO, PSO and GA (M-MMAS, PACO,
PSOvns, HGA_RMA, and NEGAvns). However, our results demonstrate that the
operation of A-HLBS can be further improved. Our analyses illustrate that the
performance of HLBS is highly influenced by the three major factors: the trace-model,
the filter strategy, and the jump strategy. With proper selection of x, y and qo of the
trace-model and application of different filter strategy and jump strategy, A-HLBS
significantly dominates B-HLBS. Therefore, further studies on the interaction of these
three factors are worthwhile. For instance, the path relinking method (Glover, 1996)
can be applied to the solutions in the populations generated by J-Startegyl and
J-Strategy?2 to produce new initial solutions. Since the path relinking has been proved
to be effective for generating promising solutions for PFSP-makespan (Nowicki and
Smutnicki, 1996), it is believed that the method is able to produce effective initial
solutions and improve the performance of HLBS. In addition, since the flow shop
problem is a special case of the job shop problem, the proposed heuristic can also be
applied towards job shop problems.

It is important to note that although computation time needed in a PC is a major
termination criterion used to compare the performance of most of the metaheuristics
developed for PFSP-makespan, this criterion is inappropriate because the
computation time using a PC is affected by several factors of the PC such as the level

of CPU, the size of memory and the operating system. It is very difficult to find equal

35

computing-power machines when comparing the performance of different
metaheuristics. In addition, the coding skill of the computer program will also
significantly affect the performance of the metaheuristics, given computation time as
the termination criterion, because it will affect the number of solutions searched in a
limited computation time. Therefore, it is believed that the number of solutions
searched using a metaheuristic could be a more appropriate metric to evaluate its
effectiveness. Assuming analysis under this new criterion, the effectiveness of
A-HLBS may be comparable or even better than the current optimal metaheuristics.
Therefore in order to more accurately assess the effectiveness of metaheuristics,

future studies considering this criterion is warranted.

36

References

Andreas, N. & Omirou, S. (2006). Differential evolution for sequencing and
scheduling optimization. Journal of Heuristics, 12(6), 395-411.

Blum, C (2005). Ant colony optimization: Introduction and recent trends. Physics of
Life Reviews, 2(4), 353-373.

Chen, C. L., Vempati, V. S. & Aljaber, N. (1995). An application of genetic algorithms
for flow shop problems. European Journal of Operational Research, 80(2),
389-396.

Chen, C. L., Neppalli, V. R. & Aljaber, N. (1996). Genetic Algorithms Applied to the
Continuous Flow Shop Problem. Computers & Industrial Engineering, 30(4),
919-929.

Chen, Y. M., Chen, M. C., Chang, P. C. & Chen, S. H. (2012), Extended Atrtificial
Chromosomes Genetic Algorithm for Permutation Flowshop Scheduling
problems, Computers & Industrial Engineering, 62(2), 536-545.

Dorigo, M. (1992) Optimization, Learning and Natural Algorithm. Ph.D. Thesis, DEI,
Politecnico di Milano, Italy.

Dorigo, M. & Gambardella, L. M. (1997). Ant colony system: a cooperative learning
approach to the travelling salesman problem. IEEE T Evolut Comput,1,53-66.

Dorigo, M. & Stiitzle, T. (2004). Ant colony optimization. MIT, Cambridge.

Framinan, J., Gupta, J. N. D. & Leisten, R. (2004). A review and classification of
heuristics for the permutation flowshop with makespan objective. Journal of
Operational Research Society, 55, 1243-1255.

Garey, M. R., Johnson, D. S. & Sethi, R. (1976). The complexity of flowshop and

jobshop scheduling. Mathematics of Operations Research, 1(2), 117-129.

37

Glover, F. (1996), Tabu Search and Adaptive memory programming - Advances,
applications and challenges. Interfaces in Computer Science and Operations
Research. Barr, Helgason and Kennington, eds., Kluwer Academic Publishers,
1-75.

