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Abstract 

The Growing Hierarchical Self-Organizing Map (GHSOM) is extended from the 

Self-Organizing Map (SOM). The GHSOM’s unsupervised learning nature such as the 

adaptive group size as well as the hierarchy structure renders its availability to discover 

the statistical salient features from the clustered groups, and could be used to set up a 

classifier for distinguishing abnormal data from regular ones based on spatial 

relationships between them. 

Therefore, this study utilizes the advantage of the GHSOM and pioneers a novel 

dual approach (i.e., a proposal of a DSS architecture) with two GHSOMs, which starts 

from identifying the counterparts within the clustered groups. Then, the classification 

rules are formed based on a certain spatial hypothesis, and a feature extraction 

mechanism is applied to extract features from the fraud clustered groups. The dominant 

classification rule is adapted to identify suspected samples, and the results of feature 

extraction mechanism are used to pinpoint their relevant input variables and potential 

fraud activities for further decision aid. 

Specifically, for the financial fraud detection (FFD) domain, a non-fraud (fraud) 

GHSOM tree is constructed via clustering the non-fraud (fraud) samples, and a 

non-fraud-central (fraud-central) rule is then tuned via inputting all the training 

samples to determine the optimal discrimination boundary within each leaf node of the 

non-fraud (fraud) GHSOM tree. The optimization renders an adjustable and effective 

rule for classifying fraud and non-fraud samples. Following the implementation of the 

DSS architecture based on the proposed dual approach, the decision makers can 

objectively set their weightings of type I and type II errors. The classification rule that 

dominates another is adopted for analyzing samples. The dominance of the 

non-fraud-central rule leads to an implication that most of fraud samples cluster around 

the non-fraud counterpart, meanwhile the dominance of fraud-central rule leads to an 

implication that most of non-fraud samples cluster around the fraud counterpart. 

Besides, a feature extraction mechanism is developed to uncover the regularity of 

input variables and fraud categories based on the training samples of each leaf node of 

a fraud GHSOM tree. The feature extraction mechanism involves extracting the 

variable features and fraud patterns to explore the characteristics of fraud samples 

within the same leaf node. Thus can help decision makers such as the capital providers 
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evaluate the integrity of the investigated samples, and facilitate further analysis to 

reach prudent credit decisions. 

The experimental results of detecting fraudulent financial reporting (FFR), a 

sub-field of FFD, confirm the spatial relationship among fraud and non-fraud samples. 

The outcomes given by the implemented DSS architecture based on the proposed dual 

approach have better classification performance than the SVM, SOM+LDA, 

GHSOM+LDA, SOM, BPNN and DT methods, and therefore show its applicability to 

evaluate the reliability of the financial numbers based decisions. Besides, following the 

SOM theories, the extracted relevant input variables and the fraud categories from the 

GHSOM are applicable to all samples classified into the same leaf nodes. This 

principle makes that the extracted pre-warning signal can be applied to assess the 

reliability of the investigated samples and to form a knowledge base for further 

analysis to reach a prudent decision. The DSS architecture based on the proposed dual 

approach could be applied to other FFD scenarios that rely on financial numbers as a 

basis for decision making. 

 

Keywords: Growing Hierarchical Self-Organizing Map; Unsupervised Neural 

Networks; Classification; Financial Fraud Detection; Fraudulent Financial Reporting. 
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摘  要 

增長層級式自我組織映射網路(GHSOM)屬於一種非監督式類神經網路，為自

我組織映射網路(SOM)的延伸，擅長於對樣本分群，以輔助分析樣本族群裡的共

同特徵，並且可以透過族群間存在的空間關係假設來建立分類器，進而辨別出異

常的資料。 

因此本研究提出一個創新的對偶方法(即為一個建立決策支援系統架構的方

法)分別對舞弊與非舞弊樣本分群，首先兩類別之群組會被配對，即辨識某一特定

無弊群體的非舞弊群體對照組，針對這些配對族群，套用基於不同空間假設所設

立的分類規則以檢測舞弊與非舞弊群體中是否有存在某種程度的空間關係，此外

並對於舞弊樣本的分群結果加入特徵萃取機制。分類績效最好的分類規則會被用

來偵測受測樣本是否有舞弊的嫌疑，萃取機制的結果則會用來標示有舞弊嫌疑之

受測樣本的舞弊行為特徵以及相關的輸入變數，以做為後續的決策輔助。 

更明確地說，本研究分別透過非舞弊樣本與舞弊樣本建立一個非舞弊GHSOM

樹以及舞弊 GHSOM 樹，且針對每一對 GHSOM 群組建立分類規則，其相應的非

舞弊/舞弊為中心規則會適應性地依循決策者的風險偏好最佳化調整規則界線，整

體而言較優的規則會被決定為分類規則。非舞弊為中心的規則象徵絕大多數的舞

弊樣本傾向分布於非舞弊樣本的周圍，而舞弊為中心的規則象徵絕大多數的非舞

弊樣本傾向分布於舞弊樣本的周圍。 

此外本研究加入了一個特徵萃取機制來發掘舞弊樣本分群結果中各群組之樣

本資料的共同特質，其包含輸入變數的特徵以及舞弊行為模式，這些資訊將能輔

助決策者(如資本提供者)評估受測樣本的誠實性，輔助決策者從分析結果裡做出

更進一步的分析來達到審慎的信用決策。 

本研究將所提出的方法套用至財報舞弊領域(屬於財務舞弊偵測的子領域)進

行實證，實驗結果證實樣本之間存在特定的空間關係，且相較於其他方法如

SVM、SOM+LDA 和 GHSOM+LDA 皆具有更佳的分類績效。因此顯示本研究所

提出的機制可輔助驗證財務相關數據的可靠性。此外，根據 SOM 的特質，即任

何受測樣本歸類到某特定族群時，該族群訓練樣本的舞弊行為特徵將可以代表此

受測樣本的特徵推論。這樣的原則可以用來協助判斷受測樣本的可靠性，並可供

持續累積成一個舞弊知識庫，做為進一步分析以及制定相關信用決策的參考。本

研究所提出之基於對偶方法的決策支援系統架構可以被套用到其他使用財務數據

為資料來源的財務舞弊偵測情境中，作為輔助決策的基礎。 
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關鍵詞： 增長層級式自我組織映射網路；非監督式類神經網路；分類；財務舞弊

偵測；財務報表舞弊 
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1. Introduction 

This study proposes a dual approach as a Decision Support System (DSS) 

architecture based on the Growing Hierarchical Self-Organizing Map (GHSOM) 

(Dittenbach et al., 2000; Dittenbach et al., 2002; Rauber et al., 2002), a type of 

unsupervised artificial neural networks (ANN), for the decision support in financial 

fraud detection (FFD). FFD involves distinguishing fraudulent financial data from 

authentic data, disclosing fraudulent behavior or activities, and enabling decision 

makers to develop appropriate strategies to decrease the impact of fraud (Lu and Wang, 

2010). The decision for FFD can be aided by statistical methods such as the logistic 

regression, as well as data mining tools such as the ANN, in which the ANN has been 

widely used and plays an important role in FFD (Lu and Wang, 2010). Among the 

ANN applications in FFD, the Self-Organizing Map (SOM) (Kohonen, 1982) has been 

adopted in diagnosing bankruptcy (Carlos, 1996). The major advantage of the SOM is 

its great visualization capability of topological relationship among the 

high-dimensional inputs in the low-dimensional view. Other advantages are adaptive 

(i.e., the clustering can be redone if new training samples are set) and robust (i.e., the 

pattern recognition ability). There are numerous applications involving the SOM and 

the most widespread use is the identification and visualization of natural groupings in 

the sample data sets. However, the weaknesses of the SOM include its predefined and 

fixed topology size and its inability to provide the hierarchical relations among 

samples (Dittenbach et al., 2000). 

An improvement of the SOM has been done by Dittenbach, Merkl and Rauber 

(2000). They developed the GHSOM which addresses the issue of fixed network 

architecture of the SOM through developing a multilayer hierarchical network 

structure. The flexible and hierarchical feature of the GHSOM generates delicate 

clustered subgroups with heterogeneous features, and makes it a powerful and versatile 

data mining tool. The GHSOM has been used in many fields such as the image 

recognition, web mining, text mining, and data mining (Dittenbach et al., 2000; 

Schweighofer et al., 2001; Dittenbach et al., 2002; Rauber et al., 2002; Shih et al., 2008; 

Zhang and Dai, 2009; Tsaih et al., 2009). It is worth of knowing that the GHSOM can 

be a useful clustering tool to do the pre-processing of feature extraction for a certain 

application field. 
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In general, the GHSOM mainly takes the task of clustering and then visualizing 

the clustering results. To accomplish other purposes such as prediction or classification, 

the neural networks must be complemented with a statistical study of the available 

information (Serrano, 1996). However, this study finds that the development of the 

GHSOM into a classification model has been limited studied (Hsu et al., 2009; Lu and 

Wang, 2010; Guo et al., 2011). Besides, other than the hierarchical feature, the 

GHSOM studies have rarely provided the topological insight into high-dimensional 

inputs. 

To better utilize the advantage of the GHSOM for the purpose of classification and 

feature extraction in helping FFD, this study pioneers a DSS architecture based on the 

proposed dual approach which helps extract the nature of the distinctive characteristics 

among different clustered groups generated by the GHSOM. This study develops an 

innovative way of observing the clustered data to form the optimal classification rule, 

and revealing more information regarding the relevant input variables and the potential 

fraud categories for the suspected samples as the knowledge base for facilitating FFD 

decision making. 

This study examines the following topological relationships regarding 

high-dimensional inputs, of which there are two types: fraud and non-fraud, and 

matches the fraud counterpart of each non-fraud subgroup and vice versa. This study 

assumes that there is a certain spatial relationship among fraud and non-fraud samples. 

The spatial hypothesis: The spatial distributions of fraud samples and their non-fraud 

counterparts are identical, and the spatial distributions of most fraud samples and their 

non-fraud counterparts are the same. Within each pair of clusters, either the fraud 

samples cluster around their non-fraud counterparts, or the non-fraud samples cluster 

around their fraud counterparts. If such a spatial relationship among fraud and 

non-fraud samples does exist, the associated classification rule can be set up to identify 

the fraud samples based on the correspondence of the fraud samples and their 

non-fraud counterparts and vice versa. Moreover, the proposed dual approach is 

data-driven. That is, the corresponding system modeling is performed via directly 

using the sampled data. Thus, different sampled data input to the proposed DSS 

architecture may result in distinctive DSSs. To practically utilize such a spatial 

relationship for identifying fraud cases and examine the applicability of the proposed 
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DSS architecture based on the dual approach, this study sets up the fraudulent financial 

reporting (FFR) experiment, a sub-field of FFD. 

Specifically, the proposed DSS architecture contains four phases. In the training 

phase, the sampling and variable selection are done first, and then it adopts the 

hierarchal-topology mapping advantage of the GHSOM to build up two GHSOMs 

(named non-fraud tree, NFT, and fraud tree, FT) from two classes of training samples 

collected from the financial statements. 

In the modeling phase, following the majority principle, the corresponsive FT leaf 

node for each NFT leaf node are identified using all (fraud and non-fraud) training 

samples. Then, each training sample is classified into these two GHSOMs to develop 

the discrimination boundaries according to the candidate classification rules. The 

candidate classification rules in this study involve a non-fraud-central rule and a 

fraud-central rule, which are tuned via inputting the clustered training samples to 

determine the optimal discrimination boundary within each leaf node of the FT and 

NFT. For the candidate classification rules, a decision maker can set up his/her 

preference for the weights of classification error (type I and type II error) that makes 

the developed classification rule more acceptable and domain specific. The dominant 

classification rule with the best classification performance is applied in the analyzing 

phase. Besides, this study involves a feature extraction mechanism with two modules, 

feature-extracting module and pattern-extracting module, in the modeling phase that 

focus on discovering the common features and patterns in each FT leaf node. For the 

features regarding the input variables, the principal component analysis (PCA) is 

applied to provide the associated principal components. For the patterns such as the 

FFR fraud categories, the corresponding verdict contents of the fraud samples are 

investigated to determine the associated FFR fraud categories. 

In the analyzing phase, each investigated sample is classified into the winning leaf 

nodes of FT and NFT, and applies the dominant classification rule to determine 

whether this sample is fraud or not. In the decision support phase, for an investigated 

sample, the result of the analyzing phase is used to help the decision makers speculate 

its FFR potentiality and. If it is identified as fraud, the associated potential FFR 

behaviors will be retrieved. The released information of the implemented DSS 

architecture based on the proposed dual approach can help decision makers better 

identify FFR and interpret the distinctive FFR behaviors among the clustered groups, 
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comprehend the difference between fraud and non-fraud samples, and finally facilitate 

the real-world decision making. 

In sum, the implementation of the DSS architecture based on the proposed dual 

approach can be leveraged both to justify the spatial hypothesis, and when the spatial 

hypothesis holds, to disclose the information that better supports FFD. The proposed 

DSS architecture based on the dual approach is expected to be potentially applicable to 

other similar scenarios, and is able to be implemented as a DSS that helps detect 

suspicious samples and at the same time provide their possible fraud categories 

beforehand. 

There are four objectives of this study: 

(1)  Develop a DSS architecture based on the proposed dual approach that (a) adopt 

the GHSOM to separately cluster fraud training samples and non-fraud training 

samples; (b) set up the discriminant boundaries for each pair of leaf nodes 

following the candidate classification rules based on the proposed spatial 

hypotheses; (c) use the determined classification rule to classify unknown samples; 

(d) observe whether spatial hypothesis holds and (d) illustrate the embedded 

information from the evaluation results including the extracted features and fraud 

patterns from the FT leaf nodes. 

(2)  Justify whether the implemented dual approach is capable of helping distinguish 

fraud and non-fraud samples. 

(3)  Compare the outcomes of our classification with other supervised or unsupervised 

learning methods. 

(4)  Provide implications regarding FFD decision support and research implications. 

The rest of this dissertation is organized as follows. Chapter Two presents the 

literature reviews of the DSS, clustering methods, the GHSOM, PCA and FFR. 

Chapter Three explains the design of the proposed dual approach in details. Chapter 

Four demonstrates the experimental results. Chapter Five provides the comparison 

against other methods and the discussion of experiment of results. The implications are 

shown in Chapter Six. Chapter Seven gives the final conclusion and future works. 

 

 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

9 

2. Literature review 

In this section, we briefly review the DSS, clustering methods, GHSOM, PCA and 

FFR as the background knowledge including the applications of the GHSOM and the 

FFR detection issue. 

 

2.1 DSS 

Basically, the efforts in supporting the whole decision-making process focused in 

the development of computer information systems providing the support needed. The 

concept of the DSS was introduced, from a theoretical point of view, in the last 1960s. 

Klein and Methlie (1995) define a DDS as a computer information system that 

provides information in a specific problem domain using analytical decision models as 

well as techniques and access to database, in order to support a decision maker in 

taking decision effectively in complex and ill-structured problems. The contribution of 

DSS technology can be summarized as follows (Turban, 1993): 

 The DSSs provide the necessary means for dealing with semi-structured and 

unstructured problems of high complexity, such as many problems from the 

field of financial management. 

 The support provided by the DSSs may respond to the needs and the cognitive 

style of different decision makers, combining the preferences and the judgment 

of the every individual decision maker with the information derived by 

analytical decision models. 

 The time and the cost of the whole decision process are significantly reduced. 

 The support that is provided by the DSSs responds to the needs of various 

managerial levels, ranging from top managers and executives down to staff 

managers. 

The DSSs help the decision maker to gain experience in data collection, as well as 

in the implementation of several scientific decision models, and they also incorporate 

the preferences and decision policy of the decision maker in the decision-making 

process. (Zopounidis et al., 1997) 

There are various researches that have developed the DSSs for many application 

areas, for example, HR planning and decisions (Mohanty and Deshmukh, 1997), 
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financial management (Matsatsinis et al., 1997), marketing (Li, 2000), etc. Pinson 

(1992) developed the CREDEX system, which demonstrated the feasibility of a 

multi-expert approach driven by a meta-model in the assessment of credit risk. The 

system, using quantitative (economic and financial) and qualitative (social) data 

concerning the examined company and its business sector, as well as the bank’s 

lending policy, provides a diagnosis of the company's function (commercial, financial, 

managerial and industrial) in terms of weaknesses and strengths. Zopounidis et al. 

(1997) developed a knowledge-based decision support system for financial 

management that integrates the DSS technologies to tackle past and current frequently 

occurring problems. Wen et al. (2005) proposed a decision support system based on an 

integrated knowledge base for acquisitions and mergers. It not only provided 

information concerning merger processes, major problems likely to occur in merger 

situations, and regulations practically or procedurally, but also gave rational 

suggestions in compliance with the appropriate regulations. It also suggested to the 

user how to deal with an uncertain growth rate and current evaluations. Wen et al. 

(2008) presented a mobile knowledge management decision support system using 

multi-agent technology for automatically providing efficient solutions for decision 

making and managing an electronic business. Nguyen et al. (2008) proposed an early 

warning system (EWS) that identifies potential bank failures or high-risk banks 

through the traits of financial distress which is able to identify the inherent traits of 

financial distress based on financial covariates (features) derived from publicly 

available financial statements. 

In sum, many methodologies have been used and embedded with the existing 

framework of the DSS that could considerably increase the effectiveness of the 

provided decision support.  

 

 

2.2 Clustering methods and the GHSOM 

2.2.1 Clustering methods and the SOM 

Clustering is an unsupervised classification of patterns into groups based on 

similarity. The main goal of clustering is to partition data patterns into several 

homogeneous groups that minimizes within-group variation and maximizes between 
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group variations. Each group is represented by the centroid of the patterns that belongs 

to the group. There are many important applications of clustering such as image 

segmentation (Jain et al., 1999), object recognition, information retrieval (Rasmussen, 

1992), and so on. Clustering is the process of grouping the similarity data together such 

that data is high similarity within cluster but are dissimilarity between clusters. 

Clustering is the basis of many areas including data mining, statistical, biology, 

machine learning, etc. Clustering methods are used for data exploration and to provide 

class prototypes for use in the supervised classifiers. Among many clustering tools, the 

SOM is an unsupervised learning ANN and it appears to be an effective method for 

feature extraction and classification. Therefore, this study gives the following 

introduction and some literature reviews.  

The Self-Organizing Map (SOM) is developed by Kohonen (1982), also known as 

the Kohonen Maps. It has demonstrated its efficiency in real domains, including 

clustering, the recognition of patterns, the reduction of dimensions, and the extraction 

of features. It maps high-dimensional input data onto a low dimensional space while 

preserving the topological relationships between the input data. SOM is made up two 

neural layers. The input layer has as many neurons as it has variables, and its function 

is merely to capture the information. Let m be the number of neurons in the input layer; 

and let nx * ny the number of neurons in the output layer which are arranged in a 

rectangular pattern with x rows and y columns, which is called the map. Each neuron in 

the input layer is connected to each neuron in the output layer. Thus, each neuron in 

the output layer connections to the input layer. Each one of these connections has a 

synaptic weight associated with it. Let wij the weight associated with the connection 

between input neuron i and output neuron j. Figure 1 gives a visual representation of 

this neural arrangement. 
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Figure 1. The self organizing map structure 

Note: This SOM with m neurons in the input layer and nx * ny neurons in the output 
layer. Each neuron in the output layer has m connections wij (synaptic weights) to the 
input layer (Carlos, 1996). 

 

SOM tries to project the multidimensional input space, which in our case could be 

financial information, into the output space in such a way that the input patterns whose 

variables present similar values appear close to one another on the map which is 

created. Each neuron learns to recognize a specific type of input pattern. Neurons 

which are close on the map will recognize similar input patterns whose images 

therefore, will appear close to one another on the created map. In this way, the 

essential topology of the input space is preserved in the output space. In order to 

achieve this, the SOM uses a competitive algorithm known as “winner takes all”. 

Initially, the wij are given random values. These values will be corrected as the 

algorithm progress. Training proceeds by presenting the input layer with financial 

ratios, one sample at a time. Let rik be the value of ratio i for firm k. This ratio will be 

read by neuron i. The algorithm takes each neuron in the output layer at a time and 

computes the Euclidean distance as the similarity measure. 
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The output neuron for which d(j, k) (defined in Equation (1)) is the smallest, and is 

the “winner neuron”. Let such neuron be k*. The algorithm now proceeds to change the 

synaptic weights wij in such a way that the distance d(j, k*) is reduced. A correction 

takes place, which depends on the number of iterations already performed and on the 

absolute value of the difference between rij and wijk. But other synaptic weights are also 

adjusted in function to how near they are to the winning neuron k* and the number of 

iterations that have already taken place. 

The procedure is repeated until complete training stops. Once the training is 

complete, the weights are fixed and the network is ready to be used. When a new 

pattern is presented, each neuron computes in parallel the distance between the input 

vector and the weight vector that it stores, and a competition starts that is won by the 

neuron whose weights are more similar to the input vector. Alternatively, we can 

consider the activity of the neurons on the map (inverse to the distance) as the output. 

The region where the maximum activity takes place indicates the class that the present 

input vector belongs to. If a new pattern is presented to the input layer and no neuron is 

stimulated by its presence the activity will be minimal, and this means that the pattern 

is not recognized. (Kohonen, 1989). 

