IR FEREE L

TR P E - SN IS W U - SR gk S
= o

A Dual Approach for Decision Support in Financial

Fraud Detection



BL3i7 23 B i 2452 Ehe- % AREDFHAEF 0 T
FENA BN - FRIROER O FHI N LA ET B FLEER T

A E e A GRS e B AE D R AR Y LG R e
WM S A A TS A AR RN S Rl 0 2 FR 2 AR 0 e
IohENT A A - o

F R RHADRA 0§ BB R A A L RO K R
3O Pl B BRI lyﬁ—"’lz fe B2 s 14 {9 HhRd '»‘frl’i‘ﬁji% ENE EIRIE ke a1
Ao i€ JHE PORBHLM T FE o R AR PR L
Bz B o B 0 AR BB Y i Jod R R LA S AR E L e
Hodpdm e AL VEFIEE S & - Bl BA e F - A AR kR
FRIWBLE PPEL G NATRER XL I LB > Pl o-
EAGp At o5 iﬁf‘%%ﬁ A PE S AT G BB R RS
AR GG Ry o B v B hd e AR E AL

B LB RAe AN B E L g Tt AF % o E e EAl e
WA RS TR AP R AT A B BF > T B hF S A S LR
FE RS TR AR S B E T S bk bR B R e B R o

£k AR HA NI L ER o g T A F P - -
A A ERABAR N RE A RAIAT RR o R F HP S keep
going BEY A s

LR v RGRABFEE FIAPET AR RSN B ARE A

A TEY G - fﬁ%éﬁﬁﬂ&@a ),Q}ﬁ“n‘gfﬁw;}%éﬁ.,gggk,(,g;;'g,pxgp:q
fokiemsd Ay B L i 4 SR PIERE 2 - A A1
&H%ﬂ%?%wwi&%’a%%ﬁp;mgﬂo@%$§¢@;4@@%g
Yok SRR ng ﬂ‘?‘c“iﬁ’ #Jzﬁf%ﬁ%‘w\ g; F ek Faems

e

3 (o ¥

4%

A N R F'Wé’if“*y &%“ & ff, RLEDE R o gt v o R R rmr*u =34
REdref vm = %ﬁ‘””iﬁ’ﬁﬁ&ﬁﬂﬁ T g ey 2
B3 B E R RIrH ER Y P Fo RN v BB s ol < £
oo AR EREE LS -
£ R P ?iﬁ%;’%wp”"ﬂﬁﬁi?“ﬂi”&ﬁﬁﬂﬂiﬁfﬂﬁmﬁﬁ
FAGD I F o L RRES AR B TEY D §RABR hi 4 B

mv

q

RN
=1

II



FhEEF R 2 oORERDNOH » TEF LB I 2w A2 84830
P ehbl o R o R ST S AT X R 0 2 ) chip o At X AR
ARG PR T LR BRHE TR ALY b auEik o ol 5188
BARNFIE RN EET S o T B S W RE XEF S L FMREE  AFIT R AT
igmj;o—‘!z;;;ﬁ.pew/ﬁ_’)f@:ifrg_ﬁ?rggluéfiﬁﬂﬁwi?&gﬁ: TR AT
¥ oehp R e

FF R o EPG T AR AR R A R
X % end 2
BLFIRsIR § A < F - 24808 - FR Y PR s 2 ARF Tl L
Y Sk Lﬂ}“?)fpgtﬁvm%"\ 4 KA FEENE R E S G T
B L3y RE-AT /R LB 35 2 RE BT CEK
Fiomo
ﬁﬁg%pﬁﬁg‘fﬁ*‘ﬁ%ﬁ‘iﬁi‘é%’ﬁ\:ﬁiﬁ;‘%\i;{'mxléféxggg\4ﬁa
PR i ’ir!’%,’&j"ﬁ»j'-ﬁ,l PRI AR 32
EHZ‘““'L?P?'@??‘J_?‘E%B‘fFﬁ‘}ﬁfﬁgw
BUPAFR S RAe s RE NPT RS RGEE PR e [P E S RT S
)~ A dm TR TR

1 &1 S g i?;»f"- dov A4 4 %~ Freddy s P~ L A& -

< —“‘ ~ /J }\3- N Cp ':HTDI;LI,H;

\1‘

CEXGATRE A S HH T ENFE S LR Y
BlY R ERE R R R AT BT R RE R EF A

&r%’ﬁ Bk ;ﬁ—g fEAIL A AT o

Briggmnd E3F R g LA BES Beoolem G F 2% REW
PR RN ST IO R Y T EE SR LR TR

N RFA AT ReHTT & B AR 2 R0 IR R R 0l
A0 Bl R R R RSB e T 2 oA R S GRER AL S
Tk o ARG Tk S Bl Ee 2 P RGO
FFasfmd Bg- F L5 %7 learn how to learn > 0§ § 7 F gy
TR EAG BB AP B E AP A R AR A F
PG 5 A AP EREARE oS F ARG RBP4 E R R

)llﬁ‘f}]lﬁ]%”‘ %) *“H;:ﬁ B REGERE T T PP

I



Content

ADSITACE ettt et h ettt h bt b et et sa e bt entes 1
L INEEOAUCTION ...ttt ettt et e bt et e s b e et esae e enbeesaeeenbeenaee 5
2. LILETALUIE TEVIEW ..ottt ettt ettt ettt et sb et et b et sa e bt et eate s bt et e seeenbeenbesneenbeentesatens 9
0 B D 1 1 F OO RPN 9

2.2 Clustering methods and the GHSOM.............cccooiiiiiiiiiiiiiiiicceee e 10
2.2.1 Clustering methods and the SOM..........c.ccoooiiieiiiieiiiece e 10

2.2.2 GHSOM ..ottt sttt ettt et sttt st 14

B T o O s SRS 17

2 FFR ettt ettt et b et st h et et ae e 21

2.5 SUIMIMATY ..eiieiiiiie ettt e e ettt e e e ettt e e e s st et e e e e e baeseennnsaeeeennsseeeesnnsaeessnnssees 27

3. The proposed dual approachi.............ocuiiiiiiiiiiiiii e 29
3.1 TralniNg PRASE ...ceeoiiieieiiieiiie it eeitte e eee e iee et e e e sbbee s saeeeeaeaessbsaesssesesaeeesseeensaeesnseeennnes 30
3.1.1 Sampling MOAUIE......cc.eiiiiiiiiii et 31

3.1.2 Variable-selecting module...........cocviieiiiiiiiiieeiieeceeee e e 31

3.1.3 Clustering mMOAULE.....cc.ceivieiiieiieieeit ettt 32

R I\ (oY (5] T Tl o) o P T S USRS 32
3.2.1 Statistic-gathering module...........ccoeiiiiiiiiiiiiiiiiie e 34

3.2.2 Rule-forming module .........c.cooeiiiiiiiiiiie et 35

3.2.3 Feature-extracting module............coeiuieriiiiiiieiiiciiet et 37

3.2.4 Pattern-extracting module............coccueriiiiiiiiieciie e 39

3.3 ANALYZING PRASE ..c.evieiiieeiiieiiee ittt ettt ettt ettt e et e enbeeeeas 39
3.3.1 Group-finding MOAUIE ..........ccooiiiiiiiieiie e 40

3.3.2 Classifying ModUIe.........c.cooiiiiiiiiiieiieie et 40

3.4 DeciSion SUPPOTE PRASE.......eiiiiiieiiieeciie ettt see et e e e e raeeetaeeeaaeesseeesnseeennns 41
3.4.1 Feature-retrieving MOdule ..........cccoeiiiiiiiiiiiiiieeiiee e 41

3.4.2 Decision-supporting MOdUE..........cc.eeervieeiiiieiiie e e 42

4. The FFR experiment and reSUILS .........c.cccuiirireiiieriieiienie ettt ettt e ee e 45
4.1 Training phase — sampling MOAULE ...........ccoeeviiiieiiieiiecceee e 45

4.2 Training phase — variable-selecting module..............cccceeiiiiiiiiniiiiiieccee e 49

4.3 Training phase — clustering module .............coocvieiiiieiii e 61



4.4 Modeling phase — statistic-gathering, rule-forming module .............ccccooevievienirnnene. 64

4.5 Modeling phase — feature-extracting module.............cccueeviiiieriiieniiieie e, 69

4.6 Modeling phase — pattern-extracting module.............ccceeviiiiiiiniieiiienieeeeee e 76

4.7 Analyzing phase — group-finding, classifying module............ccccoeevveeriieiniiieicieeeiens 80

4.8 Decision support phase — feature-retrieving module.............ccoooveviiieriieniiiinienieeene, 81
4.8.1 Retrieve from pattern-extracting module ...........cccoeevveeeiiieniiieniiiecieeee e, 81

4.8.2 Retrieve from feature-extracting module ...........cccceevieriiieniiniiiinieciieeeeeeee, 83

4.9 Analyzing phase — decision-supporting module ............ccccoveeviiieiiiieeniiieniiee e 84

5. MethOdS COMPATISON .....ceviieiiieiieeiieiieette et eieeete et e e beesteeete e beeeebeessaesnseesseeenseessseenseennseans 87
5.1 SV ettt ettt et e bt et e e nt e teente st e teentesneenseeneen 87

5.2 SOMALDA ..ottt ettt b et sttt et b ettt st nae et 88

5.3 GHSOMAALDA ...ttt ettt ettt et se e se et e et eteentesbeenseeneenseensesneans 89

54 SOM e ettt bt ettt et e bbb st e bt 91

5.5 BPININ Lttt ettt ettt et e e h ettt et et e bt et e ene s tt e teeneebeenteeneenneeneens 92

5.0 DT ettt ettt ettt e h et h et ekt e h ettt ettt et e b et eanens 94

5.7 Discussion of the experimental TeSUltS..........c.coooveeriiieiiiieeieeee et 97

6. Discussions and IMPLICAIONS ......ee.ieeutieiiestianiesiteeneeeesteeseesteesteestesseenetesseesseesseessaesseens 98
6.1 The decision support i FFD .......ccooiiiiiiiiiii e 99

6.2 The research IMPCALIONS. .......cueertiiiiuieriieiitienteeiteeeie et ete et te e e eesaeesteeebeenseeeseens 100

6.3 The FFR managerial impliCationS .........cccuieiiiiieeiiiieeiieeeciieesieeeeiteseeveeeeveeeeveeeeaeeens 102

7. CONCIUSION ..ttt ettt et b et sh e s bttt ese et ettt eat e s bt enbeestesbeenneeneens 104
RETEIEIICE ..ttt ettt ettt et e st esate e eeee 107
FN 070153 1§ G OSSP RPN 116

II



List of Tables

Table 1. Research methodology and findings in nature-related FFR studies. .........cc.ccccoeneee. 23
Table 2. Research methodology and findings in FFR empirical studies. .........cccccceeevveennennnnee. 25
Table 3. The training Phase.........cccieriiiiiieiieeiieeie ettt et te et e see et e sateebeesabeeseesnseens 31
Table 4. The MOdeling PRASE. ......c..eeeiiiieiieceeeee e e e 32
Table 5. The analyzZing Phase...........cocieiiiiiieiieiieeeeee ettt e b e ee st saeeens 40
Table 6. The deciSion SUPPOTE PRASE. .....cccvviieiiiieeiiieeiie et e e 41
Table 7. The list of fraud and non-fraud firms in training samples. ............ccceevveevieriierniennnnns 46
Table 8. Variable definition and measurement. .........cc..eeieeiiiiiienieeiieseece et 58
Table 9. Empirical results of discriminant analysis. ........c..cocceeieriereriienienenienieneeeneeeeeen 61
Table 10. The GHSOM parameter setting trials. .........ccccuveeriieieniieeiiieieiee e 62
Table 11. The leaf node matching from NFT to FT. .........cccccciiiiiiiiiiiiiieeceecee 64
Table 12. The result of w; and w, of the non-fraud-central rule.........ccccoeevieiuieeeeeeeeeeenn.. 66
Table 13. The leaf node matching from FT to NFT. .......ccccoooiiiiiiniiiieieeeeeeeeeee e 67
Table 14. The result of w; and wy of the fraud-central Tule. .....coovmmmneeeeeeeeeeeeeee e 68
Table 15. The estimated eigenvalues of eight factors regarding all FT leaf nodes. ................. 69
Table 16. The factor loadings of all FT leaf nodes. .......cccoueeeiiieciiieiiieeiie e 73
Table 17. Common FFR fraud categories within #11 and #14-24. ..........ccocieiiniininiinieenee, 77
Table 18. Summary of the common FFR fraud categories. .......cccceeeveeiiiieniiienieecieeeee e 79
Table 19. The list of fraud and non-fraud firms in testing samples. ..........cccceeevueerireiieenieennens 80
Table 20. The classification TESUIL. ..........cooiiiiiiiiiie sttt 81
Table 21. The overall FFR fraud categories identification performance..........c..ccoceevvervennennee. 82

Table 22. The principle components retrieved by the feature-retrieving module for the testing

samples Within #11 and #14-24. .....oouiiii ettt en 83
Table 23. The results of decision-supporting module for any investigated sample identified

FrAUA. ettt sttt et b et 85
Table 24. The habitual working procedure of the SOM+LDA.........ccceeviiiiviiieieeee e 89
Table 25. The habitual working procedure of the GHSOM-+LDA. .......cccccooiiniiiiiniiniiieeene, 90
Table 26. The habitual working procedure of the SOM. .........ccccciiiiiiiiiiiiiiiee e, 91
Table 27. The weights 0f BPINN......cciiiiiiiiieieie ettt e eee 93
Table 28. The classification results of the BPNN. ..o, 94

I



Table 29. The experimental results of our dual approach, the SVM, SOM+LDA,

GHSOM+LDA, SOM, BPNN and DT methods...........ccceeriirierieiinienieeieceeieee e 96
Table A1. Common FFR fraud categories within all leaf nodes of FT. ........cccccoceeviniininnins 116
Table A2. Common FFR fraud categories of the testing samples. .........ccceeeveercieencieeninneens 120
Table A3. The identification performance of the FFR fraud categories...........cccccceerveennennen. 121

v



List of Figures

Figure 1. The self organizing map StrUCTUIE ..........cecueeeiieriierieeieeeieeiee et sve et e seeesee e e 12
Figure 2. The GHSOM StIUCLUTE. .....cccuviieiiiiieiieeciie et eriee et tee e eesiveeeaaeesaeeesnseeenenas 15
Figure 3. Horizontal growth of individual SOM. .........ccccociiiiiiiiiiiiieieceeeeee e 16
Figure 4. The main steps 0f the PCA. .......ooiiiii it 20
Figure 5. System architecture of the proposed dual approach. ...........ccoeceeviiiiieniiniiiiniens 30
Figure 6. The classification concept of the proposed dual approach...........cccceevevivevciieenneennne. 44
Figure 7. An example of control right and cash flow right..........ccccoooininiiniininiiniiicee 56
Figure 8. The obtained FT and NFT. ......cccooiiiiiiii e 63
Figure 9. The leaf node matching from NFT t0 FT. .......cccccoooiiiiiiiiiiiiieieceeeeeee e 65
Figure 10. The leaf node matching from FT to NFT. .......ccccccoiiiiiiiiiiiee e 67
Figure 11. The map size of the SOM in the SOM+LDA method...........cccovveviieienienieeienen, &9
Figure 12. The obtained GHSOM tree of the GHOM+LDA method...........ccccceovveeiieennnnnee. 90
Figure 13. The map size of the SOM with FFR proportions. .............cccceeveerieinierieneenenienenn 92
Figure 14. The BPNN StIUCLUTE. ....eeeiiviiiiieeiieieciieeeieeesreeesaeeesteeesveeeaeeesaeeesaeesnseeessseeennns 93
Figure 15. The obtained DT StrUCIULE. ........c.ceoiiiiiieriiieiiieie ettt ettt eieeevee e eneens 95
Figure 16. The obtained DT rules. c...cccuuiieiieiiiie ittt s eb e e e 96



Abstract

The Growing Hierarchical Self-Organizing Map (GHSOM) is extended from the
Self-Organizing Map (SOM). The GHSOM’s unsupervised learning nature such as the
adaptive group size as well as the hierarchy structure renders its availability to discover
the statistical salient features from the clustered groups, and could be used to set up a
classifier for distinguishing abnormal data from regular ones based on spatial
relationships between them.

Therefore, this study utilizes the advantage of the GHSOM and pioneers a novel
dual approach (i.e., a proposal of a DSS architecture) with two GHSOMs, which starts
from identifying the counterparts within the clustered groups. Then, the classification
rules are formed based on a certain spatial hypothesis, and a feature extraction
mechanism is applied to extract features from the fraud clustered groups. The dominant
classification rule is adapted to identify suspected samples, and the results of feature
extraction mechanism are used to pinpoint their relevant input variables and potential
fraud activities for further decision aid.

Specifically, for the financial fraud detection (FFD) domain, a non-fraud (fraud)
GHSOM tree is constructed via clustering the non-fraud (fraud) samples, and a
non-fraud-central (fraud-central) rule is then tuned via inputting all the training
samples to determine the optimal discrimination boundary within each leaf node of the
non-fraud (fraud) GHSOM tree. The optimization renders an adjustable and effective
rule for classifying fraud and non-fraud samples. Following the implementation of the
DSS architecture based on the proposed dual approach, the decision makers can
objectively set their weightings of type I and type II errors. The classification rule that
dominates another is adopted for analyzing samples. The dominance of the
non-fraud-central rule leads to an implication that most of fraud samples cluster around
the non-fraud counterpart, meanwhile the dominance of fraud-central rule leads to an
implication that most of non-fraud samples cluster around the fraud counterpart.

Besides, a feature extraction mechanism is developed to uncover the regularity of
input variables and fraud categories based on the training samples of each leaf node of
a fraud GHSOM tree. The feature extraction mechanism involves extracting the
variable features and fraud patterns to explore the characteristics of fraud samples

within the same leaf node. Thus can help decision makers such as the capital providers
1



evaluate the integrity of the investigated samples, and facilitate further analysis to
reach prudent credit decisions.

The experimental results of detecting fraudulent financial reporting (FFR), a
sub-field of FFD, confirm the spatial relationship among fraud and non-fraud samples.
The outcomes given by the implemented DSS architecture based on the proposed dual
approach have better classification performance than the SVM, SOM-+LDA,
GHSOM+LDA, SOM, BPNN and DT methods, and therefore show its applicability to
evaluate the reliability of the financial numbers based decisions. Besides, following the
SOM theories, the extracted relevant input variables and the fraud categories from the
GHSOM are applicable to all samples classified into the same leaf nodes. This
principle makes that the extracted pre-warning signal can be applied to assess the
reliability of the investigated samples and to form a knowledge base for further
analysis to reach a prudent decision. The DSS architecture based on the proposed dual
approach could be applied to other FFD scenarios that rely on financial numbers as a

basis for decision making.

Keywords: Growing Hierarchical Self-Organizing Map; Unsupervised Neural

Networks, Classification,; Financial Fraud Detection; Fraudulent Financial Reporting.
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1. Introduction

This study proposes a dual approach as a Decision Support System (DSS)
architecture based on the Growing Hierarchical Self-Organizing Map (GHSOM)
(Dittenbach et al., 2000; Dittenbach et al., 2002; Rauber et al., 2002), a type of
unsupervised artificial neural networks (ANN), for the decision support in financial
fraud detection (FFD). FFD involves distinguishing fraudulent financial data from
authentic data, disclosing fraudulent behavior or activities, and enabling decision
makers to develop appropriate strategies to decrease the impact of fraud (Lu and Wang,
2010). The decision for FFD can be aided by statistical methods such as the logistic
regression, as well as data mining tools such as the ANN, in which the ANN has been
widely used and plays an important role in FFD (Lu and Wang, 2010). Among the
ANN applications in FFD, the Self-Organizing Map (SOM) (Kohonen, 1982) has been
adopted in diagnosing bankruptcy (Carlos, 1996). The major advantage of the SOM is
its great visualization capability of topological relationship among the
high-dimensional inputs in the low-dimensional view. Other advantages are adaptive
(i.e., the clustering can be redone if new training samples are set) and robust (i.e., the
pattern recognition ability). There are numerous applications involving the SOM and
the most widespread use is the identification and visualization of natural groupings in
the sample data sets. However, the weaknesses of the SOM include its predefined and
fixed topology size and its inability to provide the hierarchical relations among
samples (Dittenbach et al., 2000).

An improvement of the SOM has been done by Dittenbach, Merkl and Rauber
(2000). They developed the GHSOM which addresses the issue of fixed network
architecture of the SOM through developing a multilayer hierarchical network
structure. The flexible and hierarchical feature of the GHSOM generates delicate
clustered subgroups with heterogeneous features, and makes it a powerful and versatile
data mining tool. The GHSOM has been used in many fields such as the image
recognition, web mining, text mining, and data mining (Dittenbach et al., 2000;
Schweighofer et al., 2001; Dittenbach et al., 2002; Rauber et al., 2002; Shih et al., 2008;
Zhang and Dai, 2009; Tsaih et al., 2009). It is worth of knowing that the GHSOM can
be a useful clustering tool to do the pre-processing of feature extraction for a certain

application field.



In general, the GHSOM mainly takes the task of clustering and then visualizing
the clustering results. To accomplish other purposes such as prediction or classification,
the neural networks must be complemented with a statistical study of the available
information (Serrano, 1996). However, this study finds that the development of the
GHSOM into a classification model has been limited studied (Hsu et al., 2009; Lu and
Wang, 2010; Guo et al.,, 2011). Besides, other than the hierarchical feature, the
GHSOM studies have rarely provided the topological insight into high-dimensional
inputs.

To better utilize the advantage of the GHSOM for the purpose of classification and
feature extraction in helping FFD, this study pioneers a DSS architecture based on the
proposed dual approach which helps extract the nature of the distinctive characteristics
among different clustered groups generated by the GHSOM. This study develops an
innovative way of observing the clustered data to form the optimal classification rule,
and revealing more information regarding the relevant input variables and the potential
fraud categories for the suspected samples as the knowledge base for facilitating FFD
decision making.

This study examines the following topological relationships regarding
high-dimensional inputs, of which there are two types: fraud and non-fraud, and
matches the fraud counterpart of each non-fraud subgroup and vice versa. This study
assumes that there is a certain spatial relationship among fraud and non-fraud samples.
The spatial hypothesis: The spatial distributions of fraud samples and their non-fraud
counterparts are identical, and the spatial distributions of most fraud samples and their
non-fraud counterparts are the same. Within each pair of clusters, either the fraud
samples cluster around their non-fraud counterparts, or the non-fraud samples cluster
around their fraud counterparts. If such a spatial relationship among fraud and
non-fraud samples does exist, the associated classification rule can be set up to identify
the fraud samples based on the correspondence of the fraud samples and their
non-fraud counterparts and vice versa. Moreover, the proposed dual approach is
data-driven. That is, the corresponding system modeling is performed via directly
using the sampled data. Thus, different sampled data input to the proposed DSS
architecture may result in distinctive DSSs. To practically utilize such a spatial

relationship for identifying fraud cases and examine the applicability of the proposed



DSS architecture based on the dual approach, this study sets up the fraudulent financial
reporting (FFR) experiment, a sub-field of FFD.

Specifically, the proposed DSS architecture contains four phases. In the training
phase, the sampling and variable selection are done first, and then it adopts the
hierarchal-topology mapping advantage of the GHSOM to build up two GHSOMs
(named non-fraud tree, NFT, and fraud tree, FT) from two classes of training samples
collected from the financial statements.