Grabowski, J. & Pempera, J. (2001). New block properties for the permutation flow
shop problem with application in tabu search. Journal of the Operational
Research Society, 52, 210-220.

Grabowski, J. & Wodecki, M. (2004). A very fast tabu search algorithm for the
permutation flowshop problem with makespan criterion. Computers &
Operations Research, 31(11), 1891-1909.

Graham, R. L., Lawler, E. L., Lenstra, J. K. & Rinnooy Kan, A.H.G. (1979).
Optimization and approximation in deterministic sequencing and scheduling : a
survey. Annals of Discrete Mathematics, 5, 287-326.

Hejazi, S. R. & Saghafian, S. (2005). Flowshop scheduling problems with makespan
criterion: a review. International Journal of Production Research, 43(14),
2895-2929.

Jin, F, Song, S.J. & Wu, C. (2007). An improved version of the NEH algorithm and
its application to large-scale flow-shop scheduling problems. IIE Transactions, 39,
229-234.

Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of
IEEE international conference on neural network, 1942-1948.

Kuo, I. H., Horng, S. J,, Kao, T. W., Lin, T. L., Lee, C. L., Terano, T. & Pan, Y.
(2009). An efficient flow-shop scheduling algorithm based on a hybrid particle

swarm optimization model. Expert Systems with Applications, 36(3), 7027-7032.

38

http://www.tue.nl/nc/en/university/departments/mechanical-engineering/research/experts-expertise/alphabetically/ep/e/d/19890540�

Lian, Z., Gu, X. & Jiao, B. (2006). A similar particle swarm optimization algorithm
for permutation flowshop scheduling to minimize makespan. Applied
Mathematics and Computation, 175(1), 773-785.

Lian, Z., Gu, X. & Jiao, B. (2008). A novel particle swarm optimization algorithm for
permutation flow-shop scheduling to minimize makespan. Chaos, Solitons and
Fractals, 35, 851-861.

Liao, C. J.,, Tseng, C. T. & Luarn, P. (2007). A discrete version of particle swarm
optimization for flowshop scheduling problems. Computers & Operations
Research, 34(10), 3099-3111.

Lin, S. W & Ying, K. C. (2011). Minimizing makespan and total flowtime in
permutation flowshops by a bi-objective multi-start simulated-annealing
algorithm. Computers & Operations Research, doi:10.1016/j.cor.2011.08.009.

Liu, Y. F. & Liu, S. Y. (2011). A hybrid discrete artificial bee colony algorithm for
permutation flowshop scheduling problem. Applied Soft Computing
doi:10.1016/j.as0¢.2011.10.024.

Merkle, D. & Middendorf, M. (2000). An ant algorithm with a new pheromone
evaluation rule for total tardiness problems. In: Proceedings of the EvoWorkshops,
1803(LNCS), 287-296.

Nowicki, E. & Smutnicki, C. (1996). A fast tabu search algorithm for the permutation
flowshop problem. European Journal of Operational Research, 91, 160-175.

Ogbu, F. & Smith, D. (1990). The application of the simulated annealing algorithm to
the solution of the n/m/Cmax flowshop problem. Computers & Operations
Research, 17(3), 243-253.

Onwubolu, G. & Davendra, D. (2006). Scheduling flow shops using differential

evolution algorithm. European Journal of Operational Research, 171(2), 674-692.

39

Osman, I. & Potts, C. (1989). Simulated annealing for permutation flow shop
scheduling. OMEGA, 17(6), 551-557.

Pan, Q. K., Tasgetiren, M. F. & Liang, Y. C. (2008a). A discrete particle swarm
optimization algorithm for the no-wait flowshop scheduling problem. Computer
& Operations Research, 35(9), 2807-2839.

Pan, Q. K., Tasgetiren, M. F. & Liang, Y. C. (2008b). A Discrete differential evolution
algorithm for the permutation flowshop scheduling problem. Computers &
Industrial Engineering. 55(4), 795-816.