Thousands of the SOM applications are found among various disciplines (Serran, 

1996; Richardson et al., 2003; Risien et al., 2004; Liu et al., 2006). It is widely used in 

application to the analysis of financial information (Serran, 1996). Eklund (2002) 

indicated that the SOM can be a feasible tool for classification of large amounts of 

financial data. The SOM has established its position as a widely applied tool in 

data-analysis and visualization of high-dimensional data. Within other statistical 

methods the SOM has no close counterpart, and thus it provides a complementary view 

to the data. The SOM is a widely used method in classification or clustering problem, 

because it provides some notable advantages over the alternatives (Khan et al., 2009). 

There are various studies that used the SOM for a given clustering problem. 

Mangiameli, Chen, and West (1996) compared the performance of the SOM and seven 

hierarchical clustering methods for 252 data sets with various levels of imperfections 

that include data dispersion, outliers, irrelevant variables and non-uniform cluster 

densities. In conclusion, they demonstrated that the SOM is superior to the hierarchical 
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clustering methods. Granzow et al. (2001) investigated five clustering techniques: 

K-means, SOM, growing cell structure networks, fuzzy C-means (FCM) algorithm and 

fuzzy SOM. At the end of the analysis, they concluded that fuzzy SOM approach is the 

most suitable method in partitioning the data set. Shin and Sohn (2004) used K-means, 

SOM and FCM in order to segment stock trading customers and inferred that FCM 

cluster analysis is the most robust approach for segmentation of customers. 

Martín-Guerrero et al. (2006) compared the performance of K-means, FCM, and a set 

of hierarchical algorithms, Gaussian mixtures trained by the expectation–maximization 

algorithm, and the SOM in order to determine the most suitable algorithm in 

classification of artificial data sets produced for web portals. Finally, they concluded 

that the SOM outperforms the other clustering methods. Budayan et al. (2009) 

presented the strategic group analysis of Turkish contractors to compare the 

performances of traditional cluster analysis techniques, SOM and FCM for strategic 

grouping. It is concluded that the SOM and FCM can reveal the typology of the 

strategic groups better than traditional cluster analysis and they are more likely to 

provide useful information about the real strategic group structure. 

The difference findings of these studies can be explained by the argument that the 

suitability of clustering methods to a given problem changes with the structure of the 

data set and purpose of the study. It is concluded that the aim of a study using 

clustering method is not to find out the best clustering method for all data sets and 

fields of application, but instead it is to demonstrate superior features of different 

clustering techniques for a particular problem domain, for example the FFD. 

 

2.2.2 GHSOM 

The SOM has shown to be a stable neural network model of high-dimensional data 

analysis. However, its capability is limited by some limitations when using the SOM. 

The first drawback is its static network architecture. The number and arrangement of 

nodes has to be pre-defined even without a priori knowledge of the data. Second, the 

SOM model has limited capabilities for the representation of hierarchical relations of 

the data. To overcome the inherent deficiencies of the SOM, Dittenbach, Merkl, and 

Rauber (2000) developed GHSOM to provide a SOM hierarchy automatically.  
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As shown in Figure 2, the GHSOM contains a number of SOMs in each layer. The 

size of these SOMs and the depth of the hierarchy are determined during its learning 

process according to the requirements of the input data.  

 

 

Figure 2. The GHSOM structure. 

 

The training process of the GHSOM consists of the following four phases 

(Dittenbach et al., 2000):  

 Initialize the layer 0: The layer 0 includes single node whose weight vector is 

initialized as the expected value of all input data. Then, the mean quantization 

error of layer 0 (MQE0) is calculated. The MQE of a node denotes the mean 

quantization error that sums up the deviation between the weight vector of the 

node and every input data mapped to the node. 

 Train each individual SOM: Within the training process of an individual SOM, 

the input data is imported one by one. The distances between the imported 

input data and the weight vector of all nodes are calculated. The node with the 

shortest distance is selected as the winner. Under the competitive learning 

principle, only the winner and its neighborhood nodes are qualified to adjust 

their weight vectors. Repeat the competition and the training until the learning 

rate decreases to a certain value. 

 Grow horizontally each individual SOM: Each individual SOM will grow 

until the mean value of the MQEs for all of the nodes on the SOM (MQEm) is 

smaller than the MQE of the parent node (MQEp) multiplied by τ1 as stated in 

Equation (2). If the stopping criterion is not satisfied, find the error node that 
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owns the largest MQE and then, as shown in Figure 3, insert one row or one 

column of new nodes between the error node and its dissimilar neighbor. 

MQEm < τ1 × MQEp                     (2) 

 

 

Figure 3. Horizontal growth of individual SOM. 
Note: The notation x indicates the error node and y indicates the x’s dissimilar 
neighbor. 

 

 Expand or terminate the hierarchical structure: After the horizontal growth 

phase of individual SOM, each MQEi is compared with the value of MQE0 

multiplied by τ2. The node with an MQEi greater than τ2 × MQE0 will develop 

a next layer of SOM. In this way, the hierarchy grows until all of the leaf 

nodes satisfy the stopping criterion stated in Equation (3). The leaf nodes 

means the node does not own a next layer of SOM. 

MQEi < τ2 × MQE0                         (3) 

 

Several researches have applied the GHSOM to deal with text mining, image 

recognition and web mining problem. For example, Schweighofer et al. (2001) have 

show the feasibility of using the GHSOM and LabelSOM techniques in legal research 

by tests with text corpora in European case law. Shih et al. (2008) used the GHSOM 

algorithm to present a content-based and easy-to-use map hierarchy for Chinese legal 

documents in the securities and futures markets in the Chinese language. Antonio et al. 

(2008) used the GHSOM to analyze a citizen web portal, and provided a new 

visualization of the patterns in the hierarchical structure. The results have shown that 

the GHSOM is a powerful and versatile tool to extract relevant and straightforward 

knowledge from the vast amount of information involved in a real citizen web portal. 

Lu and Wang (2010) applied the GHSOM with support vector regression model to 
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product demand forecasting. The experimental results showed that the GHSOM can be 

used to combine with other machine learning or data mining techniques in order to 

improve the performance and obtain inspirable results. 

Not many studies have applied the GHSOM in the purpose of forecasting until 

recent years. For instance, the two-stage architecture is employed by Hsu et al. (2009) 

which applied GHSOM and SVM to better predict financial indices. They suggested 

that the two-stage architecture can have smaller deviations between predicted and 

actual values than the single SVM model. Lu and Wang (2010) applied the GHSOM 

with support vector regression model to product demand forecasting. Guo et al. (2011) 

applied the GHSOM in case base reasoning system in design domain and found that 

new case is guided into corresponding sub-case base through the GHSOM, which 

makes the case retrieval more efficient and accurate. In sum, the GHSOM has been 

used in combining with other machine learning or data mining techniques to improve 

the model performance, and to provide valuable information for decision aid. 

 

 

2.3 PCA 

Feature extraction is an essential pre-processing step to pattern recognition and 

machine learning problems. It is often decomposed into feature construction and 

feature selection. Feature selection approaches try to find a subset of the original 

variables, which are generally performed before or after model training. In some cases, 

data analysis such as regression or classification can be done in the reduced space more 

accurately than in the original space. Feature selection can be done by using different 

methods, such as the PCA, Factor Analysis (FA), stepwise regression, and discriminant 

analysis (Tsai, 2009). In terms of the usage of dependent variable, these methods could 

be divided into supervised and unsupervised categories. Supervised feature selection 

techniques usually relate to the discriminant analysis technique (Fukunaga, 1990) 

which uses the within and between-class scatter matrices. Unsupervised linear feature 

selection techniques more or less all rely on the PCA (Pearson, 1901), which rotates 

the original feature space and projects the feature vectors onto a limited amount of axes 

(Turk and Pentland, 1991; Oja, 1992).  
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The PCA was invented by Pearson (1901). The central idea of PCA is to reduce 

the dimensionality of a data set consisting of a large number of interrelated variables, 

while retaining as much as possible of the variation present in the data set. This is 

achieved by transforming to a new set of uncorrelated principal components (PCs), 

which are ordered so that the first few retain most of the variation present in all of the 

original variables (Jolliffe, 2002). 

The PCA can be done by eigenvalue decomposition of a data covariance matrix or 

singular value decomposition of a data matrix, usually after mean centering the data for 

each attribute. The results of a PCA are usually discussed in terms of component scores 

(the transformed variable values corresponding to a particular case in the data) and 

loadings (the variance each original variable would have if the data are projected onto 

a given PCA axis) (Shaw, 2003). 

The PCA is mathematically defined as an orthogonal linear transformation that 

transforms the data to a new coordinate system such that the greatest variance by any 

projection of the data comes to lie on the first coordinate (called the first principal 

component), the second greatest variance on the second coordinate, and so on (Jolliffe, 

2002).  

Define a data matrix, XT, with zero empirical mean (the empirical mean of the 

distribution has been subtracted from the data set), where each of the n rows represents 

a different repetition of the experiment, and each of the m columns gives a particular 

kind of datum (say, the results from a particular probe). (Note that what we are calling 

XT is often alternatively denoted as X itself.) The PCA transformation is then given by 

below Equation (4): 

TTT VΣWXY ==         (4) 

where the matrices W, Σ, and V are given by a singular value decomposition (SVD) of 

X as W Σ VT. (V is not uniquely defined in the usual case when m < n−1, but Y will 

usually still be uniquely defined.) Σ is an m-by-n diagonal matrix with nonnegative real 

numbers on the diagonal. Since W (by definition of the SVD of a real matrix) is an 

orthogonal matrix, each row of YT is simply a rotation of the corresponding row of XT. 

The first column of YT is made up of the "scores" of the cases with respect to the 

principal component, and the next column has the scores with respect to the second 

principal component. If we want a reduced-dimensionality representation, we can 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

19 

project X down into the reduced space defined by only the first L singular vectors, WL 

defined in Equation (5): 

T
L

T
L VXWY LΣ==        (5) 

The matrix W of singular vectors of X is equivalently the matrix W of 

eigenvectors of the matrix of observed covariance C = X XT defined in Equation (6), 

TTT WWXX ΣΣ=         (6) 

Given a set of points in Euclidean space, the first principal component corresponds 

to a line that passes through the multidimensional mean and minimizes the sum of 

squares of the distances of the points from the line. The second principal component 

corresponds to the same concept after all correlation with the first principal component 

has been subtracted out from the points. The singular values (in Σ) are the square roots 

of the eigenvalues of the matrix XXT. Each eigenvalue is proportional to the portion of 

the "variance" (more correctly of the sum of the squared distances of the points from 

their multidimensional mean) that is correlated with each eigenvector. The sum of all 

the eigenvalues is equal to the sum of the squared distances of the points from their 

multidimensional mean. The PCA essentially rotates the set of points around their 

mean in order to align with the principal components. This moves as much of the 

variance as possible (using an orthogonal transformation) into the first few dimensions. 

The values in the remaining dimensions, therefore, tend to be small and may be 

dropped with minimal loss of information. The PCA is often used in this manner for 

dimensionality reduction. (Jolliffe, 2002)  

The result of PCA is a linear transformation that transforms the data to a new 

coordinate system such that the new set of variables, also called the principal 

components. This linear function of the original variables are uncorrelated and the 

greatest variance by any projection of the data comes to lie on the first coordinate, the 

second greatest variance on the second coordinate, and so on. The main steps of the 

PCA are summarized in Figure 4. 
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Figure 4. The main steps of the PCA. 

 

In short, the PCA is achieved by transforming to a new set of variables, as the 

principal components, which are uncorrelated and ordered so that the first few retain 

most of the variation present in the entire original variables (Jolliffe, 1986). By using a 

few components, each sample can be represented by relatively few numbers instead of 

by values for thousands of variables. Samples can then be plotted, making it possible to 

visually assess similarities and differences between samples and determine whether 

samples can be grouped. (Ringnér, 2008)  

Many studies have used the PCA for feature selection or dimensional reduction in 

financial studies. For example, Canbas et al. (2005) used the PCA to construct an 

integrated early warning system (IEWS) that can be used in bank examination and 

supervision process. In IEWS, the PCA helps explore and understand the underlying 

features of the financial ratios. By applying the PCA to the financial data, the 

important financial factors (i.e. capital adequacy, income-expenditure structure and 

liquidity), which can significantly explain the changes in financial conditions of the 

banks, were explicitly explored. Min and Lee (2005) reduced the number of 

multi-dimensional financial ratios to two factors through the PCA and calculate factor 

scores as the model training information. The result showed that the PCA contributes 

the graphic analysis step of support vector machines (SVMs) model with better 

explanatory power and stability to the bankruptcy prediction problem. Humpherys et al. 

(2010) applied the PCA with Varimax rotation and reliability statistics in their 

 Calculate the covariance matrix or correlation matrix, C 
 Compute the matrix V of eigenvectors which diagonalizes the covariance 

matrix C, where D is the diagonal matrix of eigenvalues of C. Matrix V, 
also of dimension M × M, contains M column vectors. 

CVVD 1−=   
TTT VΣWXY ==  

 Determination of number of significant components (L) based on statistical 
tests, variances limitation, or factor loadings 

 Reproduction of Y using a reduced space defined by only the first L 
singular vectors, WL 

T
L

T
L VXWY LΣ==  
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proposed fraudulent financial detection model. Guided by theoretical insight and 

exploratory factor analysis, their 24-variable model of deception was reduced to a 

10-variable model to achieve greater parsimony and interpretability. 

Compare the PCA with FA, the PCA is preferred in this study because it is used to 

discover the empirical summary of the data set (Tabachnick and Fidell, 2001). In 

addition, the PCA considers the total variance accounting for all the common and 

unique (specific plus error) variance in a set of variables while FA considers only the 

common variance. 

In the problem domain of FFD, the quantitative data are easier to present the 

financial conditions of the enterprise and an individual. This study tries to apply an 

analysis tool on quantitative clustered data to help to explore the represented variable 

sets and then give them a meaningful description. If the amount of sample is not much, 

the relationship between the input variables and output variable can be seen as linear; 

besides, we hope to find a composite of variables to provide more delicate group 

features. For this purpose, the PCA is more suitable and it has been widely used as a 

feature selection tool. Hence, this study will apply the PCA for feature extraction in 

our proposed dual approach in order to help get theoretical groups of input variables 

within each clustered group. That is, the PCA is used to provide expandability for each 

subgroup with clear endogenous variable insights; furthermore, these features can 

inspire the decision making process of the fraud detection, and can be enriched by 

other exogenous information related to fraud behaviors. 

 

 

2.4 FFR 

Fraudulent financial reporting (FFR), also known as financial statement fraud or 

management fraud, is a type of financial fraud that adversely affects stakeholders 

through misleading financial reports (Elliot and Willingham, 1980). FFR involves the 

intentional misstatement or omission of material information from an organization’s 

financial reports (Beasley et al., 1999). FFR, although with the lowest frequency, casts 

a severe financial impact (Association of Certified Fraud Examiners, ACFE 2008). 

FFR can lead not only to significant risks for stockholders and creditors, but also 

financial crises for the capital market. According to the ACFE (2008), financial 
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misstatements are the most costly form of occupational fraud, with median losses of $2 

million per scheme. FFR, or financial statement fraud, is known as “cooking the 

books” that often has severe economic consequences and makes front page headlines 

(Beasley et al., 1999). While ACFE (1998) reported that fraud has become more 

prevalent and costly, the detection of fraud has been badly lagging. The KPMG (1998) 

survey found that over one third of fraud cases were discovered by accident and that 

only 4 percent of cases were detected by independent auditor. When the auditor makes 

inquiries about fraud-related transactions, he or she is likely to be deceived with false 

or incomplete information (Weisenborn and Norris, 1997). Though the ability to 

identify fraudulent behavior is desirable, humans are only slightly better than chance at 

detecting deception (Bond and DePaulo, 2006) or identifying fraudulent behaviors 

beforehand. Therefore, there is an imperative need for decision aids of identifying FFR. 

More reliable methods are needed to assist auditors and enforcement officers in 

maintaining trust and integrity in publicly owned corporation. 

Most prior FFR-related research focused on the nature or the prediction of FFR. 

The nature-related FFR research often uses the case study approach and provides a 

descriptive analysis of the characteristics of FFR and techniques commonly used. For 

example, the Committee of Sponsoring Organizations (COSO) and the Association of 

Certified Fraud Examiners (ACFE) regularly publish their own analysis on fraudulent 

financial reporting of U.S. companies. Based on the FFR samples, COSO examines 

and summarizes certain key company and management characteristics. ACFE analyzes 

the nature of occupational fraud schemes and provides suggestions to create adequate 

internal control mechanisms. As shown in Table 1, nature-related FFR research often 

uses case study, statistic or data mining approach to archival data and identifies 

significant variables that help predict the occurrence of fraudulent financial reporting. 

Other nature-related FFR studies focus on the audit assessment and planning (Bell and 

Carcello, 2000; Newman et al., 2001; Carcello and Nagy, 2004; Gillett and Uddin, 

2005). 
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Table 1. Research methodology and findings in nature-related FFR studies. 

Research Methodology Findings 
Beasley et 
al.  
(1999) 

• Case study 
• Descriptive statistics 
 
 

• Nature of companies involved 

– Companies committing financial statement fraud 

were relatively small. 

– Companies committing the fraud were inclined to 

experience net losses or close to break-even 

positions in periods before the fraud. 

• Nature of the control environment 

– Top senior executives were frequently involved. 

– Most audit committees only met about once a year 

or the company had no audit committee. 

• Nature of the frauds 

– Cumulative amounts of fraud were relatively large 

in light of the relatively small sizes of the 

companies involved. 

– Most frauds were not isolated to a single fiscal 

period. 

– Typical financial statement fraud techniques 

involved the overstatement of revenues and assets. 

• Consequences for the company and individuals 

involved 

– Severe consequences awaited companies 

committing fraud. 

– Consequences associated with financial statement 

fraud were severe for individuals allegedly 

involved. 
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ACFE 
 (2008) 

• Case study 
• Descriptive statistics 
  

• Occupational fraud schemes tend to be extremely 

costly. The median loss was $175,000. More than 

one-quarter of the frauds involved losses of at least $1 

million. 

• Occupational fraud schemes frequently continue for 

years, two years in typical, before they are detected.  

• There are 11 distinct categories of occupational fraud. 

Financial statement fraud was the most costly category 

with a median loss of $2 million for the cases 

examined. 

• The industries most commonly victimized by fraud in 

our study were banking and financial services (15% of 

cases), government (12%) and healthcare (8%).  

• Fraud perpetrators often display behavioral traits that 

serve as indicators of possible illegal behavior. In 

financial statement fraud cases, which tend to be the 

most costly, excessive organizational pressure to 

perform was a particularly strong warning sign. 

 

Another type of FFR research often uses the empirical approach to archival data 

and identifies significant variables that help predict the occurrence of FFR. This line of 

research also inputs these significant variables into fraud prediction models. Such 

research emphasizes the predictability of the model being used. For example, logistic 

regression and neural network techniques are used in this line of research (e.g., Persons, 

1995; Fanning and Cogger, 1998; Bell and Carcello, 2000; Virdhagriswaran, 2006; 

Kirkos et al., 2007). The matched-sample design is typical for traditional FFR 

empirical studies. That is, a set of samples with fraudulent financial statements 

confirmed by the Department of Justice is matched with a set of samples without any 

allegations of fraudulent reporting. 

Table 2 summarizes the research methodology and findings of the FFR empirical 

studies most relevant to our study. The research methodology has shown a trend with 

an emphasis on the classification mechanization which is used as the decision support 

information for future risk identification (Basens et al., 2003). 
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Table 2. Research methodology and findings in FFR empirical studies. 

Author Methodology Variable Sample Findings 
Dechow 
et al. 
(1996) 

Logistic 
regression 

• 21 variables 
– Financial 

ratios 
– Other 

indicators: 
corporate 
governance 
ratios. 

Matched-pairs 
design: 
92 firms 
subject to 
enforcement 
actions by the 
SEC 

• To attract external 
financing at low cost was 
found an important 
motivation for earnings 
manipulation  

• Firms manipulating 
earnings are more likely to 
have:  
- insiders dominated 
boards 
- Chief Executive Officer 

simultaneously serves as 
Chairman of the Board 

Persons 
(1995) 

Stepwise logistic
model 

• 9 financial 
ratios 

• Z-score 

Matched- 
pairs design 

The study found four 
significant indicators: 
financial leverage, capital 
turnover, asset composition 
and firm size 

Fanning 
and 
Cogger 
(1998) 

Self-organizing 
artificial neural 
network 

• 62 variables 
• Financial ratios
• Other 

indicators: 
corporate 
governance, 
capital 
structure etc. 

Matched- 
pairs design:
102 fraud  
samples and 
102 non-fraud 
samples 

• Neural network is more 
effective 

• Financial ratios such as 
debt to equity, ratios of 
accounts receivable to 
sales, trend variables are 
significant indicators 

Bell and 
Carcello 
(2000) 

Logistic 
regression 

46 fraud risk 
factors 

77 fraud 
samples and 
305 non-fraud 
samples 

Logistic regression model 
outperformed auditors for 
fraud samples, but were 
equally performed for 
non-fraud samples. 