In the modeling phase, following the majority principle, the corresponsive FT leaf
node for each NFT leaf node are identified using all (fraud and non-fraud) training
samples. Then, each training sample is classified into these two GHSOMs to develop
the discrimination boundaries according to the candidate classification rules. The
candidate classification rules in this study involve a non-fraud-central rule and a
fraud-central rule, which are tuned via inputting the clustered training samples to
determine the optimal discrimination boundary within each leaf node of the FT and
NFT. For the candidate classification rules, a decision maker can set up his/her
preference for the weights of classification error (type I and type II error) that makes
the developed classification rule more acceptable and domain specific. The dominant
classification rule with the best classification performance is applied in the analyzing
phase. Besides, this study involves a feature extraction mechanism with two modules,
feature-extracting module and pattern-extracting module, in the modeling phase that
focus on discovering the common features and patterns in each FT leaf node. For the
features regarding the input variables, the principal component analysis (PCA) is
applied to provide the associated principal components. For the patterns such as the
FFR fraud categories, the corresponding verdict contents of the fraud samples are
investigated to determine the associated FFR fraud categories.

In the analyzing phase, each investigated sample is classified into the winning leaf
nodes of FT and NFT, and applies the dominant classification rule to determine
whether this sample is fraud or not. In the decision support phase, for an investigated
sample, the result of the analyzing phase is used to help the decision makers speculate
its FFR potentiality and. If it is identified as fraud, the associated potential FFR
behaviors will be retrieved. The released information of the implemented DSS
architecture based on the proposed dual approach can help decision makers better

identify FFR and interpret the distinctive FFR behaviors among the clustered groups,
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comprehend the difference between fraud and non-fraud samples, and finally facilitate

the real-world decision making.

In sum, the implementation of the DSS architecture based on the proposed dual
approach can be leveraged both to justify the spatial hypothesis, and when the spatial
hypothesis holds, to disclose the information that better supports FFD. The proposed
DSS architecture based on the dual approach is expected to be potentially applicable to
other similar scenarios, and is able to be implemented as a DSS that helps detect
suspicious samples and at the same time provide their possible fraud categories
beforehand.

There are four objectives of this study:

(1) Develop a DSS architecture based on the proposed dual approach that (a) adopt
the GHSOM to separately cluster fraud training samples and non-fraud training
samples; (b) set up the discriminant boundaries for each pair of leaf nodes
following the candidate classification rules based on the proposed spatial
hypotheses; (c) use the determined classification rule to classify unknown samples;
(d) observe whether spatial hypothesis holds and (d) illustrate the embedded
information from the evaluation results including the extracted features and fraud
patterns from the FT leaf nodes.

(2) Justify whether the implemented dual approach is capable of helping distinguish
fraud and non-fraud samples.

(3) Compare the outcomes of our classification with other supervised or unsupervised
learning methods.

(4) Provide implications regarding FFD decision support and research implications.
The rest of this dissertation is organized as follows. Chapter Two presents the

literature reviews of the DSS, clustering methods, the GHSOM, PCA and FFR.

Chapter Three explains the design of the proposed dual approach in details. Chapter

Four demonstrates the experimental results. Chapter Five provides the comparison

against other methods and the discussion of experiment of results. The implications are

shown in Chapter Six. Chapter Seven gives the final conclusion and future works.



2. Literature review

In this section, we briefly review the DSS, clustering methods, GHSOM, PCA and
FFR as the background knowledge including the applications of the GHSOM and the

FFR detection issue.

2.1 DSS

Basically, the efforts in supporting the whole decision-making process focused in
the development of computer information systems providing the support needed. The
concept of the DSS was introduced, from a theoretical point of view, in the last 1960s.
Klein and Methlie (1995) define a DDS as a computer information system that
provides information in a specific problem domain using analytical decision models as
well as techniques and access to database, in order to support a decision maker in
taking decision effectively in complex and ill-structured problems. The contribution of
DSS technology can be summarized as follows (Turban, 1993):

® The DSSs provide the necessary means for dealing with semi-structured and
unstructured problems of high complexity, such as many problems from the
field of financial management.

® The support provided by the DSSs may respond to the needs and the cognitive
style of different decision makers, combining the preferences and the judgment
of the every individual decision maker with the information derived by
analytical decision models.
The time and the cost of the whole decision process are significantly reduced.
The support that is provided by the DSSs responds to the needs of various
managerial levels, ranging from top managers and executives down to staff
managers.

The DSSs help the decision maker to gain experience in data collection, as well as
in the implementation of several scientific decision models, and they also incorporate
the preferences and decision policy of the decision maker in the decision-making
process. (Zopounidis et al., 1997)

There are various researches that have developed the DSSs for many application

areas, for example, HR planning and decisions (Mohanty and Deshmukh, 1997),



financial management (Matsatsinis et al., 1997), marketing (Li, 2000), etc. Pinson
(1992) developed the CREDEX system, which demonstrated the feasibility of a
multi-expert approach driven by a meta-model in the assessment of credit risk. The
system, using quantitative (economic and financial) and qualitative (social) data
concerning the examined company and its business sector, as well as the bank’s
lending policy, provides a diagnosis of the company's function (commercial, financial,
managerial and industrial) in terms of weaknesses and strengths. Zopounidis et al.
(1997) developed a knowledge-based decision support system for financial
management that integrates the DSS technologies to tackle past and current frequently
occurring problems. Wen et al. (2005) proposed a decision support system based on an
integrated knowledge base for acquisitions and mergers. It not only provided
information concerning merger processes, major problems likely to occur in merger
situations, and regulations practically or procedurally, but also gave rational
suggestions in compliance with the appropriate regulations. It also suggested to the
user how to deal with an uncertain growth rate and current evaluations. Wen et al.
(2008) presented a mobile knowledge management decision support system using
multi-agent technology for automatically providing efficient solutions for decision
making and managing an electronic business. Nguyen et al. (2008) proposed an early
warning system (EWS) that identifies potential bank failures or high-risk banks
through the traits of financial distress which is able to identify the inherent traits of
financial distress based on financial covariates (features) derived from publicly
available financial statements.

In sum, many methodologies have been used and embedded with the existing
framework of the DSS that could considerably increase the effectiveness of the

provided decision support.

2.2 Clustering methods and the GHSOM

2.2.1 Clustering methods and the SOM

Clustering is an unsupervised classification of patterns into groups based on
similarity. The main goal of clustering is to partition data patterns into several

homogeneous groups that minimizes within-group variation and maximizes between
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group variations. Each group is represented by the centroid of the patterns that belongs
to the group. There are many important applications of clustering such as image
segmentation (Jain et al., 1999), object recognition, information retrieval (Rasmussen,
1992), and so on. Clustering is the process of grouping the similarity data together such
that data is high similarity within cluster but are dissimilarity between clusters.
Clustering is the basis of many areas including data mining, statistical, biology,
machine learning, etc. Clustering methods are used for data exploration and to provide
class prototypes for use in the supervised classifiers. Among many clustering tools, the
SOM is an unsupervised learning ANN and it appears to be an effective method for
feature extraction and classification. Therefore, this study gives the following
introduction and some literature reviews.

The Self-Organizing Map (SOM) is developed by Kohonen (1982), also known as
the Kohonen Maps. It has demonstrated its efficiency in real domains, including
clustering, the recognition of patterns, the reduction of dimensions, and the extraction
of features. It maps high-dimensional input data onto a low dimensional space while
preserving the topological relationships between the input data. SOM is made up two
neural layers. The input layer has as many neurons as it has variables, and its function
is merely to capture the information. Let m be the number of neurons in the input layer;
and let n, * n, the number of neurons in the output layer which are arranged in a
rectangular pattern with x rows and y columns, which is called the map. Each neuron in
the input layer is connected to each neuron in the output layer. Thus, each neuron in
the output layer connections to the input layer. Each one of these connections has a
synaptic weight associated with it. Let w; the weight associated with the connection
between input neuron i and output neuron j. Figure 1 gives a visual representation of

this neural arrangement.
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Figure 1. The self organizing map structure
Note: This SOM with m neurons in the input layer and n, * ny neurons in the output
layer. Each neuron in the output layer has m connections wj; (synaptic weights) to the
input layer (Carlos, 1996).

SOM tries to project the multidimensional input space, which in our case could be
financial information, into the output space in such a way that the input patterns whose
variables present similar values appear close to one another on the map which is
created. Each neuron learns to recognize a specific type of input pattern. Neurons
which are close on the map will recognize similar input patterns whose images
therefore, will appear close to one another on the created map. In this way, the
essential topology of the input space is preserved in the output space. In order to
achieve this, the SOM uses a competitive algorithm known as “winner takes all”.

Initially, the w;; are given random values. These values will be corrected as the
algorithm progress. Training proceeds by presenting the input layer with financial
ratios, one sample at a time. Let 7 be the value of ratio i for firm £. This ratio will be
read by neuron i. The algorithm takes each neuron in the output layer at a time and

computes the Euclidean distance as the similarity measure.
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d(j,k)= fZ(”ik_Wy'k)z (1)

The output neuron for which d(j, k) (defined in Equation (1)) is the smallest, and is
the “winner neuron”. Let such neuron be & . The algorithm now proceeds to change the
synaptic weights w;; in such a way that the distance d(j, k") is reduced. A correction
takes place, which depends on the number of iterations already performed and on the
absolute value of the difference between r; and wy;. But other synaptic weights are also
adjusted in function to how near they are to the winning neuron &~ and the number of
iterations that have already taken place.

The procedure is repeated until complete training stops. Once the training is
complete, the weights are fixed and the network is ready to be used. When a new
pattern is presented, each neuron computes in parallel the distance between the input
vector and the weight vector that it stores, and a competition starts that is won by the
neuron whose weights are more similar to the input vector. Alternatively, we can
consider the activity of the neurons on the map (inverse to the distance) as the output.
The region where the maximum activity takes place indicates the class that the present
input vector belongs to. If a new pattern is presented to the input layer and no neuron is
stimulated by its presence the activity will be minimal, and this means that the pattern
is not recognized. (Kohonen, 1989).

Thousands of the SOM applications are found among various disciplines (Serran,
1996; Richardson et al., 2003; Risien et al., 2004; Liu et al., 2006). It is widely used in
application to the analysis of financial information (Serran, 1996). Eklund (2002)
indicated that the SOM can be a feasible tool for classification of large amounts of
financial data. The SOM has established its position as a widely applied tool in
data-analysis and visualization of high-dimensional data. Within other statistical
methods the SOM has no close counterpart, and thus it provides a complementary view
to the data. The SOM is a widely used method in classification or clustering problem,
because it provides some notable advantages over the alternatives (Khan et al., 2009).

There are various studies that used the SOM for a given clustering problem.
Mangiameli, Chen, and West (1996) compared the performance of the SOM and seven
hierarchical clustering methods for 252 data sets with various levels of imperfections
that include data dispersion, outliers, irrelevant variables and non-uniform cluster

densities. In conclusion, they demonstrated that the SOM is superior to the hierarchical
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clustering methods. Granzow et al. (2001) investigated five clustering techniques:
K-means, SOM, growing cell structure networks, fuzzy C-means (FCM) algorithm and
fuzzy SOM. At the end of the analysis, they concluded that fuzzy SOM approach is the
most suitable method in partitioning the data set. Shin and Sohn (2004) used K-means,
SOM and FCM in order to segment stock trading customers and inferred that FCM
cluster analysis is the most robust approach for segmentation of customers.
Martin-Guerrero et al. (2006) compared the performance of K-means, FCM, and a set
of hierarchical algorithms, Gaussian mixtures trained by the expectation—maximization
algorithm, and the SOM in order to determine the most suitable algorithm in
classification of artificial data sets produced for web portals. Finally, they concluded
that the SOM outperforms the other clustering methods. Budayan et al. (2009)
presented the strategic group analysis of Turkish contractors to compare the
performances of traditional cluster analysis techniques, SOM and FCM for strategic
grouping. It is concluded that the SOM and FCM can reveal the typology of the
strategic groups better than traditional cluster analysis and they are more likely to
provide useful information about the real strategic group structure.

The difference findings of these studies can be explained by the argument that the
suitability of clustering methods to a given problem changes with the structure of the
data set and purpose of the study. It is concluded that the aim of a study using
clustering method is not to find out the best clustering method for all data sets and
fields of application, but instead it is to demonstrate superior features of different

clustering techniques for a particular problem domain, for example the FFD.

2.2.2 GHSOM

The SOM has shown to be a stable neural network model of high-dimensional data
analysis. However, its capability is limited by some limitations when using the SOM.
The first drawback is its static network architecture. The number and arrangement of
nodes has to be pre-defined even without a priori knowledge of the data. Second, the
SOM model has limited capabilities for the representation of hierarchical relations of
the data. To overcome the inherent deficiencies of the SOM, Dittenbach, Merkl, and
Rauber (2000) developed GHSOM to provide a SOM hierarchy automatically.
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As shown in Figure 2, the GHSOM contains a number of SOMs in each layer. The

size of these SOMs and the depth of the hierarchy are determined during its learning

process according to the requirements of the input data.
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Figure 2. The GHSOM structure.

The training process of the GHSOM consists of the following four phases
(Dittenbach et al., 2000):

Initialize the layer 0: The layer 0 includes single node whose weight vector is
initialized as the expected value of all input data. Then, the mean quantization
error of layer 0 (MQEy) is calculated. The MQE of a node denotes the mean
quantization error that sums up the deviation between the weight vector of the
node and every input data mapped to the node.

Train each individual SOM: Within the training process of an individual SOM,
the input data is imported one by one. The distances between the imported
input data and the weight vector of all nodes are calculated. The node with the
shortest distance is selected as the winner. Under the competitive learning
principle, only the winner and its neighborhood nodes are qualified to adjust
their weight vectors. Repeat the competition and the training until the learning
rate decreases to a certain value.

Grow horizontally each individual SOM: Each individual SOM will grow
until the mean value of the MQE:s for all of the nodes on the SOM (MQE,,) is
smaller than the MQE of the parent node (MQE,) multiplied by 1, as stated in
Equation (2). If the stopping criterion is not satisfied, find the error node that
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owns the largest MQE and then, as shown in Figure 3, insert one row or one

column of new nodes between the error node and its dissimilar neighbor.

MQE,, < 1, X MQE, )

elole
elole sloloNeloleln
sloleits-t-Ileleloxelel T

(a) insert a row (b) insert a column

Figure 3. Horizontal growth of individual SOM.
Note: The notation x indicates the error node and y indicates the x’s dissimilar

neighbor.

® Expand or terminate the hierarchical structure: After the horizontal growth
phase of individual SOM, each MQE; is compared with the value of MQE,
multiplied by 1,. The node with an MQE; greater than 1, x MQE, will develop
a next layer of SOM. In this way, the hierarchy grows until all of the leaf
nodes satisfy the stopping criterion stated in Equation (3). The leaf nodes

means the node does not own a next layer of SOM.

MQE; < 1, x MQE, 3)

Several researches have applied the GHSOM to deal with text mining, image
recognition and web mining problem. For example, Schweighofer et al. (2001) have
show the feasibility of using the GHSOM and LabelSOM techniques in legal research
by tests with text corpora in European case law. Shih et al. (2008) used the GHSOM
algorithm to present a content-based and easy-to-use map hierarchy for Chinese legal
documents in the securities and futures markets in the Chinese language. Antonio et al.
(2008) used the GHSOM to analyze a citizen web portal, and provided a new
visualization of the patterns in the hierarchical structure. The results have shown that
the GHSOM is a powerful and versatile tool to extract relevant and straightforward
knowledge from the vast amount of information involved in a real citizen web portal.

Lu and Wang (2010) applied the GHSOM with support vector regression model to
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product demand forecasting. The experimental results showed that the GHSOM can be
used to combine with other machine learning or data mining techniques in order to
improve the performance and obtain inspirable results.

Not many studies have applied the GHSOM in the purpose of forecasting until
recent years. For instance, the two-stage architecture is employed by Hsu et al. (2009)
which applied GHSOM and SVM to better predict financial indices. They suggested
that the two-stage architecture can have smaller deviations between predicted and
actual values than the single SVM model. Lu and Wang (2010) applied the GHSOM
with support vector regression model to product demand forecasting. Guo et al. (2011)
applied the GHSOM in case base reasoning system in design domain and found that
new case is guided into corresponding sub-case base through the GHSOM, which
makes the case retrieval more efficient and accurate. In sum, the GHSOM has been
used in combining with other machine learning or data mining techniques to improve

the model performance, and to provide valuable information for decision aid.

2.3 PCA

Feature extraction is an essential pre-processing step to pattern recognition and
machine learning problems. It is often decomposed into feature construction and
feature selection. Feature selection approaches try to find a subset of the original
variables, which are generally performed before or after model training. In some cases,
data analysis such as regression or classification can be done in the reduced space more
accurately than in the original space. Feature selection can be done by using different
methods, such as the PCA, Factor Analysis (FA), stepwise regression, and discriminant
analysis (Tsai, 2009). In terms of the usage of dependent variable, these methods could
be divided into supervised and unsupervised categories. Supervised feature selection
techniques usually relate to the discriminant analysis technique (Fukunaga, 1990)
which uses the within and between-class scatter matrices. Unsupervised linear feature
selection techniques more or less all rely on the PCA (Pearson, 1901), which rotates
the original feature space and projects the feature vectors onto a limited amount of axes

(Turk and Pentland, 1991; Oja, 1992).
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The PCA was invented by Pearson (1901). The central idea of PCA is to reduce
the dimensionality of a data set consisting of a large number of interrelated variables,
while retaining as much as possible of the variation present in the data set. This is
achieved by transforming to a new set of uncorrelated principal components (PCs),
which are ordered so that the first few retain most of the variation present in all of the
original variables (Jolliffe, 2002).

The PCA can be done by eigenvalue decomposition of a data covariance matrix or
singular value decomposition of a data matrix, usually after mean centering the data for
each attribute. The results of a PCA are usually discussed in terms of component scores
(the transformed variable values corresponding to a particular case in the data) and
loadings (the variance each original variable would have if the data are projected onto
a given PCA axis) (Shaw, 2003).

The PCA is mathematically defined as an orthogonal linear transformation that
transforms the data to a new coordinate system such that the greatest variance by any
projection of the data comes to lie on the first coordinate (called the first principal
component), the second greatest variance on the second coordinate, and so on (Jolliffe,
2002).

Define a data matrix, X', with zero empirical mean (the empirical mean of the
distribution has been subtracted from the data set), where each of the n rows represents
a different repetition of the experiment, and each of the m columns gives a particular
kind of datum (say, the results from a particular probe). (Note that what we are calling
X" is often alternatively denoted as X itself.) The PCA transformation is then given by
below Equation (4):

YT =X"W=vz' (4)

where the matrices W, X, and V are given by a singular value decomposition (SVD) of
X as W = V. (V is not uniquely defined in the usual case when m < n—1, but Y will
usually still be uniquely defined.) ¥ is an m-by-n diagonal matrix with nonnegative real
numbers on the diagonal. Since W (by definition of the SVD of a real matrix) is an
orthogonal matrix, each row of Y' is simply a rotation of the corresponding row of X'.
The first column of Y' is made up of the "scores" of the cases with respect to the
principal component, and the next column has the scores with respect to the second

principal component. If we want a reduced-dimensionality representation, we can

18



project X down into the reduced space defined by only the first L singular vectors, W

defined in Equation (5):
Y=W, 'X=2,V' (5)

The matrix W of singular vectors of X is equivalently the matrix W of

eigenvectors of the matrix of observed covariance C = X X' defined in Equation (6),
XX =wzz'w’ (6)

Given a set of points in Euclidean space, the first principal component corresponds
to a line that passes through the multidimensional mean and minimizes the sum of
squares of the distances of the points from the line. The second principal component
corresponds to the same concept after all correlation with the first principal component
has been subtracted out from the points. The singular values (in X) are the square roots
of the eigenvalues of the matrix XX'. Each eigenvalue is proportional to the portion of
the "variance" (more correctly of the sum of the squared distances of the points from
their multidimensional mean) that is correlated with each eigenvector. The sum of all
the eigenvalues is equal to the sum of the squared distances of the points from their
multidimensional mean. The PCA essentially rotates the set of points around their
mean in order to align with the principal components. This moves as much of the
variance as possible (using an orthogonal transformation) into the first few dimensions.
The values in the remaining dimensions, therefore, tend to be small and may be
dropped with minimal loss of information. The PCA is often used in this manner for
dimensionality reduction. (Jolliffe, 2002)

The result of PCA is a linear transformation that transforms the data to a new
coordinate system such that the new set of variables, also called the principal
components. This linear function of the original variables are uncorrelated and the
greatest variance by any projection of the data comes to lie on the first coordinate, the
second greatest variance on the second coordinate, and so on. The main steps of the

PCA are summarized in Figure 4.
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®  Calculate the covariance matrix or correlation matrix, C

® Compute the matrix V of eigenvectors which diagonalizes the covariance
matrix C, where D is the diagonal matrix of eigenvalues of C. Matrix V,
also of dimension M x M, contains M column vectors.

D=VCV
Y'=X"W=vz'

®  Determination of number of significant components (L) based on statistical
tests, variances limitation, or factor loadings

® Reproduction of Y using a reduced space defined by only the first L

singular vectors, W

Y=W,'X=2,V,'

Figure 4. The main steps of the PCA.

In short, the PCA is achieved by transforming to a new set of variables, as the
principal components, which are uncorrelated and ordered so that the first few retain
most of the variation present in the entire original variables (Jolliffe, 1986). By using a
few components, each sample can be represented by relatively few numbers instead of
by values for thousands of variables. Samples can then be plotted, making it possible to
visually assess similarities and differences between samples and determine whether
samples can be grouped. (Ringnér, 2008)

Many studies have used the PCA for feature selection or dimensional reduction in
financial studies. For example, Canbas et al. (2005) used the PCA to construct an
integrated early warning system (IEWS) that can be used in bank examination and
supervision process. In IEWS, the PCA helps explore and understand the underlying
features of the financial ratios. By applying the PCA to the financial data, the
important financial factors (i.e. capital adequacy, income-expenditure structure and
liquidity), which can significantly explain the changes in financial conditions of the
banks, were explicitly explored. Min and Lee (2005) reduced the number of
multi-dimensional financial ratios to two factors through the PCA and calculate factor
scores as the model training information. The result showed that the PCA contributes
the graphic analysis step of support vector machines (SVMs) model with better
explanatory power and stability to the bankruptcy prediction problem. Humpherys et al.
(2010) applied the PCA with Varimax rotation and reliability statistics in their
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proposed fraudulent financial detection model. Guided by theoretical insight and
exploratory factor analysis, their 24-variable model of deception was reduced to a
10-variable model to achieve greater parsimony and interpretability.

Compare the PCA with FA, the PCA is preferred in this study because it is used to
discover the empirical summary of the data set (Tabachnick and Fidell, 2001). In
addition, the PCA considers the total variance accounting for all the common and
unique (specific plus error) variance in a set of variables while FA considers only the
common variance.

In the problem domain of FFD, the quantitative data are easier to present the
financial conditions of the enterprise and an individual. This study tries to apply an
analysis tool on quantitative clustered data to help to explore the represented variable
sets and then give them a meaningful description. If the amount of sample is not much,
the relationship between the input variables and output variable can be seen as linear;
besides, we hope to find a composite of variables to provide more delicate group
features. For this purpose, the PCA is more suitable and it has been widely used as a
feature selection tool. Hence, this study will apply the PCA for feature extraction in
our proposed dual approach in order to help get theoretical groups of input variables
within each clustered group. That is, the PCA is used to provide expandability for each
subgroup with clear endogenous variable insights; furthermore, these features can
inspire the decision making process of the fraud detection, and can be enriched by

other exogenous information related to fraud behaviors.