Rajendran, C. & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop
scheduling to minimize makespan/total flowtime of jobs. European Journal of
Operational Research, 155(2), 426-438.

Rameshkumar, K., Suresh, R. K. & Mohanasundaram, K. M. (2005). Discrete particle
swarm optimization (DPSQO) algorithm for permutation flowshop scheduling to
minimize makespan. In Proceedings of the ICNC (3), 572-581.

Reeves, C. R. (1993). Improving the efficiency of tabu search for machine sequencing
problem. Journal of the Operational Research Society, 44(4), 375-382.

Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing. Computers &
Operations Research. 22(1), 5-13.

Reeves, C. R. & Yamada, T. (1998). Genetic algorithms, path relinking and the
flowshop sequencing problem. Evolutionary Computation, 6(1), 45-60.

Ruiz, R. & Maroto, C. (2005). A comprehensive review and evaluation of permutation
flowshop heuristics. European Journal of Operational Research 165, 479-494.,

Ruiz, R., Maroto, C. & Alcaraz, J. (2006). Two new robust genetic algorithms for the

flowshop scheduling problem. OMEGA, 34, 461-47.

40

Ruiz, R. & Stitzle, T. (2007). A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational
Research, 177(3),2033-2049.

Stitzle, T. (1998a). An ant approach to the flow shop problem. In: Proceedings of the
6th European Congress on Intelligent Techniques & Soft Computing, Aachen,
Germany, 3, 1560-1564.

Sthtzle, T. (1998b). Applying iterated local search to the permutation flowshop
problem. Technical Report, AIDA-98-04, FG Intellektik, TU Darmstadt.

Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing
problem. European Journal of Operational Research, 47(1), 65-74.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64(2), 278-285.

Tasgetiren, M. F., Sevkli, M., Liang, Y. C. & Gencyilmaz, G. (2004). Particle swarm
optimization algorithm for permutation flowshop sequencing problem. In
Proceedings of ant colony optimization and swarm intelligence (ANTS2004),
LNCS 3172, Springer-Verlag, 381-89.

Watson, J. P., Barbulescu, L., Whitley, L. D. & Howe, A. E. (2002). Contrasting
structured and random permutation flowshop scheduling problems: Search space
topology and algorithm performance. ORSA Journal of Computing, 14(2),
98-123.

Widmer, M. & Hertz, A. (1989). A new heuristic method for the flow shop sequencing
problem. European Journal of Operational Research, 41(2), 186-193.

Ying, K. C. & Liao, C.J. (2004). An ant colony system for permutation flow-shop

sequencing. Computers & Operations Research, 31(5), 791-801.

41

Zhang, C., Jiaxu, N. & Dantong, O. (2010). A hybrid alternate two phases particle
swarm optimization algorithm for flow shop scheduling problem. Computers and
Industrial Engineering, 58(1), 1-11.

Zhang, J., Zhang, C. & Liang, S. (2010). The circular discrete particle swarm
optimization algorithm for flow shop scheduling problem. Expert Systems with
Applications, 37, 5827-5834.

Zobolas, G. I., Tarantilis, C. D. & loannou, G. (2009). Minimizing makespan in
permutation flow shop scheduling problems using a hybrid metaheuristic

algorithm. Computers & Operations Research, 36(4), 1249-1267.

42

	Abstract
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1. Introduction
	Chapter 2. Literature review
	Problem statement: PFSP-makespan
	Genetic Algorithms (GA)
	Ant Colony Optimization (ACO)
	Particle Swarm Optimization (PSO)

	Chapter 3. The proposed metaheuristic (HLBS)
	Trace-model generating rule and solution construction method
	Filter strategy
	Jump strategy

	Chapter 4. Computational experiments of HLBS
	Computational experiments of B-HLBS
	Computational experiments of A-HLBS

	Chapter 5. Conclusions and further research
	References