Kirkos et 
al. (2007) 

• Decision tree 
• Back-propagati

on neural 
network 

• Bayesian belief

• 27 financial 
ratios 

• Z-score 

Matched- 
pairs design: 
38 fraud 
samples and 
38 non-fraud 

• Training dataset: neural 
network is the most 
accurate 

• Validation dataset: 
Bayesian belief network is 
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network samples the most accurate 

Hoogs et 
al. (2007) 

Genetic 
Algorithm 

• 38 financial 
ratios 

• 9 qualitative 
indicators 

51 fraud 
samples vs. 
51 non-fraud 
samples 

Integrated pattern had a 
wider coverage for suspected 
fraud companies while it 
remained lower false 
classification rate for 
non-fraud ones 

Source: (Hsu, 2008; Huang et al., 2011). 

 

As shown in Table 2, Persons (1995) used Stepwise logistic model to found 

significant indicators relate to FFR. Dechow et al. (1996) used Logistic regression in 

FFR detection. Bell and Carcello (2000) developed a Logistic regression model useful 

in predicting the existence of fraudulent financial reporting, and found that the 

proposed model outperformed auditors for fraud samples, but were equally performed 

for non-fraud samples. 

Green and Choi (1997) applied Back-propagation neural network to FFR detection. 

The model used five ratios and three accounts as input. The results showed that 

Back-propagation neural network had significant capabilities when used as a fraud 

detection tool. Fanning and Cogger (1998) proposed a generalized adaptive neural 

network algorithm, named AutoNet, to FFR detection. The input vector consisted of 

financial ratios and qualitative variables. They compared the performance of their 

model with linear and quadratic discriminant analysis, as well as logistic regression, 

and claimed that AutoNet is more effective at detecting fraud than standard statistical 

methods. Kirkos et al. (2007) compared Decision tree, Back-propagation neural 

network, and Bayesian belief network in FFR detection and found that 

Back-propagation neural network is the most accurate method in training dataset, 

Bayesian belief network is the most accurate method in validation dataset. Hoogs et al. 

(2007) applied Genetic Algorithm (GA) in FFR detection, and the performance of GA 

concluded that the integrated pattern had a wider coverage for suspected fraud 

companies while it remained lower false classification rate for non-fraud ones. 

Humpherys et al. (2010) developed a linguistic methodology for detecting 

fraudulent financial statements. The results demonstrate that linguistic models of 

deception are potentially useful in discriminating deception and managerial fraud in 
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financial statements. Their findings provide critical knowledge about how deceivers 

craft fraudulent financial statements and expand the usefulness of deception models 

beyond a low-stakes, laboratory setting into a high-stakes, real-world environment 

where large fines and incarceration are the consequences of deception. In literature of 

financial fraud detection (FFD), Ngai et al. (2010) have done a complete classification 

framework and an academic review of literature which used data mining techniques for 

FFD. They showed that the main data mining techniques used for FFD are logistic 

models, neural networks, the Bayesian belief network, and decision trees, all of which 

provide primary solutions to the problems inherent in the detection and classification 

of fraudulent data. Huang et al. (2011) used the GHSOM to help capital providers 

examine the integrity of financial statement. They applied the GHSOM to analysis 

financial data and demonstrate an alternative way to help capital providers such as 

lenders to evaluate the integrity of financial statements, a basis for further analysis to 

reach prudent decisions. Huang and Tsaih (2012) evolved the GHSOM into a 

prediction model for detecting the FFR. They proposed the initial concept of a dual 

approach for examining whether there is a certain spatial relationship among fraud and 

non-fraud samples, identifying the fraud counterpart of a non-fraud subgroup, and 

detecting fraud samples. 

The relevant literatures show that the neural network families have been widely 

used in many financial applications, such as the FFR detection, credit ratings, 

economic forecasting, risk management, or other FFD related issues. 

 

 

2.5 Summary 

The GHSOM is an improved vision of SOM. It is often used as a clustering tool 

and has proved its availability to deal with classification and clustering problem to 

achieve the decision support purpose. As a clustering tool, the related GHSOM studies 

nowadays still provide limit information (or lack of the inherent knowledge) from the 

clustering results, which may increase decision makers’ efforts to analyze such 

semi-structured results. 

 As a result, further analysis for the generated subgroups is needed. A particular 

design of the GHSOM for FFD is also needed since the learning nature of the GHSOM 
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is unsupervised. Recent researches which considered feature extraction or pattern 

recognition of the GHSOM are often applied to graphic data, sensor-collected data, or 

text content; however, few of studies have focus on financial data. Despite the 

GHSOM provides more delicate clustering results than the SOM, we find that no study 

has applied the GHSOM and integrated it into a DSS that helps identify fraud (e.g., 

FFR). Therefore, this study expects to utilize the advantage of the GHSOM to design a 

novel dual approach and apply it to detect FFR (a sub-field of FFD) that helps identify 

fraud cases and explore their imbedded features through the PCA and explore their 

potential FFR patterns through any qualitative method, and finally provides abundant 

detection results as the investigative report to facilitate the decision process of both 

identification and interpretation. 
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3. The proposed dual approach 

The overall system architecture of the proposed dual approach is illustrated in 

Figure 5. The proposed dual approach consists of the following four phases: the training, 

the modeling, the analyzing, and the decision support. There are eleven major modules: 

sampling, variable-selecting, clustering, statistic-gathering, rule-forming, 

feature-extracting, pattern-extracting, classifying, analyzing, feature-retrieving, and 

decision-supporting.  

The training phase consists of a series of three modules, which aims to sequentially 

sample the data, select the input variables, and set up two GHSOM trees based upon the 

dichotomous categories of training samples. The modeling phase consists of a series of 

four modules, which aims to calculate two statistical values (Avg and Std) from each 

leaf node of the obtained two GHSOM trees to form the optimal classification rule 

based on the training samples, and extract features using quantitative and qualitative 

method from the GHSOM tree which consists of fraud samples. In other word, the 

modeling phase mainly focuses on setting up the classification rule based on certain 

spatial relationship, which match each leaf node of FT to its counterpart leaf nodes in 

NFT and vice versa. 

The analyzing phase consists of two modules, in which the set GHSOMs, the 

classification rule and the extracted features are used to identify fraud from the 

unknown investigated samples, and retrieve the associated features for decision aid. 

Each investigated sample will be classified into its belonging leaf node of GHSOMs. 

Then, the optimal classification rule will be used to classify the investigated sample. 

The decision support phase consists of two modules, which present the classification 

result and retrieve the fraud related features for decision aid. For an investigated sample, 

if the classification result is fraud, the regularity of its belonging leaf node of FT, that is 

the principal components and the potential fraud categories, are retrieved. 
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Feature-retrieving
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Avg and Std 
in each leaf 

of NFT

Avg and Std 
in each leaf 

of FT
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Classifying fraud/ non-fraud

Decision-supporting

fraud

Principal factors

Fraud categories

Indicators

Pattern-extracting

Decision support phase

FT

NFT

FT

FT

FT and NFT

FT

NFT

 

Figure 5. System architecture of the proposed dual approach. 

Note: The clustering module generates two GHSOM trees. One is FT (use fraud 
samples), and the other one is NFT (use non-fraud samples). The group-finding module 
classifies the investigated sample into FT and NFT, respectively. 

 

 

3.1 Training phase 

Table 3 shows the training phase, in which the task of data pre-processing is done 

via step 1 and step 2. Step 2 can apply any variable selection tool such as the 

discriminant analysis, logistic model, and so forth. 

Since fraud and non-fraud samples will be used to set up two GHSOM trees 

(named non-fraud tree, NFT, and fraud tree, FT) respectively, before processing step 3, 

the training samples are grouped as the fraud ones and the non-fraud ones. In step 3, 

the fraud samples are used to set up an acceptable GHSOM named FT. After 

identifying the FT, the values for (the GHSOM’s) breadth parameter (τ1) and depth 

parameter (τ2) are determined and stored in step 4. Then, in step 5, the determined 

values of τ1 and τ2 and the non-fraud samples are used for setting up another GHSOM 

named NFT. 
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Table 3. The training phase. 

 

 
 

3.1.1 Sampling module 

The sampling module processes sample collection and variable measurement. The 

sampling module is executed via the step 1 of Table 3. The definition of a fraud sample 

and a non-fraud sample are defined first. The sources, the sample period and the way of 

sampling are also decided in this step. The design of the sampling process is flexible 

depended on the application field. 

The explanatory variables are selected based upon fraud related literatures. These 

measurements may proxy for several attributes of a sample. The next step will help to 

select variables significantly relate to fraud, which help downsize the number of input 

variables to make it more relevant to the collected sample base. 

 

3.1.2 Variable-selecting module 

The variable-selecting module is executed via the step 2 of Table 3. In the 

variable-selecting module, the collected explanatory variables and the fraud/non-fraud 

dichotomous dependent variable are put into the variable selection tool. Any variable 

selection tool such as discriminant analysis, logistic model, and so forth can be applied 

in this step. For example, in this study, the variable-selecting module applies 

discriminant analysis processing variable selection from the obtained samples in order 

to identify the significant variables that help detect fraud. Then, the variables with 

statistically significant effects will be chosen as the input variables for GHSOM training 

to obtain clustered groups. 

step 1: Sample and measure variable.  
step 2: Identify the significant variables that will be used as the input 

variables. 
step 3: Use the fraud samples to set up an acceptable GHSOM (denote FT). 
step 4: Based upon the accepted FT, determine the (GHSOM training) 

parameters breadth (τ1) and depth (τ2). 
step 5: Use the non-fraud samples and the determined parameters τ1 and τ2 to 

set up another GHSOM (denote NFT). 
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3.1.3 Clustering module 

The clustering module is executed via the step 3, step 4 and step 5 of Table 3. The 

significant variables derived from the variable-selecting module are used as the input 

variables for the GHSOM training to conduct clustering procedure. Two GHSOMs 

(named non-fraud tree, NFT, and fraud tree, FT) are respectively generated from two 

classes of training samples (fraud class, non-fraud class). For each GHSOM, a series of 

leaf nodes (i.e., groups) are generated. Furthermore, based upon the FT, we can get 

several clustered groups with inherent similarity for helping further feature extraction. 

The competitive learning nature of GHSOM makes it work as a regularity detector 

that is supposed to discover statistically salient features of the sample population 

(Rumelhart and Zipser, 1985). In this module, the GHSOM will develop the topological 

representation which captures the most salient features of each cluster. Furthermore, 

through a set of small-sized leaf nodes, the GHSOM classifies the sample into more 

subgroups with hierarchical relations instead of a dichotomous result and therefore 

further delicate analyses are feasible. 

 

 

3.2 Modeling phase 

Table 4 presents the modeling phase, in which the classification rule is set up. 

Despite FT and NFT are resulted from fraud and non-fraud samples respectively, the 

spatial relationship hypothesis and the same setting of (τ1 and τ2) parameters may 

render true that each leaf node of NFT has one or more than one counterpart leaf nodes 

in FT and vice versa. Thus, one purpose of the modeling phase is to match each leaf 

node of FT to its counterpart leaf nodes in NFT and vice versa. 

 

Table 4. The modeling phase. 

step 1: For each leaf node of FT, 
i. calculate and store its Avgx value that is the average of Euclidean 

distances between the weight vector and the grouped fraud training 
samples; 

ii. calculate and store its Stdx value that is the standard deviation of 
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Euclidean distances between the weight vector and the grouped 
fraud training samples. 

step 2: For each leaf node of NFT, 
i. calculate and store its Avgy value that is the average of Euclidean 

distances between the weight vector and the grouped non-fraud 
training samples; 

ii. calculate and store its Stdy value that is the standard deviation of 
Euclidean distances between the weight vector and the grouped 
non-fraud training samples. 

step 3: For each training sample, 
i. identify and store the winning leaf node of FT and the winning leaf 

node of NFT, respectively; 
ii. store its Avg values of the winning leaf nodes of FT and NFT, 

respectively; 
iii. store its Std values of the winning leaf nodes of FT and NFT, 

respectively. 
iv. calculate and store its Dft, the Euclidean distance between the 

training sample and the weight vector of the winning leaf node of 
FT; 

v. calculate and store its Dnft, the Euclidean distance between the 
training sample and the weight vector of the winning leaf node of 
NFT. 

step 4: Create the spatial correspondence tables regarding the matching from 
NFT to FT and from FT and NFT, respectively. 

step 5: Use the fraud-central rule defined in Equation (3) and the optimization 
problem (4) to determine the parameter p

1β  that minimizes the 
corresponding sum of (type I and type II) classification errors. 

step 6: Use the non-fraud-central rule defined in Equation (7) and the 
optimization problem (8) to determine the parameter p

2β  that 
minimizes the corresponding sum of (type I and type II) classification 
errors. 

step 7: Pick up the dominant classification rule via comparing the classification 
errors obtained in step 5 and step 6. 

step 8: For each leaf node of FT, apply PCA to select features through 
extracting factors (i.e., principle components). 

step 9: For each leaf node of FT, analyze the common fraud features from 
exogenous information based on the associated domain categories. 
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3.2.1 Statistic-gathering module 

The statistic-gathering module is executed via the step 1, step 2 and step 3 of Table 

4. After NFT and FT are constructed, a non-fraud-central rule and a fraud-central rule 

are tuned respectively via inputting all samples to determine the adjustable 

discrimination boundary within each leaf node of the NFT and FT. The optimization 

renders rules for detecting fraud samples are adjustable and effective. The decision 

maker can objectively set his/her weightings of type I and type II errors. The rule 

associated with the tree that dominates another is adopted as the classification rule to 

classify whether samples are fraud or non-fraud.  

In step 1, the Avgx value (i.e., the average of Euclidean distances between the 

weight vector and the grouped fraud training samples) and the Stdx value (i.e., the 

standard deviation of Euclidean distances between the weight vector and the grouped 

fraud training samples) of each leaf node of FT are calculated and stored. Similarly, in 

step 2, the Avgy value (i.e., the average of Euclidean distances between the weight 

vector and the grouped non-fraud training samples) and the Stdy value (i.e., the 

standard deviation of Euclidean distances between the weight vector and the grouped 

non-fraud training samples) of each leaf node of NFT are calculated and stored. 

Hereafter, we use #x to denote the xth leaf node of FT and *y the yth leaf node of NFT. 

In step 3, we collect and store the following information regarding each training 

sample: the winning leaf node of FT, the winning leaf node of NFT, the corresponding 

Avgx and Stdx values of the winning leaf node of FT, the corresponding Avgy and Stdy 

values of the winning leaf node of NFT, the Dft (i.e., the Euclidean distance between 

the training sample and the weight vector of the winning leaf node of FT), and Dnft (i.e., 

the Euclidean distance between the training sample and the weight vector of the 

winning leaf node of NFT). Following the GHSOM classification rule, we identify the 

winning leaf nodes of FT and NFT, respectively. 
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3.2.2 Rule-forming module 

The rule-forming module is executed via the step 4 to step 7 of Table 4. In step 4, 

two spatial correspondence tables are created respectively based on the classification 

results of all (fraud and non-fraud) training samples. That is, from the NFT perspective, 

if the leaf node #x in FT hosts the majority of all training samples classified in the leaf 

node *y in NFT, then we match the leaf node #x in FT to the leaf node *y in NFT and 

claim that the leaf node #x in FT is the counterpart of the leaf node *y in NFT. The leaf 

node matching of #x to *y states the spatial relationship among the fraud and non-fraud 

samples classified in the leaf nodes of #x and *y. That is, if any sample is classified 

into the leaf node *y when using NFT, it is more likely to be classified into the leaf 

node #x when using FT. Similarly, from the FT perspective, if the leaf node *y in NFT 

hosts the majority of all of training samples classified in the leaf node #x in FT, then 

we match the leaf node *y in NFT to the leaf node #x in FT and claim that the leaf 

node *y in NFT is the counterpart of the leaf node #x in FT. 

The fraud-central rule defined in Equation (7), in which p
1β  is a parameter for a 

pair p of leaf nodes (#FT match to *NFT), states that some non-fraud samples cluster 

around a subset of fraud samples. That is, for the (fraud or non-fraud) sample c that is 

classified into the leaf node #x of FT, if c
ftD  is smaller than the value of c

xAvg  + p
1β  

× c
yStd , the sample c will be classified as the fraud one; otherwise, the non-fraud one. 

Because the discrimination boundary (i.e., c
xAvg  + p

1β  × c
yStd ) is data-dependent, 

the parameter p
1β  needs to be tuned to find the optimal discrimination boundary. 

Therefore, in step 5, we use the optimization problem (8) to determine the parameter 
p

1β . In the optimization problem (8), the sets SF and SNF are given. For each c, the 

values of c
ftD , c

xAvg , and c
yStd , are also given. In the objective function, there are 

coefficients w1 (the weighting of type I error) and w2 (the weighting of type II error) 

that are constants subjectively determined by the decision makers in terms of their 

preference of the classification performance. In general, there are three kinds of 

settings for (w1, w2) — (1, 1), (0.01, 1), (1, 0.01) regarding the minimizations focusing 

on the average sum of type I and type II errors, mainly the type II error, and mainly the 

type I error, respectively. 

The fraud-central rule: If ( c
ftD  < c

xAvg  + p
1β  × c

yStd ), the sample is classified as 

the fraud one; otherwise, the non-fraud one.                (7) 
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From the definition of ic, (ic)2 equals 1. Thus, the objective function can be refined 

as Equation (9) and, effectively, we only need to minimize   
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where 
c
y

c
x

c
ftc

xy Std
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e
−

≡  is a constant given c, x, and y. For all c in the set SNF, arrange the 

values of c
xye  in an increasing order. If the value of p

1β  is in the range less than the 

first c
xye , then 

NFSc∈
Σ = - |SNF|. If the value of p

1β  is between the first and the second c
xye , 

then 2|| +=Σ
∈ NF

c

Sc
S- i

NF

. There are only |SNF| amount of c
xye  values and, as p

1β  varies, 

we know the exact value of ∑
∈

×
NFSc

ciw1
. Repeat the same process for the set SF and there 

are only |SF| amount of c
xye  values for us to check the value of ∑

∈

×
FSc

ciw2
. By 

superimposing the two sequences of c
xye  we can get the optimal ranges of p

1β  that 

minimizes the value of ∑
∈

×
NFSc

ciw1
 - ∑

∈

×
FSc

ciw2
. 
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The non-fraud-central rule defined in Equation (11), in which p
2β  is a parameter 

for a pair p of leaf nodes (*NFT match to #FT), states that some fraud samples cluster 

around a subset of non-fraud samples. That is, for the sample c that is classified into 

the leaf node *y of NFT, if c
nftD  is smaller than the value of c

yAvg  + p
2β  × c

xStd , 

the sample c will be classified as the non-fraud one; otherwise, the fraud one. The 

parameter p
2β  also needs to be tuned to find the optimal discrimination boundary (i.e., 

c
yAvg  + p

2β  × c
xStd ). Therefore, in step 6, we use the optimization problem stated in 

(8) to determine the parameter p
2β  through the minimization of the sum of (type I and 

type II) classification errors. In the optimization problem (12), the sets SF and SNF are 

given. For each c, the values of c
nftD , c

yAvg , and c
xStd  ,are also given. The constants 

w1 and w2 in the objective function are set as the same values as in optimization 

problem (8). 

The non-fraud-central rule: If ( c
nftD  < c

yAvg  + p
2β  × c

xStd ), the sample is 

classified as the non-fraud one; otherwise, the fraud one.                (11) 

2

min
β ∑

∈

−×
NFSc

ciw 2
1 )1(  + ∑

∈

+×
FSc

ciw 2
2 )1(               (12) 

⎪⎩

⎪
⎨
⎧

∗+≥−
∗+<

= c
x

pc
y

c
nft

c
x

pc
y

c
nftc

StdAvgDif
StdAvgDif   

 i  t s
2

2

1
1

..
β
β for all c in SF and SNF    

The approach for solving the optimization problem (8) is also applied for solving 
the optimization problem (12) to get the optimal range of p

2β  that minimizes the 

value of ∑
∈

−×
NFSc

ciw 2
1 )1(  + ∑

∈

+×
FSc

ciw 2
2 )1( . 

In step 7 of Table 4, the picked classification rule is the fraud-central rule if the sum 

of classification errors resulted in step 5 is smaller than the one resulted in step 6; 

otherwise, the non-fraud-central rule. The dominance of the non-fraud-central rule leads 

to an implication of the spatial relationship among fraud and non-fraud samples that 

most of fraud samples cluster around the non-fraud counterpart. The dominance of the 

fraud-central rule leads to an implication of the spatial relationship among fraud and 

non-fraud samples that most of non-fraud samples cluster around the fraud counterpart. 

 

3.2.3 Feature-extracting module 

The feature-extracting module is executed via the step 8 of Table 4. For each 

clustered group based upon fraud samples, the feature-extracting module applies PCA 
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to select features or to extract factors (i.e., principle components) that link to fraud 

related features from exogenous information. It further represents the inherent variable 

features to reveal each group’s heterogeneity, and the purpose of feature selection is 

trying to exclude variables irrelevant to the modeling problem for a particular group. 

Here we use PCA to do feature selection by selecting a set of variables which best 

represent the composited features of an investigated leaf node of the GHSOM clustering 

result based upon fraud samples. 