24 FFR

Fraudulent financial reporting (FFR), also known as financial statement fraud or
management fraud, is a type of financial fraud that adversely affects stakeholders
through misleading financial reports (Elliot and Willingham, 1980). FFR involves the
intentional misstatement or omission of material information from an organization’s
financial reports (Beasley et al., 1999). FFR, although with the lowest frequency, casts
a severe financial impact (Association of Certified Fraud Examiners, ACFE 2008).
FFR can lead not only to significant risks for stockholders and creditors, but also

financial crises for the capital market. According to the ACFE (2008), financial
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misstatements are the most costly form of occupational fraud, with median losses of $2
million per scheme. FFR, or financial statement fraud, is known as “cooking the
books” that often has severe economic consequences and makes front page headlines
(Beasley et al., 1999). While ACFE (1998) reported that fraud has become more
prevalent and costly, the detection of fraud has been badly lagging. The KPMG (1998)
survey found that over one third of fraud cases were discovered by accident and that
only 4 percent of cases were detected by independent auditor. When the auditor makes
inquiries about fraud-related transactions, he or she is likely to be deceived with false
or incomplete information (Weisenborn and Norris, 1997). Though the ability to
identify fraudulent behavior is desirable, humans are only slightly better than chance at
detecting deception (Bond and DePaulo, 2006) or identifying fraudulent behaviors
beforehand. Therefore, there is an imperative need for decision aids of identifying FFR.
More reliable methods are needed to assist auditors and enforcement officers in
maintaining trust and integrity in publicly owned corporation.

Most prior FFR-related research focused on the nature or the prediction of FFR.
The nature-related FFR research often uses the case study approach and provides a
descriptive analysis of the characteristics of FFR and techniques commonly used. For
example, the Committee of Sponsoring Organizations (COSO) and the Association of
Certified Fraud Examiners (ACFE) regularly publish their own analysis on fraudulent
financial reporting of U.S. companies. Based on the FFR samples, COSO examines
and summarizes certain key company and management characteristics. ACFE analyzes
the nature of occupational fraud schemes and provides suggestions to create adequate
internal control mechanisms. As shown in Table 1, nature-related FFR research often
uses case study, statistic or data mining approach to archival data and identifies
significant variables that help predict the occurrence of fraudulent financial reporting.
Other nature-related FFR studies focus on the audit assessment and planning (Bell and
Carcello, 2000; Newman et al., 2001; Carcello and Nagy, 2004; Gillett and Uddin,
2005).
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Table 1. Research methodology and findings in nature-related FFR studies.

Research Methodology Findings
Beasley et « Case study * Nature of companies involved
al. * Descriptive statistics ) o )
(1999) - Companies committing financial statement fraud

were relatively small.

- Companies committing the fraud were inclined to
experience net losses or close to break-even
positions in periods before the fraud.

* Nature of the control environment

- Top senior executives were frequently involved.

- Most audit committees only met about once a year
or the company had no audit committee.

* Nature of the frauds

- Cumulative amounts of fraud were relatively large
in light of the relatively small sizes of the
companies involved.

- Most frauds were not isolated to a single fiscal
period.

- Typical financial statement fraud techniques
involved the overstatement of revenues and assets.

* Consequences for the company and individuals
involved

- Severe consequences awaited companies
committing fraud.

- Consequences associated with financial statement
fraud were severe for individuals allegedly

involved.
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ACFE * Case study .
(2008) * Descriptive statistics

Occupational fraud schemes tend to be extremely
costly. The median loss was $175,000. More than
one-quarter of the frauds involved losses of at least $1
million.

* Occupational fraud schemes frequently continue for
years, two years in typical, before they are detected.

* There are 11 distinct categories of occupational fraud.
Financial statement fraud was the most costly category
with a median loss of $2 million for the cases
examined.

* The industries most commonly victimized by fraud in
our study were banking and financial services (15% of
cases), government (12%) and healthcare (8%).

* Fraud perpetrators often display behavioral traits that

serve as indicators of possible illegal behavior. In

financial statement fraud cases, which tend to be the
most costly, excessive organizational pressure to

perform was a particularly strong warning sign.

Another type of FFR research often uses the empirical approach to archival data
and identifies significant variables that help predict the occurrence of FFR. This line of
research also inputs these significant variables into fraud prediction models. Such
research emphasizes the predictability of the model being used. For example, logistic
regression and neural network techniques are used in this line of research (e.g., Persons,
1995; Fanning and Cogger, 1998; Bell and Carcello, 2000; Virdhagriswaran, 2006;
Kirkos et al., 2007). The matched-sample design is typical for traditional FFR
empirical studies. That is, a set of samples with fraudulent financial statements
confirmed by the Department of Justice is matched with a set of samples without any
allegations of fraudulent reporting.

Table 2 summarizes the research methodology and findings of the FFR empirical
studies most relevant to our study. The research methodology has shown a trend with
an emphasis on the classification mechanization which is used as the decision support

information for future risk identification (Basens et al., 2003).
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Table 2. Research methodology and findings in FFR empirical studies.

Author  Methodology Variable Sample Findings
Dechow  Logistic * 21 variables Matched-pairs e To attract external
et al. regression - Financial design: financing at low cost was
(1996) ratios 92 firms found an important
- Other subject to motivation for earnings
indicators: enforcement  manipulation
corporate actions by the e Firms manipulating
governance SEC earnings are more likely to
ratios. have:
- insiders dominated
boards
- Chief Executive Officer
simultaneously serves as
Chairman of the Board
Persons  Stepwise logistic ¢ 9 financial Matched- The study found four
(1995) model ratios pairs design  significant indicators:

e Z-score financial leverage, capital
turnover, asset composition
and firm size

Fanning  Self-organizing < 62 variables Matched- * Neural network is more
and artificial neural e« Financial ratios pairs design:  effective
Cogger  network e Other 102 fraud * Financial ratios such as
(1998) indicators: samples and debt to equity, ratios of
corporate 102 non-fraud  accounts receivable to
governance, samples sales, trend variables are
capital significant indicators
structure etc.
Bell and  Logistic 46 fraud risk 77 fraud Logistic regression model
Carcello  regression factors samples and  outperformed auditors for
(2000) 305 non-fraud fraud samples, but were
samples equally performed for
non-fraud samples.
Kirkos et *Decision tree  * 27 financial Matched- * Training dataset: neural
al. (2007) e« Back-propagati ratios pairs design:  network is the most
on neural e Z-score 38 fraud accurate
network samples and ¢ Validation dataset:

* Bayesian belief

38 non-fraud

Bayesian belief network is
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network samples the most accurate

Hoogs et  Genetic * 38 financial 51 fraud Integrated pattern had a
al. (2007) Algorithm ratios samples vs.  wider coverage for suspected
* 9 qualitative 51 non-fraud fraud companies while it
indicators samples remained lower false

classification rate for

non-fraud ones

Source: (Hsu, 2008; Huang et al., 2011).

As shown in Table 2, Persons (1995) used Stepwise logistic model to found
significant indicators relate to FFR. Dechow et al. (1996) used Logistic regression in
FFR detection. Bell and Carcello (2000) developed a Logistic regression model useful
in predicting the existence of fraudulent financial reporting, and found that the
proposed model outperformed auditors for fraud samples, but were equally performed
for non-fraud samples.

Green and Choi (1997) applied Back-propagation neural network to FFR detection.
The model used five ratios and three accounts as input. The results showed that
Back-propagation neural network had significant capabilities when used as a fraud
detection tool. Fanning and Cogger (1998) proposed a generalized adaptive neural
network algorithm, named AutoNet, to FFR detection. The input vector consisted of
financial ratios and qualitative variables. They compared the performance of their
model with linear and quadratic discriminant analysis, as well as logistic regression,
and claimed that AutoNet is more effective at detecting fraud than standard statistical
methods. Kirkos et al. (2007) compared Decision tree, Back-propagation neural
network, and Bayesian belief network in FFR detection and found that
Back-propagation neural network is the most accurate method in training dataset,
Bayesian belief network is the most accurate method in validation dataset. Hoogs et al.
(2007) applied Genetic Algorithm (GA) in FFR detection, and the performance of GA
concluded that the integrated pattern had a wider coverage for suspected fraud
companies while it remained lower false classification rate for non-fraud ones.

Humpherys et al. (2010) developed a linguistic methodology for detecting
fraudulent financial statements. The results demonstrate that linguistic models of

deception are potentially useful in discriminating deception and managerial fraud in
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financial statements. Their findings provide critical knowledge about how deceivers
craft fraudulent financial statements and expand the usefulness of deception models
beyond a low-stakes, laboratory setting into a high-stakes, real-world environment
where large fines and incarceration are the consequences of deception. In literature of
financial fraud detection (FFD), Ngai et al. (2010) have done a complete classification
framework and an academic review of literature which used data mining techniques for
FFD. They showed that the main data mining techniques used for FFD are logistic
models, neural networks, the Bayesian belief network, and decision trees, all of which
provide primary solutions to the problems inherent in the detection and classification
of fraudulent data. Huang et al. (2011) used the GHSOM to help capital providers
examine the integrity of financial statement. They applied the GHSOM to analysis
financial data and demonstrate an alternative way to help capital providers such as
lenders to evaluate the integrity of financial statements, a basis for further analysis to
reach prudent decisions. Huang and Tsaih (2012) evolved the GHSOM into a
prediction model for detecting the FFR. They proposed the initial concept of a dual
approach for examining whether there is a certain spatial relationship among fraud and
non-fraud samples, identifying the fraud counterpart of a non-fraud subgroup, and
detecting fraud samples.

The relevant literatures show that the neural network families have been widely
used in many financial applications, such as the FFR detection, credit ratings,

economic forecasting, risk management, or other FFD related issues.

2.5 Summary

The GHSOM is an improved vision of SOM. It is often used as a clustering tool
and has proved its availability to deal with classification and clustering problem to
achieve the decision support purpose. As a clustering tool, the related GHSOM studies
nowadays still provide limit information (or lack of the inherent knowledge) from the
clustering results, which may increase decision makers’ efforts to analyze such
semi-structured results.

As a result, further analysis for the generated subgroups is needed. A particular

design of the GHSOM for FFD is also needed since the learning nature of the GHSOM
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is unsupervised. Recent researches which considered feature extraction or pattern
recognition of the GHSOM are often applied to graphic data, sensor-collected data, or
text content; however, few of studies have focus on financial data. Despite the
GHSOM provides more delicate clustering results than the SOM, we find that no study
has applied the GHSOM and integrated it into a DSS that helps identify fraud (e.g.,
FFR). Therefore, this study expects to utilize the advantage of the GHSOM to design a
novel dual approach and apply it to detect FFR (a sub-field of FFD) that helps identify
fraud cases and explore their imbedded features through the PCA and explore their
potential FFR patterns through any qualitative method, and finally provides abundant
detection results as the investigative report to facilitate the decision process of both

identification and interpretation.
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3. The proposed dual approach

The overall system architecture of the proposed dual approach is illustrated in
Figure 5. The proposed dual approach consists of the following four phases: the training,
the modeling, the analyzing, and the decision support. There are eleven major modules:
sampling,  variable-selecting, clustering, statistic-gathering,  rule-forming,
feature-extracting, pattern-extracting, classifying, analyzing, feature-retrieving, and
decision-supporting.

The training phase consists of a series of three modules, which aims to sequentially
sample the data, select the input variables, and set up two GHSOM trees based upon the
dichotomous categories of training samples. The modeling phase consists of a series of
four modules, which aims to calculate two statistical values (Avg and Std) from each
leaf node of the obtained two GHSOM trees to form the optimal classification rule
based on the training samples, and extract features using quantitative and qualitative
method from the GHSOM tree which consists of fraud samples. In other word, the
modeling phase mainly focuses on setting up the classification rule based on certain
spatial relationship, which match each leaf node of FT to its counterpart leaf nodes in
NFT and vice versa.

The analyzing phase consists of two modules, in which the set GHSOMs, the
classification rule and the extracted features are used to identify fraud from the
unknown investigated samples, and retrieve the associated features for decision aid.
Each investigated sample will be classified into its belonging leaf node of GHSOMs.
Then, the optimal classification rule will be used to classify the investigated sample.
The decision support phase consists of two modules, which present the classification
result and retrieve the fraud related features for decision aid. For an investigated sample,
if the classification result is fraud, the regularity of its belonging leaf node of FT, that is

the principal components and the potential fraud categories, are retrieved.
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Figure 5. System architecture of the proposed dual approach.

Note: The clustering module generates two GHSOM trees. One is FT (use fraud
samples), and the other one is NFT (use non-fraud samples). The group-finding module
classifies the investigated sample into FT and NFT, respectively.

3.1 Training phase

Table 3 shows the training phase, in which the task of data pre-processing is done
via step 1 and step 2. Step 2 can apply any variable selection tool such as the
discriminant analysis, logistic model, and so forth.

Since fraud and non-fraud samples will be used to set up two GHSOM trees
(named non-fraud tree, NFT, and fraud tree, FT) respectively, before processing step 3,
the training samples are grouped as the fraud ones and the non-fraud ones. In step 3,
the fraud samples are used to set up an acceptable GHSOM named FT. After
identifying the FT, the values for (the GHSOM’s) breadth parameter (1) and depth
parameter (1) are determined and stored in step 4. Then, in step 5, the determined
values of 1, and 1, and the non-fraud samples are used for setting up another GHSOM

named NFT.
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Table 3. The training phase.

step 1:  Sample and measure variable.

step 2:  Identify the significant variables that will be used as the input
variables.

step 3:  Use the fraud samples to set up an acceptable GHSOM (denote FT).

step 4:  Based upon the accepted FT, determine the (GHSOM training)
parameters breadth (t;) and depth (12).

step 5:  Use the non-fraud samples and the determined parameters 7; and 7, to
set up another GHSOM (denote NFT).

3.1.1 Sampling module

The sampling module processes sample collection and variable measurement. The
sampling module is executed via the step 1 of Table 3. The definition of a fraud sample
and a non-fraud sample are defined first. The sources, the sample period and the way of
sampling are also decided in this step. The design of the sampling process is flexible
depended on the application field.

The explanatory variables are selected based upon fraud related literatures. These
measurements may proxy for several attributes of a sample. The next step will help to
select variables significantly relate to fraud, which help downsize the number of input

variables to make it more relevant to the collected sample base.

3.1.2 Variable-selecting module

The variable-selecting module is executed via the step 2 of Table 3. In the
variable-selecting module, the collected explanatory variables and the fraud/non-fraud
dichotomous dependent variable are put into the variable selection tool. Any variable
selection tool such as discriminant analysis, logistic model, and so forth can be applied
in this step. For example, in this study, the variable-selecting module applies
discriminant analysis processing variable selection from the obtained samples in order
to identify the significant variables that help detect fraud. Then, the variables with
statistically significant effects will be chosen as the input variables for GHSOM training

to obtain clustered groups.

31



3.1.3 Clustering module

The clustering module is executed via the step 3, step 4 and step 5 of Table 3. The
significant variables derived from the variable-selecting module are used as the input
variables for the GHSOM training to conduct clustering procedure. Two GHSOMs
(named non-fraud tree, NFT, and fraud tree, FT) are respectively generated from two
classes of training samples (fraud class, non-fraud class). For each GHSOM, a series of
leaf nodes (i.e., groups) are generated. Furthermore, based upon the FT, we can get
several clustered groups with inherent similarity for helping further feature extraction.

The competitive learning nature of GHSOM makes it work as a regularity detector
that is supposed to discover statistically salient features of the sample population
(Rumelhart and Zipser, 1985). In this module, the GHSOM will develop the topological
representation which captures the most salient features of each cluster. Furthermore,
through a set of small-sized leaf nodes, the GHSOM classifies the sample into more
subgroups with hierarchical relations instead of a dichotomous result and therefore

further delicate analyses are feasible.

3.2 Modeling phase

Table 4 presents the modeling phase, in which the classification rule is set up.
Despite FT and NFT are resulted from fraud and non-fraud samples respectively, the
spatial relationship hypothesis and the same setting of (7; and 7;) parameters may
render true that each leaf node of NFT has one or more than one counterpart leaf nodes
in FT and vice versa. Thus, one purpose of the modeling phase is to match each leaf

node of FT to its counterpart leaf nodes in NFT and vice versa.

Table 4. The modeling phase.

step 1: For each leaf node of FT,
1. calculate and store its Avg, value that is the average of Euclidean
distances between the weight vector and the grouped fraud training
samples;

ii. calculate and store its Std, value that is the standard deviation of
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step 2:

step 3:

step 4:

step 5:

step 6:

step 7:

step 8:

step 9:

Euclidean distances between the weight vector and the grouped
fraud training samples.
For each leaf node of NFT,

i. calculate and store its Avg, value that is the average of Euclidean
distances between the weight vector and the grouped non-fraud
training samples;

ii. calculate and store its Std, value that is the standard deviation of
Euclidean distances between the weight vector and the grouped
non-fraud training samples.

For each training sample,

1. identify and store the winning leaf node of FT and the winning leaf
node of NFT, respectively;

il. store its Avg values of the winning leaf nodes of FT and NFT,
respectively;

i1i. store its Std values of the winning leaf nodes of FT and NFT,
respectively.

iv. calculate and store its Dy, the Euclidean distance between the
training sample and the weight vector of the winning leaf node of
FT;

v. calculate and store its D,, the Euclidean distance between the
training sample and the weight vector of the winning leaf node of
NFT.

Create the spatial correspondence tables regarding the matching from
NFT to FT and from FT and NFT, respectively.

Use the fraud-central rule defined in Equation (3) and the optimization
problem (4) to determine the parameter A7 that minimizes the
corresponding sum of (type I and type II) classification errors.

Use the non-fraud-central rule defined in Equation (7) and the
optimization problem (8) to determine the parameter A that
minimizes the corresponding sum of (type I and type II) classification
errors.

Pick up the dominant classification rule via comparing the classification
errors obtained in step 5 and step 6.

For each leaf node of FT, apply PCA to select features through
extracting factors (i.e., principle components).

For each leaf node of FT, analyze the common fraud features from
exogenous information based on the associated domain categories.
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3.2.1 Statistic-gathering module

The statistic-gathering module is executed via the step 1, step 2 and step 3 of Table
4. After NFT and FT are constructed, a non-fraud-central rule and a fraud-central rule
are tuned respectively via inputting all samples to determine the adjustable
discrimination boundary within each leaf node of the NFT and FT. The optimization
renders rules for detecting fraud samples are adjustable and effective. The decision
maker can objectively set his/her weightings of type I and type II errors. The rule
associated with the tree that dominates another is adopted as the classification rule to
classify whether samples are fraud or non-fraud.

In step 1, the Avg, value (i.e., the average of Euclidean distances between the
weight vector and the grouped fraud training samples) and the Std, value (i.e., the
standard deviation of Euclidean distances between the weight vector and the grouped
fraud training samples) of each leaf node of FT are calculated and stored. Similarly, in
step 2, the Avg, value (i.e., the average of Euclidean distances between the weight
vector and the grouped non-fraud training samples) and the Std, value (i.e., the
standard deviation of Euclidean distances between the weight vector and the grouped
non-fraud training samples) of each leaf node of NFT are calculated and stored.
Hereafter, we use #x to denote the x leaf node of FT and *y the y™ leaf node of NFT.

In step 3, we collect and store the following information regarding each training
sample: the winning leaf node of FT, the winning leaf node of NFT, the corresponding
Avg, and Std, values of the winning leaf node of FT, the corresponding Avg, and Std,
values of the winning leaf node of NFT, the Dy (i.e., the Euclidean distance between
the training sample and the weight vector of the winning leaf node of FT), and D, (i.e.,
the Euclidean distance between the training sample and the weight vector of the
winning leaf node of NFT). Following the GHSOM classification rule, we identify the
winning leaf nodes of FT and NFT, respectively.
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3.2.2 Rule-forming module

The rule-forming module is executed via the step 4 to step 7 of Table 4. In step 4,
two spatial correspondence tables are created respectively based on the classification
results of all (fraud and non-fraud) training samples. That is, from the NFT perspective,
if the leaf node #x in FT hosts the majority of all training samples classified in the leaf
node *y in NFT, then we match the leaf node #x in FT to the leaf node *y in NFT and
claim that the leaf node #x in FT is the counterpart of the leaf node *y in NFT. The leaf
node matching of #x to *y states the spatial relationship among the fraud and non-fraud
samples classified in the leaf nodes of #x and *y. That is, if any sample is classified
into the leaf node *y when using NFT, it is more likely to be classified into the leaf
node #x when using FT. Similarly, from the FT perspective, if the leaf node *y in NFT
hosts the majority of all of training samples classified in the leaf node #x in FT, then
we match the leaf node *y in NFT to the leaf node #x in FT and claim that the leaf
node *y in NFT is the counterpart of the leaf node #x in FT.

The fraud-central rule defined in Equation (7), in which S is a parameter for a
pair p of leaf nodes (#FT match to *NFT), states that some non-fraud samples cluster
around a subset of fraud samples. That is, for the (fraud or non-fraud) sample c that is
classified into the leaf node #x of FT, if D), is smaller than the value of Avg; + Bf
X Std f , the sample ¢ will be classified as the fraud one; otherwise, the non-fraud one.
Because the discrimination boundary (i.e., Avg; + B x Sid}) is data-dependent,
the parameter S needs to be tuned to find the optimal discrimination boundary.
Therefore, in step 5, we use the optimization problem (8) to determine the parameter
Bl . In the optimization problem (8), the sets S and Syr are given. For each c, the

C
values of Dj,

Avg¢, and Std,, are also given. In the objective function, there are
coefficients w; (the weighting of type I error) and w, (the weighting of type II error)
that are constants subjectively determined by the decision makers in terms of their
preference of the classification performance. In general, there are three kinds of
settings for (w;, wp) — (1, 1), (0.01, 1), (1, 0.01) regarding the minimizations focusing
on the average sum of type I and type II errors, mainly the type Il error, and mainly the
type I error, respectively.

The fraud-central rule: If (D, < Avg; + B x Std)), the sample is classified as

the fraud one; otherwise, the non-fraud one. (7)
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The non-fraud-central rule defined in Equation (11), in which f; is a parameter
for a pair p of leaf nodes (*NFT match to #FT), states that some fraud samples cluster
around a subset of non-fraud samples. That is, for the sample ¢ that is classified into
the leaf node *y of NFT, if D,, is smaller than the value of Avg| + B x Std,
the sample ¢ will be classified as the non-fraud one; otherwise, the fraud one. The
parameter f7 also needs to be tuned to find the optimal discrimination boundary (i.e.,
Avg, + By x Std). Therefore, in step 6, we use the optimization problem stated in
(8) to determine the parameter f; through the minimization of the sum of (type I and
type II) classification errors. In the optimization problem (12), the sets Sr and Syr are
given. For each c, the values of D,,;, Avg;,and Std; ,are also given. The constants

wi and w, in the objective function are set as the same values as in optimization

problem (8).
The non-fraud-central rule: If (D;, < Avg; + B x Std;), the sample is
classified as the non-fraud one; otherwise, the fraud one. (11)
min wx D=1 T, x 3 +1) (12)
2 ceSyp ceSy

5.t i¢ = * for all ¢ in Sr and Syr

. 1 if Dy, <Avg)+ ) *Std;
-1 if D, >Avg; + ;] *Std;

The approach for solving the optimization problem (8) is also applied for solving
the optimization problem (12) to get the optimal range of S, that minimizes the

value of w x S =12 + w,x 3 +1)°

ceSyp ceSy

In step 7 of Table 4, the picked classification rule is the fraud-central rule if the sum
of classification errors resulted in step 5 is smaller than the one resulted in step 6;
otherwise, the non-fraud-central rule. The dominance of the non-fraud-central rule leads
to an implication of the spatial relationship among fraud and non-fraud samples that
most of fraud samples cluster around the non-fraud counterpart. The dominance of the
fraud-central rule leads to an implication of the spatial relationship among fraud and

non-fraud samples that most of non-fraud samples cluster around the fraud counterpart.