The main objective of the PCA is to determine the important dimensions 

(characters) which can explain the input variable features of the analyzed samples, and 

can explore underlying patterns of relationship between the input variables. The input 

variables are same as the GHSOM input variable. The fraud/ non-fraud dichotomous 

variable is set to the dependent variable. Only those factors that account for variances 

greater than 1 (eigenvalue >1) are included in the model. This criterion is also called K1 

method proposed by Kaiser (1960) and is probably the one most widely used. 

According to this rule, only the factors that have eigenvalues greater than one are 

retained for interpretation. Factors with variance less than one are not better than a 

single ratio, since each ratio has a variance of 1. 

The other objective of the PCA is to calculate factor scores for each of the sample 

according to the factors determined. Then, to enhance the interpretability of the factors, 

the varimax factor rotation method is used in PCA. This method minimizes the number 

of variables that have high loadings on a factor, and all factor loadings will be presented. 

Here, variables with large loadings for the same factors are grouped and small factor 

loadings are omitted. Estimated factor represents a specific characteristic of firms under 

consideration. (Canbas et al., 2005) 

The outcomes of feature-extracting module are several representative variables as 

the ‘variable pattern’ for each clustered group. Hence, from comparing the similarity of 

each selected features provided by PCA, we can efficiently exploit one single group or 

compare different groups. Besides, after determining the basic financial factors from 

training samples, early warning model can be estimated according to these obtained 

factors, such as discriminant, logit, probit, and Neural Network.  
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3.2.4 Pattern-extracting module 

The pattern-extracting module is executed via the step 9 of Table 4. The exogenous 

information of the fraud behaviors beyond the financial numbers is used in this module. 

Extracting the fraud categories of a certain investigated sample can help reveal more 

domain information. We can use any qualitative method to analyze the category of 

fraud from any available structural, semi-structural, or un-structural resource, such as 

news, reports, or other fraud-related content. First, the categories of fraud should be 

determined by the authentic reference. Then, for a leaf node of FT, using any qualitative 

way to classify the fraud categories of each samples belong to the leaf node. If the 

resource of fraud categories is structural, we only have to encode the class data as the 

other extracted feature. 

 

 

3.3 Analyzing phase 

The analyzing phase is shown in Table 5. For each investigated sample s, we first 

follow the GHSOM clustering rule to find the winning leaf nodes of FT and NFT, 

respectively. The indicators of the investigated samples are based upon the result of the 

variable-selecting module. Assume the winning leaf node of FT is the #x one and the 

winning leaf node of NFT is the *y one. Then, we use the classification rule picked 

from the modeling phase to do the identification. That is, if the fraud-central rule is 

picked in the modeling phase, step 2 is processed via Equation (3) in the analyzing 

phase to classify the investigated sample s. If the non-fraud-central rule is picked in the 

modeling phase, step 3 is here processed via Equation (7) in the analyzing phase to 

classify the investigated sample s. 
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Table 5. The analyzing phase. 

 

 

3.3.1 Group-finding module 

The group-finding module and the classifying module are implemented after setting 

up the classification rules based on the training samples. The group-finding module is 

executed via the step 1 of Table 5. 

The group-finding module is processed to identify the belonging leaf node of FT 

and NFT for an investigated sample. Each investigated sample s is respectively 

imported to each leaf node of GHSOMs (FT and NFT) to classify it into the most 

similar leaf node. The input variables of the investigated samples are same as the 

clustering module, that are the chosen variables generated from the variable-selecting 

module. The distances between the imported input data and the weight vector of all leaf 

nodes of the GHSOM are calculated. The leaf node with the shortest distance is selected 

as the belonging leaf node. 

 

3.3.2 Classifying module 

The classifying module is executed via the step 2 and step 3 of Table 5. In the 

classifying module, the rule associated with the tree that dominates another in modeling 

phase is adopted as the classification rule to classify whether samples are fraud or 

non-fraud. The dominance of the non-fraud-central rule leads to an implication that 

step 1: For each investigated sample s, identify the winning leaf node #x of FT 
and the winning leaf node *y of NFT, respectively. 

step 2: If the classification rule is the fraud-central rule, then 
i. Calculate Dft, the Euclidean distance between the investigated sample 

s and the weight vector of the leaf node #x of FT. 
ii. Use the fraud-central rule with the determined β1 value to classify the 

investigated sample s. 
If the classification rule is the non-fraud-central rule, then 
i. Calculate Dnft, the Euclidean distance between the investigated 

sample s and the weight vector of the leaf node *y of NFT. 
ii. Use the non-fraud-central rule with the determined β2 value to classify

the investigated sample s. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

41 

most of fraud samples cluster around the non-fraud counterpart, meanwhile the 

dominance of fraud-central rule leads to an implication that most of non-fraud samples 

cluster around the fraud counterpart. 

 

 

3.4 Decision support phase 

The decision support phase is shown in Table 6. This phase mainly provides the 

classification result and the fraud related features for any susceptive sample to the 

decision makers.  

Following the SOM theories, common fraud categories and relevant variables 

extracted from the GHSOM clustering results are applicable to all samples clustered in 

the same FT leaf nodes. In the decision support phase, the associated features which are 

extracted from modeling phase will be retrieved by the feature-retrieving module and 

integrated by the decision-supporting module for further decision support. It not only 

classifies whether an investigated sample is fraud or not, but also tries to identify its 

potential committed fraud categories. The integrated information shell provide adequate 

resources to facilitate the decision making process.  

 

Table 6. The decision support phase. 

 
* The investigated sample s is classified as a fraud observation. 

 

3.4.1 Feature-retrieving module 

The feature-retrieving module is executed via the step 1 of Table 6. After obtaining 

the classification result for a particular unknown investigated sample, the associated 

features will be retrieved and integrated by the feature-retrieving module. The 

associated features of its belonging leaf node which include the principal factors 

extracted by PCA, and the potential fraud categories (techniques) extracted by any 

step 1: Retrieve the associated fraud categories and principle components of the 
investigated sample s. 

step 2: Summarize the decision support results of the investigated sample s. 
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qualitative method, are respectively retrieved from the outputs of the feature-extracting 

module and the pattern-extracting module.  

Specifically, if an investigated sample is identified as a fraud one, its potential fraud 

categories and other associate features will be retrieved based on the GHSOM 

classification result of the group-finding module. On the contrary, if an investigated 

sample is not classified fraud, there is no need to retrieve the potential fraud categories. 

As a result, we can expect that the common fraud categories of a certain leaf node of FT 

represent the speculation for any investigated sample classified into this leaf node, and 

that contribute to the explanation of FFD result which is helpful for providing decision 

support. 

 

3.4.2 Decision-supporting module 

The decision-supporting module is executed via the step 2 of Table 6. It is 

developed to build up a decision support mediator which provides prediction summary 

retrieved from the result of classifying module and the associated features gathered by 

the feature-retrieving module. The classification result as well as the associated features 

of an investigated sample are summarized and provided for decision makers. 

Such summary of a certain investigated sample requested by a decision maker will 

give him/ her completed information with clear background features and insights in 

terms of any potential fraud behavior derived from the modeling phase, that possess 

more traceable fraud knowledge than traditional fraud prediction models. For FFD 

detection purpose, this information can facilitate the decision support of fraud 

identification which reveals both fraud/non-fraud classification result and any potential 

fraudulent activity as a reference for further investigation. 

In sum, a decision maker can get an evaluation result which consists of fraud/ 

non-fraud classification result, and the potential fraud categories of an investigated 

sample. If needed, they can view other samples which are classified into the same leaf 

node to get more background information. They can also view the whole GHSOM (e.g., 

FT) structure to understand the contrasted location between groups. These results 

provide decision makers an easy way of understanding the general picture of sample 

data. Connecting several features related to problem domain also helps decision makers 

get some insights quickly; besides, the reasonability of the detecting result can be 
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checked here to make sure if the following fraud prevention strategy is feasible. The 

concept of the training, modeling and analyzing phase of the dual approach is shown in 

the following Figure 6, in which the main process is depicted in each phase to help 

understand the ideas of each phase depicted in Table 3, Table 4, Table 5 and Table 6. 
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Figure 6. The classification concept of the proposed dual approach. 
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4. The FFR experiment and results 

The FFR experiment takes a further step to identify whether there is a certain 

spatial relationship among fraud and non-fraud samples and, if it does, to derive the 

corresponding classification rule. Note that the proposed dual approach is data-driven 

which means that the corresponding system modeling is performed via using the 

sampled data. The details and the experimental results are briefed as follows. 

 

4.1 Training phase – sampling module 

The following sources are used to identify the fraud samples between the years 

from 1992 to 2006: indictments and sentences for major securities crimes issued by the 

Securities and Futures Bureau of the Financial Supervisory Commission, class action 

litigation cases initiated by Securities and Futures Investors Protection Center, and the 

law and regulations retrieving system of the Judicial Yuan in Taiwan. If a company’s 

financial statement for a specific year is confirmed to be fraudulent by the indictments 

and sentences for major securities crimes issued by the Department of Justice, it is 

classified into our fraud observations. For those financial statements that are free from 

fraud allegations are classified into our non-fraud observations.  

The matched-firm design is then used to form a sample set. That is, for each fraud 

firm, we match a non-fraud firm based on industry, total assets, and year. Thus, our 

sample composites of 116 publicly traded companies, including 58 fraud and 58 

non-fraud ones over the period from 1992 to 2006. For each fraud company, we first 

identify the earliest year in which the financial statement fraud was committed. Then 

the sample periods cover two years before and two years after the year of the event. 

That is, five consecutive annual financial statements are used in our study. The final 

observations consist of 580 firm-year observations (i.e., annual financial statements) 

which comprise 113 fraud samples and 467 non-fraud samples. The sampling 

procedure is referred from Hsu (2008) and Huang et al. (2011)’s studies. 

The firms are listed in Table 7. In addition, accounting rules, asset valuations and 

criteria governing preparation of financial statements for financial industry are 

incomparable with other industries so cases involving financial firms are excluded 

from the sample (Fanning and Cogger, 1998; Stice, 1991). Many literature (Beasley, 
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1996; Fanning and Cogger, 1998; Farber, 2005) based on sample of American firms 

used Accounting and Auditing Enforcement Releases (AAERs) issued by United 

States Securities and Exchange Commission (SEC) to determine whether or not firms 

committed financial reporting fraud. However, we had no such a consistent criterion in 

Taiwan, so the study established a criterion in the light of governmental publications 

and experts’ opinion. 

 

Table 7. The list of fraud and non-fraud firms in training samples. 

No 
fraud firm non-fraud firm Sampling 

period Industry SIC 
Code Name Fraud 

year 
Detect
year 

SIC 
Code Name 

1 Electron 2398 博達 1999-
2001 2004 3024 憶聲 1997-2001

2 Electron 8295 中強電 1998 1999 2349 錸德 1996-2000

3 Electron 2328 廣宇 1997-
1998 1998 2411 飛瑞 1995-1999

4 Electron 2350 環隆電氣
1997-
1998 1999 3037 欣興 1995-1999

5 Electron 2407 
欣煜 
(前陞技) 

2002-
2004 2005 2316 楠梓電 2000-2004

6 Electron 2334 國豐 1997-
1999 2001 2323 中環 1995-1999

7 Electron 2490 皇統科技
2000-
2002 2004 2453 凌群 1998-2002

8 Electron 3039 宏傳 2004 2005 5353 台林 2000-2004

9 Electron 3001 協和國際
1999-
2001 2004 8026 康和資 1997-2001

10 Electron 2494 突破 2002 2003 2419 仲琦 2000-2004

11 Electron 8188 
麥瑟半導

體 2001 2002 2425 承啟 1999-2003

12 Electron 6145 勁永國際
2003-
2004 2005 8172 勝開 2001-2005

13 Electron 6250 
宇加 (前
太萊晶體) 2004 2005 3207 耀勝 2002-2006

14 Electron 5385 瑩寶科技
2000-
2001 2002 5305 敦南 1998-2002

15 Iron& Steel 8708 大中鋼鐵
1997-
1999 1999 2022 聚亨 1995-1999

16 Iron& Steel 2005 友力 1998-
1999 1999 5009 榮剛 1996-2000

17 Iron& Steel 2019 桂宏 1998-
2000 2000 2010 春源 1996-2000

18 Iron& Steel 2016 名佳利 1997- 1999 2032 新鋼 1995-1999
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1998 

19 Iron& Steel 8714 紐新 1997-
1999 2001 2008 高興昌 1995-1999

20 Iron& Steel 5007 三星五金
1998-
1999 2001 2009 第一銅 1996-2000

21 Iron& Steel 2017 
官田鋼 
(前嘉益

鋼) 

1996-
1998 2006 2013 中鋼構 1994-1998

22 Iron& Steel 8705 東隆五金
1997-
1998 1998 9905 大華 1995-1999

23 Iron& Steel 2014 中鴻 2001-
2003 2006 2006 東鋼 1999-2003

24 
Building 
Material& 
Construction 

1436 福益 1997-
1998 1998 2535 達欣工 1995-1999

25 
Building 
Material& 
Construction 

2529 仁翔 1998 2001 2516 新建 1996-2000

26 
Building 
Material& 
Construction 

5503 榮美開發 2000 2003 2536 宏普 1996-2000

27 
Building 
Material& 
Construction 

2505 國揚實業
1997-
1998 1998 2526 大陸 1995-1999

28 
Building 
Material& 
Construction 

8719 宏福 1997-
1998 1999 2511 太子 1995-1999

29 
Building 
Material& 
Construction 

8716 尖美 1998-
1999 2002 2524 京城 1995-1999

30 
Building 
Material& 
Construction 

2553 啟阜 1998-
1999 2000 2534 宏盛 1996-2000

31 
Building 
Material& 
Construction 

5504 信南 1999-
2000 2000 5514 三豐 1997-2001

32 
Building 
Material& 
Construction 

8710 易欣 1999 2000 5506 長鴻 1997-2001

33 Food 8723 順大裕 1998 1999 1201 味全 1996-2000

34 Food 8724 立大 1999-
2000 2001 1219 福壽 1997-2001

35 Food 1221 久津 2001-
2003 2003 1220 台榮 1999-2003

36 Food 1207 嘉食化 1998-
2000 2006 1216 統一 1996-2000

37 Textile 1466 聚隆 1998 1999 1451 年興 1996-2000
38 Textile 8706 金緯 1998 1999 1423 利華 1995-1999
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39 Textile 8717 瑞圓 1998 2001 1417 嘉裕 1995-1999

40 Electric 
Machinery 1505 楊鐵工廠

1997-
1999 2001 1514 亞力 1997-2001

41 Plastic 8711 大穎 1999 2000 1304 台聚 1997-2001
42 Plastic 8713 延穎 1999 2000 1305 華夏 1997-2001

43 Electrical and 
Cable 1601 台光 1997-

1998 1999 1614 三洋 1995-1999

44 Electrical and 
Cable 1602 太電 1994-

1996 2003 1605 華新 1992-1996

45 Chemical 8701 正豐 1995-
1996 1998 1716 永信 1993-1997

46 Chemical 4113 聯上生技 2004 2004 4123 晟德 2002-2006
47 Automobile 8712 國產車 1998 1998 2204 中華 1996-2000

48 Automobile 8702 羽田 1994-
1995 1995 2201 裕隆 1992-1996

49 Automobile 2206 三陽工業
1999-
2000 2001 2207 和泰 1997-2001

50 Shipping& 
Transportation 2614 東森國際 1999 2000 2615 萬海 1997-2001

51 Shipping& 
Transportation 2613 中櫃 1999 2000 5604 中連 1997-2001

52 
Trading& 
Consumers' 
Goods 

9801 力霸 1998-
2000 2006 2903 遠百 1996-2000

53 
Trading& 
Consumers' 
Goods 

2913 農林 1996 1997 2915 潤泰全 1994-1998

54 
Trading& 
Consumers' 
Goods 

5901 中友百貨
1997-
1999 2001 2905 三商行 1995-1999

55 Paper, Pulp 1918 萬有紙廠
1996-
1998 1998 1902 台紙 1994-1998

56 Rubber 2101 南港輪胎
1997-
1999 2001 2103 台橡 1995-1999

57 Other 8382 美式家具 1998 1999 9935 慶豐富 1996-2000
58 Other 9911 台灣櫻花 1998 2004 9915 億豐 1996-2000

Source: (Hsu, 2008). 

 

Note that the financial statements in Taiwan are prepared according to International 

Financial Reporting Standards similar to the generally accepted accounting principles 

(GAAPs) adopted in the States, and the FFR fraud categories are identified with the 

COSO framework from Beasley et al. (1999), therefore, the proposed dual approach and 

findings of this study are generalizable. 
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4.2 Training phase – variable-selecting module 

The independent variable is named FRAUD, which means if a company’s 

financial statements for specific years are confirmed to be fraudulent by the 

indictments and sentences for major securities crimes issued by the Department of 

Justice, the firm-year data are classified into fraud observations, and the variable 

FRAUD will be set to 1, 0 otherwise. In terms of the independent variables, based 

upon literature regarding FFR, 25 explanatory variables are selected and are used to 

test the multi-collinearity effect before incorporated into the discriminant analysis. 

Table 8 (Hsu, 2008; Huang et al., 2012) summarizes the definition and measurement of 

these variables. These are measurement proxies for attributes of profitability, liquidity, 

operating ability, financial structure, cash flow ability, financial difficulty, and 

corporate governance1 of a firm. These explanatory variables are collected from the 

Taiwan Economic Journal (TEJ) database. 

The variables used by Persons (1995) are mostly measured on the basis of total 

assets. Persons (1995) concluded that financial leverage, asset composition and capital 

turnover are significant indicators in detection of fraudulent financial statements. Many 

research suggested that unethical managers often perpetrated frauds in accounts 

receivable and inventory because the account which involves subjective judgments 

increases audit risks, that is to say, auditors have difficulties to confirm validity of 

figures (American Institute of Certified Public Accountants 2002). Beasley et al. (1999) 

showed that 24% of fraud firms misstated inventory and 21% of fraud ones defraud in 

accounts receivable. In addition, Dechow et al. (2007) suggested that manipulation of 

accounts receivable improves sales growth and manipulation of inventory improves 

gross margin. Hence, this study used not only seven relevant input variables to measure 

a company’s variation of inventory and accounts receivable but also several variables 

to observe profit and sales. 

Significant declines in growth and profitability could put extreme pressures on 

management due to excessive expectations of third parties and risk of bankruptcy, 

                                                           
 
1 Based on the governance characteristics of companies in East Asian economies suggested by 
Claessens et al. (2000), we employ SMLSR to proxy for ownership structure, DBCRCFR and 
DBCBSCFR for voting-right deviation (the difference between voting right and cash flow right) and 
seat-control deviation (the difference between the percentage of board seats controlled by the ultimate 
owners and cash flow right), and SPR for the risk dimension of the board members. 
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foreclosure, or hostile takeover (American Institute of Certified Public Accountants 

2002). As a result, managers who especially experienced rapid growth attempt to 

practice deception to cover up crisis. It means that rapid sales or inconsistent profit is 

expected to be associated with the incidence of fraud (Bell and Carcello, 2000; 

Summers and Sweeney, 1998). This study employed net sales and net income to 

measure growth of a company. 

Dechow et al. (2007) noted that change in free cash flows is a more fundamental 

measure than earnings because it abstracts from accruals. When accrual-based income 

statement is inconsistent with cash-based cash flow statement, it requires long-term 

observations. Hence, this study used two variables to measure adequacy and 

reinvestment percentage of cash flow over five years. 

Fanning and Cogger (1998) suggested financial distress may be a motivation for 

management fraud. The managers who failed to stand heavy stress may cook the books 

to hide financial crisis from stakeholders. Loebbecke et al. (1989) found that 19% of 

fraud companies underwent solvency problems. On the other hand, the occurrence of 

financial crisis may result from weak corporate governance (Lee and Yeh, 2004). The 

fragile mechanism gives opportunities for managers to misrepresent easily and even 

frequently, hence this study investigated the relationship between financial statement 

fraud and corporate governance through four corporate governance indicators from the 

research of financial distress. 
 

 Financial Ratios 
1. Profitability 

(1) Gross profit margin (GPM): The GPM variable indicates a company ability to 
earn profits where the higher profit a company makes, the more unique 
competitive advantage a company owns. GPM can be defined as: 
 

 
income Operating

 costs operating income Operating −  

 
(2) Operating profit ratio (OPR): The OPR variable usually reflects a company’s 

profitability in its own industry. The difference between OPR and GPM is GPM 
only concerns direct costs from manufacturing products whereas OPR considers 
all costs in process of generating revenue. OPR can be defined as: 
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income Operating

expenses operating - costs operating income Operating −  

 
 

(3) Return on assets (ROA): Persons (1995) indicated that lower profit may give 
management an incentive to overstate revenues or understate expenses. The 
ROA variable shows how much value a company’s assets can carry in producing 
income before leverage. The higher ROA is, the better ability to utilize assets a 
company has. ROA can be defined as: 

 

1
assets  totalAverage

rate)]tax -(1expensesInterest  income[(Net 
−

×+  

 
(4) Growth rate of net sales (GRONS): The GRONS variable indicates a company’s 

variation of sales revenues. GRONS can be defined as: 
 

1
year fiscalprior in  salesNet 

salesNet 
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛  

 
(5) Growth rate of net income (GRONI): The GRONI variable indicates a 

company’s variation of net income. GRONI can be defined as: 
 

1
year fiscalprior in  incomeNet 

incomeNet 
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛  

 
2. Liquidity 

(1) Current ratio (CR): The CR variable is to measure whether or not a company 
has enough current assets to pay short-term debts. The current assets is expected 
to be transformed into cash within one year, including cash equivalents, 
accounts receivable, prepaid expenses, inventory etc. A company with higher 
CR owns stronger ability to pay debts. CR can be defined as: 

 

sliabilitieCurrent
 assetsCurrent 
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(2) Quick ratio (QR): The QR variable is to examine a company’s ability to 
extinguish its short-term debts instantly. The inventory and prepaid expenses are 
excluded from quick assets. QR can be defined as: 

 

sliabilitieCurrent
expenses) prepaid - sInventorie - assets(Current 

 
 

 
3. Operating ability 

(1) Accounts receivable turnover (ART): The ART variable measures the frequency 
of accounts receivable collected during the period. ART relates to a company’s 
efficiency of collection and adequacy of credit policy. ART can be defined as: 

 

receivable accounts Average
salescredit Net  

 
(2) Total asset turnover (TAT): The TAT variable indicates is used to determine how 

much sales revenue a company gains from investing in assets, in other words, a 
company’s efficiency of utilizing its assets. Persons (1995) showed that 
managers of fraud companies may be incompetent to utilize assets to generating 
sales. TAT can be defined as: 

 

assets Total
salesNet  

 
(3) Growth rate of accounts receivable (GROAR): The GROAR variable indicates a 

company’s variation of accounts receivable. GROAR can be defined as: 
 

1
year fiscalprior in  receivable Accounts

receivable Accounts
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛  

 
(4) Growth rate of inventory (GROI): The GROI variable indicates a company’s 

variation of inventory. GROI can be defined as: 
 

1
year fiscalprior in Inventory 

Inventory
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛  
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(5) Growth rate of Accounts receivable to gross sales (GRARTGS): The GRARTGS 
variable indicates a company’s variation of ratio of accounts receivable to gross 
sales. GRARTGS can be defined as: 

 

1t

1t

t

t

sales Gross
receivable Accounts

sales Gross
receivable Accounts

−

−−  

 
(6) Growth rate of Inventory to gross sales (GRITGS): The GRITGS variable 

indicates a company’s variation of ratio of Inventory to gross sales. GRITGS 
can be defined as: 

 

1t

1t

t

t

sales Gross
Inventory

sales Gross
Inventory

−

−−  

 
(7) Accounts receivable to total assets (ARTTA): Persons (1995) suggested the 

current assets of fraud firms consist mostly of receivables and inventories, so 
the study used two variables: ARTTA and ITTA to determine a firm’s asset 
composition. The ARTTA variable is used to examine the percentage of 
accounts receivable in total assets. ARTTA can be defined as: 

 

assets Total
receivable Accounts  

 
(8) Inventory to total assets (ITTA): The ITTA variable is used to examine the 

percentage of inventory in total assets. ITTA can be defined as: 
 

assets Total
Inventory  

 
4. Financial structure 

(1) Debt ratio (DR): The DR variable is used to measure a company’s capital 
structure and financial leverage. The debt financing not only raises return on 
investment, but also has benefits of tax shield substitute. But higher leverage 
increase risk of bankruptcy, Persons (1995) found that fraud firms have higher 
financial leverage than non-fraud firms. DR can be defined as: 

 

assets Total
s)liabilitie (Total  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

54 

 
(2) Long-term funds to fixed assets (LFTFA): The LFTFA variable is used to 

measure the degree of fixed assets provided by long-term funds. Higher LFTFA 
means the capital structure of a company may be sound because investment in 
fixed assets usually require long collection period. LFTFA can be defined as: 

 

assets Fixed
s)liabilitie longterm (Equity+  

 
5. Cash flow ability 

(1) Cash flow ratio (CFR): The CFR variable is used to assess a company’s ability 
of paying current debts by cash. CFR differs from CR or QR in the 
measurement duration. CFR is determined by cash flows from operating 
activities of one fiscal year, not by one point. CFR can be defined as: 

 

sliabilitie Current
activities operating from flows Cash  

 
(2) Cash flow adequacy ratio (CFAR): The CFAR variable is used to evaluate 

whether or not cash flows from operating activities is enough to disburse in 
capital expenditures, inventory and cash dividends. CFAR can be defined as: 

 

.dividendscash  and additionsinventory  es,expenditur capital of sumyear Five
activitiesoperatingfromflowscashofsumyearFive

−
−         

 
(3) Cash flow reinvestment ratio (CFRR): The CFRR variable is used to determine 

the percentage of utilizing cash flows from operating activities to reinvest in 
assets and firm development. CFRR can be defined as: 

 

capital  working assetsother  sinvestment termlong-  assets fixed Gross
dividends)cash  -activities a operating from flows(Cash 
+++

 

 
 Corporate Governance Indicator 
1. Stock Pledge ratio (SPR): This study employed SPR variable to determine 

whether financial distress happens or not. SPR variable means the percentage of 
shareholdings which directors and supervisors put in pledge for loans and 
credits. Directors and supervisors often pledge their stocks to obtain funds to 
keep stock price as well as rescue firms from financial distress (Lee and Yeh 
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2004). Nevertheless, high personal leverage and excessive investment in stock 
market could expose company to financial risk. SPR can be defined as: 

 

ngsshareholdi Total
pledgein  ingsSahreshold  

 
2. Shareholdings of major shareholders ratio (SOMSR): The research employed 

SOMSR variable to assess independence of the board. Excluding directors, 
supervisors or managers, major shareholders are defined as shareholders whose 
percentage of shareholdings is greater than 10% according to Taiwan Stock 
Exchange (TSE). The SOMSR variable means the sum of percentage of major 
shareholders’ shareholdings. The major shareholders who own higher 
percentage of shareholdings have much motivation to supervise managers. It 
could reduce not only agency problem, but also the probability of financial 
distress. 

 
3. Deviation between control rights and cash flow rights (DBCRCFR): The study 

adopted the indicator to measure integrity of corporate governance. Lee and Yeh 
(2004) noted that the larger difference between voting and cash flow rights is, 
the stronger incentive to expropriate minority interests ultimate owners have. It 
may result in malfeasance or even financial distress. DBCRCFR can be written 
as: 

 
DBCRCFR＝Control rights－Cash flow rights 
 
4. Deviation between ratio of controlled board seats and cash flow rights 

(DBCBSCFR): The study used the variable to examine integrity of corporate 
governance. The larger deviation between percentage of controlled board seats 
and cash flow rights is, the more effortless to perpetrate misrepresentation or 
misappropriation controlling shareholders are. In other words, it not only puts a 
firm at financial risk, but also appear failures of scrutiny. DBCBSCFR can be 
written as: 

 
DBRCBSCFR＝Percentage of Controlled board seats－Cash flow rights 
 

(1) Control rights: The control rights, also called voting rights, indicates the 
shareholdings of ultimate owners who can greatly influence corporate 
decision according to the definition of La Porta, Lopez-de-Silanes, and 
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Shleifer (1999). The ultimate owners who usually involve major 
shareholders, chairman of board or management/family groups control the 
firm directly (i.e., through shares registered in his name) and indirectly (i.e., 
through shares held by entities that he controls). Control rights can be 
written as: 

 
Control rights＝Direct control rights＋Indirect control rights 
 

(2) Cash flow rights: The cash flow rights, also called earnings distribution 
rights, mean that ultimate owners gain earnings through direct 
shareholdings and indirect ownership, for instance, using 
cross-shareholdings. The indirect cash flow rights is summed up the product 
of successive ownership along every control chain (Lee and Yeh, 2004). 
Cash flow rights can be written as: 

 
Cash flow rights＝Direct cash flow rights＋Indirect cash flow rights 
 

According to the definition of Claessens, Djankov, and Lang (2000), the study 
suppose, for example, that a family owns 40% of stock of listed firm A and 20% of 
stock of listed firm B. Additionally, they acquire 30% of stock of firm A through 
firm B. When major shareholders don’t exist in firm A and firm B, the family is the 
ultimate owners of both firms. The family controls directly 40% of firm A namely 
direct control right. The indirect control right which the family control firm A is 
chose the minimum between shareholdings of firm B and shareholdings through 
firm B. For this reason, we would say that the family owns totally 60% of control 
rights of firm A. 

In terms of cash flow right, the family controls directly 40% of firm A namely 
direct cash flow right, but indirect cash flow right differs from the method of 
indirect control right. The indirect cash flow right is the product of shareholdings 
along each control chain, that is 20%×30%＝6%. Consequently, the family owns 
46% of total cash flow rights of firm A. 

 
 
 
 
 
 

Figure 7. An example of control right and cash flow right. 

Family A 

Firm A Firm B 

40% 20% 

30% 
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(3) Percentage of controlled board seats: The variable indicates the number of 

board seats, including directors’ and supervisors’, are held by ultimate 
owners along the control chains. It appears the degree of control over the 
family or insiders. Yeh, Lee, and Woidtke (2001) also argued that the 
correlation between percentage of controlled board seats and firm financial 
performance is negative. Percentage of controlled board seats can be written 
as: 

 

seats board Total
erssahreshold conrollingby  held seats Board  

 
 Z-score 

The study used Altman Z scores (Altman, 1968) to measure a company’s 
financial condition to determine the relationship between financial distress and 
fraud. The smaller Z score indicated that a firm may fail or go into bankruptcy with 
higher probability. Altman’s Z score can be computed as: 

 
Z = 1.2X1 + 1.4X2 + 3.3X3 + 0.6X4 + 1.0X5 

Where: 
X1=working capital/ total assets 
X2=retained earnings/ total assets 
X3=earnings before interest and taxes/ total assets 
X4=market value of equity/ book value of total debt 
X5=net sales/ total assets 
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Table 8. Variable definition and measurement. 

Variable 
Definition 

Literature Measurement 

Dependent variable: 

FRAUD Persons (1995) 

If a company’s financial statements for 
specific years are confirmed to be fraudulent 
by the indictments and sentences for major 
securities crimes issued by the Department 
of Justice, the firm-year data are classified 
into fraud observations, and the variable 
FRAUD will be set to 1, 0 otherwise. 

Independent variable 
Profitability 

GPM Dechow et al. (2007)  
Sales

costs Operating-Sales  

OPR Green and Choi (1997) Sales
expenses Operating-costs Operating-Sales  

ROA 
Persons (1995),  
Hoogs et al. (2007) assets total Average

rate) Tax-(1expenses Interestincome Net ×+  

GRONS 
Stice (1991),  
Summers and Sweeney 
(1998), 
Dechow et al. (2007) 

1)( −
year fiscal prior in Sales

Sales  

GRONI 1)( −
year fiscal prior in income Net

income Net  

Liquidity 

CR 
Kirkos et al. (2007) 

sliabilitie Current
assets Current  

QR sliabilitie Current
expenses Prepaid-sInventorie-assets Current  

Operating ability 

ART Green and Choi (1997) receivable accounts Average
Sales  

TAT 
Persons (1995),  
Kirkos et al. (2007) assetsTotal

Sales  

GROAR 
Dechow et al. (2007) 

1-)
year fiscal prior in receivable Accounts

receivable Accounts(  

GROI 1-)
year fiscal prior inInventory 

Inventory(  
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GRARTGS 
Summers and Sweeney 
(1998) 

1-t

1-t

t

t

Sales
receivable Accounts-

Sales
receivable Accounts  

GRITGS 
1-t

1-t

t

t

Sales
Inventory-

Sales
Inventory  

ARTTA Stice (1991), 
Persons (1995), 
Green and Choi (1997) 
 

assets Total
receivable Accounts  

ITTA assets Total
Inventory  

Financial structure 

DR Persons (1995),  
Kirkos et al. (2007) 
 

assets Total
sliabilitie Total  

LFTFA assets Fixed
sliabilitie Longterm+Equity  

Cash flow ability 

CFR 

Dechow et al. (2007) 

sliabilitie Current
activities operating from flows Cash  

CFAR 
dividends) cash and additionsinventory 

es,expenditur capital of  sumyear (Five
activities operating from flows cash of  sumyear Five  

CFRR 
capital) Working + assets Other 

+ sinvestment term Long + assets fixed (Gross
dividends Cash-activities operating from flows Cash  

Financial difficulty 

Z-score 

Altman (1968), 
Stice (1991), 
Summers and Sweeney 
(1998), 
Fanning and Cogger 
(1998) 

TAT
debt total of value Book

equity of value Market
assets Total

 taxes and interest before Earnings
assets Total
earnings Retained

assets Total
capital Working

×+×

+×

+×+×

0.1)(6.0

)(3.3

)(4.1)(2.1

 

Corporate Governance 

SPR# Lee and Yeh (2004) ings shareholders' shareholdlarge
pledge in ings shareholders' shareholdlarge  

SOMSR Beasley et al. (1999) Σ (Percentage of shareholdings >10%) 
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DBCRCFR La Porta et al. (1999), 
Lee and Yeh (2004) 
Yeh et al. (2001) 

Voting rights (CR) - Cash flow rights (CFR) 

DBCBSCFR 
Percentage of board seats controlled (CBS)- 
Cash flow rights (CFR) 

#: According to the rule issued by the Securities and Futures Commission (SFC) of 
Taiwan, for public companies, the board members, managers and major shareholders 
(who own 10 percent or more of a company’s outstanding shares) of the company are 
obliged to report to the SFC the percentage of their shareholdings been pledged for 
loans and credits. (Lee and Yeh, 2004) 

 

The results of the multi-collinearity test indicate that one variable - GRITGS - 

should be excluded. As a result, 24 independent variables are kept that will be used as 

the input variables for the GHSOM. These are measurement proxies for attributes of 

profitability, liquidity, operating ability, financial structure, cash flow ability, financial 

difficulty, and corporate governance of a firm. These explanatory variables are collected 

from the Taiwan Economic Journal (TEJ) database. The variable selection procedure is 

referred from Hsu (2008) and Huang et al. (2011)’s studies. 

Table 9 reports the empirical results of the discriminant analysis (Hsu 2008; Huang 

et al., 2011). The analysis that the Wilks' Λ value equals to 0.766 and x2 equals to 

151.095 (both significant at p-value < 0.01) suggests that the discriminant model 

employed has adequate explanatory power. The results of discriminant analysis 

indicate that eight variables, return on assets (ROA), current ratio (CR), quick ratio 

(QR), debt ratio (DR), cash flow ratio (CFR), cash flow adequacy ratio (CFAR), 

Z-Score and sock pledge ratio (SPR), are significant at p-value < 0.01 level. These 

eight variables are collected for our sample firms and used as the training data for the 

GHSOM.2 These eight variables proxy a company’s attributes from the aspects of 

profitability (ROA), liquidity (CR and QR), financial structure (DR), cash flow ability 

(CFR and CFAR), financial difficulty (Z-Score), and corporate governance (SPR). 

 

                                                           
 
2 We have also performed the logistic regression in the data preprocessing stage and the results indicate 
that there are only two variables, ROA and CFR, are significant at p-value < 0.01 level. Although the 
number of input variables resulted from the data preprocessing does affect the implementation efficiency 
of GHSOM, the performance of data preprocessing in any application of GHSOM has a nature of the 
exploratory data analysis and its purpose is to form a set of candidate variables for GHSOM. In order to 
form a set of candidates for GHSOM, rather than a set of significant predictors to a linear prediction 
model (such as logistic regression or discriminant analysis), we take a union of these two sets, which is 
the same set from the discriminant analysis. 
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Table 9. Empirical results of discriminant analysis. 

Variable Coefficient F-value Significance 
GPM 0.14 3.51 0.061   
OPR -0.03 0.16 0.688   
ROA 0.77*** 105.82 0.000 
GRONS 0.06 0.63 0.427   
GRONI -0.02 0.05 0.822   
CR 0.34*** 20.59 0.000 
QR 0.28*** 13.42 0.000 
ART 0.09 1.58 0.210   
TAT 0.19 6.38 0.012   
GROAR 0.03 0.12 0.731   
GROI 0.07 0.90 0.344   
GRARTGS 0.00 0.00 0.997   
ARTTA 0.11 2.25 0.134   
ITTA 0.12 2.37 0.125   
DR -0.42*** 30.46 0.000 
LFTFA 0.02 0.09 0.764   
CFR 0.33*** 19.21 0.000 
CFAR 0.24*** 9.89 0.002 
CFRR 0.19 6.41 0.012   
SPR -0.47*** 38.85 0.000 
SOMSR -0.19 6.18 0.013   
DBCRCFR 0.02 0.04 0.835   
DBCBSCFR -0.05 0.41 0.524   
Z-score 0.64*** 72.74    0.000 
Wilks' Λ value 0.77 p-value 0.000   
χ2 151.10 p-value 0.000   

*** p-value significant at <0.01 level. 

 

 

4.3 Training phase – clustering module 

As stated in (Dittenbach et al., 2000), the development of the GHSOM is primarily 

dominated by the parameters of breadth (τ1) and depth (τ2). In order to reach the goal of 
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obtaining the multi-layer hierarchy feature and preventing the overly clustering of fraud 

samples, we predefined the following selection criteria to derive an acceptable FT: 

1)  There are more than one layers of SOM in the GHSOM. 

2)  Samples of each node should not be overly clustered, and each leaf node should 

at least contain one sample. 

3)  The number of subgroups and the corresponding value of mean quantitative 

error (MQE) among nodes are considered for evaluating the clustering result. 

The MQE value indicates the samples homogeneity among clusters; the 

clustering quality is better if the MQE value is smaller. The clustering method 

that leads to a smaller number of subgroups and a lower MQE value is better. 

 

Based on the criteria aforementioned, the trials of the GHSOM parameter setting 

are taken and shown in Table 10. The parameter τ1 is adjusted from 0.5 to 0.8 per 0.1 

scales, and the parameter τ2 is adjusted from 0.05 to 0.07 per 0.01 scales. When τ1 = 0.6 

and τ2 = 0.07, each leaf node has at least one fraud sample. In the condition of same 

MQEs, the parameter setting τ1 = 0.8 and τ2 = 0.07 leads to less number of leaf nodes. 

Therefore, the parameter setting τ1 = 0.8 and τ2 = 0.07 are used to generate FT and NFT, 

respectively. 

 

Table 10. The GHSOM parameter setting trials. 

Breadth Depth layer leaves MQE each group exists at last one 
sample 

0.5 0.05 3 28 0.014091 no 
0.6 0.05 3 20 0.024047 no 
0.7 0.05 3 18 0.024047 no 
0.8 0.05 3 16 0.024047 no 
0.5 0.06 3 28 0.014091 no 
0.6 0.06 3 20 0.024047 no 
0.7 0.06 3 18 0.024047 no 
0.8 0.06 3 16 0.024047 no 
0.5 0.07 3 20 0.014091 no 
0.6 0.07 3 17 0.024047 yes 
0.7 0.07 3 15 0.024047 yes 
0.8* 0.07 3 13 0.024047 yes 

* The chosen GHSOM tree 
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We use the GHSOM toolbox in the platform of Matlab R2007a to generate FT and 

NFT. The obtained GHSOMs are shown in Figure 8. The leaf nodes are marked in taint. 

For each node, a name in numerical label is given according to its layer number and its 

node order in the same SOM as well as its parent’s name. For instance, the node #13-24 

is node number 4 in layer 2 developed from the node number 3 in layer 1 of FT. Based 

on the clustering result, we believe that it is plausible to extract the distinctive (common) 

patterns or features of these leaf nodes.  

 

 

Figure 8. The obtained FT and NFT. 

 

As shown in Figure 8, the FT and NFT have different GHSOM structures since that 

the leaf node *11 of NFT generates four child nodes while the leaf node #11 of FT does 

not grow further. Note that the names and orders of leaf nodes of FT and NFT do not 

release any spatial implication among them. 
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4.4 Modeling phase – statistic-gathering, rule-forming module 

The leaf node matching from NFT to FT via all (fraud and non-fraud) training 

samples is shown in the first three columns of Table 11 and Figure 9. For example, the 

leaf node #12-21 of FT hosts 80% of the training samples classified into the leaf node 

*11-21 of NFT. That is, there are 80% of the training samples in #12-21 classified into 

*11-21. Hence, the leaf node #12-21 of FT is matched to the leaf node *11-21 of NFT 

and claim the leaf node #12-21 of FT is the counterpart of the leaf node *11-21 of NFT. 

That is, the fraud samples classified into the leaf node #12-21 of FT cluster around the 

non-fraud samples in the leaf node *11-21 of NFT. Based on the proportional majority, 

the counterparts of a leaf node of NFT could be more than one. For example, the leaf 

nodes #12-23 and #12-22 of FT host 93.33% of the training samples classified into the 

leaf node *11-24 of NFT. Thus, the leaf nodes #12-23 and #12-22 of FT are the 

counterparts of the leaf node *11-24 of NFT. The corresponding Avg and Std values of 

NFTy and FTx are shown in the fourth and the fifth columns of Table 11. 

 

Table 11. The leaf node matching from NFT to FT. 