3.2.3 Feature-extracting module

The feature-extracting module is executed via the step 8 of Table 4. For each

clustered group based upon fraud samples, the feature-extracting module applies PCA
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to select features or to extract factors (i.e., principle components) that link to fraud
related features from exogenous information. It further represents the inherent variable
features to reveal each group’s heterogeneity, and the purpose of feature selection is
trying to exclude variables irrelevant to the modeling problem for a particular group.
Here we use PCA to do feature selection by selecting a set of variables which best
represent the composited features of an investigated leaf node of the GHSOM clustering
result based upon fraud samples.

The main objective of the PCA is to determine the important dimensions
(characters) which can explain the input variable features of the analyzed samples, and
can explore underlying patterns of relationship between the input variables. The input
variables are same as the GHSOM input variable. The fraud/ non-fraud dichotomous
variable is set to the dependent variable. Only those factors that account for variances
greater than 1 (eigenvalue >1) are included in the model. This criterion is also called K1
method proposed by Kaiser (1960) and is probably the one most widely used.
According to this rule, only the factors that have eigenvalues greater than one are
retained for interpretation. Factors with variance less than one are not better than a
single ratio, since each ratio has a variance of 1.

The other objective of the PCA is to calculate factor scores for each of the sample
according to the factors determined. Then, to enhance the interpretability of the factors,
the varimax factor rotation method is used in PCA. This method minimizes the number
of variables that have high loadings on a factor, and all factor loadings will be presented.
Here, variables with large loadings for the same factors are grouped and small factor
loadings are omitted. Estimated factor represents a specific characteristic of firms under
consideration. (Canbas et al., 2005)

The outcomes of feature-extracting module are several representative variables as
the ‘variable pattern’ for each clustered group. Hence, from comparing the similarity of
each selected features provided by PCA, we can efficiently exploit one single group or
compare different groups. Besides, after determining the basic financial factors from
training samples, early warning model can be estimated according to these obtained

factors, such as discriminant, logit, probit, and Neural Network.
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3.2.4 Pattern-extracting module

The pattern-extracting module is executed via the step 9 of Table 4. The exogenous
information of the fraud behaviors beyond the financial numbers is used in this module.
Extracting the fraud categories of a certain investigated sample can help reveal more
domain information. We can use any qualitative method to analyze the category of
fraud from any available structural, semi-structural, or un-structural resource, such as
news, reports, or other fraud-related content. First, the categories of fraud should be
determined by the authentic reference. Then, for a leaf node of FT, using any qualitative
way to classify the fraud categories of each samples belong to the leaf node. If the
resource of fraud categories is structural, we only have to encode the class data as the

other extracted feature.

3.3 Analyzing phase

The analyzing phase is shown in Table 5. For each investigated sample s, we first
follow the GHSOM clustering rule to find the winning leaf nodes of FT and NFT,
respectively. The indicators of the investigated samples are based upon the result of the
variable-selecting module. Assume the winning leaf node of FT is the #x one and the
winning leaf node of NFT is the *y one. Then, we use the classification rule picked
from the modeling phase to do the identification. That is, if the fraud-central rule is
picked in the modeling phase, step 2 is processed via Equation (3) in the analyzing
phase to classify the investigated sample s. If the non-fraud-central rule is picked in the
modeling phase, step 3 is here processed via Equation (7) in the analyzing phase to

classify the investigated sample s.
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Table 5. The analyzing phase.

step 1: For each investigated sample s, identify the winning leaf node #x of FT
and the winning leaf node *y of NFT, respectively.
step 2: If the classification rule is the fraud-central rule, then
1. Calculate Dy, the Euclidean distance between the investigated sample
s and the weight vector of the leaf node #x of FT.
ii. Use the fraud-central rule with the determined £ value to classify the
investigated sample s.
If the classification rule is the non-fraud-central rule, then
1. Calculate Dyg, the Euclidean distance between the investigated
sample s and the weight vector of the leaf node *y of NFT.

ii. Use the non-fraud-central rule with the determined f, value to classify

the investigated sample s.

3.3.1 Group-finding module

The group-finding module and the classifying module are implemented after setting
up the classification rules based on the training samples. The group-finding module is
executed via the step 1 of Table 5.

The group-finding module is processed to identify the belonging leaf node of FT
and NFT for an investigated sample. Each investigated sample s is respectively
imported to each leaf node of GHSOMs (FT and NFT) to classify it into the most
similar leaf node. The input variables of the investigated samples are same as the
clustering module, that are the chosen variables generated from the variable-selecting
module. The distances between the imported input data and the weight vector of all leaf
nodes of the GHSOM are calculated. The leaf node with the shortest distance is selected

as the belonging leaf node.

3.3.2 Classifying module

The classifying module is executed via the step 2 and step 3 of Table 5. In the
classifying module, the rule associated with the tree that dominates another in modeling
phase is adopted as the classification rule to classify whether samples are fraud or

non-fraud. The dominance of the non-fraud-central rule leads to an implication that
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most of fraud samples cluster around the non-fraud counterpart, meanwhile the
dominance of fraud-central rule leads to an implication that most of non-fraud samples

cluster around the fraud counterpart.

3.4 Decision support phase

The decision support phase is shown in Table 6. This phase mainly provides the
classification result and the fraud related features for any susceptive sample to the
decision makers.

Following the SOM theories, common fraud categories and relevant variables
extracted from the GHSOM clustering results are applicable to all samples clustered in
the same FT leaf nodes. In the decision support phase, the associated features which are
extracted from modeling phase will be retrieved by the feature-retrieving module and
integrated by the decision-supporting module for further decision support. It not only
classifies whether an investigated sample is fraud or not, but also tries to identify its
potential committed fraud categories. The integrated information shell provide adequate

resources to facilitate the decision making process.

Table 6. The decision support phase.

step 1: Retrieve the associated fraud categories and principle components of the
investigated sample s.

step 2: Summarize the decision support results of the investigated sample s.

* The investigated sample s is classified as a fraud observation.

3.4.1 Feature-retrieving module

The feature-retrieving module is executed via the step 1 of Table 6. After obtaining
the classification result for a particular unknown investigated sample, the associated
features will be retrieved and integrated by the feature-retrieving module. The
associated features of its belonging leaf node which include the principal factors

extracted by PCA, and the potential fraud categories (techniques) extracted by any
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qualitative method, are respectively retrieved from the outputs of the feature-extracting
module and the pattern-extracting module.

Specifically, if an investigated sample is identified as a fraud one, its potential fraud
categories and other associate features will be retrieved based on the GHSOM
classification result of the group-finding module. On the contrary, if an investigated
sample is not classified fraud, there is no need to retrieve the potential fraud categories.
As a result, we can expect that the common fraud categories of a certain leaf node of FT
represent the speculation for any investigated sample classified into this leaf node, and
that contribute to the explanation of FFD result which is helpful for providing decision

support.

3.4.2 Decision-supporting module

The decision-supporting module is executed via the step 2 of Table 6. It is
developed to build up a decision support mediator which provides prediction summary
retrieved from the result of classifying module and the associated features gathered by
the feature-retrieving module. The classification result as well as the associated features
of an investigated sample are summarized and provided for decision makers.

Such summary of a certain investigated sample requested by a decision maker will
give him/ her completed information with clear background features and insights in
terms of any potential fraud behavior derived from the modeling phase, that possess
more traceable fraud knowledge than traditional fraud prediction models. For FFD
detection purpose, this information can facilitate the decision support of fraud
identification which reveals both fraud/non-fraud classification result and any potential
fraudulent activity as a reference for further investigation.

In sum, a decision maker can get an evaluation result which consists of fraud/
non-fraud classification result, and the potential fraud categories of an investigated
sample. If needed, they can view other samples which are classified into the same leaf
node to get more background information. They can also view the whole GHSOM (e.g.,
FT) structure to understand the contrasted location between groups. These results
provide decision makers an easy way of understanding the general picture of sample
data. Connecting several features related to problem domain also helps decision makers

get some insights quickly; besides, the reasonability of the detecting result can be
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checked here to make sure if the following fraud prevention strategy is feasible. The
concept of the training, modeling and analyzing phase of the dual approach is shown in
the following Figure 6, in which the main process is depicted in each phase to help

understand the ideas of each phase depicted in Table 3, Table 4, Table 5 and Table 6.
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All fraud samples All non-fraud samples
Training phase

FT NFT L.
The training parameters are

determined in FT

. Calculate and store
Modeling phase NFT the descriptive
statistics

Avg,, Std,

Extracting the patterns (fraud
categories) and the features (principle
components) in each FT leaf node. %

training sample ¢

Classify c into its
belonging leaf nodes

FT Euclidean NFT
/f’wdistanc;cs/A\
p Dy D,
th ylh

Create the correspondence table between FT and FNT, adopt the classification rules, and
find out the optimal rule under the predefined preference of the classification error (w, w;)

[ non-fraud-central |
Brl= Stdﬁ By *Std;
Avg: Avg;

M : Fraud M : Fraud
O Non-fraud VS O: Non-fraud

D5 D,

Avg. + B *Std, Avg$ + B * Std
Analyzing phase investigated sample s
Classify s into its
belonging leaf nodes
FT NFT

Euclidean
distances

Retrieve the descriptive statistics of the leaf nodes

‘ Apply the optimal classification rule obtained from the modeling phase ‘

Figure 6. The classification concept of the proposed dual approach.
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4. The FFR experiment and results

The FFR experiment takes a further step to identify whether there is a certain
spatial relationship among fraud and non-fraud samples and, if it does, to derive the
corresponding classification rule. Note that the proposed dual approach is data-driven
which means that the corresponding system modeling is performed via using the

sampled data. The details and the experimental results are briefed as follows.

4.1 Training phase — sampling module

The following sources are used to identify the fraud samples between the years
from 1992 to 2006: indictments and sentences for major securities crimes issued by the
Securities and Futures Bureau of the Financial Supervisory Commission, class action
litigation cases initiated by Securities and Futures Investors Protection Center, and the
law and regulations retrieving system of the Judicial Yuan in Taiwan. If a company’s
financial statement for a specific year is confirmed to be fraudulent by the indictments
and sentences for major securities crimes issued by the Department of Justice, it is
classified into our fraud observations. For those financial statements that are free from
fraud allegations are classified into our non-fraud observations.

The matched-firm design is then used to form a sample set. That is, for each fraud
firm, we match a non-fraud firm based on industry, total assets, and year. Thus, our
sample composites of 116 publicly traded companies, including 58 fraud and 58
non-fraud ones over the period from 1992 to 2006. For each fraud company, we first
identify the earliest year in which the financial statement fraud was committed. Then
the sample periods cover two years before and two years after the year of the event.
That is, five consecutive annual financial statements are used in our study. The final
observations consist of 580 firm-year observations (i.e., annual financial statements)
which comprise 113 fraud samples and 467 non-fraud samples. The sampling
procedure is referred from Hsu (2008) and Huang et al. (2011)’s studies.

The firms are listed in Table 7. In addition, accounting rules, asset valuations and
criteria governing preparation of financial statements for financial industry are
incomparable with other industries so cases involving financial firms are excluded

from the sample (Fanning and Cogger, 1998; Stice, 1991). Many literature (Beasley,
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1996; Fanning and Cogger, 1998; Farber, 2005) based on sample of American firms
used Accounting and Auditing Enforcement Releases (AAERs) issued by United
States Securities and Exchange Commission (SEC) to determine whether or not firms
committed financial reporting fraud. However, we had no such a consistent criterion in
Taiwan, so the study established a criterion in the light of governmental publications

and experts’ opinion.

Table 7. The list of fraud and non-fraud firms in training samples.

fraud firm non-fraud firm S T
No Indust SIC Name Fraud Detect SIC Name aI;Ii)Ol:ilg
Y Code year year Code P
1 Electron 2398 12 % 5(9)(9)?_ 2004 3024 B 1997-2001
2 Electron 8295 ¢ % & 1998 1999 2349 4R 1996-2000
3  Electron 2328 B # igg;_ 1998 2411 x5 1995-1999
4 Electron 2350 HIE T F igg;_ 1999 3037 w8 1995-1999
xR 2002- Lo b
5 Electron 2407 (#I45) 2004 2005 2316  {pi*F = 2000-2004
6 Electron 2334 R ¥ }gg;_ 2001 2323 ¢ % 1995-1999
7 Electron 2490 2 stk ;882_ 2004 2453  F 1998-2002
8 Electron 3039 % % 2004 2005 5353 &3k 2000-2004
9 Electron 3001 #frR*% 5(9)(9)?_ 2004 8026 B {rF 1997-2001
10 Electron 2494 R Bk 2002 2003 2419 @ 1% 2000-2004
11 Electron 8188 ; 31%;2001 2002 2425 Rz 1999-2003
2
L 5 2003- v oo
12 Electron 6145 T X F%E 2004 2005 8172 M 2001-2005
i 4 ('il’ g .
13 Electron 6250 | 7 5 4) 2004 2005 3207 #% 2002-2006
AR pe iR
w . 2000- IO
14 Electron 5385 X %7}1#5: 2001 2002 5305 %t= 1998-2002
15 Iron& Steel 8708 = ¥ 4E4H }gg;_ 1999 2022 R ® 1995-1999
16 Iron& Steel 2005 = # }ggg_ 1999 5009 B 1996-2000
17 Iron& Steel 2019 % 5(9)(9)?)_ 2000 2010 % k& 1996-2000

18 Iron& Steel 2016 ¢+ &Y 1997- 1999 2032 #7é  1995-1999
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1998

Iron& Steel 8714 ‘% }gg; 2001 2008 & 8B 1995-1999
Iron& Steel 5007 = % 1 4 }ggg 2000 2009 5 - 4 1996-2000

T
Iron& Steel 2017 (¥ &% 2006 2013 ¢ 4k iE 1994-1998

1998
)
., 1997 L

lron Steel 8705 WIAT £ o0l 1998 9905 L E 19951999
Iron& Steel 2014 * 8 388;' 2006 2006 4% 1999-2003
Building 1997-
Material& 1436 i85 Loy 1998 2535 %3 1995-1999
Construction
Building
Material& 2500 (= 1998 2001 2516 #ME  1996-2000
Construction
Building

Material& 5503 X FE B 2000 2003 2536 = & 1996-2000
Construction
Building

Material& 2505 R 7 E 997- " 1998 2506 ~ M 1995-1999
Construction 1%

Building 1997-

Material& 8719 Z 4&® 1998 1999 2511 =+ 1995-1999
Construction

Building 1998-

Material& 8716 = % 1999 2002 2524 w3 1995-1999
Construction

Building 1998-

Material& 2553 Fx k& 1999 2000 2534 %R 1996-2000
Construction

Building 1999-

Material& 5504 = 2000 2000 5514 =% 1997-2001
Construction

Building

Material& 8710 % =% 1999 2000 5506 £ 1997-2001
Construction

Food 8723 ME A5 1998 1999 1201  rk > 1996-2000
Food 8724 = = 5(9)(9)(9)_ 2001 1219 i&& 1997-2001
Food 1221 4 ;88;' 2003 1220 SE 1999-2003
Food 1207 £ .8 i 5(9)(9)3' 2006 1216  %t- 1996-2000
Textile 1466 H It 1998 1999 1451 =#= 1996-2000
Textile 8706 £ 1998 1999 1423 & 1995-1999
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39 Textile 8717 4 F 1998 2001 1417 &4 1995-1999

Electric 1997-

o - i
40 Machinery 1505 #4813 Ry 1999 2001 1514 & 1997-2001
41 Plastic 8711 = ;TE 1999 2000 1304 =& 1997-2001
42 Plastic 8713 iﬁ;ﬁ 1999 2000 1305 =% 1997-2001
Electrical and P 1997-
e = ]
43 Cable 1601 & 1998 1999 1614 =% 1995-1999
Electrical and P 1994- e
44 Cable 1602 =~ &7 1996 2003 1605 #r 1992-1996
45 Chemical 8701 = ¥ }ggg_ 1998 1716 <13 1993-1997
46 Chemical 4113 B+ 4 H 2004 2004 4123  F4L 2002-2006
47 Automobile 8712 WA & 1998 1998 2204 * & 1996-2000
48 Automobile 8702 3@ }gg‘s‘ 1995 2201 #H  1992-1996
49 Automobile 2206 = 1% 5(9)(9)(9)_ 2001 2207 1‘\?%} 1997-2001
Shipping& R s
50 Transportation 2614 K B 1999 2000 2615 &= 1997-2001
5) Shipping& = o013 g 1999 2000 5604 * i 1997-2001
Transportation
Trading& 1998-
52 Consumers' 9801 # # 2006 2903 &P 1996-2000
2000
Goods
Trading&
53 Consumers' 2913 R4k 1996 1997 2915 ‘}ﬁf%}} > 1994-1998
Goods
Trading& 1997-
54 Consumers' 5901 ¢ =@ b 2001 2905 = F 7 1995-1999
1999
Goods
M) 1996- o
55 Paper, Pulp 1918 & 7 Ak 1998 1998 1902 & A 1994-1998
56 Rubber 2101 = B#s }gg;_ 2001 2103 & #H  1995-1999
57 Other 8382 % ;VRE 1998 1999 9935 R ¥ % 1996-2000
58 Other 0911 o~ A4~ 1998 2004 9915 R¥E 1996-2000

Source: (Hsu, 2008).

Note that the financial statements in Taiwan are prepared according to International
Financial Reporting Standards similar to the generally accepted accounting principles
(GAAPs) adopted in the States, and the FFR fraud categories are identified with the
COSO framework from Beasley et al. (1999), therefore, the proposed dual approach and
findings of this study are generalizable.
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4.2 Training phase — variable-selecting module

The independent variable is named FRAUD, which means if a company’s
financial statements for specific years are confirmed to be fraudulent by the
indictments and sentences for major securities crimes issued by the Department of
Justice, the firm-year data are classified into fraud observations, and the variable
FRAUD will be set to 1, 0 otherwise. In terms of the independent variables, based
upon literature regarding FFR, 25 explanatory variables are selected and are used to
test the multi-collinearity effect before incorporated into the discriminant analysis.
Table 8 (Hsu, 2008; Huang et al., 2012) summarizes the definition and measurement of
these variables. These are measurement proxies for attributes of profitability, liquidity,
operating ability, financial structure, cash flow ability, financial difficulty, and
corporate governance' of a firm. These explanatory variables are collected from the
Taiwan Economic Journal (TEJ) database.

The variables used by Persons (1995) are mostly measured on the basis of total
assets. Persons (1995) concluded that financial leverage, asset composition and capital
turnover are significant indicators in detection of fraudulent financial statements. Many
research suggested that unethical managers often perpetrated frauds in accounts
receivable and inventory because the account which involves subjective judgments
increases audit risks, that is to say, auditors have difficulties to confirm validity of
figures (American Institute of Certified Public Accountants 2002). Beasley et al. (1999)
showed that 24% of fraud firms misstated inventory and 21% of fraud ones defraud in
accounts receivable. In addition, Dechow et al. (2007) suggested that manipulation of
accounts receivable improves sales growth and manipulation of inventory improves
gross margin. Hence, this study used not only seven relevant input variables to measure
a company’s variation of inventory and accounts receivable but also several variables
to observe profit and sales.

Significant declines in growth and profitability could put extreme pressures on

management due to excessive expectations of third parties and risk of bankruptcy,

' Based on the governance characteristics of companies in East Asian economies suggested by
Claessens et al. (2000), we employ SMLSR to proxy for ownership structure, DBCRCFR and
DBCBSCEFR for voting-right deviation (the difference between voting right and cash flow right) and
seat-control deviation (the difference between the percentage of board seats controlled by the ultimate
owners and cash flow right), and SPR for the risk dimension of the board members.
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foreclosure, or hostile takeover (American Institute of Certified Public Accountants
2002). As a result, managers who especially experienced rapid growth attempt to
practice deception to cover up crisis. It means that rapid sales or inconsistent profit is
expected to be associated with the incidence of fraud (Bell and Carcello, 2000;
Summers and Sweeney, 1998). This study employed net sales and net income to
measure growth of a company.

Dechow et al. (2007) noted that change in free cash flows is a more fundamental
measure than earnings because it abstracts from accruals. When accrual-based income
statement is inconsistent with cash-based cash flow statement, it requires long-term
observations. Hence, this study used two variables to measure adequacy and
reinvestment percentage of cash flow over five years.

Fanning and Cogger (1998) suggested financial distress may be a motivation for
management fraud. The managers who failed to stand heavy stress may cook the books
to hide financial crisis from stakeholders. Loebbecke et al. (1989) found that 19% of
fraud companies underwent solvency problems. On the other hand, the occurrence of
financial crisis may result from weak corporate governance (Lee and Yeh, 2004). The
fragile mechanism gives opportunities for managers to misrepresent easily and even
frequently, hence this study investigated the relationship between financial statement
fraud and corporate governance through four corporate governance indicators from the

research of financial distress.