*NFT #FT Samples proportion Avgy of NFT Stdx of FT Classification error (%)*

11-21 12-21 80.00% 0.65 0.83 (0.00, 20.00) 
11-22 12-23 86.15% 0.23 0.32 (7.69, 15.38) 
11-24 12-23 73.33% 0.29 0.32 (0.00, 6.67) 

12-22 20.00% 0.29 0.19 
12-21 12-22 100.00% 0.18 0.35 (0.00, 9.68) 
12-22 12-22 100.00% 0.79 0.35 (9.09, 0.00) 
12-23 12-22 100.00% 0.30 0.35 (0.00, 0.00) 
12-24 12-22 100.00% 0.27 0.35 (0.49, 3.92) 
13-21 11 79.17% 0.39 0.73 (0.00, 16.67) 
13-22 14-21 45.83% 0.31 0.25 (14.29, 26.53) 

11 33.33% 0.31 0.73 
13-24 14.58% 0.31 0.35 

13-23 13-21 76.92% 0.54 1.08 (6.67, 33.33) 
13-24 23.08% 0.54 0.35 

13-24 14-23 80.41% 0.30 0.26 (15.96, 23.4) 
14-21 14-22 76.74% 0.26 0.27 (22.5, 7.5) 

12-22 16.28% 0.26 0.35 
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14-22 14-24 65.00% 0.37 0.47 (20.00, 5.00) 
14-22 35.00% 0.37 0.27 

14-23 14-22 59.09% 0.28 0.27 (15.15, 12.12) 
14-24 37.88% 0.28 0.47 

* The numbers within the parenthesis indicate the type I error and the type II error. 
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Figure 9. The leaf node matching from NFT to FT. 

 

Following the optimization approach stated in Section 3, the parameter β2 of the 

non-fraud-central rule is tuned by solving the optimization problem (8) regarding each 

of the three different settings of the constants w1 and w2. The corresponding 

classification errors (type I and type II) are stated in the last column of Table 12. For 

example, the setting of w1 = 0.01 and w2 = 1 for the match leaf nodes *11-22 and 

#12-23 has the smallest corresponding sum of (type I and type II) classification errors 

and the corresponding optimal β2 values are within the range of [0.1531, 0.1562]. Later 

we set β2 = 0.153 for samples classified to the leaf node *11-22. As shown in Table 11, 

the corresponding type I error is 13.62% and type II error is 13.28% regarding all 580 

training samples. 
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Table 12. The result of w1 and w2 of the non-fraud-central rule. 

*NFT→#FT w1 w2 β2 Classification error (%)*
*11-21→#12-21 1 1 0.3976 ~0.4172 (0.00%, 7.14%) 
*11-22→#12-23 0.01 1 0.1531 ~0.1562 (8.77%, 17.54%) 
*11-24→#12-23 

#12-22 
1 0.01 1.9114 ~3.937 (0.00%, 7.14%) 

*12-21→#12-22 0.01 1 0.1531 ~0.1562 (15.05%, 7.53%) 
*12-22→#12-22 0.01 1 0.1531 ~0.1562 (10.00%, 0.00%) 
*12-24→#12-22 1 0.01 1.9114 ~3.937 (0.00%, 3.92%) 
*13-21→#11 0.01 1 0.1531 ~0.1562 (0.00%, 15.79%) 
*13-22→#14-21 

#11 
#13-24 

0.01 1 0.1531 ~0.1562 (15.56%, 22.22%) 

*13-23→#13-21 
#13-24 

0.01 1 0.1531 ~0.1562 (7.69%, 30.77%) 

*13-24→#14-23 0.01 1 0.1531 ~0.1562 (16.13%, 22.58%) 
*14-21→#14-22 

#12-22 
1 0.01 1.9114 ~3.937 (1.82%, 27.27%) 

*14-22→#14-24 
#14-22 

0.01 1 0.1531 ~0.1562 (11.43%, 14.29%) 

*14-23→#14-22 
#14-24 

0.01 1 0.1531 ~0.1562 (13.41%, 10.98%) 

* The numbers within the parenthesis indicate the type I error and the type II error, respectively. 

 

In contrast, the leaf node matching from FT to NFT via all (fraud and non-fraud) 

training samples is shown in the first three columns of Table 13 and Figure 10. The 

corresponding Avg and Std values of FTx and NFTy are shown in the fourth and the fifth 

columns of Table 13. 
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Table 13. The leaf node matching from FT to NFT. 

#FT *NFT  Sample proportion Avgx of FT Stdy of NFT Classification error (%)*
11 13-21 43.18% 0.59 0.18 (4.55, 81.25) 

13-22 36.36% 0.59 0.14 
12-21 11-21 88.89% 0.32 0.13 (0.00, 100.00) 
12-22 12-21 49.21% 0.19 0.08 (0.00, 100.00) 

12-24 26.98% 0.19 0.15 
12-23 11-22 83.58% 0.28 0.12 (7.46, 84.62) 
13-21 13-23 66.67% 0.43 0.27 (28.57, 16.67) 

13-21 20.00% 0.43 0.18 
13-24 13-22 70.00% 0.32 0.14 (50.00, 40.00) 

13-23 30.00% 0.33 0.27 
14-21 13-22 61.11% 0.25 0.14 (30.56, 58.33) 

13-24 36.11% 0.25 0.17 
14-22 14-21 40.74% 0.24 0.12 (0.00, 100.00) 

14-23 48.15% 0.24 0.15 
14-23 13-24 95.12% 0.23 0.17 (29.63, 25.00) 
14-24 14-23 58.14% 0.32 0.15 (0.00, 100.00) 

14-22 30.23% 0.32 0.17 
* The numbers within the parenthesis indicate the type I error and the type II error. 
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Figure 10. The leaf node matching from FT to NFT. 
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Following the optimization approach stated in Section 3, the parameter β1 of the 

fraud-central rule is tuned by solving the optimization problem (4) regarding each of the 

three different settings of the constants w1 and w2. The corresponding classification 

errors (type I and type II) are stated in the last column of Table 14. For example, the 

setting of w1 = 0.01 and w2 = 1 for the match leaf nodes #12-21 and *11-21 has the 

smallest corresponding sum of (type I and type II) classification errors and the 

corresponding optimal β1 values are within the range of [1.44, 1.447]. Later we set β1 = 

1.44 for samples classified to the leaf node #12-21. As shown in Table 13, the 

corresponding type I error is 8.78% and type II error is 76.11% regarding all 580 

training samples. 

 

Table 14. The result of w1 and w2 of the fraud-central rule. 

#FT→*NFT w1 w2 β1 Classification error (%)*
#11→*13-21 

*13-22 
1 1 -0.293~-0.25 (2.86%, 34.29%) 

#12-21→*11-21 0.01 1 1.44~1.447 (0.00%, 25.00%) 
#12-22→*12-21 

*12-24 
1 0.01 -0.47~-0.42 (0.00%, 7.64%) 

#12-23→*11-22 0.01 1 1.44~1.447 (8.93%, 17.86%) 
#13-21→*13-23 

*13-21 
0.01 1 1.44~1.447 (30.77%, 7.69%) 

#13-24→*13-22 
*13-23 

0.01 1 1.44~1.447 (50.00%, 20.00%) 

#14-21→*13-22 
*13-24 

0.01 1 1.44~1.447 (31.43%, 20.00%) 

#14-22→*14-21 
*14-23 

1 0.01 -0.47~-0.42 (0.00%, 13.51%) 

#14-23→*13-24 0.01 1 1.44~1.447 (30.00%, 7.50%) 
#14-24→*14-23 

*14-22 
1 1 -0.293~-0.25 (0.00%, 20.00%) 

 

In sum, the non-fraud-central rule is better through comparing the corresponding 

sum of (type I and type II) classification errors in Table 12 with the ones in Table 14. 
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4.5 Modeling phase – feature-extracting module 

Without loss of generalization, the clustering result of the GHSOM is used to 

illustrate the operation of a feature-extraction stage and we demonstrate the features of 

each leaf node of FT. The leaf node #12-24 is excluded due to having only one sample. 

For each leaf node of the GHSOM, values of the eight significant variables regarding all 

clustered samples are the inputs of PCA. According to Kaiser (1960), only those factors 

whose variances are greater than 13 are retained as the principle components. Table 15 

presents the estimated eigenvalues of eight factors regarding all leaf nodes. According 

to the factor selection criterion, for instance, #11 has retained the first three factors as its 

principle components, in which factor 1 explains 44.819% of the total variance of the 

input variables, factor 2 27.842% and factor 3 15.964%.  

 

Table 15. The estimated eigenvalues of eight factors regarding all FT leaf nodes. 

Leaf node Factor Eigenvalue % of Variance 
#11 1 3.586  44.819  

2 2.227  27.842  
3 1.277  15.964  
4 0.423  5.292  
5 0.253  3.162  
6 0.138  1.723  
7 0.064  0.800  
8 0.032  0.398  

#12-21 1 6.468  92.400  
2 0.532  7.600  
3 0.000  0.000  
4 0.000  0.000  
5 0.000  0.000  
6 0.000  0.000  
8 0.000  0.000  

#12-22 1 2.691  38.440  
2 1.697  24.237  
3 1.253  17.905  

                                                           
 
3 That is its corresponding eigenvalue is large than 1. 
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4 0.802  11.458  
5 0.495  7.069  
6 0.039  0.563  
8 0.023  0.329  

#12-23 1 3.618  51.689  
2 1.885  26.931  
3 0.953  13.608  
4 0.321  4.593  
5 0.151  2.161  
6 0.042  0.603  
8 0.029  0.415  

#13-21 1 3.699  46.242  
2 1.923  24.038  
3 1.440  17.995  
4 0.822  10.271  
5 0.116  1.455  
6 0.000  0.000  
7 0.000  0.000  
8 0.000  0.000  

#13-22 1 2.845  35.560  
2 2.633  32.919  
3 1.534  19.178  
4 0.629  7.860  
5 0.262  3.274  
6 0.055  0.684  
7 0.030  0.379  
8 0.012  0.147  

#13-23 1 3.926  49.076  
2 3.196  39.949  
3 0.878  10.975  
4 0.000  0.000  
5 0.000  0.000  
6 0.000  0.000  
7 0.000  0.000  
8 0.000  0.000  

#13-24 1 3.541  44.257  
2 2.883  36.044  
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3 1.206  15.070  
4 0.257  3.219  
5 0.113  1.410  
6 0.000  0.000  
7 0.000  0.000  
8 0.000  0.000  

#14-21 1 3.092  38.655  
2 2.589  32.361  
3 1.244  15.545  
4 0.850  10.626  
5 0.176  2.204  
6 0.049  0.609  
7 0.000  0.000  
8 0.000  0.000  

#14-22 1 3.271  40.887  
2 1.846  23.079  
3 1.469  18.368  
4 0.765  9.562  
5 0.443  5.532  
6 0.172  2.153  
7 0.034  0.419  
8 0.000  0.000  

#14-23 1 2.879  35.982  
2 2.100  26.247  
3 1.137  14.214  
4 0.766  9.580  
5 0.439  5.483  
6 0.333  4.166  
7 0.221  2.761  
8 0.125  1.567  

#14-24 1 4.048  50.601  
2 2.027  25.336  
3 0.931  11.637  
4 0.660  8.251  
5 0.151  1.886  
6 0.114  1.425  
7 0.063  0.791  
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8 0.006  0.074  

Note: The values of the sixth factor (SPR) are the same in leaf nodes #12-21, 

#12-22 and #12-23. Therefore, they do not have eigenvalues. 

 

Table 15 presents the estimated eigenvalues of eight factors regarding all leaf 

nodes of FT. The leaf node #13-21, #13-22, and #13-24 has three factors in which the 

eigenvalue is greater than 1. The leaf node #13-23 has two factors in which the 

eigenvalue is greater than 1. The leaf node #14-21, #14-22, and #14-23 has three 

factors whose eigenvalues are bigger than 1. The leaf node #14-24 has two principle 

factors whose eigenvalues are bigger than 1. Those factors with eigenvalues bigger 

than 1 are determined as the principle components of its belonging leaf node.  

To enhance the interpretability of the obtained principle components, the varimax 

factor rotation method is used here. This method minimizes the number of variables 

that have high loadings of a principle component. To differentiate features in each 

principle component, variables with the absolute value of corresponding factor 

loadings less than 0.6 are omitted. Table 16 to Table 18 shows the results of a varimax 

factor rotation method regarding the leaf nodes of FT. 

Table 16 shows the results of a varimax factor rotation method regarding all FT 

leaf nodes.  
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Table 16. The factor loadings of all FT leaf nodes. 

Leaf 
node 

Principle 
component 

ROA CR QR DR CFR CFAR SPR Z-score

#11 
1  0.911       
2   0.786  0.732 0.9   
3 0.859      0.908  

#12-21 1 0.983 0.95 0.975 0.999 -0.93 -0.94  -0.949

#12-22 
1    -0.863    0.797 
2     0.898    
3 0.941     -0.778   

#12-23 1 0.706   -0.967    0.905 
 2  -0.891   0.87 0.953   
#13-21 1  -0.902 0.821   0.95   
 2 0.886   -0.969     
 3       0.909 -0.967
#13-22 1   0.873 0.934    -0.892
 2     0.947 0.927   
 3  0.708     0.871  
#13-23 1 0.99 0.967 0.935    -0.816  
 2    -0.728 0.815 0.944  -0.999
#13-24 1  -0.929 -0.86  0.97 0.902   
 2 0.946   -0.931    0.891 
 3       0.984  
#14-21 1     0.869 0.915 0.729  
 2  0.961 0.768 0.763     
 3        0.955 
#14-22 1   0.63  0.969 0.995   
 2    -0.915    0.825 
 3 0.774 0.648     0.828  
#14-23 1  0.668  -0.87  0.73  0.92 
 2 0.74  0.83      
 3     0.886    
#14-24 1 0.851    0.979 0.968  0.957 
 2  0.892 0.847 -0.645     
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As shown in Table 16, the principle components extracted from different leaf 

nodes have a heterogeneous composite of variables. For instance, regarding the leaf 

node #11, its first principle component consists of one debt related ratio (CR); its 

second principle component consists of three liquidity related ratios (QR, CFR and 

CFAR); and its third principle component consists of one earning related and one 

corporate governance ratios (ROA and SPR). Hence, the first principle component 

represents debt paying ability of a firm; the second principle component represents the 

liquidity of a firm; and the third principle component represents the profitability and 

financial pressure of a firm. Regarding the leaf node #12-21, all variables are principle 

component which represents the profitability, liquidity, cash flow ability and financial 

difficulty of a firm. Regarding the leaf node #12-22, its first principle components 

consists of two ratios, DR and Z-score, which represent the debt paying ability of a 

firm; its second principle component consists of one ratio, CFR, which represents the 

cash flow ability of a firm; its third principle component consists of two ratio, ROA 

and CFAR, which represents the profitability and the cash flow ability of a firm. 

Regarding leaf node #12-23, its first principle component consists of three ratios (ROA, 

DR and Z-score), which represent the profitability, debt paying ability and financial 

health of a firm; and its second principle component consists of three liquidity related 

ratios (CR, CFR and CFAR) which represent the liquidity of a firm. 

Regarding the leaf node #13-21, its first principle component consists of three 

liquidity related ratios (CR, QR and CFAR); its second principle component consists of 

one earning related and one debt related ratios (ROA and DR); and its third principle 

component consists of one corporate governance related and one financial healthy 

related ratios (SPR and Z-score). Hence, the first principle component represents 

liquidity of a firm; the second principle component represents the profitability and debt 

paying ability of a firm; and the third principle component represents the financial 

pressure and financial health of a firm. Regarding the leaf node #13-22, it has three 

principle components. The fist principle component consists of two ratios (QR and DR) 

which represent the debt paying ability of a firm. The second principle component 

consists of one ratio, CFAR, which represents the cash flow ability of a firm. The third 

principle component consists of two ratios (CR and SPR), which represents the 

liquidity and corporate governance health of a firm. Regarding the leaf node #13-23, it 

has two principle components. The first principle component consists of four ratios 
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((ROA, CR, QR, SPR)), which represents the profitability, liquidity and financial 

pressure of a firm; its second principle component consists of four ratios (DR, CFR, 

CFAR, Z-score), which represents the debt paying ability, cash flow ability and 

financial health of a firm. Regarding the leaf node #13-24, its first principle component 

consists of four ratios (CR, QR, CFR and CFAR), which represents the liquidity of a 

firm; and its second principle components consists of three ratios (ROA, DR, and 

Z-score) which represent the profitability, debt paying ability and the financial health 

of a firm. The third principle component consists of one ratio, SPR, which represents 

the corporate governance health of a firm. 

Regarding the leaf node #14-21, its first principle component consists of two 

liquidity related ratios and one corporate governance related ratios (CFR, CFAR and 

SPR); its second principle component consists of the debt related ratios (CR, QR and 

DR); and its third principle component consists of one financial healthy related ratios 

(Z-score). Hence, the first principle component represents the liquidity of a firm; the 

second principle component represents the debt paying ability of a firm; and the third 

principle component represents the financial health of a firm. Regarding the leaf node 

#14-22, it has three principle components. The fist principle component consists of 

three ratios (QR, CFR and CFAR), which represent the liquidity of a firm. The second 

principle component consists of two ratios (DR and Z-score), which represent the debt 

paying ability and the financial health of a firm. The third principle component consists 

of three ratios (ROA, CR, and SPR), which represent the profitability, the liquidity and 

the corporate governance health of a firm. Regarding the leaf node #14-23, its first 

principle component consists of four ratios (CR, DR, CFAR and Z-score), which 

represent the liquidity, debt paying ability and the financial health of a firm; its second 

principle component consists of two ratios (ROA and QR), which represent the 

profitability and debt paying ability of a firm; its third principle component consists of 

one ratios (CFR), which represent the cash flow ability of a firm. Regarding the leaf 

node #14-24, its first principle component consists of four ratios (ROA, CFR, CFAR 

and Z-score), which represents the profitability, cash flow ability and financial health 

of a firm; and its second principle component consists of three ratios (CR, QR and DR), 

which represent the debt paying ability of a firm. 

We can efficiently exploit one single group or compare different groups from 

comparing the similarity of each extracted features provided by PCA. As Canbas et al. 
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(2005) had done, an early warning model for the observations can be estimated 

according to these major factor loadings, such as discriminant, logit, probit, and ANN. 

By applying PCA to the financial data, the important financial factors can be used to 

explain the FFR patterns under a certain financial conditions of a firm. In sum, the 

experimental results show that the proposed quantitative approach with the GHSOM 

and PCA is helpful in obtaining useful features and can be used to help detect 

deception regarding FFR or other financial distress scenarios. 

 

 

4.6 Modeling phase – pattern-extracting module 

We take two leaf nodes: #11 and #14-21 as an example to explain about 

uncovering the regularity of FFR fraud categories from the corresponding indictments 

and sentences for major securities crimes issued by the Department of Justice. Based 

on the ten FFR fraud categories discussed in Beasley et al. (1999), Table 17 

summarizes the FFR fraud categories commonly adopted by companies clustered in 

these two leaf nodes. The code and year in the first two columns indicate respectively 

the company SIC code and the year of financial statements clustered. 
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Table 17. Common FFR fraud categories within #11 and #14-24. 

Code   year FC1 FC2 FC3 FC4 FC5 FC6 FC7 FC8 FC9 FC10 
leaf node #11  
2505   1998 ●          
2529   1998      ●  ●   
8716   1999      ●  ●   
2334   1999      ●  ●   
3039   2004 ●          
1601   1998        ●   
1221   2002 ●       ●  ● 
1221   2003 ●       ●  ● 
2014   2003 ●       ●   
5901   1997      ●  ●   
5901   1998      ●  ●   
5901   1999      ●  ●   
leaf node #14-24  
2206   1999        ●   
2350   1998        ●   
2407   2002 ●   ● ●  ● ●  ● 
2407   2003 ●   ● ●  ● ●  ● 
2407   2004 ●   ● ●  ● ●  ● 
2490   2000 ●       ●   
2490   2002 ●       ●   
8295   1998    ●    ●   
1221   2001 ●       ●  ● 
8723   1998    ●    ● ●  
2017   1997    ●    ●   
5007   1999    ●    ●   

FC1: recording fictitious revenues;     FC2: recording revenues prematurely; 

FC3: no description/overstated about revenues;  FC4: overstating existing assets; 

FC5: recording fictitious assets or assets not owned;  FC6: capitalizing items that should be expensed; 

FC7: understatement of expenses/liabilities;   FC8: misappropriation of assets; 

FC9: inappropriate disclosure;     FC10: other miscellaneous techniques. 

*The code and year in the first two columns indicate the company code and the year of each 

clustered financial statement. 
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As shown in Table 17, the common FFR fraud categories found in leaf node #11 

are recording fictitious revenues (FC1), capitalizing items that should be expensed 

(FC6) and misappropriation of assets (FC8). The common FFR fraud categories found 

in leaf node #14-24 are recording fictitious revenues (FC1), overstating existing assets 

(FC4) and misappropriation of assets (FC8). With further traces back to the 

corresponding indictments and sentences, even though both of these two groups have 

recording fictitious revenues (FC1), we find that the ways of committing this fraud 

category are quite different.  

For instance, some fraud samples (3039 and 1221) in leaf node #11 were found 

using FC1 via creating fictitious transactions and defrauding export drawbacks from 

the Internal Revenue Service by reporting fictitious export sales. Moreover, some fraud 

samples (1601and 1221) used FC8 by processing the receipt and payment in advance. 