B Financial Ratios
1. Profitability
(1) Gross profit margin (GPM): The GPM variable indicates a company ability to
earn profits where the higher profit a company makes, the more unique

competitive advantage a company owns. GPM can be defined as:

Operating income— operating costs

Operating income

(2) Operating profit ratio (OPR): The OPR variable usually reflects a company’s
profitability in its own industry. The difference between OPR and GPM is GPM
only concerns direct costs from manufacturing products whereas OPR considers

all costs in process of generating revenue. OPR can be defined as:
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Operating income— operating costs - operating expenses

Operating income

(3) Return on assets (ROA): Persons (1995) indicated that lower profit may give
management an incentive to overstate revenues or understate expenses. The
ROA variable shows how much value a company’s assets can carry in producing
income before leverage. The higher ROA is, the better ability to utilize assets a
company has. ROA can be defined as:

[(Net income+ Interest expensesx (1 - tax rate)] 1

Average total assets

(4) Growth rate of net sales (GRONS): The GRONS variable indicates a company’s
variation of sales revenues. GRONS can be defined as:

Net sales 1
Net sales in prior fiscal year

(5) Growth rate of net income (GRONI): The GRONI variable indicates a

company’s variation of net income. GRONI can be defined as:

Net income
Net income in prior fiscal year

2. Liquidity
(1) Current ratio (CR): The CR variable is to measure whether or not a company
has enough current assets to pay short-term debts. The current assets is expected
to be transformed into cash within one year, including cash equivalents,
accounts receivable, prepaid expenses, inventory etc. A company with higher
CR owns stronger ability to pay debts. CR can be defined as:

Current assets

Current liabilities
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(2) Quick ratio (QR): The QR wvariable is to examine a company’s ability to
extinguish its short-term debts instantly. The inventory and prepaid expenses are

excluded from quick assets. QR can be defined as:

(Current assets - Inventories - prepaid expenses)

Current liabilities

3. Operating ability
(1) Accounts receivable turnover (ART): The ART variable measures the frequency
of accounts receivable collected during the period. ART relates to a company’s

efficiency of collection and adequacy of credit policy. ART can be defined as:

Net credit sales

Average accounts receivable

(2) Total asset turnover (TAT): The TAT variable indicates is used to determine how
much sales revenue a company gains from investing in assets, in other words, a
company’s efficiency of utilizing its assets. Persons (1995) showed that
managers of fraud companies may be incompetent to utilize assets to generating
sales. TAT can be defined as:

Net sales
Total assets

(3) Growth rate of accounts receivable (GROAR): The GROAR variable indicates a

company’s variation of accounts receivable. GROAR can be defined as:

Accounts receivable
Accounts receivablein prior fiscal year

(4) Growth rate of inventory (GROI): The GROI variable indicates a company’s

variation of inventory. GROI can be defined as:

Inventory 1
Inventory in prior fiscal year
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(5) Growth rate of Accounts receivable to gross sales (GRARTGS): The GRARTGS
variable indicates a company’s variation of ratio of accounts receivable to gross
sales. GRARTGS can be defined as:

Accountsreceivable, Accounts receivable, |

Gross sales, Gross sales,

(6) Growth rate of Inventory to gross sales (GRITGS): The GRITGS variable
indicates a company’s variation of ratio of Inventory to gross sales. GRITGS
can be defined as:

Inventory, Inventory, ,

Grosssales, Grosssales,

(7) Accounts receivable to total assets (ARTTA): Persons (1995) suggested the
current assets of fraud firms consist mostly of receivables and inventories, so
the study used two variables: ARTTA and ITTA to determine a firm’s asset
composition. The ARTTA variable is used to examine the percentage of

accounts receivable in total assets. ARTTA can be defined as:

Accounts receivable

Total assets

(8) Inventory to total assets (ITTA): The ITTA variable is used to examine the

percentage of inventory in total assets. ITTA can be defined as:

Inventory
Total assets

4. Financial structure

(1) Debt ratio (DR): The DR variable is used to measure a company’s capital
structure and financial leverage. The debt financing not only raises return on
investment, but also has benefits of tax shield substitute. But higher leverage
increase risk of bankruptcy, Persons (1995) found that fraud firms have higher

financial leverage than non-fraud firms. DR can be defined as:

(Total liabilities)
Total assets
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(2) Long-term funds to fixed assets (LFTFA): The LFTFA variable is used to
measure the degree of fixed assets provided by long-term funds. Higher LFTFA
means the capital structure of a company may be sound because investment in

fixed assets usually require long collection period. LFTFA can be defined as:

(Equity+ longterm liabilities)

Fixed assets

5. Cash flow ability

(1) Cash flow ratio (CFR): The CFR variable is used to assess a company’s ability
of paying current debts by cash. CFR differs from CR or QR in the
measurement duration. CFR is determined by cash flows from operating

activities of one fiscal year, not by one point. CFR can be defined as:

Cash flows from operating activities

Current liabilities

(2) Cash flow adequacy ratio (CFAR): The CFAR variable is used to evaluate
whether or not cash flows from operating activities is enough to disburse in

capital expenditures, inventory and cash dividends. CFAR can be defined as:

Five— year sum of cash flows from operating activities

Five— year sum of capital expenditures, inventory additions and cash dividends.

(3) Cash flow reinvestment ratio (CFRR): The CFRR variable is used to determine
the percentage of utilizing cash flows from operating activities to reinvest in

assets and firm development. CFRR can be defined as:

(Cash flows from operating a activities- cash dividends)

Gross fixed assets + long- term investments+ other assets + working capital

B Corporate Governance Indicator
1. Stock Pledge ratio (SPR): This study employed SPR variable to determine
whether financial distress happens or not. SPR variable means the percentage of
shareholdings which directors and supervisors put in pledge for loans and
credits. Directors and supervisors often pledge their stocks to obtain funds to

keep stock price as well as rescue firms from financial distress (Lee and Yeh
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2004). Nevertheless, high personal leverage and excessive investment in stock

market could expose company to financial risk. SPR can be defined as:

Sahresholdings in pledge

Total shareholdings

2. Shareholdings of major shareholders ratio (SOMSR): The research employed
SOMSR variable to assess independence of the board. Excluding directors,
supervisors or managers, major shareholders are defined as shareholders whose
percentage of shareholdings is greater than 10% according to Taiwan Stock
Exchange (TSE). The SOMSR variable means the sum of percentage of major
shareholders’ shareholdings. The major shareholders who own higher
percentage of shareholdings have much motivation to supervise managers. It
could reduce not only agency problem, but also the probability of financial

distress.

3. Deviation between control rights and cash flow rights (DBCRCFR): The study
adopted the indicator to measure integrity of corporate governance. Lee and Yeh
(2004) noted that the larger difference between voting and cash flow rights is,
the stronger incentive to expropriate minority interests ultimate owners have. It
may result in malfeasance or even financial distress. DBCRCFR can be written

as:

DBCRCFR =Control rights — Cash flow rights

4. Deviation between ratio of controlled board seats and cash flow rights
(DBCBSCFR): The study used the variable to examine integrity of corporate
governance. The larger deviation between percentage of controlled board seats
and cash flow rights is, the more effortless to perpetrate misrepresentation or
misappropriation controlling shareholders are. In other words, it not only puts a
firm at financial risk, but also appear failures of scrutiny. DBCBSCFR can be

written as:

DBRCBSCFR =Percentage of Controlled board seats —Cash flow rights
(1) Control rights: The control rights, also called voting rights, indicates the
shareholdings of ultimate owners who can greatly influence corporate

decision according to the definition of La Porta, Lopez-de-Silanes, and
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Shleifer (1999). The ultimate owners who usually involve major
shareholders, chairman of board or management/family groups control the
firm directly (i.e., through shares registered in his name) and indirectly (i.e.,
through shares held by entities that he controls). Control rights can be

written as:

Control rights = Direct control rights + Indirect control rights

(2) Cash flow rights: The cash flow rights, also called earnings distribution
rights, mean that ultimate owners gain earnings through direct
shareholdings and indirect ownership, for instance, using
cross-shareholdings. The indirect cash flow rights is summed up the product
of successive ownership along every control chain (Lee and Yeh, 2004).

Cash flow rights can be written as:

Cash flow rights=Direct cash flow rights + Indirect cash flow rights

According to the definition of Claessens, Djankov, and Lang (2000), the study
suppose, for example, that a family owns 40% of stock of listed firm A and 20% of
stock of listed firm B. Additionally, they acquire 30% of stock of firm A through
firm B. When major shareholders don’t exist in firm A and firm B, the family is the
ultimate owners of both firms. The family controls directly 40% of firm A namely
direct control right. The indirect control right which the family control firm A is
chose the minimum between shareholdings of firm B and shareholdings through
firm B. For this reason, we would say that the family owns totally 60% of control
rights of firm A.

In terms of cash flow right, the family controls directly 40% of firm A namely
direct cash flow right, but indirect cash flow right differs from the method of
indirect control right. The indirect cash flow right is the product of shareholdings
along each control chain, that is 20%x*30% =6%. Consequently, the family owns
46% of total cash flow rights of firm A.

Family A
20% / N:O%
. 30% .
Firm B » Firm A

Figure 7. An example of control right and cash flow right.
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(3) Percentage of controlled board seats: The variable indicates the number of
board seats, including directors’ and supervisors’, are held by ultimate
owners along the control chains. It appears the degree of control over the
family or insiders. Yeh, Lee, and Woidtke (2001) also argued that the
correlation between percentage of controlled board seats and firm financial
performance is negative. Percentage of controlled board seats can be written

as:

Board seats held by conrolling sahresholders
Total board seats

Z-score

The study used Altman Z scores (Altman, 1968) to measure a company’s
financial condition to determine the relationship between financial distress and
fraud. The smaller Z score indicated that a firm may fail or go into bankruptcy with

higher probability. Altman’s Z score can be computed as:

Z=12X;+1.4X;+3.3X5+0.6X4 + 1.0Xs
Where:
X,=working capital/ total assets
X,=retained earnings/ total assets
Xs=earnings before interest and taxes/ total assets
X4=market value of equity/ book value of total debt

Xs=net sales/ total assets
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Table 8. Variable definition and measurement.

Variable i
. Literature Measurement
Definition
Dependent variable:
If a company’s financial statements for
specific years are confirmed to be fraudulent
by the indictments and sentences for major
FRAUD Persons (1995) securities crimes issued by the Department
of Justice, the firm-year data are classified
into fraud observations, and the variable
FRAUD will be set to 1, 0 otherwise.
Independent variable
Profitability
Sales - Operating costs
GPM Dechow et al. (2007) S
ales
OPR Green and Choi (1997) Sales - Operating co;:.;e—SOperating expenses
ROA Persons ( 1 995), Net income +Alnterestte);plenses tx (1-Tax rate)
HOOgS et al. (2007) verage lolal assets
Stice (1991), Sal
GRONS (1991) r7 e )1
Summers and Sweeney ales in prior fiscal year
GRONI (1998)9 . N.et inc.ome -
Dechow et al. (2007) Net incomein prior fiscal year
Liquidity
Current assets
CR Curren iabTies
Kirkos et al. (2007)
Q R Current assets - Inventories - Prepaid expenses

Current liabilities

Operating ability

ART Green and Choi (1997)
Persons (1995),
TAT )
Kirkos et al. (2007)
GROAR
Dechow et al. (2007)
GROI

Sales

Average accounts receivable

Sales

Total assets

Accounts receivable

)-1

Accounts receivable in prior fiscal year

Inventory

-1
Inventoryin prior fiscal year)
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Accounts receivable, Accounts receivable, ,

GRARTGS
Sales, Sales, ,
Summers and Sweeney
GRITGS (1998) Im;entory, _Inventory, ,
ales, Sales, ,
AR Soe (1991, S
Persons (1995),
Green and Choi (1997 vento
ITTA (1997 entory
otal assets
Financial structure
Total liabilities
DR Persons (1995), Total assets
Kirkos et al. (2007)
LETFA Equity + Longterm liabilities

Fixed assets

Cash flow ability

CFR

CFAR

CFRR

Dechow et al. (2007)

Cash flows from operating activities

Current liabilities

Five year sum of cash flows from operating activities

(Five year sum of capital expenditures,

inventory additions and cash dividends)

Cash flows from operating activities - Cash dividends

(Gross fixed assets + Long term investments +

Other assets + Working capital)

Financial difficulty

Z-score

Altman (1968),

Stice (1991),

Summers and Sweeney
(1998),

Fanning and Cogger
(1998)

Working capital Retained earnings N

1.2%( )+1.4x(
Total assets Total assets

Earnings before interest and taxes

3.3x%( )+
Total assets
M .
0.6x( arket value of equity )+1.0xTAT
Book value of total debt

Corporate Governance

SPR*

SOMSR

Lee and Yeh (2004)

Beasley et al. (1999)
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DBCRCFR La Porta et al. (1999), Voting rights (CR) - Cash flow rights (CFR)
Lee and Yeh (2004)

DBCBSCFR Yeh et al. (2001) Percentage of board seats controlled (CBS)-

Cash flow rights (CFR)

#. According to the rule issued by the Securities and Futures Commission (SFC) of
Taiwan, for public companies, the board members, managers and major shareholders
(who own 10 percent or more of a company’s outstanding shares) of the company are
obliged to report to the SFC the percentage of their shareholdings been pledged for
loans and credits. (Lee and Yeh, 2004)

The results of the multi-collinearity test indicate that one variable - GRITGS -
should be excluded. As a result, 24 independent variables are kept that will be used as
the input variables for the GHSOM. These are measurement proxies for attributes of
profitability, liquidity, operating ability, financial structure, cash flow ability, financial
difficulty, and corporate governance of a firm. These explanatory variables are collected
from the Taiwan Economic Journal (TEJ) database. The variable selection procedure is
referred from Hsu (2008) and Huang et al. (2011)’s studies.

Table 9 reports the empirical results of the discriminant analysis (Hsu 2008; Huang
et al., 2011). The analysis that the Wilks' A value equals to 0.766 and x° equals to
151.095 (both significant at p-value < 0.01) suggests that the discriminant model
employed has adequate explanatory power. The results of discriminant analysis
indicate that eight variables, return on assets (ROA), current ratio (CR), quick ratio
(QR), debt ratio (DR), cash flow ratio (CFR), cash flow adequacy ratio (CFAR),
Z-Score and sock pledge ratio (SPR), are significant at p-value < 0.01 level. These
eight variables are collected for our sample firms and used as the training data for the
GHSOM.? These eight variables proxy a company’s attributes from the aspects of
profitability (ROA), liquidity (CR and QR), financial structure (DR), cash flow ability
(CFR and CFAR), financial difficulty (Z-Score), and corporate governance (SPR).

> We have also performed the logistic regression in the data preprocessing stage and the results indicate
that there are only two variables, ROA and CFR, are significant at p-value < 0.01 level. Although the
number of input variables resulted from the data preprocessing does affect the implementation efficiency
of GHSOM, the performance of data preprocessing in any application of GHSOM has a nature of the
exploratory data analysis and its purpose is to form a set of candidate variables for GHSOM. In order to
form a set of candidates for GHSOM, rather than a set of significant predictors to a linear prediction
model (such as logistic regression or discriminant analysis), we take a union of these two sets, which is
the same set from the discriminant analysis.
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Table 9. Empirical results of discriminant analysis.

Variable Coefficient  F-value Significance
GPM 0.14 3.51 0.061
OPR -0.03 0.16 0.688
ROA 077" 105.82 0.000
GRONS 0.06 0.63 0.427
GRONI -0.02 0.05 0.822
CR 034" 20.59 0.000
OR 028" 13.42 0.000
ART 0.09 1.58 0.210
TAT 0.19 6.38 0.012
GROAR 0.03 0.12 0.731
GROI 0.07 0.90 0.344
GRARTGS 0.00 0.00 0.997
ARTTA 0.11 2.25 0.134
ITTA 0.12 237 0.125
DR 042" 30.46 0.000
LFTFA 0.02 0.09 0.764
CFR 033" 19.21 0.000
CFAR 0.24™ 9.89 0.002
CFRR 0.19 6.41 0.012
SPR 047" 38.85 0.000
SOMSR -0.19 6.18 0.013
DBCRCFR 0.02 0.04 0.835
DBCBSCFR -0.05 0.41 0.524
Z-score 0.64"" 72.74 0.000
Wilks' A value 0.77 p-value 0.000
P 151.10 p-value 0.000

" p-value significant at <0.01 level.

4.3 Training phase — clustering module

As stated in (Dittenbach et al., 2000), the development of the GHSOM is primarily
dominated by the parameters of breadth (1)) and depth (t;). In order to reach the goal of
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obtaining the multi-layer hierarchy feature and preventing the overly clustering of fraud
samples, we predefined the following selection criteria to derive an acceptable FT:
1) There are more than one layers of SOM in the GHSOM.
2) Samples of each node should not be overly clustered, and each leaf node should
at least contain one sample.
3) The number of subgroups and the corresponding value of mean quantitative
error (MQE) among nodes are considered for evaluating the clustering result.
The MQE value indicates the samples homogeneity among clusters; the
clustering quality is better if the MQE value is smaller. The clustering method

that leads to a smaller number of subgroups and a lower MQE value is better.

Based on the criteria aforementioned, the trials of the GHSOM parameter setting
are taken and shown in Table 10. The parameter 1, is adjusted from 0.5 to 0.8 per 0.1
scales, and the parameter 1, is adjusted from 0.05 to 0.07 per 0.01 scales. When 1, = 0.6
and 1, = 0.07, each leaf node has at least one fraud sample. In the condition of same
MQEs, the parameter setting t; = 0.8 and 1, = 0.07 leads to less number of leaf nodes.
Therefore, the parameter setting 1, = 0.8 and 1, = 0.07 are used to generate FT and NFT,

respectively.

Table 10. The GHSOM parameter setting trials.

Breadth  Depth  layer leaves MQE each group exists at last one

sample
0.5 0.05 3 28 0.014091 no
0.6 0.05 3 20 0.024047 no
0.7 0.05 3 18 0.024047 no
0.8 0.05 3 16 0.024047 no
0.5 0.06 3 28 0.014091 no
0.6 0.06 3 20 0.024047 no
0.7 0.06 3 18 0.024047 no
0.8 0.06 3 16 0.024047 no
0.5 0.07 3 20 0.014091 no
0.6 0.07 3 17 0.024047 yes
0.7 0.07 3 15 0.024047 yes
0.8%* 0.07 3 13 0.024047 yes

* The chosen GHSOM tree
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We use the GHSOM toolbox in the platform of Matlab R2007a to generate FT and
NFT. The obtained GHSOMs are shown in Figure 8. The leaf nodes are marked in taint.
For each node, a name in numerical label is given according to its layer number and its
node order in the same SOM as well as its parent’s name. For instance, the node #13-24
is node number 4 in layer 2 developed from the node number 3 in layer 1 of FT. Based
on the clustering result, we believe that it is plausible to extract the distinctive (common)

patterns or features of these leaf nodes.
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Figure 8. The obtained FT and NFT.

As shown in Figure 8, the FT and NFT have different GHSOM structures since that
the leaf node *11 of NFT generates four child nodes while the leaf node #11 of FT does
not grow further. Note that the names and orders of leaf nodes of FT and NFT do not

release any spatial implication among them.

63



4.4 Modeling phase — statistic-gathering, rule-forming module

The leaf node matching from NFT to FT via all (fraud and non-fraud) training
samples is shown in the first three columns of Table 11 and Figure 9. For example, the
leaf node #12-21 of FT hosts 80% of the training samples classified into the leaf node
*11-21 of NFT. That is, there are 80% of the training samples in #12-21 classified into
*11-21. Hence, the leaf node #12-21 of FT 1s matched to the leaf node *11-21 of NFT
and claim the leaf node #12-21 of FT is the counterpart of the leaf node *11-21 of NFT.
That is, the fraud samples classified into the leaf node #12-21 of FT cluster around the
non-fraud samples in the leaf node *11-21 of NFT. Based on the proportional majority,
the counterparts of a leaf node of NFT could be more than one. For example, the leaf
nodes #12-23 and #12-22 of FT host 93.33% of the training samples classified into the
leaf node *11-24 of NFT. Thus, the leaf nodes #12-23 and #12-22 of FT are the
counterparts of the leaf node *11-24 of NFT. The corresponding Avg and Std values of
NFT, and FT, are shown in the fourth and the fifth columns of Table 11.

Table 11. The leaf node matching from NFT to FT.

*NFT  #FT  Samples proportion Avg, of NFT Std, of FT Classification error (%)*
11-21 12-21 80.00% 0.65 0.83 (0.00, 20.00)
11-22  12-23 86.15% 0.23 0.32 (7.69, 15.38)
11-24  12-23 73.33% 0.29 0.32 (0.00, 6.67)
12-22 20.00% 0.29 0.19
12-21 12-22 100.00% 0.18 0.35 (0.00, 9.68)
12-22  12-22 100.00% 0.79 0.35 (9.09, 0.00)
12-23 12-22 100.00% 0.30 0.35 (0.00, 0.00)
12-24  12-22 100.00% 0.27 0.35 (0.49, 3.92)
13-21 11 79.17% 0.39 0.73 (0.00, 16.67)
13-22 14-21 45.83% 0.31 0.25 (14.29, 26.53)
11 33.33% 0.31 0.73
13-24 14.58% 0.31 0.35
13-23 13-21 76.92% 0.54 1.08 (6.67,33.33)
13-24 23.08% 0.54 0.35
13-24  14-23 80.41% 0.30 0.26 (15.96, 23.4)
14-21 14-22 76.74% 0.26 0.27 (22.5,7.5)
12-22 16.28% 0.26 0.35
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14-22  14-24 65.00% 0.37 0.47 (20.00, 5.00)

14-22 35.00% 0.37 0.27
14-23 14-22 59.09% 0.28 0.27 (15.15, 12.12)
14-24 37.88% 0.28 0.47

* The numbers within the parenthesis indicate the type I error and the type II error.
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Figure 9. The leaf node matching from NFT to FT.

Following the optimization approach stated in Section 3, the parameter £, of the
non-fraud-central rule is tuned by solving the optimization problem (8) regarding each
of the three different settings of the constants w; and w,. The corresponding
classification errors (type I and type II) are stated in the last column of Table 12. For
example, the setting of w; = 0.01 and w, = 1 for the match leaf nodes *11-22 and
#12-23 has the smallest corresponding sum of (type I and type II) classification errors
and the corresponding optimal /£ values are within the range of [0.1531, 0.1562]. Later
we set = 0.153 for samples classified to the leaf node *11-22. As shown in Table 11,
the corresponding type I error is 13.62% and type II error is 13.28% regarding all 580

training samples.
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Table 12. The result of w; and w, of the non-fraud-central rule.

*NFT—#FT wq Wy iy Classification error (%)*

*11-21-#12-21 1 1 0.3976 ~0.4172 (0.00%, 7.14%)

*11-22—#12-23 0.01 1 0.1531 ~0.1562 (8.77%, 17.54%)

*11-24—#12-23 1 0.01 1.9114 ~3.937 (0.00%, 7.14%)
#12-22

*12-21-#12-22 0.01 1 0.1531 ~0.1562 (15.05%, 7.53%)

*12-22—#12-22 0.01 1 0.1531 ~0.1562 (10.00%, 0.00%)

*12-24—#12-22 1 0.01 1.9114 ~3.937 (0.00%, 3.92%)

*13-21-#11 0.01 1 0.1531 ~0.1562 (0.00%, 15.79%)

*13-22—#14-21 0.01 1 0.1531 ~0.1562 (15.56%, 22.22%)
#11
#13-24

*13-235#13-21 0.01 1 0.1531 ~0.1562 (7.69%, 30.77%)
#13-24

*13-24—#14-23 0.01 1 0.1531 ~0.1562 (16.13%, 22.58%)

*14-21-#14-22 1 0.01 1.9114 ~3.937 (1.82%, 27.27%)
#12-22

*14-22—#14-24 0.01 1 0.1531 ~0.1562 (11.43%, 14.29%)
#14-22

*14-23—#14-22 0.01 1 0.1531 ~0.1562 (13.41%, 10.98%)
#14-24

* The numbers within the parenthesis indicate the type I error and the type Il error, respectively.

In contrast, the leaf node matching from FT to NFT via all (fraud and non-fraud)
training samples is shown in the first three columns of Table 13 and Figure 10. The
corresponding Avg and Std values of FT, and NFT, are shown in the fourth and the fifth

columns of Table 13.
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Table 13. The leaf node matching from FT to NFT.

#FT *NFT Sample proportion Avg, of FT Stdy of NFT Classification error (%)*

11 13-21 43.18% 0.59 0.18 (4.55, 81.25)
13-22 36.36% 0.59 0.14

12-21  11-21 88.89% 0.32 0.13 (0.00, 100.00)

12-22 12-21 49.21% 0.19 0.08 (0.00, 100.00)
12-24 26.98% 0.19 0.15

12-23  11-22 83.58% 0.28 0.12 (7.46, 84.62)

13-21  13-23 66.67% 0.43 0.27 (28.57,16.67)
13-21 20.00% 0.43 0.18

13-24  13-22 70.00% 0.32 0.14 (50.00, 40.00)
13-23 30.00% 0.33 0.27

14-21  13-22 61.11% 0.25 0.14 (30.56, 58.33)
13-24 36.11% 0.25 0.17

14-22  14-21 40.74% 0.24 0.12 (0.00, 100.00)
14-23 48.15% 0.24 0.15

14-23  13-24 95.12% 0.23 0.17 (29.63, 25.00)

14-24  14-23 58.14% 0.32 0.15 (0.00, 100.00)
14-22 30.23% 0.32 0.17

* The numbers within the parenthesis indicate the type I error and the type II error.
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Figure 10. The leaf node matching from FT to NFT.
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Following the optimization approach stated in Section 3, the parameter 5, of the
fraud-central rule is tuned by solving the optimization problem (4) regarding each of the
three different settings of the constants w; and w,. The corresponding classification
errors (type I and type II) are stated in the last column of Table 14. For example, the
setting of w; = 0.01 and w, = 1 for the match leaf nodes #12-21 and *11-21 has the
smallest corresponding sum of (type I and type II) classification errors and the
corresponding optimal £ values are within the range of [1.44, 1.447]. Later we set S =
1.44 for samples classified to the leaf node #12-21. As shown in Table 13, the
corresponding type I error is 8.78% and type II error is 76.11% regarding all 580

training samples.