In contrast, some fraud samples (2407, 8723, and 2017) in leaf node #14-24 were 

found to use FC4 through purchasing intangible asset/long-term investment with high 

premiums. Some fraud samples (2206, 2407, 2490, 8723, and 2017) used FC8 through 

related party transactions and merger and acquisition activities to misappropriate cash. 

In sum, Table 17 shows that the observed corporate behaviors (i.e., common FFR 

fraud categories extracted based upon the associated indictments) in different leaf nodes 

are distinctive even though these nodes are clustered based upon the corporate financial 

situations proxied by the input variables. 

The overall FFR fraud categories extracted from each leaf node of FT are 

summarized in Table A1. We summarize the common FFR fraud categories into Table 

18 for further comparison. 
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Table 18. Summary of the common FFR fraud categories. 

leaf node FC1 FC2 FC3 FC4 FC5 FC6 FC7 FC8 FC9 FC10 
#11 ●     ●  ●   
#12-21   ●        
#12-22 ●   ●  ●   ●  
#12-23  ●  ●  ●  ● ●  
#12-24 ●        ●  
#13-21       ● ●   
#13-22      ● ●    
#13-23    ●   ● ●   
#13-24        ● ●  
#14-21      ●  ● ●  
#14-22 ●       ●   
#14-23      ● ● ●   
#14-24 ●   ●    ●   

FC1: recording fictitious revenues;     FC2: recording revenues prematurely; 

FC3: no description/overstated about revenues;  FC4: overstating existing assets; 

FC5: recording fictitious assets or assets not owned;  FC6: capitalizing items that should be expensed; 

FC7: understatement of expenses/liabilities;   FC8: misappropriation of assets; 

FC9: inappropriate disclosure;     FC10: other miscellaneous techniques. 

 

 

 

In Table 18, we find those leaf nodes from the same branch tend to have similar 

common fraud categories. For example, the branch #12 has common fraud categories 

FC1, FC4, FC6 and FC9. The branch #13 has common fraud categories FC7 and FC8. 

The branch #14 has common fraud categories FC1, FC6 and FC8. This phenomenon 

may be resulted from the nature of the SOM, that is, in the topological space of the 

SOM, the nodes (i.e., groups) with similar features tend to be located nearby. Therefore, 

the overall distribution of fraud categories in FT can also reveal more information as the 

FFR knowledge map, which can contribute to build up the knowledge base for FFR 

detection. Besides, we believe that as the amount of training samples keep accumulated, 

the represented patterns (i.e., fraud categories) of FT will become more solid and 

reliable. 
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4.7 Analyzing phase – group-finding, classifying module 

In the analyzing phase, we conclude that the non-fraud-central rule is better through 

comparing the corresponding sum of (type I and type II) classification errors (Table 12 

and Table 14). The dominance of the non-fraud-central rule leads to an implication that 

most of fraud samples cluster around the non-fraud counterpart. 

In analyzing phase, both training samples and testing samples are classified based 

on the non-fraud-central rule. As shown in Table 19, the testing samples consist of 182 

firm-year observations which comprise 54 fraud samples and 128 non-fraud samples 

over the period from 2002 to 2008. All these testing samples are different from the 

training samples. 

 

Table 19. The list of fraud and non-fraud firms in testing samples. 

No Fraud firm 
SIC 
code 

Fraud year 
Non-fraud 

firm 
SIC 
code 

Sampling 
period 

1 雅新 2418 2003-2007 瑞昱 2379 2002-2008
2 遠航 5605 2003-2006 陸海 5603 2002-2008
3 友昱 3506 2004-2006 新能 3196 2002-2008
4 名鐘 6276 2008 元山 6275 2002-2008
5 宏億 3079 2005 華新科 2492 2002-2008
6 亨豐科 6242 2007-2008 迅杰 6343 2002-2008
7 合邦 6103 2004-2007 金麗科 3228 2002-2008
8 東森 2614 2002-2007 寶成 9904 2002-2008
9 歌林 1606 2002-2008 大亞 1609 2002-2008
10 仕欽 6232 2004-2007 佳鼎科 5318 2002-2008
11 勤美 1532 2007-2008 利奇 1517 2002-2008
12 邰港 3350 2004-2008 律勝 3354 2002-2008
13 飛寶動能 4413 2004-2007 國隆 6502 2002-2008
14 新泰伸 5017 2004-2007 榮剛 5009 2002-2008

 

The other arrangements regarding the data and the significant variable selection are 

the same as the ones in the training phase. 
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The classification results of applying the non-fraud-central rule to the training 

samples and the testing samples are shown in Table 20. The type I error and type II 

error for both training and testing samples are lower than 20% that implies an 

acceptable prediction performances regarding the finance application. 

 

Table 20. The classification result. 

  type I error type II error 

Training samples 13.62% 13.28% 

Testing samples 11.54% 19.78% 

 

In the modeling phase of our proposed decision support approach, different 

preference of the parameters w1 (the weight of type I error importance) and w2 (the 

weight of type II error importance) for obtaining the parameters β1 and β2 can generate 

different classification boundaries for the fraud-central rule and non-fraud-central rule, 

respectively. The subjective criteria in selecting a suitable parameter set of w1 and w2 

consider the issue of the trade-off phenomenon regarding the classification error; that is, 

defining an acceptable prediction performance of the model in the training stage. We 

believe that letting the decision makers decide their own acceptable prediction 

performance based on their domain knowledge or experience in the model training stage 

can make the proposed decision approach more reliable and useful for a specific 

application domain, such as the fraud detection issue in this study. 

 

 

4.8 Decision support phase – feature-retrieving module 

The results of the feature-retrieving module come from the pattern-extracting 

module and the feature-extracting module. We illustrate the results in the following 

subsections. 

 

4.8.1 Retrieve from pattern-extracting module 

Table A2 summarizes the commonly adopted FFR fraud categories of the testing 

samples identified as the fraud class in all leaf nodes of the FT. The identification 
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performance of the FFR fraud categories are shown in Table 21, and the detail 

identification performance of each leaf node is summarized in Table A3.  

 

Table 21. The overall FFR fraud categories identification performance. 

true non-fraud fraud fraud non-fraud
Accuracy 

100-average(type I, type II)
predict fraud non-fraud fraud non-fraud
error (type I error) (type II error)   

percentage 17.53% 13.77% 86.23% 82.47% 84.35% 

 

The overall type I error means based on the fraud categories of a leaf node, what 

percentage of non-fraud categories are misidentified. The overall type II error means 

based on the non-fraud categories, what percentage of fraud categories are 

misidentified. The overall accuracy is the average percentage of the correct fraud 

categories percentage and the correct non-fraud categories percentage. The overall type 

I error is 17.53%, type II error is 13.77%, and the accuracy is 84.35%. According to 

Table 21, the results can effectively support the decision making process for FFR 

identification. 

For further discussion, we take the leaf node #11 and leaf node #14-24 as an 

example to give a detail description. As shown in Table A2 and Table A3, the common 

FFR fraud categories found in leaf node #11 are recording fictitious revenues (FC1) 

and misappropriation of assets (FC8), which fit two of three common FFR fraud 

categories in #11 retrieved from the modeling phase. The common FFR fraud 

categories found in leaf node #14-24 are recording fictitious revenues (FC1), 

overstating existing assets (FC4) and misappropriation of assets (FC8), which fit all of 

three common FFR fraud categories in #14-24 retrieved from the training stage. In sum, 

the feature extraction mechanism can actually catch the most common FFR patterns of 

the testing samples. The experimental results show that the implementation of the DSS 

architecture based on the proposed dual approach with the feature extraction 

mechanism is helpful in obtaining FFR features and can be used to help detect FFR. 

That is, the extracted common FFR fraud categories are integrated with the results of 

PCA feature extraction to point out the relevant input variables, which can be further 

associated with the common FFR fraud categories, and provide a clear inference for 

any risky investigated sample that facilitate the investigation of decision makers. 
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Such cluster results are derived from the competitive learning nature of the 

GHSOM, which works as a regularity detector and is supposed to discover statistically 

salient features of the sample population (Rumelhart and Zipser, 1985). That is, there 

are no predefined categories into which samples are to be classified; rather, the 

GHSOM must develop its own feature representation of the sample which captures the 

most salient features of the population of sample. Furthermore, through a ton of 

small-sized mappings, the GHSOM classifies the sample into more subgroups with 

hierarchical relationships instead of a dichotomous result and therefore further and 

more delicate analyses are feasible. 

 

4.8.2 Retrieve from feature-extracting module 

The retrieved principle components for any leaf node can be applied to be linked 

with its retrieved fraud categories and then provide an inference about its potential 

fraud behavior. Take the testing samples belonged to the leaf node #11 and #14-24 as 

examples, the retrieved principle components for the leaf node #11 and #14-24 are 

shown in Table 22.  

 

Table 22. The principle components retrieved by the feature-retrieving module for the 
testing samples within #11 and #14-24. 

Leaf node Principle component Variable Description 

#11 

1 CR debt paying ability 
2 QR, CFR, CFAR liquidity 

3 ROA, SPR 
profitability, financial 
pressure 

#14-24 
1 ROA, CFR, 

CFAR, Z-score 
profitability, cash flow 
ability, financial health 

 2 CR, QR, DR debt paying ability 

 

For the leaf node #11, the first principle component represents the debt paying 

ability of a firm. The second principle component represents the liquidity of a firm. 

The third principle component represents the profitability and financial pressure of a 

firm. Regarding the leaf node #14-24, its first principle component represents the 
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profitability, cash flow ability and financial health of a firm. The second principle 

component represents the debt paying ability of a firm. 

Then, the retrieved principle components are linked to its common fraud 

categories of the testing sample, which can be used to explain the rationality of the 

provided principle components. For example, the common FFR fraud categories found 

in leaf node #11 are recording fictitious revenues (FC1), capitalizing items that should 

be expensed (FC6) and misappropriation of assets (FC8), which may be caused from 

lacking of debt paying ability, liquidity, profitability, or under server financial pressure. 

The common FFR fraud categories found in leaf node #14-24 are recording fictitious 

revenues (FC1), overstating existing assets (FC4) and misappropriation of assets (FC8), 

which may be caused from bad cash flow ability or weak debt paying ability. Therefore, 

for any unknown investigated sample classified into #11 and #14-24, the results with 

both fraud categories and principle components also help provide the possible clues as 

the direction for further inspection. 

 

 

4.9 Analyzing phase – decision-supporting module 

Based on the common FFR fraud categories observed in the leaf node, we further 

investigate the causes of the observed common FFR fraud categories with the 

assistance of experts with domain knowledge to identify the relevant input variables of 

such regularity for future financial reporting. That is, the identified common FFR fraud 

categories of each leaf node are further integrated with the principal components 

extracted from the classified samples. Such information can help identify the relevant 

input variables as the pre-warning signal, which reveals the potential fraudulent 

activities, for any samples clustered into this investigated leaf node by the GHSOM.  

Without losing the generalization, the results of the decision-supporting module 

are shown in Table 23. The information contains both features and patterns could 

provide clues to facilitate decision making. The explanation and speculation are mainly 

done by the decision makers.   

Let’s take the investigated samples predicted to commit fraud and belonged to the 

leaf nodes #11 or #14-24 to descript part of the results of the decision-supporting 

module. For any investigated sample identified fraud and belonged to the leaf node #11 
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or #14-24, the associated investigation could be summarized as follows for decision aid. 

Any sample belonged to leaf node #11 may have a liquidity pressure and a weakness of 

short term debt paying ability such that they tend to commit FFR through recording 

fictitious revenues, capitalizing items that should be expensed, or misappropriating 

assets approach. For the leaf node #14-24, any sample belonged to it may have a bad 

cash flow condition and worse profitability, thus the overall financial pressure such 

that they tend to commit FFR through overstating existing assets, or recording 

fictitious revenues approach. 

 

Table 23. The results of decision-supporting module for any investigated sample 
identified fraud. 

Leaf 
node 

FFR fraud 
categories 

Principle components Description 

#11 
FC1, FC6, FC8 {CR, (QR, CFR, CFAR), 

(ROA, SPR)} 
{debt paying ability, liquidity, 
(profitability, financial pressure)}

#12-21 
FC3 {(ROA, CR, QR, DR, CFR, 

CFAR, Z-score)} 
{(profitability, liquidity, cash flow 
ability, financial difficulty)} 

#12-22 
FC1, FC4, FC6, 
FC9 

{(DR, Z-score), CFR, 
(ROA, CFAR)} 

{debt paying ability, cash flow 
ability, (profitability, the cash 
flow ability)} 

#12-23 
FC2, FC4, FC6, 
FC8, FC9 

{(ROA, DR, Z-score),(CR, 
CFR, CFAR)} 

{(profitability, debt paying ability, 
financial health), liquidity} 

#13-21 
FC7, FC8 {(CR, QR, CFAR), (ROA, 

DR), (SPR, Z-score)} 
{liquidity, (profitability, debt 
paying ability), (financial 
pressure, financial health)} 

#13-22 
FC6, FC7 {(QR, DR, Z-score), (CFR, 

CFAR), (CR, SPR)} 
{debt paying ability, cash flow 
ability, (liquidity, corporate 
governance health)} 

#13-23 

FC4, FC7, FC8 {(ROA, CR, QR, SPR), 
(DR, CFR, CFAR, 
Z-score)} 

{(profitability, liquidity and 
financial pressure), (debt paying 
ability, cash flow ability, financial 
health)} 
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#13-24 
FC8, FC9 {(CR, QR, CFR, CFAR), 

(ROA, DR, Z-score), SPR}
{liquidity, (profitability, debt 
paying ability, financial health), 
corporate governance health} 

#14-21 
FC6, FC8, FC9 {(CFR, CFAR, SPR), (CR, 

QR, DR), Z-score} 
{liquidity, debt paying ability, 
financial health} 

#14-22 

FC1, FC8 {(QR, CFR, CFAR), (DR, 
Z-score), (ROA, CR, SPR)}

{liquidity, (debt paying ability, the 
financial health), (profitability, the 
liquidity, corporate governance 
health)} 

#14-23 

FC6, FC7, FC8 {(CR, DR, CFAR, Z-score), 
(ROA, QR), CFR} 

{(liquidity, debt paying ability, 
financial health), (profitability,  
debt paying ability), cash flow 
ability} 

#14-24 
FC1, FC4, FC8 {(ROA, CFR, CFAR, 

Z-score}, (CR, QR, DR)} 
{(profitability, cash flow ability, 
financial health), debt paying 
ability} 

FC1: recording fictitious revenues;     FC2: recording revenues prematurely; 

FC3: no description/overstated about revenues;  FC4: overstating existing assets; 

FC5: recording fictitious assets or assets not owned;  FC6: capitalizing items that should be expensed; 

FC7: understatement of expenses/liabilities;   FC8: misappropriation of assets; 

FC9: inappropriate disclosure;     FC10: other miscellaneous techniques. 

 

Based on our analysis, many fraud samples belonged to Iron & Steel and Building 

Material & Construction industries and committed FFR in 1998 and 1999 during East 

Asian Financial Crisis. The operation of fraud firms deteriorated sharply due to the 

bear market and could not generate sufficient net cash inflow. They committed FFR to 

conceal the embezzlement and other undesirable outcomes from investors and creditors. 

Prevalent FFR fraud categories include overstating revenues through fictitious sales, 

embezzling money via accounts such as temporary payment or prepayment for 

purchases, recording loans from related party into accounts receivable. These FFR 

behaviors make some accounts falsified, such as accounts receivable, related party 

transaction or other relevant input variables. 
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5. Methods comparison 

We also compare the results of our proposed method with the ones of three existing 

methods — the Support Vector Machine (SVM) (Vapnik, 1995), the SOM with Linear 

Discriminant Analysis (LDA) (named SOM+LDA) (Carlos, 1996), the (traditional) 

GHSOM with LDA (named GHSOM+LDA), SOM, BPNN and Decision Tree (DT).4 

The SVM is a supervised learning method which has specialty in recognizing patterns, 

and has been widely used for classification and regression analysis (Vapnik, 1995; Hsu 

et al., 2009). The idea of applying the SOM with LDA in FFD is derived from Carlos’s 

(1996) study. In contrast, the GHSOM+LDA method uses all training samples to 

construct merely one GHSOM tree while the clustering module of our proposed dual 

approach uses the fraud and non-fraud samples to construct FT and NFT, respectively. 

The trial of GHSOM+LDA is used to justify the effectiveness of the analyzing phase of 

the proposed dual approach.  

 

 

5.1 SVM 

Given a training set of instance-label pairs (xi, yi), i = 1,…,l where n
i Rx ∈  and 

,}1,1{ ly −∈  the SVM (Boser et al., 1992; Vapnik, 1995; Cortes and Vpaink, 1995; Hsu 

et al., 2010) require the solution of the following optimization problem: 
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       (13) 

Here training vectors xi are mapped into a higher dimensional space by the function 

φ . SVM finds a linear separating hyperplane with the maximal margin in this higher 

dimensional space. C > 0 is the penalty parameter of the error term. Furthermore, 

)()(),( j
T

iji xxxxK φφ≡  is called the kernel function. There are four basic kernels: 

 
                                                           
 
4 We use the GHSOM toolbox in the platform of Matlab R2007a, the SVM and the SOM package in the 
platform of SPSS Clementine 12.0, and the LDA package in the platform of SPSS. 
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Linear: j
T

iji xxxxK =),( . 

Polynomial: 0,)(),( >+= γγ  rxx xxK d
j

T
iji . 

Radial basis function (RBF): 0),exp(),(
2

>−−= γγ  xx xxK jiji . 

Sigmoid: )tsaih(),( rxx xxK j
T

iji += γ . 

Here, r ,γ and d are kernel parameters. The RBF is by far the most popular choice 

of kernel types used in Support Vector Machines. This is mainly because of their 

localized and finite responses across the entire range of the real x-axis. Therefore, we 

choose RBF as the kernel function of SVM. 

 

 

5.2 SOM+LDA 

As stated in Carlos’s (1996) study, the SOM+LDA which, on the basis of the 

information contained in a multidimensional space — in the case exposed, financial 

ratios — generates a space of lesser dimensions. In this way, similar input patterns are 

represented close to one another on a map. Such neural networks can be combined with 

other mathematical models applied to the prediction of corporate failure. From among 

all these, without doubt the most popular is LDA. For example, Canbas et al. (2005) 

proposed a methodological framework for constructing the integrated early warning 

system (IEWS) that can be used as a decision support tool in bank examination and 

supervision process for detection of banks, which are experiencing serious problems. 

Well known multivariate statistical technique (principal component analysis), was used 

to explore the basic financial characteristics of the banks, and discriminant, logit and 

probit models were estimated based on these characteristics to construct IEWS. 

Based on the idea of below studies, we use SOM to cluster the training samples, 

and then apply LDA in each node of SOM as a classifier to identify the fraud samples. 

Table 24 describes the habitual working procedure of SOM+LDA. 
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Table 24. The habitual working procedure of the SOM+LDA. 

 

 

The map size of the SOM is 4 × 3, as shown in Figure 11. 

 

Figure 11. The map size of the SOM in the SOM+LDA method. 

 

 

5.3 GHSOM+LDA 

The trial of GHSOM+LDA method is used to justify the effectiveness of the 

analyzing phase of the proposed dual approach, which uses all training samples to 

construct merely one GHSOM tree while the training phase of our proposed dual 

approach uses the fraud and non-fraud samples to construct FT and NFT, respectively.  

step 1: Sample and measure variable.  
step 2: Identify the significant variables that will be used as the input 

variables. 
step 3: Use the training samples to set up an SOM. 
step 4: For each node of SOM, set up a LDA model. 
step 5: For each investigated sample s, identify the winning node x of SOM. 
step 6: Use the trained LDA of the node x to predict the investigated sample s.
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The GHSOM is used to cluster the training samples, and then apply LDA in each 

leaf node of the GHSOM as a classifier to identify the fraud samples. Table 25 

describes the habitual working procedure of GSOM+LDA. 

 

Table 25. The habitual working procedure of the GHSOM+LDA. 

 

 

The parameter τ1 = 0.8 and τ2 = 0.07 are set for the GHSOM+LDA method. The 

GHSOM+LDA method results in a GHSOM tree with 16 leaf nodes, named one tree 

(ONET), which is shown Figure 12. 

 

 

Figure 12. The obtained GHSOM tree of the GHOM+LDA method. 

 

 

step 1: Sample and measure variable.  
step 2: Identify the significant variables that will be used as the input 

variables. 
step 3: Use the training samples to set up a GHSOM. 
step 4: For each node of GHSOM, set up a LDA model. 
step 5: For each investigated sample c, identify the winning node x of 

GHSOM. 
step 6: Use the trained LDA of the node x to predict the investigated sample c.
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5.4 SOM   

Based on the theoretical feature of SOM, samples with similar internal feature tend 

to be grouped together. Following this principle, one out sample can use the feature of 

its belonging node of SOM as its represented feature. The nodes of SOM with high risk 

are marked in the training stage, and any sample classified into any of these high risk 

nodes shell be considered high risk too based on the nature of unsupervised learning. 

We use SOM to cluster the training samples, and then determined the risk level in 

each node of SOM. The node with high fraud sample proportion will be classified as a 

fraud group. Any sample classified into this group will be predicted as a fraud one. 

Table 26 describes the working procedure of the SOM method. 

 

Table 26. The habitual working procedure of the SOM. 