Table 14. The result of w; and w, of the fraud-central rule.

#FT—*NFT Wy Wy b Classification error (%)*
#11—*13-21
1 1 -0.293~-0.25 (2.86%, 34.29%)
*13-22
#12-21—-*11-21 0.01 1 1.44~1.447 (0.00%, 25.00%)
#12-22—*12-21
1 0.01 -0.47~-0.42 (0.00%, 7.64%)
*12-24
#12-23—*11-22 0.01 1 1.44~1.447 (8.93%, 17.86%)
#13-21—*13-23
0.01 1 1.44~1.447 (30.77%, 7.69%)
*13-21
#13-24—*13-22
0.01 1 1.44~1.447 (50.00%, 20.00%)
*13-23
#14-21—*13-22
0.01 1 1.44~1.447 (31.43%, 20.00%)
*13-24
#14-22—%*14-21
1 0.01 -0.47~-0.42 (0.00%, 13.51%)
*14-23
#14-23—*13-24 0.01 1 1.44~1.447 (30.00%, 7.50%)
#14-24—%*14-23
1 1 -0.293~-0.25 (0.00%, 20.00%)
*14-22

In sum, the non-fraud-central rule is better through comparing the corresponding

sum of (type I and type II) classification errors in Table 12 with the ones in Table 14.
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4.5 Modeling phase — feature-extracting module

Without loss of generalization, the clustering result of the GHSOM is used to
illustrate the operation of a feature-extraction stage and we demonstrate the features of
each leaf node of FT. The leaf node #12-24 is excluded due to having only one sample.
For each leaf node of the GHSOM, values of the eight significant variables regarding all
clustered samples are the inputs of PCA. According to Kaiser (1960), only those factors
whose variances are greater than 1° are retained as the principle components. Table 15
presents the estimated eigenvalues of eight factors regarding all leaf nodes. According
to the factor selection criterion, for instance, #11 has retained the first three factors as its
principle components, in which factor 1 explains 44.819% of the total variance of the

input variables, factor 2 27.842% and factor 3 15.964%.

Table 15. The estimated eigenvalues of eight factors regarding all FT leaf nodes.

Leaf node Factor Figenvalue % of Variance

#11 1 3.586 44.819
2 2.227 27.842

3 1.277 15.964

4 0.423 5.292

5 0.253 3.162

6 0.138 1.723

7 0.064 0.800

8 0.032 0.398

#12-21 1 6.468 92.400
2 0.532 7.600

3 0.000 0.000

4 0.000 0.000

5 0.000 0.000

6 0.000 0.000

8 0.000 0.000

#12-22 1 2.691 38.440
2 1.697 24.237

3 1.253 17.905

3 That is its corresponding eigenvalue is large than 1.
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4 0.802 11.458
5 0.495 7.069
6 0.039 0.563
8 0.023 0.329
#12-23 1 3.618 51.689
2 1.885 26.931
3 0.953 13.608
4 0.321 4.593
5 0.151 2.161
6 0.042 0.603
8 0.029 0.415
#13-21 1 3.699 46.242
2 1.923 24.038
3 1.440 17.995
4 0.822 10.271
5 0.116 1.455
6 0.000 0.000
7 0.000 0.000
8 0.000 0.000
#13-22 1 2.845 35.560
2 2.633 32.919
3 1.534 19.178
4 0.629 7.860
5 0.262 3.274
6 0.055 0.684
7 0.030 0.379
8 0.012 0.147
#13-23 1 3.926 49.076
2 3.196 39.949
3 0.878 10.975
4 0.000 0.000
5 0.000 0.000
6 0.000 0.000
7 0.000 0.000
8 0.000 0.000
#13-24 1 3.541 44.257
2 2.883 36.044
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3 1.206 15.070
4 0.257 3.219
5 0.113 1.410
6 0.000 0.000
7 0.000 0.000
8 0.000 0.000
#14-21 1 3.092 38.655
2 2.589 32.361
3 1.244 15.545
4 0.850 10.626
5 0.176 2.204
6 0.049 0.609
7 0.000 0.000
8 0.000 0.000
#14-22 1 3.271 40.887
2 1.846 23.079
3 1.469 18.368
4 0.765 9.562
5 0.443 5.532
6 0.172 2.153
7 0.034 0.419
8 0.000 0.000
#14-23 1 2.879 35.982
2 2.100 26.247
3 1.137 14.214
4 0.766 9.580
5 0.439 5.483
6 0.333 4.166
7 0.221 2.761
8 0.125 1.567
#14-24 1 4.048 50.601
2 2.027 25.336
3 0.931 11.637
4 0.660 8.251
5 0.151 1.886
6 0.114 1.425
7 0.063 0.791
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8 0.006 0.074

Note: The values of the sixth factor (SPR) are the same in leaf nodes #12-21,
#12-22 and #12-23. Therefore, they do not have eigenvalues.

Table 15 presents the estimated eigenvalues of eight factors regarding all leaf
nodes of FT. The leaf node #13-21, #13-22, and #13-24 has three factors in which the
eigenvalue is greater than 1. The leaf node #13-23 has two factors in which the
eigenvalue is greater than 1. The leaf node #14-21, #14-22, and #14-23 has three
factors whose eigenvalues are bigger than 1. The leaf node #14-24 has two principle
factors whose eigenvalues are bigger than 1. Those factors with eigenvalues bigger
than 1 are determined as the principle components of its belonging leaf node.

To enhance the interpretability of the obtained principle components, the varimax
factor rotation method is used here. This method minimizes the number of variables
that have high loadings of a principle component. To differentiate features in each
principle component, variables with the absolute value of corresponding factor
loadings less than 0.6 are omitted. Table 16 to Table 18 shows the results of a varimax
factor rotation method regarding the leaf nodes of FT.

Table 16 shows the results of a varimax factor rotation method regarding all FT

leaf nodes.
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Table 16. The factor loadings of all FT leaf nodes.

Leaf Principle
ROA CR QR DR CFR CFAR SPR Z-score
node |component
1 0911
#11 2 0.786 0.732 09
3 0.859 0.908
#12-21 1 0983 095 0975 0.999 -093 -0.94 -0.949
1 -0.863 0.797
#12-22 2 0.898
3 0.941 -0.778
#12-23 1 0.706 -0.967 0.905
2 -0.891 0.87 0.953
#13-21 1 -0.902 0.821 0.95
2 0.886 -0.969
3 0.909 -0.967
#13-22 1 0.873 0.934 -0.892
2 0.947 0.927
3 0.708 0.871
#13-23 1 0.99 0.967 0.935 -0.816
2 -0.728  0.815 0.944 -0.999
#13-24 1 -0.929 -0.86 0.97 0.902
2 0.946 -0.931 0.891
3 0.984
#14-21 1 0.869 0.915 0.729
2 0.961 0.768 0.763
3 0.955
#14-22 1 0.63 0.969  0.995
2 -0.915 0.825
3 0.774 0.648 0.828
#14-23 1 0.668 -0.87 0.73 0.92
2 0.74 0.83
3 0.886
#14-24 1 0.851 0.979 0.968 0.957
2 0.892 0.847 -0.645
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As shown in Table 16, the principle components extracted from different leaf
nodes have a heterogeneous composite of variables. For instance, regarding the leaf
node #11, its first principle component consists of one debt related ratio (CR); its
second principle component consists of three liquidity related ratios (QR, CFR and
CFAR); and its third principle component consists of one earning related and one
corporate governance ratios (ROA and SPR). Hence, the first principle component
represents debt paying ability of a firm; the second principle component represents the
liquidity of a firm; and the third principle component represents the profitability and
financial pressure of a firm. Regarding the leaf node #12-21, all variables are principle
component which represents the profitability, liquidity, cash flow ability and financial
difficulty of a firm. Regarding the leaf node #12-22, its first principle components
consists of two ratios, DR and Z-score, which represent the debt paying ability of a
firm; its second principle component consists of one ratio, CFR, which represents the
cash flow ability of a firm; its third principle component consists of two ratio, ROA
and CFAR, which represents the profitability and the cash flow ability of a firm.
Regarding leaf node #12-23, its first principle component consists of three ratios (ROA,
DR and Z-score), which represent the profitability, debt paying ability and financial
health of a firm; and its second principle component consists of three liquidity related
ratios (CR, CFR and CFAR) which represent the liquidity of a firm.

Regarding the leaf node #13-21, its first principle component consists of three
liquidity related ratios (CR, QR and CFAR); its second principle component consists of
one earning related and one debt related ratios (ROA and DR); and its third principle
component consists of one corporate governance related and one financial healthy
related ratios (SPR and Z-score). Hence, the first principle component represents
liquidity of a firm; the second principle component represents the profitability and debt
paying ability of a firm; and the third principle component represents the financial
pressure and financial health of a firm. Regarding the leaf node #13-22, it has three
principle components. The fist principle component consists of two ratios (QR and DR)
which represent the debt paying ability of a firm. The second principle component
consists of one ratio, CFAR, which represents the cash flow ability of a firm. The third
principle component consists of two ratios (CR and SPR), which represents the
liquidity and corporate governance health of a firm. Regarding the leaf node #13-23, it

has two principle components. The first principle component consists of four ratios
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((ROA, CR, QR, SPR)), which represents the profitability, liquidity and financial
pressure of a firm; its second principle component consists of four ratios (DR, CFR,
CFAR, Z-score), which represents the debt paying ability, cash flow ability and
financial health of a firm. Regarding the leaf node #13-24, its first principle component
consists of four ratios (CR, QR, CFR and CFAR), which represents the liquidity of a
firm; and its second principle components consists of three ratios (ROA, DR, and
Z-score) which represent the profitability, debt paying ability and the financial health
of a firm. The third principle component consists of one ratio, SPR, which represents
the corporate governance health of a firm.

Regarding the leaf node #14-21, its first principle component consists of two
liquidity related ratios and one corporate governance related ratios (CFR, CFAR and
SPR); its second principle component consists of the debt related ratios (CR, QR and
DR); and its third principle component consists of one financial healthy related ratios
(Z-score). Hence, the first principle component represents the liquidity of a firm; the
second principle component represents the debt paying ability of a firm; and the third
principle component represents the financial health of a firm. Regarding the leaf node
#14-22, it has three principle components. The fist principle component consists of
three ratios (QR, CFR and CFAR), which represent the liquidity of a firm. The second
principle component consists of two ratios (DR and Z-score), which represent the debt
paying ability and the financial health of a firm. The third principle component consists
of three ratios (ROA, CR, and SPR), which represent the profitability, the liquidity and
the corporate governance health of a firm. Regarding the leaf node #14-23, its first
principle component consists of four ratios (CR, DR, CFAR and Z-score), which
represent the liquidity, debt paying ability and the financial health of a firm; its second
principle component consists of two ratios (ROA and QR), which represent the
profitability and debt paying ability of a firm; its third principle component consists of
one ratios (CFR), which represent the cash flow ability of a firm. Regarding the leaf
node #14-24, its first principle component consists of four ratios (ROA, CFR, CFAR
and Z-score), which represents the profitability, cash flow ability and financial health
of a firm; and its second principle component consists of three ratios (CR, QR and DR),
which represent the debt paying ability of a firm.

We can efficiently exploit one single group or compare different groups from

comparing the similarity of each extracted features provided by PCA. As Canbas et al.
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(2005) had done, an early warning model for the observations can be estimated
according to these major factor loadings, such as discriminant, logit, probit, and ANN.
By applying PCA to the financial data, the important financial factors can be used to
explain the FFR patterns under a certain financial conditions of a firm. In sum, the
experimental results show that the proposed quantitative approach with the GHSOM
and PCA is helpful in obtaining useful features and can be used to help detect

deception regarding FFR or other financial distress scenarios.

4.6 Modeling phase — pattern-extracting module

We take two leaf nodes: #11 and #14-21 as an example to explain about
uncovering the regularity of FFR fraud categories from the corresponding indictments
and sentences for major securities crimes issued by the Department of Justice. Based
on the ten FFR fraud categories discussed in Beasley et al. (1999), Table 17
summarizes the FFR fraud categories commonly adopted by companies clustered in
these two leaf nodes. The code and year in the first two columns indicate respectively

the company SIC code and the year of financial statements clustered.
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Table 17. Common FFR fraud categories within #11 and #14-24.

Code year FCl1 FC2 FC3 FC4 FC5 FC6 FC7 FC8 FC9 FCI10
leaf node #11
2505 1998 o

2529 1998 o o
8716 1999 o o
2334 1999 o o
3039 2004 @
1601 1998 o
1221 2002 @ o o
1221 2003 @ o o
2014 2003 @ o
5901 1997 o o
5901 1998 o o
5901 1999 o o
leaf node #14-24
2206 1999 o
2350 1998 o
2407 2002 @ o o e O o
2407 2003 @ o o e O o
2407 2004 @ o o e O o
2490 2000 @ o
2490 2002 @ o
8295 1998 o o
1221 2001 @ o o
8723 1998 o e O
2017 1997 o o
5007 1999 o o
FCI: recording fictitious revenues; FC2: recording revenues prematurely;
FC3: no description/overstated about revenues; FC4: overstating existing assets;

FCS5: recording fictitious assets or assets not owned; FC6: capitalizing items that should be expensed;
FC7: understatement of expenses/liabilities; FC8: misappropriation of assets;

FC9: inappropriate disclosure; FC10: other miscellaneous techniques.

*The code and year in the first two columns indicate the company code and the year of each

clustered financial statement.

77



As shown in Table 17, the common FFR fraud categories found in leaf node #11
are recording fictitious revenues (FCI1), capitalizing items that should be expensed
(FC6) and misappropriation of assets (FC8). The common FFR fraud categories found
in leaf node #14-24 are recording fictitious revenues (FC1), overstating existing assets
(FC4) and misappropriation of assets (FC8). With further traces back to the
corresponding indictments and sentences, even though both of these two groups have
recording fictitious revenues (FC1), we find that the ways of committing this fraud
category are quite different.

For instance, some fraud samples (3039 and 1221) in leaf node #11 were found
using FC1 via creating fictitious transactions and defrauding export drawbacks from
the Internal Revenue Service by reporting fictitious export sales. Moreover, some fraud
samples (1601and 1221) used FC8 by processing the receipt and payment in advance.
In contrast, some fraud samples (2407, 8723, and 2017) in leaf node #14-24 were
found to use FC4 through purchasing intangible asset/long-term investment with high
premiums. Some fraud samples (2206, 2407, 2490, 8723, and 2017) used FC8 through
related party transactions and merger and acquisition activities to misappropriate cash.

In sum, Table 17 shows that the observed corporate behaviors (i.e., common FFR
fraud categories extracted based upon the associated indictments) in different leaf nodes
are distinctive even though these nodes are clustered based upon the corporate financial
situations proxied by the input variables.

The overall FFR fraud categories extracted from each leaf node of FT are
summarized in Table Al. We summarize the common FFR fraud categories into Table

18 for further comparison.
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Table 18. Summary of the common FFR fraud categories.

leafnode FCl FC2 FC3 FC4 FC5 FC6 FC7 FC8 FC9 FCl10

#11 o ® o
#12-21 ®
#12-22 o o o ®
#12-23 ® ® ® e o
#12-24 o ®
#13-21 e O
#13-22 e ©o
#13-23 o o O
#13-24 e o
#14-21 ® e o
#14-22 o o
#14-23 ® o o
#14-24 o ® ®
FC1: recording fictitious revenues; FC2: recording revenues prematurely;
FC3: no description/overstated about revenues; FC4: overstating existing assets;

FCS5: recording fictitious assets or assets not owned; ~ FC6: capitalizing items that should be expensed;
FC7: understatement of expenses/liabilities; FC8: misappropriation of assets;

FC9: inappropriate disclosure; FC10: other miscellaneous techniques.

In Table 18, we find those leaf nodes from the same branch tend to have similar
common fraud categories. For example, the branch #12 has common fraud categories
FC1, FC4, FC6 and FC9. The branch #13 has common fraud categories FC7 and FCS.
The branch #14 has common fraud categories FC1, FC6 and FC8. This phenomenon
may be resulted from the nature of the SOM, that is, in the topological space of the
SOM, the nodes (i.e., groups) with similar features tend to be located nearby. Therefore,
the overall distribution of fraud categories in FT can also reveal more information as the
FFR knowledge map, which can contribute to build up the knowledge base for FFR
detection. Besides, we believe that as the amount of training samples keep accumulated,
the represented patterns (i.e., fraud categories) of FT will become more solid and

reliable.
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4.7 Analyzing phase — group-finding, classifying module

In the analyzing phase, we conclude that the non-fraud-central rule is better through
comparing the corresponding sum of (type I and type II) classification errors (Table 12
and Table 14). The dominance of the non-fraud-central rule leads to an implication that
most of fraud samples cluster around the non-fraud counterpart.

In analyzing phase, both training samples and testing samples are classified based
on the non-fraud-central rule. As shown in Table 19, the testing samples consist of 182
firm-year observations which comprise 54 fraud samples and 128 non-fraud samples
over the period from 2002 to 2008. All these testing samples are different from the

training samples.

Table 19. The list of fraud and non-fraud firms in testing samples.

SIC Non-fraud  SIC  Sampling
No Fraud firm Fraud year .
code firm code  period
1 FERAT 2418  2003-2007 I % 2379 2002-2008
2 B4 5605 2003-2006 s 5603 2002-2008
3 5 3506  2004-2006 AT e 3196 2002-2008
4 1 6276 2008 7ol 6275 2002-2008
5 e 3079 2005 AT 2492 2002-2008
6 3 ER 6242 2007-2008 X 7 6343 2002-2008
7 &2 6103 2004-2007 E & 3228 2002-2008
8 LN 2614 2002-2007 ¥ 9904 2002-2008
9 Btk 1606  2002-2008 =~ i 1609 2002-2008
10 i+ g 6232 2004-2007 A 5318 2002-2008
11 L3 1532 2007-2008 i+ 1517 2002-2008
12 =ik 3350  2004-2008 (= 3354 2002-2008
13 B F & 4413 2004-2007 KA 6502 2002-2008
14 AT W 5017  2004-2007 W 5009 2002-2008

The other arrangements regarding the data and the significant variable selection are

the same as the ones in the training phase.
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The classification results of applying the non-fraud-central rule to the training
samples and the testing samples are shown in Table 20. The type I error and type II
error for both training and testing samples are lower than 20% that implies an

acceptable prediction performances regarding the finance application.

Table 20. The classification result.

type I error  type Il error

Training samples 13.62% 13.28%
Testing samples 11.54% 19.78%

In the modeling phase of our proposed decision support approach, different
preference of the parameters w; (the weight of type I error importance) and w, (the
weight of type Il error importance) for obtaining the parameters £ and S, can generate
different classification boundaries for the fraud-central rule and non-fraud-central rule,
respectively. The subjective criteria in selecting a suitable parameter set of w; and w;
consider the issue of the trade-off phenomenon regarding the classification error; that is,
defining an acceptable prediction performance of the model in the training stage. We
believe that letting the decision makers decide their own acceptable prediction
performance based on their domain knowledge or experience in the model training stage
can make the proposed decision approach more reliable and useful for a specific

application domain, such as the fraud detection issue in this study.

4.8 Decision support phase — feature-retrieving module

The results of the feature-retrieving module come from the pattern-extracting
module and the feature-extracting module. We illustrate the results in the following

subsections.

4.8.1 Retrieve from pattern-extracting module

Table A2 summarizes the commonly adopted FFR fraud categories of the testing

samples identified as the fraud class in all leaf nodes of the FT. The identification
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performance of the FFR fraud categories are shown in Table 21, and the detail

identification performance of each leaf node is summarized in Table A3.

Table 21. The overall FFR fraud categories identification performance.

true non-fraud fraud fraud | non-fraud

A
predict fraud non-fraud | fraud [ non-fraud ceuracy

100-average(type I, type I1)

error (type I error) |(type II error)

percentage 17.53% 13.77% 86.23% 82.47% 84.35%

The overall type I error means based on the fraud categories of a leaf node, what
percentage of non-fraud categories are misidentified. The overall type II error means
based on the non-fraud categories, what percentage of fraud categories are
misidentified. The overall accuracy is the average percentage of the correct fraud
categories percentage and the correct non-fraud categories percentage. The overall type
I error is 17.53%, type II error is 13.77%, and the accuracy is 84.35%. According to
Table 21, the results can effectively support the decision making process for FFR
identification.

For further discussion, we take the leaf node #11 and leaf node #14-24 as an
example to give a detail description. As shown in Table A2 and Table A3, the common
FFR fraud categories found in leaf node #11 are recording fictitious revenues (FC1)
and misappropriation of assets (FCS8), which fit two of three common FFR fraud
categories in #11 retrieved from the modeling phase. The common FFR fraud
categories found in leaf node #14-24 are recording fictitious revenues (FC1),
overstating existing assets (FC4) and misappropriation of assets (FC8), which fit all of
three common FFR fraud categories in #14-24 retrieved from the training stage. In sum,
the feature extraction mechanism can actually catch the most common FFR patterns of
the testing samples. The experimental results show that the implementation of the DSS
architecture based on the proposed dual approach with the feature extraction
mechanism is helpful in obtaining FFR features and can be used to help detect FFR.
That is, the extracted common FFR fraud categories are integrated with the results of
PCA feature extraction to point out the relevant input variables, which can be further
associated with the common FFR fraud categories, and provide a clear inference for

any risky investigated sample that facilitate the investigation of decision makers.
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Such cluster results are derived from the competitive learning nature of the
GHSOM, which works as a regularity detector and is supposed to discover statistically
salient features of the sample population (Rumelhart and Zipser, 1985). That is, there
are no predefined categories into which samples are to be classified; rather, the
GHSOM must develop its own feature representation of the sample which captures the
most salient features of the population of sample. Furthermore, through a ton of
small-sized mappings, the GHSOM classifies the sample into more subgroups with
hierarchical relationships instead of a dichotomous result and therefore further and

more delicate analyses are feasible.

4.8.2 Retrieve from feature-extracting module

The retrieved principle components for any leaf node can be applied to be linked
with its retrieved fraud categories and then provide an inference about its potential
fraud behavior. Take the testing samples belonged to the leaf node #11 and #14-24 as
examples, the retrieved principle components for the leaf node #11 and #14-24 are

shown in Table 22.

Table 22. The principle components retrieved by the feature-retrieving module for the

testing samples within #11 and #14-24.

Leafnode Principle component Variable Description
1 CR debt paying ability
411 2 QR, CFR, CFAR liquidity
profitability, financial
3 ROA, SPR
pressure
414.04 1 ROA, CFR, profitability, cash flow
CFAR, Z-score ability, financial health
2 CR, QR, DR debt paying ability

For the leaf node #11, the first principle component represents the debt paying
ability of a firm. The second principle component represents the liquidity of a firm.
The third principle component represents the profitability and financial pressure of a

firm. Regarding the leaf node #14-24, its first principle component represents the
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profitability, cash flow ability and financial health of a firm. The second principle
component represents the debt paying ability of a firm.

Then, the retrieved principle components are linked to its common fraud
categories of the testing sample, which can be used to explain the rationality of the
provided principle components. For example, the common FFR fraud categories found
in leaf node #11 are recording fictitious revenues (FC1), capitalizing items that should
be expensed (FC6) and misappropriation of assets (FC8), which may be caused from
lacking of debt paying ability, liquidity, profitability, or under server financial pressure.
The common FFR fraud categories found in leaf node #14-24 are recording fictitious
revenues (FC1), overstating existing assets (FC4) and misappropriation of assets (FC8),
which may be caused from bad cash flow ability or weak debt paying ability. Therefore,
for any unknown investigated sample classified into #11 and #14-24, the results with
both fraud categories and principle components also help provide the possible clues as

the direction for further inspection.

4.9 Analyzing phase — decision-supporting module

Based on the common FFR fraud categories observed in the leaf node, we further
investigate the causes of the observed common FFR fraud categories with the
assistance of experts with domain knowledge to identify the relevant input variables of
such regularity for future financial reporting. That is, the identified common FFR fraud
categories of each leaf node are further integrated with the principal components
extracted from the classified samples. Such information can help identify the relevant
input variables as the pre-warning signal, which reveals the potential fraudulent
activities, for any samples clustered into this investigated leaf node by the GHSOM.

Without losing the generalization, the results of the decision-supporting module
are shown in Table 23. The information contains both features and patterns could
provide clues to facilitate decision making. The explanation and speculation are mainly
done by the decision makers.

Let’s take the investigated samples predicted to commit fraud and belonged to the
leaf nodes #11 or #14-24 to descript part of the results of the decision-supporting

module. For any investigated sample identified fraud and belonged to the leaf node #11
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or #14-24, the associated investigation could be summarized as follows for decision aid.

Any sample belonged to leaf node #11 may have a liquidity pressure and a weakness of

short term debt paying ability such that they tend to commit FFR through recording

fictitious revenues, capitalizing items that should be expensed, or misappropriating

assets approach. For the leaf node #14-24, any sample belonged to it may have a bad

cash flow condition and worse profitability, thus the overall financial pressure such

that they tend to commit FFR through overstating existing assets, or recording

fictitious revenues approach.

Table 23. The results of decision-supporting module for any investigated sample

identified fraud.
Leaf FFR fraud . .
. Principle components Description
node categories
FCI, FC6, FC8 | {CR, (QR, CFR, CFAR), {debt paying ability, liquidity,
#11 ROA, SPR rofitability, financial pressure
p y p
FC3 {(ROA, CR, QR, DR, CFR, {(profitability, liquidity, cash flow
#12-21 CFAR, Z-score)} ability, financial difficulty)}
FC1, FC4, FC6,| {(DR, Z-score), CFR, {debt paying ability, cash flow
#12-22 | FC9 (ROA, CFAR)} ability, (profitability, the cash
flow ability)}
FC2, FC4, FCe,| {(ROA, DR, Z-score),(CR,  {(profitability, debt paying ability,
#12-23 | FC8, FC9 CFR, CFAR)} financial health), liquidity}
FC7, FC8 {(CR, QR, CFAR), (ROA, {liquidity, (profitability, debt
#13-21 DR), (SPR, Z-score)} paying ability), (financial
pressure, financial health)}
FCe6, FC7 {(QR, DR, Z-score), (CFR, {debt paying ability, cash flow
#13-22 CFAR), (CR, SPR)} ability, (liquidity, corporate
governance health)}
FC4, FC7, FC8 | {(ROA, CR, QR, SPR), {(profitability, liquidity and
413.23 (DR, CFR, CFAR, financial pressure), (debt paying
Z-score)} ability, cash flow ability, financial
health)}
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#13-24

FC8, FC9 {(CR, QR, CFR, CFAR), {liquidity, (profitability, debt

(ROA, DR, Z-score), SPR} paying ability, financial health),

corporate governance health}

FCeo, FC8, FC9 | {(CFR, CFAR, SPR), (CR, {liquidity, debt paying ability,

#14-21 QR, DR), Z-score} financial health}
FC1, FC8 {(QR, CFR, CFAR), (DR, {liquidity, (debt paying ability, the
414.22 Z-score), (ROA, CR, SPR)} financial health), (profitability, the
liquidity, corporate governance
health)}
FCo, FC7, FC8 | {(CR, DR, CFAR, Z-score), {(liquidity, debt paying ability,
41423 (ROA, QR), CFR} financial health), (profitability,
debt paying ability), cash flow
ability}
FCI, FC4, FC8 | {(ROA, CFR, CFAR, {(profitability, cash flow ability,
#14-24 Z-score}, (CR, QR, DR)} financial health), debt paying
ability}
FC1: recording fictitious revenues; FC2: recording revenues prematurely;

FC3:
FC5:
FC7:
FC9:

no description/overstated about revenues;

FC4: overstating existing assets;

recording fictitious assets or assets not owned; =~ FC6: capitalizing items that should be expensed;

understatement of expenses/liabilities;

inappropriate disclosure;

FC8: misappropriation of assets;

FC10: other miscellaneous techniques.

Based on our analysis, many fraud samples belonged to Iron & Steel and Building

Material & Construction industries and committed FFR in 1998 and 1999 during East

Asian Financial Crisis. The operation of fraud firms deteriorated sharply due to the

bear market and could not generate sufficient net cash inflow. They committed FFR to

conceal the embezzlement and other undesirable outcomes from investors and creditors.

Prevalent FFR fraud categories include overstating revenues through fictitious sales,

embezzling money via accounts such as temporary payment or prepayment for

purchases, recording loans from related party into accounts receivable. These FFR

behaviors make some accounts falsified, such as accounts receivable, related party

transaction or other relevant input variables.
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5. Methods comparison

We also compare the results of our proposed method with the ones of three existing
methods — the Support Vector Machine (SVM) (Vapnik, 1995), the SOM with Linear
Discriminant Analysis (LDA) (named SOM+LDA) (Carlos, 1996), the (traditional)
GHSOM with LDA (named GHSOM+LDA), SOM, BPNN and Decision Tree (DT).*
The SVM is a supervised learning method which has specialty in recognizing patterns,
and has been widely used for classification and regression analysis (Vapnik, 1995; Hsu
et al., 2009). The idea of applying the SOM with LDA in FFD is derived from Carlos’s
(1996) study. In contrast, the GHSOM+LDA method uses all training samples to
construct merely one GHSOM tree while the clustering module of our proposed dual
approach uses the fraud and non-fraud samples to construct FT and NFT, respectively.
The trial of GHSOM+LDA is used to justify the effectiveness of the analyzing phase of
the proposed dual approach.

5.1 SVM

Given a training set of instance-label pairs (x;, 34), i = 1,...,/ where x, € R" and
y e{l,-1}, the SVM (Boser et al., 1992; Vapnik, 1995; Cortes and Vpaink, 1995; Hsu

et al., 2010) require the solution of the following optimization problem:

. NN\ !
min —w w+C .
w,b,& 2 ; é:l

st y, (W px)+b) 21, (13)
£ >0.

Here training vectors x; are mapped into a higher dimensional space by the function
¢. SVM finds a linear separating hyperplane with the maximal margin in this higher
dimensional space. C > 0 is the penalty parameter of the error term. Furthermore,

K(x;,x;)=d(x, ) P(x ;) 1s called the kernel function. There are four basic kernels:

* We use the GHSOM toolbox in the platform of Matlab R2007a, the SVM and the SOM package in the
platform of SPSS Clementine 12.0, and the LDA package in the platform of SPSS.
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Linear: K(x;,x;)= xl.ij .

Polynomial: K(x,,x;)=(y xiij +r),y>0.

Radial basis function (RBF): K (x,,x;) = exp(~y [x, - x, Hz), y>0.
Sigmoid: K(x;,x;) = tsaih(y xl.ij +7).

Here, y,rand d are kernel parameters. The RBF is by far the most popular choice
of kernel types used in Support Vector Machines. This is mainly because of their
localized and finite responses across the entire range of the real x-axis. Therefore, we

choose RBF as the kernel function of SVM.

5.2 SOM+LDA

As stated in Carlos’s (1996) study, the SOM+LDA which, on the basis of the
information contained in a multidimensional space — in the case exposed, financial
ratios — generates a space of lesser dimensions. In this way, similar input patterns are
represented close to one another on a map. Such neural networks can be combined with
other mathematical models applied to the prediction of corporate failure. From among
all these, without doubt the most popular is LDA. For example, Canbas et al. (2005)
proposed a methodological framework for constructing the integrated early warning
system (IEWS) that can be used as a decision support tool in bank examination and
supervision process for detection of banks, which are experiencing serious problems.
Well known multivariate statistical technique (principal component analysis), was used
to explore the basic financial characteristics of the banks, and discriminant, logit and
probit models were estimated based on these characteristics to construct IEWS.

Based on the idea of below studies, we use SOM to cluster the training samples,
and then apply LDA in each node of SOM as a classifier to identify the fraud samples.
Table 24 describes the habitual working procedure of SOM+LDA.
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Table 24. The habitual working procedure of the SOM+LDA.

step 1:  Sample and measure variable.

step 2:  Identify the significant variables that will be used as the input
variables.

step 3:  Use the training samples to set up an SOM.

step 4:  For each node of SOM, set up a LDA model.

step 5:  For each investigated sample s, identify the winning node x of SOM.

step 6:  Use the trained LDA of the node x to predict the investigated sample s.

The map size of the SOM is 4 x 3, as shown in Figure 11.

OIOQIC
QOO
OIOQIC

Figure 11. The map size of the SOM in the SOM+LDA method.

5.3 GHSOM+LDA

The trial of GHSOM+LDA method is used to justify the effectiveness of the
analyzing phase of the proposed dual approach, which uses all training samples to
construct merely one GHSOM tree while the training phase of our proposed dual

approach uses the fraud and non-fraud samples to construct FT and NFT, respectively.
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The GHSOM is used to cluster the training samples, and then apply LDA in each

leaf node of the GHSOM as a classifier to identify the fraud samples. Table 25
describes the habitual working procedure of GSOM+LDA.

Table 25. The habitual working procedure of the GHSOM+LDA.

variables.

GHSOM.

step 1:  Sample and measure variable.

step 3:  Use the training samples to set up a GHSOM.
step4:  For each node of GHSOM, set up a LDA model.

step 5:  For each investigated sample c, identify the winning node x of

step 2:  Identify the significant variables that will be used as the input

step 6:  Use the trained LDA of the node x to predict the investigated sample c.

The parameter t; = 0.8 and 1, = 0.07 are set for the GHSOM+LDA method. The
GHSOM-+LDA method results in a GHSOM tree with 16 leaf nodes, named one tree
(ONET), which is shown Figure 12.

ONET

m01
(580)
\
v
Layer 1 mll ml2 ml3 mld
(72) (200) (159) (149)
Layer 2 mll-21 ml1-23 ml2-21 ml2-23 ml3-21 ml3-23 ml4-21 ml4-23
%) (8) (118) (17) 9 (36) (45) (45)
A AE— A A A— A A AEE— A v
ml1-22 mll1-24 ml2-22 ml2-24 ml3-22 ml3-24 ml14-22 ml4-24
39) (16) (11) (54) (34) (80) (40) (19)

Figure 12. The obtained GHSOM tree of the GHOM+LDA method.
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5.4 SOM

Based on the theoretical feature of SOM, samples with similar internal feature tend
to be grouped together. Following this principle, one out sample can use the feature of
its belonging node of SOM as its represented feature. The nodes of SOM with high risk
are marked in the training stage, and any sample classified into any of these high risk
nodes shell be considered high risk too based on the nature of unsupervised learning.

We use SOM to cluster the training samples, and then determined the risk level in
each node of SOM. The node with high fraud sample proportion will be classified as a
fraud group. Any sample classified into this group will be predicted as a fraud one.

Table 26 describes the working procedure of the SOM method.

Table 26. The habitual working procedure of the SOM.

step 1:  Sample and measure variable.

step 2:  Identify the significant variables that will be used as the input
variables.

step 3:  Use the training samples to set up an SOM.

step 4:  For each node of SOM, determined the risky node with high FFR
proportion.

step 5:  For each investigated sample ¢, identify the winning node x of SOM.

step 6:  If sample c is classified into one of the risky nodes of SOM, it will be

predicted as a fraud one, otherwise, a non-fraud one.

The map size of the SOM is 4 x 3 is the same as the SOM+LDA method which is
shown in Figure 13. Here we set the fraud sample proportion bigger than 13% as the
risky nodes. The determined risky nodes resulted from step 4 is shown in Figure 13, in

which the risky nodes are marked in color.
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36.56%

44.83% 8.51%

0.00% 0.00%

20.00% 8.82%

Figure 13. The map size of the SOM with FFR proportions.

The risky nodes of the obtained SOM also reveal a certain regularity of SOM that
similar nodes tend to be located nearby. The comparative location of nodes can also
help decision makers get the background of an investigated sample from the nodes
nearby its belonging node. The boundary of risky and healthy nodes can be easily found
through the information of FFR sample proportion, other indicator for help observe the
boundary are not also worth of trying as a part of classifier.

This study also compares the prediction performance regarding another two data
mining tools, back-propagation neural network (BPNN) and decision tree (DT), to
compare their prediction performance and to discuss how the results of each method

could contribute to discover FFR.

5.5 BPNN

The Back propagation neural network (BPNN) is proposed by Rumelhart et al.
(1986). The BPNN is a supervised learning neural network tool, which is one of the
popular techniques for classification and prediction. The training of BPNN by steepest
descent method (SDM) is to follow negative gradient direction of cost function to find

out the optimal weighting and bias.
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In this study, the BPNN structure is shown in Figure 14 and the parameter setting
of BPNN is set as follows: the transfer function is sigmoid, the iterations are set to
10000, the learning rate is set to 0.01, and the momentum factor is set to 0.9. The BPNN
is run 10 times with different initial weights, and then calculate the minimal, average
and maximal prediction error. The minimal prediction error is chosen as the represented
performance of BPNN. The weights of BPNN are shown in Table 27. The classification
results of BPNN are shown in Table 28.

output layer

hidden layer

input layer

Figure 14. The BPNN structure.

Table 27. The weights of BPNN.

variable weight
CFR 1.996
DR 0.1973
Z-score 0.1865
CR 0.1093
SPR 0.0902
CFAR 0.0837
QR 0.0731
ROA 0.0604
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Table 28. The classification results of the BPNN.

training stage testing stage

No. Type I error Type Il error  Sumof  Typelerror Type II error
erTors

1 15.2% 32.74% 47.95% 10.94% 64.81%

2 13.7% 44.25% 57.95%

3 19.27% 34.51% 53.79%

4 20.56% 33.63% 54.19%
5 20.13% 32.74% 52.87%
6
7
8
9

16.49% 40.71% 57.20%
17.99% 35.40% 53.39%
17.13% 39.82% 56.95%
15.42% 42.48% 57.90%
10 20.77% 31.86% 52.63%

minimal prediction error:  47.95%

average prediction error:  57.95%
maximal prediction error:  54.48%
represent 15.2% 32.74% 47.95% 10.94% 64.81%

5.6 DT

Decision Tree (DT) is a non-parametric supervised learning method used for
classification and regression. The goal is to create a model that predicts the value of a
target variable by learning simple decision rules inferred from the data features.

ID3 (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan. The
algorithm creates a multi-way tree, finding for each node (i.e., in a greedy manner) the
categorical feature that will yield the largest information gain for categorical targets.
Trees are grown to their maximum size and then a pruning step is usually applied to
improve the ability of the tree to generalize to unseen data.

C4.5 (Quinlan, 1993) is the successor to ID3 and removed the restriction that
features must be categorical by dynamically defining a discrete attribute (based on
numerical variables) that partitions the continuous attribute value into a discrete set of
intervals. C4.5 converts the trained trees (i.e., the output of the ID3 algorithm) into sets

of if-then rules. The accuracy of each rule is then evaluated to determine the order in
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which they should be applied. Pruning is done by removing a rule’s precondition if the
accuracy of the rule improves without it. C5.0 (Quinlan, 1996) uses less memory and
builds smaller rule sets than C4.5 while being more accurate.

In this study, we use C5.0 algorithm to build up the DT. The minimum number per
child branch is 10. The obtained DT structure and the obtained rule sets are shown in

Figure 15 and Figure 16.

|_# % nf
: 0,000 80517 467 |
™ 1.000 19.483 113
s mu oon 5s0 |,

___________________ =
Zscure
== 3 062 = 3.062
Eﬁ%.!m g 8
#85 % n bkl % n
0.000 52.985 71 0.000 88.789 396

Wio000 47.015 63| |M1.000 11.211 50
it 23103134 B 76.807 446

=
CFR
== 2836 = 2836
HiEh 2 RS 3

£RA % n Easkell % n
0ooo 20000 5 0000 E0.550 66
M 1.000 20000 20( |M1.000 39450 43

L 4310 25 Sy 18?93109

=
=_1 881 = 1.981
E‘ﬂ%&i 4 g 7

/Al % n mE % n
0.000 55319 52 0.000 93333 14
Wi000 44681 42| |M1.000 6.667 1

ey 1620? 94 sk 2586 158

=
Zscore
<—3016 >3016
Eﬁ%&i ] E’ﬂ%&i G

E2:El % n HEAI % n
0.000 39.024 16 0.000 67925 26
M 1p000 BO9S7E 25| |M1.000 32075 17

Sl 7069 M SR 9128 452

Figure 15. The obtained DT structure.
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Zscore <=3.062 [ Mode: 0 ]
CFR <=2.836 [ Mode: 1 ] => 1.0
CFR >2.836 [ Mode: 0 ]
DR <=1.981 [ Mode: 0 ]
Zscore <=3.016 [ Mode: 1 ]=>1.0
Zscore >3.016 [ Mode: 0 ]=>0.0
DR > 1.981 [ Mode: 0 ]=> 0.0
Zscore > 3.062 [ Mode: 0 ] => 0.0

Figure 16. The obtained DT rules.

The experimental designs for both training stage and testing stage are the same as

the previously mentioned settings, and the results are shown in Table 29.

Table 29. The experimental results of our dual approach, the SVM, SOM+LDA,
GHSOM+LDA, SOM, BPNN and DT methods.

Training samples Testing samples

type L error type Il error  type I error type II error

dual approach 13.62% 13.28% 11.54% 19.78%
SVM 24.84% 21.24% 45.31% 27.78%
SOM+LDA 16.49% 30.09% 32.81% 51.85%
GHSOM+LDA 20.34% 22.12% 22.66% 44.44%
SOM 34.48% 35.4% 26.56% 57.41%
BPNN 15.2% 32.74% 10.94% 64.81%
DT 4.5% 60.18% 15.63% 68.52%

Compared with the SVM, SOM+LDA, GHSOM+LDA, SOM, BPNN, and DT
methods, the corresponding sum of (type I and type II) classification errors of the
analyzing phase in the proposed dual approach is much lower in most cases. As shown

in Table 29, the type I error and the type II error for both training samples and testing
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samples of our approach are lower than 20% that implies acceptable classification

performance regarding the FFD application.

5.7 Discussion of the experimental results

This research proposes a DSS architecture based on a novel dual approach that
includes the training phase, the modeling phase, the analyzing phase and the decision
support phase. In the training phase, the GHSOM generates more subgroups instead of
dichotomous outcomes which can facilitate delicate analysis. In the modeling phase,
the classification rule is built and the fraud related features of the samples of a leaf
node is extracted for evaluating any sample classified into this leaf node. The
analyzing phase applies the dominant classification rule obtained from the modeling
phase. The decision support phase integrated the classification result and the associated
features for decision aid. The results confirm the feasibility of the proposed dual
approach which can contribute to FFR detection.

Specifically, the GHSOM generates more subgroups instead of dichotomy and
provides more delicate features embedded in the samples. Additionally, the
unsupervised learning nature of the GHSOM renders a more robust clustering
compared to traditional dichotomous classification. Each sample of the GHSOM is
treated equally without specifying its fraud attribute, and the clustering results can help
the following steps of rule forming and feature extracting.

The methods comparison results show that the implementation of the DSS
architecture based on the proposed dual approach not only outperforms the supervised
methods such as the SVM, BPNN, DT and the unsupervised methods such as the
SOM+LDA and GHSOM-+LDA, but also reveals more domain information such as the
extracted features (principal components) and the extracted patterns (fraud categories)
based on the common characteristics of the same group (leaf node), and the spatial
relationship among fraud and non-fraud samples. We believe that the improvement of
the GHSOM can contribute to the applicability in FFD, and can provide an alternative
way of data mining which enriches the background knowledge retrieved from the
similar samples of the historical data, and this is the potentiality of our proposed dual

approach.
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6. Discussions and implications

This study develops the dual approach as a DSS architecture that can be used for
FFD. The proposed dual approach is data-driven to perform the system modeling via
directly using the sampled data. As shown in Figure 5, the system architecture based
on the dual approach consists of a series of four phases. The details and the associated
modules have been explained phase by phase in section 3.1 to section 3.4, respectively.
Below, we summarize these four phases and the corresponding modules.

In the training phase, the data preprocessing is first executed through the sampling
module and variable-selecting module. Then, all samples with the corresponding
values of selected variables are the input of the clustering module to generate two
GHSOMs (i.e., fraud samples are used to generate FT and non-fraud samples are used
to generate NFT). The modeling phase consists of the statistic-gathering module,
rule-forming module, feature-extracting module and pattern-extracting module. The
first two modules utilize the statistics of FT and NFT leaf nodes to form the
classification rules which are different due to different spatial hypotheses. Then, the
classification rules are tuned respectively and compete with each other to become the
dominant one. The last two modules involve the discovery of features (e.g., principal
components) and patterns (e.g., fraud categories) in the FT leaf nodes. The extracted
features and patterns of each FT leaf node are valuable for FFD decision support
through being retrieved in the decision support phase.

The analyzing phase consists of the group-finding module and classifying module.
Based on the GHSOM clustering rule, each investigated sample is clustered into its
belonging leaf nodes in FT and NFT, and these two leaf nodes are paired. Then, the
classifying module uses the dominant classification rule obtained from the training
phase to determine if the investigated sample is fraud. If an investigated sample is
identified fraud, then the decision support phase will be executed. The
feature-retrieving module retrieves the features and patterns from the investigated
sample’s belonging FT leaf node, and the decision-supporting module integrates the
extracted features and patterns for the purpose of decision aid.

The implications for decision support in FFD, the research implications, and the

FFR managerial implications are given in the following subsections.
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6.1 The decision support in FFD

The proposed system architecture results in a process of identifying any interesting
pattern that can facilitate the FFD decision making. Besides, the dual approach can be
integrated with other statistical, mathematical, artificial intelligence, or machine
learning techniques to extract and identify useful information which contribute to the
domain knowledge.

Ngai et al. (2010) have done a complete academic review of FFD. They
summarized that the data mining techniques of outlier detection and visualization have
seen only limited use. In real world FFD cases, the sample size of the fraud cases
compared with the normal majority is relatively low. The detection of the fraud case
may be regarded as recognizing the outlier from the healthy majority. Therefore,
Agyemang et al. (2006) pointed out that outlier detection is a very complex task akin to
find a needle in a haystack. Although we use the pair-matching to do the sampling in
the FFR case mentioned in Chapter 4, as shown in section 3.1, the proposed sampling
module does not stick on the pair-matching. Since the dual approach is data-driven, it
can be applied to the case of outlier detection in FFD.

With the implementation of the proposed dual approach based on the GHSOM, the
fraud samples and non-fraud samples are clustered separately and then the matched
pairs of groups can help scale down the focus scope, such that the developed
classification rule based on the associated spatial hypotheses (i.e., non-fraud-central or
fraud-central) is capable of identifying the fraud samples (i.e., outliers) more
accurately. Note that the classification rule based on a spatial hypothesis is developed
through the proposed optimization technique for the corresponding discriminant
boundary, in which the decision makers can objectively set their weightings of type I
and type II errors. Therefore, the dominate classification rule is flexible enough when
applying to other FFD application domains with different preference of type I and type
IT errors.

Also, providing fraud related patterns for a suspected sample can contribute to
FFD decision making. The feature-extracting module and pattern-extracting module is
able to be applied to other financial fraud scenarios (e.g., bank fraud, insurance fraud)

and financial crises scenarios (e.g., bankruptcy, stock market crashes). When applying
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to other similar scenarios, the feature-extracting module changes the input variables
according to the problem domain, and the pattern-extracting module adjusts the
definition of fraud categories (or crisis categories) to develop the pattern map of FT.
Such reference can enhance the quality of decision support by pinpointing the risk area
(i.e., the variables in the principal components, and the fraud categories) required
attention, and therefore help reduce the likelihood of issuing doubtful loan-related
decisions and help provide sufficient information for decision support.

It is worthy of a future work to implement the proposed DSS architecture based on
the dual approach for any FFD related application domain. The implemented DSS may
contain an additional data-importing module, and a visualization module. The
visualization module visualizes the identification results for a creation investigated
sample, and provides a whole viewpoint of the FT (i.e., pattern map) in which the fraud
categories and the principal components of each leaf node can be selected to be shown
on the diagram. The decision support module can be extended to include the results of
other feature extracting mechanisms (such as statistical approach and data mining
approach). Then, a voting mechanism will be used to integrate all the obtained features

to help decision makers receive equitable and rational decision support.

6.2 The research implications

This study utilizes the advantage of the GHSOM and pioneers a novel dual
approach for constructing a DSS architecture for FFD purpose. The proposed DSS
architecture is data-driven and adaptive to fit any FFD scenarios with two basic groups,
fraud and non-fraud (unhealthy and healthy), and the fraud group can be divided into
different subcategories which represent distinctive fraud patterns. The designed
modules and processes are described and evaluated phase by phase, and the methods
within several modules (sampling, variable-selecting, clustering, feature-extracting,
and pattern-extracting modules) can be replaced with other similar methods which
make the proposed DSS architecture more generalizable for the real world practical
use.

The experimental results show that the implementation of the DSS architecture

based on the proposed dual approach can help the decision support in FFD through
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providing an alternative way of investigating financial data, which includes the dual
clustering by the GHSOM and the development of adaptive classifiers for each pairs of
subgroups (i.e., leaf nodes).

The implementation of the proposed DSS architecture can not only identify the
fraud cases, but also provide the extracted features and patterns for reference.
Furthermore, the clustering results in FT can provide more amounts of subgroups, and
provide more fraud-related information within subgroups compared to the dichotomous
detection results which are generally provided by the conventional FFD studies, so that
a comprehensive exploration of the relationship between different subgroups is
intriguing and possible. Also, the GHSOM of the proposed system architecture is
applicable to the adaptive sample size (i.e., data-driven) since the GHSOM will be
re-developed accordingly, and the feature-extracting module and pattern-extracting
module can provide the corresponding characteristics (e.g., the inherent variable
features and the fraud patterns) as the fraud potentiality for the investigated samples.

Different from the traditional GHSOM studies which cluster the whole training
samples at one time, the clustering module of the proposed approach separates the
training samples into fraud group and non-fraud group to generate two GHSOMs. The
idea of such design is to improve the unsupervised learning mechanism through
utilizing the spatial relationship between a pairs of leaf nodes from these two GHSOMs.
That is, for each pair of leaf nodes, developing an adaptive classification rule based on
such spatial relationship. The discriminate boundary can be tuned through the proposed
optimization method in which the weightings of type I and type II errors are adjustable
according to the decision makers’ preference that renders the outcome of the analyzing
phase with more acceptable classification performance for a certain application
domain.

For each leaf node of FT, the feature extraction mechanism extracts the fraud
categories from the exogenous information and the principal components from the
input variables, respectively. Therefore, for any sample clustered into a leaf node of FT,
the corresponding principal components and fraud categories can be used to represent
the associated fraud regularities. These fraud regularities can be used as the
pre-warning signal and can reveal the associated potential fraud activities to help
monitor the suspected sample. Furthermore, the pattern-extracting module needs a

definition of domain categories from some authentic references. The pattern-extracting
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module can be implemented through either the domain experts or applying the text
mining technique.

The theoretical meaning of the spatial relationship is an interesting topic and is
worthy of a deeper analysis. The spatial hypotheses (or belief) of this study are: for a
pair of leaf nodes from FT and NFT, the associated fraud samples tend to locate around
the non-fraud counterparts, or the associated non-fraud samples tend to locate around
the fraud counterparts. In the modeling phase of the dual approach, the spatial
relationships between the fraud samples and the non-fraud samples of the paired
subgroups are identified and then utilized to develop the associated classification rule
which is the dominant classification rule of two candidate classification rules
(non-fraud-central rule and fraud-central rule) derived from two spatial hypotheses.
The dominance of the non-fraud-central rule leads to an implication that most of fraud
samples cluster around the non-fraud counterpart, and the dominance of fraud-central
rule leads to an implication that most of non-fraud samples cluster around the fraud
counterpart. If one of these two spatial regularities fits to the sample data, the
corresponding classification rule can provide superior classification performance;
moreover, the spatial relationship within fraud and non-fraud samples can provide
valuable insights for the FFD domain experts.

The above mentioned implications bring out the advantages of the outcome of the
proposed dual approach. That is, the abundant information associated with the outcome

could enrich the conventional dichotomous detection for decision aid.

6.3 The FFR managerial implications

In contrast with prior FFR studies focusing on finding the signification input
variables regarding FFR and providing dichotomous prediction result without giving
further explanations, this study has shown that the proposed dual approach can help not
only identify FFR, but also help interpret the FFR behaviors of samples.

The proposed approach involves a feature inspection on the fraud training samples,
and the accumulated FFR understandings help creditors and capital providers evaluate
the integrity of financial statements to facilitate their investment or credit

decision-making. The accumulated FFR understandings also help facilitate the
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development of credit risk evaluation model used internally. Besides, the feature
results can be employed by auditors into their audit plans to ensure their firms or
clients remain competitive.

Regarding the implication for forensic accounting, the retrieved information
including the FFR fraud categories and the principal components can help forensic
accountants by providing the common features based on the similar samples belonged
to the same leaf node, and help them perform extended procedures as part of the
statutory audit.

Furthermore, the clustering results of the proposed approach can help give the list
of companies to be reviewed for the integrity of their financial statements, and such
information can be utilized by the regulatory bodies of publicly traded companies (e.g.,

Securities and Exchange Commission) to set up the FFR prevention strategies.

103



7. Conclusion

Because of the nature of competitive learning, the GHSOM, an unsupervised neural
networks extended from the SOM, can work as a regularity detector that is supposed to
help discover statistically salient features of the sample population (Hogan et al., 2008).
With the spatial correspondent hypotheses, this study presents a DSS architecture with
four phases based on the proposed dual approach for FFD decision support, in which
two GHSOMs (i.e., fraud samples are used to generate FT and non-fraud samples are
used to generate NFT) are generated in the training phase. In the modeling phase, for
each leaf node of FT, a feature extraction mechanism including the feature-extracting
module and pattern-extracting module is developed to provide the associated fraud
related features, and the extracted features will be used as a part of the evaluation for
any risky investigated sample. The classification rules are formed to help identify fraud
cases through applying the adaptive classification rules into each pair of fraud and
non-fraud subgroups from FT and NFT. In the analyzing phase, the dominant
classification rule is applied to examine the investigated samples. For the investigated
samples which have been identified fraud, the relevant fraud categories and variables
are retrieved and integrated in the decision support phase. All the provided information
is helpful for the decision making process of FFD.

Unlike the traditional approach applying the SOM in FFD (Carlos, 1996) which
uses all training samples to generate one SOM, our proposed DSS architecture takes
advantage of being able to generate two GHSOMs (FT and NFT), in each of which two
spatial hypotheses — for each pair of leaf nodes from FT and NFT, the fraud (or
non-fraud) samples are cluster around their counterparts— are set to create the
candidate classification rules. That is, using the statistic information among samples
from different GHSOMs helps respectively generate the non-fraud-central and
fraud-central rules. These two rules are tuned via inputting all samples to determine the
optimal discrimination boundary of each candidate classification rule within each pair
of leaf nodes from NFT and FT. This study derives the optimization technique that
renders adjustable and effective rules for classifying fraud and non-fraud samples. The
decision makers can objectively set their weightings of type I and type II errors. The
candidate classification rule that dominates another is adopted as the classification rule

in the following analyzing phase. The dominance of the non-fraud-central rule leads to
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an implication that most of fraud samples cluster around the non-fraud counterpart,
meanwhile the dominance of fraud-central rule leads to an implication that most of
non-fraud samples cluster around the fraud counterpart.

To the best of our knowledge, this is the first work that employs the GHSOM to
provide topological insights of high-dimensional inputs in addition to hierarchical
features. It is worth noting that the implementation of the DSS architecture based on the
proposed dual approach is beyond the traditional unsupervised learning approach for
FFD through developing a more delicate classifier that can reveal the spatial
relationship among fraud and non-fraud subgroups, and the proposed feature extraction
mechanism provides more information to represent the potential fraud behaviors for any
suspected investigated sample, as a result, support the practical FFD decision making
process.

Our preliminary result on FFR experiment confirms the spatial relationship among
fraud and non-fraud financial statements, and has better classification performance than
the SVM, SOM+LDA, GHSOM+LDA, SOM, BPNN and DT methods. Therefore, for
cases with the regularity of the proposed two topological relationships among fraud and
non-fraud samples, the implemented DSS architecture based on the proposed dual
approach can perform well; furthermore, compared with conventional methods for FFD,
the feature extracting results also add more fraud-related characteristics for the
investigated samples which are identified fraud.

The limitations of this study would be: (1) compared with other FFD scenarios, the
sample size for the FFR issue is limited, (2) subjective parameter setting of the GHSOM,
(3) the fraud patterns are various depend on the focused FFD scenario and the results of
the pattern-extracting module need to be verified by the domain experts, and (4) the
proposed DSS architecture does not evaluated or refined practically until a system
prototype is actually being developed.

Future works are suggested as follows: (1) derive the theoretical justification of
the rule-forming module in the modeling phase, (2) improve the discrimination
boundary setting in the rule-forming module with more sensitivity via an enhanced
optimization approach for developing the classification rules, or try other good
classifiers, (3) use other clustering methods in the clustering module and compare the
results of classifying module in terms of the classification performance and the

dominate classification rule derived from which spatial hypothesis, (4) improve the
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pattern-extracting module with systematic tools, and (5) conduct experiments on other

FFD applications.
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Appendix

The overall FFR fraud categories extracted from each leaf node of FT are
summarized in Table Al. The common FFR fraud categories within each leaf node are

marked with * in the column.

Table A1. Common FFR fraud categories within all leaf nodes of FT.

leaf node #11  *FC1 FC2 FC3 FC4 FCS5 *FC6 FC7 *FC8 FC9 FCI10

(code) (year)
2505 1998 o

2529 1998 ® o

8716 1999 o o

2334 1999 o o

3039 2004 ®

1601 1998 o

1221 2002 ) o ®
1221 2003 ) o ®
2014 2003 ) o

5901 1997 o o

5901 1998 ® o

5901 1999 ® o

leaf node #12-21 FC1 FC2 *FC3 FC4 FC5 FC6 FC7 FC8 FC9 FC10
5385 2001 o o
8713 1999 o

1918 1998 o o

leaf node #12-22 *FC1 FC2 FC3 *FC4 FC5 *FC6 FC7 FC8 *FC9 FC10
2398 2001 @ e O ® e O

2398 1999 @ e O ® e O

2494 2002 o

3001 2000 o o

3001 2001 o o

3001 1999 o o

5385 2000 [ o
6145 2003 o

6145 2004 o

6250 2004 e O o
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1602 1994 o o o o
leaf node #12-23 FC1 *FC2 FC3 *FC4 FC5 *FC6 FC7 *FC8 *FC9 FCI10
8702 1994 () ()

8702 1995 () ()

5504 2000 ()

8710 1999 ()

8719 1997 o

8701 1995 e o

8701 1996 e o

1602 1995 ) o o )
1918 1996 o o

1918 1997 () o

2101 1997 e o o
2613 1999 o )

2913 1996 ) o

leaf node #12-24 *FC1 FC2 FC3 FC4 FC5 FC6 FC7 FC8 *FC9 FC10
4113 2004 o )

leaf node #13-21 FC1 FC2 FC3 FC4 FC5 FC6 *FC7 *FC8 FC9 FC10
8712 1998 e o

5503 2000 () ) )
8719 1998 o

2014 2001 ) ()

2014 2002 o ()

8717 1998 () )

leaf node #13-22 FC1 FC2 FC3 FC4 FC5 *FC6 *FC7 FC8 FC9 FC10
2553 1999 e o

8716 1998 () ()

8188 2001 ()

8724 2000 () )

8724 1999 () )

2005 1999 ()

2019 2000 ()

2019 1999 ()

8711 1999 e o )
leaf node #13-23 FC1 FC2 FC3 *FC4 FC5 FC6 *FC7 *FC8 FC9 FCI0
8705 1998 o e o o o

8714 1999 () ()

8382 1998 o () ()

117



8706 1998 o [ [

leaf node #13-24 FC1 FC2 FC3 FC4 FCS5 FC6 FC7 *FC8 *FC9 FCI0
1505 1998 o

1505 1999 o

8708 1998 [ [

8708 1999 [ [

2101 1998 [ o o
2101 1999 [ o o
leaf node #14-21 FC1 FC2 FC3 FC4 FCS5 *FC6 FC7 *FC8 *FC9 FCI10
5504 1999 L

2328 1998 L L o

2334 1998 L L

1505 1997 o

5007 1998 o L

2614 1999 [ L L o o
1466 1998 L L ®

leaf node #14-22 *FC1 FC2 FC3 FC4 FCS5 FC6 FC7 *FC8 FC9 FCI10
2505 1997 o

2328 1997 o L o

2334 1997 L L

2350 1997 L

2398 2000 o L [ o L o

2490 2001 o L

1601 1997 L

1602 1996 [ o L o
leaf node #14-23 FC1 FC2 FC3 FC4 FCS5 *FCé6 *FC7 *FC8 FC9 FCI10
2206 2000 L

1436 1997 L

1436 1998 L

2553 1998 L L

1207 2000 o L L o o
1207 1998 o L L o o
1207 1999 o L L o o
2005 1998 L

2016 1997 [ L

2016 1998 [ L

2017 1996 [ L

2017 1998 [ L
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2019 1998 [ ]

8705 1997 [ e o o o

8708 1997 e o

8714 1997 () ()

8714 1998 () ()

9911 1998 () o

9801 2000 o () e o o
9801 1998 o () e o o
9801 1999 o () e o o
leaf node #14-24 *FC1 FC2 FC3 *FC4 FC5 FC6 FC7 *FC8 FC9 FC10
2206 1999 o

2350 1998 o

2407 2002 ) o o e O o
2407 2003 ) o o e O o
2407 2004 ) o o e O o
2490 2000 o o

2490 2002 o o

8295 1998 o o

1221 2001 ) o ®
8723 1998 o e O

2017 1997 o o

5007 1999 o o

Note: The common FFR fraud categories of each leaf node are marked with *.

Table A2 summarizes the commonly adopted FFR fraud categories of the testing
samples identified as the fraud class in all leaf nodes of the FT. The code and year in
the first two columns indicate the company SIC code and the year of financial
statements. The common FFR fraud categories extracted from the feature-extracting
module are marked in gray. The common FFR fraud categories within each leaf node

are marked with * in the column.
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Table A2. Common FFR fraud categories of the testing samples.

leaf node #11 *FC1 FC2 FC3 FC4 FC5 FC6 FC7 *FC8 FC9 FCI10
1606 2008 o ®
2418 2006 [ ®
2418 2008 [ ®
4413 2005 L ®
leaf node #12-22 *FC1 FC2 FC3 *FC4 FC5 FC6 FC7 FC8 FC9 FCI10
3506 2003 [ [ [ [
3506 2004 [ [ [ [
6232 2006 [
6232 2007 [
6103 2008 [ [ o
3079 2005 [ [
5017 2003 [
1606 2006 o o
leaf node #12-23 FC1 *FC2 FC3 FC4 FC5 *FC6 FC7 *FC8 FC9 FCI10
3506 2002 [ o o o
1532 2008 L o o o
5605 2002 o o o
5605 2003 o o o
5605 2004 o o o
5605 2005 o o o
leaf node #14-22 *FC1 FC2 FC3 FC4 FC5 FC6 FC7 *FC8 FC9 FCI10
6232 2002 o
6103 2004 o o L
3350 2004 L
2418 2004 o L
leaf node #14-24 *FC1 FC2 FC3 *FC4 FC5 FC6 FC7 *FC8 FC9 *FCI10
6103 2005 [ [ [ [ o
6103 2006 [ [ [ [ o
2614 2008 [ [ [ [
2614 2006 [ [ [ [
2614 2007 [ [ [ [
FCI: recording fictitious revenues; FC2: recording revenues prematurely;
FC3: no description/overstated about revenues; FC4: overstating existing assets;
FCS5: recording fictitious assets or assets not owned; FC6: capitalizing items that should be expensed;
FC7: understatement of expenses/liabilities; FC8: misappropriation of assets;

FC9:

inappropriate disclosure;

FC10: other miscellaneous techniques.
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The identification performance of the FFR fraud categories are summarized in

Table A3, in which the classification errors (type I error and type II error) are

calculated.

Table A3. The identification performance of the FFR fraud categories.

leaf node fraud-> |[fraud-> ) non-fraud->non-fraud
true predict true predict
fraud non-fraud non-fraud |->fraud
#11
1606 2008 (1,8 1,6,8 100.00%0.00% 2,3,4,5,6 2,3,4,5,7187.50%  [12.50%
(code) (year) ,7,9,10 19,10
2418 2006 (1,8 1,6,8 100.00%(0.00% 2,3,4,5,6 2,3,4,5,7187.50%  [12.50%
,7,9,10 19,10
2418 2008 (1,8 1,6,8 100.00%(0.00% 2,3,4,5,62,3,4,5,7187.50%  [12.50%
,7,9,10 19,10
4413 2005 3,8 1,6,8 50.00% [50.00% |1,2,4,5,612,3,4,5,7{75.00%  [25.00%
,7,9,10 19,10
#12-22 ) fraud->  fraud-> ] non-fraud-> non-fraud
true predict true predict
fraud non-fraud non-fraud ->fraud
3506 2003 |1,2,4,6 |1,4,6,9 [75.00% [25.00% [3,5,7,8,9(2,3,5,7,8183.33% [16.67%
,10 ,10
3506 2004 |1,2,4,6 |1,4,6,9 [75.00% [25.00% [3,5,7,8,9(2,3,5,7,8183.33%  [16.67%
,10 ,10
6232 2006 |1 1,4,6,9 [100.00%(0.00% [2,3,4,5,6[2,3,5,7,8166.67%  [33.33%
,7,8,9,10,10
6232 2007 |1 1,4,6,9 1100.00%(0.00% [2,3,4,5,6[2,3,5,7,8166.67%  [33.33%
,7,8,9,10,10
6103 2008 |1,4,8 |1,4,6,9 [66.67% [33.33% [2,3,5,6,7[2,3,5,7,8171.43%  [28.57%
9,10 ,10
3079 2005 4,9 1,4,6,9 [100.00%(0.00% |1,2,3,5,6[2,3,5,7,875.00%  [25.00%
,7,8,10 |10
5017 2003 |9 1,4,6,9 [100.00%(0.00% |1,2,3,4,5[2,3,5,7,8166.67%  [33.33%
,6,7,8,10,10
1606 2006 [3,8 1,4,6,9 10.00% (100.00%(1,2,4,5,6[2,3,5,7,8162.50%  [37.50%
,7,9,10 |10
#12-23 fraud->  fraud-> ) non-fraud-> non-fraud
true predict true predict
fraud non-fraud non-fraud ->fraud
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3506 2002 |1,2,4,6 [2,4,6,8,9175.00% [25.00% [3,5,7,8,9(1,3,5,7 66.67% [33.33%
,10 ,10
1532 2008 4,6,8,9 12,4,6,8,9(100.00%(0.00% |1,2,3,5,7]1,3,5,7 [83.33% [16.67%
,10 ,10
5605 2002 |2,6,8 [2,4,6,8,91100.00%(0.00% (1,3,4,5,7]1,3,5,7 [71.43% [28.57%
9,10 ,10
5605 2003 |2,6,8 [2,4,6,8,91100.00%(0.00% (1,3,4,5,7]1,3,5,7 [|71.43% [28.57%
9,10 ,10
5605 2004 |2,6,8 [2,4,6,8,91100.00%(0.00% (1,3,4,5,7]1,3,5,7 [|71.43% [28.57%
9,10 ,10
5605 2005 |2,6,8 [2,4,6,8,91100.00%(0.00% (1,3,4,5,7]1,3,5,7 [71.43% [28.57%
,9,10 ,10
#14-22 ) fraud->  fraud-> ] non-fraud-> non-fraud
true predict true predict
fraud non-fraud non-fraud ->fraud
6232 2002 1 1,8 100.00%0.00% |2,3,4,5,62,3,4,5,6[88.89%  |11.11%

,7,8,9,10(,7,9,10
6103 2004 |1,4,8 |1,8 66.67% [33.33% [2,3,5,6,712,3,4,5,6(100.00% [0.00%

9,10 ,7,9,10
3350 2004 |8 1,8 100.00%0.00%  (1,2,3,4,5[2,3,4,5,6188.89% [11.11%
,6,7,9,101,7,9,10
2418 2004 1,8 1,8 100.00%(0.00%  [2,3,4,5,6[2,3,4,5,6100.00% [0.00%
,7,9,10 [,7,9,10
#14-24 i fraud->  fraud-> i non-fraud-> non-fraud
true predict true predict
fraud non-fraud non-fraud ->fraud
6103 2005 |1,4,6,8, |1,4,8 60.00% [40.00% [2,3,5,7,112,3,5,6,7(100.00% [0.00%
9 0 9,10
6103 2006 |1,4,6,8, |1,4,8 60.00% {40.00% [2,3,5,7,112,3,5,6,7(100.00% [0.00%
9 0 9,10
2614 2008 (1,4,8 |1,4,8 100.00%(0.00% 2,3,5,6,7 [2,3,5,6,7100.00% {0.00%
9,10 9,10
2614 2006 (1,4,8 |1,4,8 100.00%(0.00% |2,3,5,6,7 2,3,5,6,7100.00% {0.00%
9,10 9,10
2614 2007 (1,4,8 |1,4,8 100.00%(0.00% |2,3,5,6,7 [2,3,5,6,7100.00% {0.00%
9,10 9,10
Average 86.23% 13.77% 82.47%  17.53%
(type II) (type I)
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According to Table A3, the identification performance regarding the FFR fraud
category is quite well. For each FT leaf node, the fraud categories extracted by the
pattern-extracting module can cover most of the common fraud categories of the
testing samples (see the ‘fraud->fraud’ column) and the can cover most of the common
excluded fraud categories (see the ‘non-fraud->non-fraud’ column). Overall, the results

can effectively support the decision making process for FFR identification.
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