 

The map size of the SOM is 4 × 3 is the same as the SOM+LDA method which is 

shown in Figure 13. Here we set the fraud sample proportion bigger than 13% as the 

risky nodes. The determined risky nodes resulted from step 4 is shown in Figure 13, in 

which the risky nodes are marked in color. 

 

step 1: Sample and measure variable.  
step 2: Identify the significant variables that will be used as the input 

variables. 
step 3: Use the training samples to set up an SOM. 
step 4: For each node of SOM, determined the risky node with high FFR 

proportion. 
step 5: For each investigated sample c, identify the winning node x of SOM. 
step 6: If sample c is classified into one of the risky nodes of SOM, it will be 

predicted as a fraud one, otherwise, a non-fraud one. 
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Figure 13. The map size of the SOM with FFR proportions. 

The risky nodes of the obtained SOM also reveal a certain regularity of SOM that 

similar nodes tend to be located nearby. The comparative location of nodes can also 

help decision makers get the background of an investigated sample from the nodes 

nearby its belonging node. The boundary of risky and healthy nodes can be easily found 

through the information of FFR sample proportion, other indicator for help observe the 

boundary are not also worth of trying as a part of classifier. 

This study also compares the prediction performance regarding another two data 

mining tools, back-propagation neural network (BPNN) and decision tree (DT), to 

compare their prediction performance and to discuss how the results of each method 

could contribute to discover FFR. 

 

 

5.5 BPNN 

The Back propagation neural network (BPNN) is proposed by Rumelhart et al. 

(1986). The BPNN is a supervised learning neural network tool, which is one of the 

popular techniques for classification and prediction. The training of BPNN by steepest 

descent method (SDM) is to follow negative gradient direction of cost function to find 

out the optimal weighting and bias.  
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In this study, the BPNN structure is shown in Figure 14 and the parameter setting 

of BPNN is set as follows: the transfer function is sigmoid, the iterations are set to 

10000, the learning rate is set to 0.01, and the momentum factor is set to 0.9. The BPNN 

is run 10 times with different initial weights, and then calculate the minimal, average 

and maximal prediction error. The minimal prediction error is chosen as the represented 

performance of BPNN. The weights of BPNN are shown in Table 27. The classification 

results of BPNN are shown in Table 28. 
 

 
Figure 14. The BPNN structure. 

 

Table 27. The weights of BPNN. 

variable weight 
CFR 1.996 
DR 0.1973 

Z-score 0.1865 
CR 0.1093 
SPR 0.0902 

CFAR 0.0837 
QR 0.0731 

ROA 0.0604 
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Table 28. The classification results of the BPNN. 

No. 
training stage testing stage 

Type I error Type II error Sum of 
errors 

Type I error Type II error 

1 15.2% 32.74% 47.95% 10.94% 64.81% 
2 13.7% 44.25% 57.95%   
3 19.27% 34.51% 53.79%   
4 20.56% 33.63% 54.19%   
5 20.13% 32.74% 52.87%   
6 16.49% 40.71% 57.20%   
7 17.99% 35.40% 53.39%   
8 17.13% 39.82% 56.95%   
9 15.42% 42.48% 57.90%   
10 20.77% 31.86% 52.63%   

minimal prediction error: 47.95%   
average prediction error: 57.95%   

maximal prediction error: 54.48%   
represent 15.2% 32.74% 47.95% 10.94% 64.81% 

 

 

5.6 DT 

Decision Tree (DT) is a non-parametric supervised learning method used for 

classification and regression. The goal is to create a model that predicts the value of a 

target variable by learning simple decision rules inferred from the data features. 

ID3 (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan. The 

algorithm creates a multi-way tree, finding for each node (i.e., in a greedy manner) the 

categorical feature that will yield the largest information gain for categorical targets. 

Trees are grown to their maximum size and then a pruning step is usually applied to 

improve the ability of the tree to generalize to unseen data. 

C4.5 (Quinlan, 1993) is the successor to ID3 and removed the restriction that 

features must be categorical by dynamically defining a discrete attribute (based on 

numerical variables) that partitions the continuous attribute value into a discrete set of 

intervals. C4.5 converts the trained trees (i.e., the output of the ID3 algorithm) into sets 

of if-then rules. The accuracy of each rule is then evaluated to determine the order in 
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which they should be applied. Pruning is done by removing a rule’s precondition if the 

accuracy of the rule improves without it. C5.0 (Quinlan, 1996) uses less memory and 

builds smaller rule sets than C4.5 while being more accurate. 

In this study, we use C5.0 algorithm to build up the DT. The minimum number per 

child branch is 10. The obtained DT structure and the obtained rule sets are shown in 

Figure 15 and Figure 16. 

 
Figure 15. The obtained DT structure. 
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Figure 16. The obtained DT rules. 

 

The experimental designs for both training stage and testing stage are the same as 

the previously mentioned settings, and the results are shown in Table 29. 

 

Table 29. The experimental results of our dual approach, the SVM, SOM+LDA, 
GHSOM+LDA, SOM, BPNN and DT methods. 

Training samples Testing samples 
  type I error type II error type I error type II error 

dual approach 13.62% 13.28% 11.54% 19.78% 

SVM 24.84% 21.24% 45.31% 27.78% 

SOM+LDA 16.49% 30.09% 32.81% 51.85% 

GHSOM+LDA 20.34% 22.12% 22.66% 44.44% 

SOM 34.48% 35.4% 26.56% 57.41% 

BPNN 15.2% 32.74% 10.94% 64.81% 

DT 4.5% 60.18% 15.63% 68.52% 

 

Compared with the SVM, SOM+LDA, GHSOM+LDA, SOM, BPNN, and DT 

methods, the corresponding sum of (type I and type II) classification errors of the 

analyzing phase in the proposed dual approach is much lower in most cases. As shown 

in Table 29, the type I error and the type II error for both training samples and testing 

Zscore <= 3.062 [ Mode: 0 ]  
 CFR <= 2.836 [ Mode: 1 ] => 1.0  
 CFR > 2.836 [ Mode: 0 ]  
  DR <= 1.981 [ Mode: 0 ]  
   Zscore <= 3.016 [ Mode: 1 ] => 1.0  
   Zscore > 3.016 [ Mode: 0 ] => 0.0  
  DR > 1.981 [ Mode: 0 ] => 0.0  
Zscore > 3.062 [ Mode: 0 ] => 0.0 
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samples of our approach are lower than 20% that implies acceptable classification 

performance regarding the FFD application. 

 

 

5.7 Discussion of the experimental results 

This research proposes a DSS architecture based on a novel dual approach that 

includes the training phase, the modeling phase, the analyzing phase and the decision 

support phase. In the training phase, the GHSOM generates more subgroups instead of 

dichotomous outcomes which can facilitate delicate analysis. In the modeling phase, 

the classification rule is built and the fraud related features of the samples of a leaf 

node is extracted for evaluating any sample classified into this leaf node. The 

analyzing phase applies the dominant classification rule obtained from the modeling 

phase. The decision support phase integrated the classification result and the associated 

features for decision aid. The results confirm the feasibility of the proposed dual 

approach which can contribute to FFR detection. 

Specifically, the GHSOM generates more subgroups instead of dichotomy and 

provides more delicate features embedded in the samples. Additionally, the 

unsupervised learning nature of the GHSOM renders a more robust clustering 

compared to traditional dichotomous classification. Each sample of the GHSOM is 

treated equally without specifying its fraud attribute, and the clustering results can help 

the following steps of rule forming and feature extracting. 

The methods comparison results show that the implementation of the DSS 

architecture based on the proposed dual approach not only outperforms the supervised 

methods such as the SVM, BPNN, DT and the unsupervised methods such as the 

SOM+LDA and GHSOM+LDA, but also reveals more domain information such as the 

extracted features (principal components) and the extracted patterns (fraud categories) 

based on the common characteristics of the same group (leaf node), and the spatial 

relationship among fraud and non-fraud samples. We believe that the improvement of 

the GHSOM can contribute to the applicability in FFD, and can provide an alternative 

way of data mining which enriches the background knowledge retrieved from the 

similar samples of the historical data, and this is the potentiality of our proposed dual 

approach. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

98 

6. Discussions and implications 

This study develops the dual approach as a DSS architecture that can be used for 

FFD. The proposed dual approach is data-driven to perform the system modeling via 

directly using the sampled data. As shown in Figure 5, the system architecture based 

on the dual approach consists of a series of four phases. The details and the associated 

modules have been explained phase by phase in section 3.1 to section 3.4, respectively. 

Below, we summarize these four phases and the corresponding modules. 

In the training phase, the data preprocessing is first executed through the sampling 

module and variable-selecting module. Then, all samples with the corresponding 

values of selected variables are the input of the clustering module to generate two 

GHSOMs (i.e., fraud samples are used to generate FT and non-fraud samples are used 

to generate NFT). The modeling phase consists of the statistic-gathering module, 

rule-forming module, feature-extracting module and pattern-extracting module. The 

first two modules utilize the statistics of FT and NFT leaf nodes to form the 

classification rules which are different due to different spatial hypotheses. Then, the 

classification rules are tuned respectively and compete with each other to become the 

dominant one. The last two modules involve the discovery of features (e.g., principal 

components) and patterns (e.g., fraud categories) in the FT leaf nodes. The extracted 

features and patterns of each FT leaf node are valuable for FFD decision support 

through being retrieved in the decision support phase. 

The analyzing phase consists of the group-finding module and classifying module. 

Based on the GHSOM clustering rule, each investigated sample is clustered into its 

belonging leaf nodes in FT and NFT, and these two leaf nodes are paired. Then, the 

classifying module uses the dominant classification rule obtained from the training 

phase to determine if the investigated sample is fraud. If an investigated sample is 

identified fraud, then the decision support phase will be executed. The 

feature-retrieving module retrieves the features and patterns from the investigated 

sample’s belonging FT leaf node, and the decision-supporting module integrates the 

extracted features and patterns for the purpose of decision aid. 

The implications for decision support in FFD, the research implications, and the 

FFR managerial implications are given in the following subsections. 
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6.1 The decision support in FFD 

The proposed system architecture results in a process of identifying any interesting 

pattern that can facilitate the FFD decision making. Besides, the dual approach can be 

integrated with other statistical, mathematical, artificial intelligence, or machine 

learning techniques to extract and identify useful information which contribute to the 

domain knowledge. 

Ngai et al. (2010) have done a complete academic review of FFD. They 

summarized that the data mining techniques of outlier detection and visualization have 

seen only limited use. In real world FFD cases, the sample size of the fraud cases 

compared with the normal majority is relatively low. The detection of the fraud case 

may be regarded as recognizing the outlier from the healthy majority. Therefore, 

Agyemang et al. (2006) pointed out that outlier detection is a very complex task akin to 

find a needle in a haystack. Although we use the pair-matching to do the sampling in 

the FFR case mentioned in Chapter 4, as shown in section 3.1, the proposed sampling 

module does not stick on the pair-matching. Since the dual approach is data-driven, it 

can be applied to the case of outlier detection in FFD. 

With the implementation of the proposed dual approach based on the GHSOM, the 

fraud samples and non-fraud samples are clustered separately and then the matched 

pairs of groups can help scale down the focus scope, such that the developed 

classification rule based on the associated spatial hypotheses (i.e., non-fraud-central or 

fraud-central) is capable of identifying the fraud samples (i.e., outliers) more 

accurately. Note that the classification rule based on a spatial hypothesis is developed 

through the proposed optimization technique for the corresponding discriminant 

boundary, in which the decision makers can objectively set their weightings of type I 

and type II errors. Therefore, the dominate classification rule is flexible enough when 

applying to other FFD application domains with different preference of type I and type 

II errors. 

Also, providing fraud related patterns for a suspected sample can contribute to 

FFD decision making. The feature-extracting module and pattern-extracting module is 

able to be applied to other financial fraud scenarios (e.g., bank fraud, insurance fraud) 

and financial crises scenarios (e.g., bankruptcy, stock market crashes). When applying 
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to other similar scenarios, the feature-extracting module changes the input variables 

according to the problem domain, and the pattern-extracting module adjusts the 

definition of fraud categories (or crisis categories) to develop the pattern map of FT. 

Such reference can enhance the quality of decision support by pinpointing the risk area 

(i.e., the variables in the principal components, and the fraud categories) required 

attention, and therefore help reduce the likelihood of issuing doubtful loan-related 

decisions and help provide sufficient information for decision support. 

It is worthy of a future work to implement the proposed DSS architecture based on 

the dual approach for any FFD related application domain. The implemented DSS may 

contain an additional data-importing module, and a visualization module. The 

visualization module visualizes the identification results for a creation investigated 

sample, and provides a whole viewpoint of the FT (i.e., pattern map) in which the fraud 

categories and the principal components of each leaf node can be selected to be shown 

on the diagram. The decision support module can be extended to include the results of 

other feature extracting mechanisms (such as statistical approach and data mining 

approach). Then, a voting mechanism will be used to integrate all the obtained features 

to help decision makers receive equitable and rational decision support. 

 

 

6.2 The research implications 

This study utilizes the advantage of the GHSOM and pioneers a novel dual 

approach for constructing a DSS architecture for FFD purpose. The proposed DSS 

architecture is data-driven and adaptive to fit any FFD scenarios with two basic groups, 

fraud and non-fraud (unhealthy and healthy), and the fraud group can be divided into 

different subcategories which represent distinctive fraud patterns. The designed 

modules and processes are described and evaluated phase by phase, and the methods 

within several modules (sampling, variable-selecting, clustering, feature-extracting, 

and pattern-extracting modules) can be replaced with other similar methods which 

make the proposed DSS architecture more generalizable for the real world practical 

use. 

The experimental results show that the implementation of the DSS architecture 

based on the proposed dual approach can help the decision support in FFD through 
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providing an alternative way of investigating financial data, which includes the dual 

clustering by the GHSOM and the development of adaptive classifiers for each pairs of 

subgroups (i.e., leaf nodes). 

The implementation of the proposed DSS architecture can not only identify the 

fraud cases, but also provide the extracted features and patterns for reference. 

Furthermore, the clustering results in FT can provide more amounts of subgroups, and 

provide more fraud-related information within subgroups compared to the dichotomous 

detection results which are generally provided by the conventional FFD studies, so that 

a comprehensive exploration of the relationship between different subgroups is 

intriguing and possible. Also, the GHSOM of the proposed system architecture is 

applicable to the adaptive sample size (i.e., data-driven) since the GHSOM will be 

re-developed accordingly, and the feature-extracting module and pattern-extracting 

module can provide the corresponding characteristics (e.g., the inherent variable 

features and the fraud patterns) as the fraud potentiality for the investigated samples. 

Different from the traditional GHSOM studies which cluster the whole training 

samples at one time, the clustering module of the proposed approach separates the 

training samples into fraud group and non-fraud group to generate two GHSOMs. The 

idea of such design is to improve the unsupervised learning mechanism through 

utilizing the spatial relationship between a pairs of leaf nodes from these two GHSOMs. 

That is, for each pair of leaf nodes, developing an adaptive classification rule based on 

such spatial relationship. The discriminate boundary can be tuned through the proposed 

optimization method in which the weightings of type I and type II errors are adjustable 

according to the decision makers’ preference that renders the outcome of the analyzing 

phase with more acceptable classification performance for a certain application 

domain. 

For each leaf node of FT, the feature extraction mechanism extracts the fraud 

categories from the exogenous information and the principal components from the 

input variables, respectively. Therefore, for any sample clustered into a leaf node of FT, 

the corresponding principal components and fraud categories can be used to represent 

the associated fraud regularities. These fraud regularities can be used as the 

pre-warning signal and can reveal the associated potential fraud activities to help 

monitor the suspected sample. Furthermore, the pattern-extracting module needs a 

definition of domain categories from some authentic references. The pattern-extracting 
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module can be implemented through either the domain experts or applying the text 

mining technique. 

The theoretical meaning of the spatial relationship is an interesting topic and is 

worthy of a deeper analysis. The spatial hypotheses (or belief) of this study are: for a 

pair of leaf nodes from FT and NFT, the associated fraud samples tend to locate around 

the non-fraud counterparts, or the associated non-fraud samples tend to locate around 

the fraud counterparts. In the modeling phase of the dual approach, the spatial 

relationships between the fraud samples and the non-fraud samples of the paired 

subgroups are identified and then utilized to develop the associated classification rule 

which is the dominant classification rule of two candidate classification rules 

(non-fraud-central rule and fraud-central rule) derived from two spatial hypotheses. 

The dominance of the non-fraud-central rule leads to an implication that most of fraud 

samples cluster around the non-fraud counterpart, and the dominance of fraud-central 

rule leads to an implication that most of non-fraud samples cluster around the fraud 

counterpart. If one of these two spatial regularities fits to the sample data, the 

corresponding classification rule can provide superior classification performance; 

moreover, the spatial relationship within fraud and non-fraud samples can provide 

valuable insights for the FFD domain experts. 

The above mentioned implications bring out the advantages of the outcome of the 

proposed dual approach. That is, the abundant information associated with the outcome 

could enrich the conventional dichotomous detection for decision aid.  

 

 

6.3 The FFR managerial implications 

In contrast with prior FFR studies focusing on finding the signification input 

variables regarding FFR and providing dichotomous prediction result without giving 

further explanations, this study has shown that the proposed dual approach can help not 

only identify FFR, but also help interpret the FFR behaviors of samples. 

The proposed approach involves a feature inspection on the fraud training samples, 

and the accumulated FFR understandings help creditors and capital providers evaluate 

the integrity of financial statements to facilitate their investment or credit 

decision-making. The accumulated FFR understandings also help facilitate the 
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development of credit risk evaluation model used internally. Besides, the feature 

results can be employed by auditors into their audit plans to ensure their firms or 

clients remain competitive. 

Regarding the implication for forensic accounting, the retrieved information 

including the FFR fraud categories and the principal components can help forensic 

accountants by providing the common features based on the similar samples belonged 

to the same leaf node, and help them perform extended procedures as part of the 

statutory audit. 

Furthermore, the clustering results of the proposed approach can help give the list 

of companies to be reviewed for the integrity of their financial statements, and such 

information can be utilized by the regulatory bodies of publicly traded companies (e.g., 

Securities and Exchange Commission) to set up the FFR prevention strategies. 
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7. Conclusion 

Because of the nature of competitive learning, the GHSOM, an unsupervised neural 

networks extended from the SOM, can work as a regularity detector that is supposed to 

help discover statistically salient features of the sample population (Hogan et al., 2008). 

With the spatial correspondent hypotheses, this study presents a DSS architecture with 

four phases based on the proposed dual approach for FFD decision support, in which 

two GHSOMs (i.e., fraud samples are used to generate FT and non-fraud samples are 

used to generate NFT) are generated in the training phase. In the modeling phase, for 

each leaf node of FT, a feature extraction mechanism including the feature-extracting 

module and pattern-extracting module is developed to provide the associated fraud 

related features, and the extracted features will be used as a part of the evaluation for 

any risky investigated sample. The classification rules are formed to help identify fraud 

cases through applying the adaptive classification rules into each pair of fraud and 

non-fraud subgroups from FT and NFT. In the analyzing phase, the dominant 

classification rule is applied to examine the investigated samples. For the investigated 

samples which have been identified fraud, the relevant fraud categories and variables 

are retrieved and integrated in the decision support phase. All the provided information 

is helpful for the decision making process of FFD. 

Unlike the traditional approach applying the SOM in FFD (Carlos, 1996) which 

uses all training samples to generate one SOM, our proposed DSS architecture takes 

advantage of being able to generate two GHSOMs (FT and NFT), in each of which two 

spatial hypotheses — for each pair of leaf nodes from FT and NFT, the fraud (or 

non-fraud) samples are cluster around their counterparts— are set to create the 

candidate classification rules. That is, using the statistic information among samples 

from different GHSOMs helps respectively generate the non-fraud-central and 

fraud-central rules. These two rules are tuned via inputting all samples to determine the 

optimal discrimination boundary of each candidate classification rule within each pair 

of leaf nodes from NFT and FT. This study derives the optimization technique that 

renders adjustable and effective rules for classifying fraud and non-fraud samples. The 

decision makers can objectively set their weightings of type I and type II errors. The 

candidate classification rule that dominates another is adopted as the classification rule 

in the following analyzing phase. The dominance of the non-fraud-central rule leads to 
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an implication that most of fraud samples cluster around the non-fraud counterpart, 

meanwhile the dominance of fraud-central rule leads to an implication that most of 

non-fraud samples cluster around the fraud counterpart. 

To the best of our knowledge, this is the first work that employs the GHSOM to 

provide topological insights of high-dimensional inputs in addition to hierarchical 

features. It is worth noting that the implementation of the DSS architecture based on the 

proposed dual approach is beyond the traditional unsupervised learning approach for 

FFD through developing a more delicate classifier that can reveal the spatial 

relationship among fraud and non-fraud subgroups, and the proposed feature extraction 

mechanism provides more information to represent the potential fraud behaviors for any 

suspected investigated sample, as a result, support the practical FFD decision making 

process. 

Our preliminary result on FFR experiment confirms the spatial relationship among 

fraud and non-fraud financial statements, and has better classification performance than 

the SVM, SOM+LDA, GHSOM+LDA, SOM, BPNN and DT methods. Therefore, for 

cases with the regularity of the proposed two topological relationships among fraud and 

non-fraud samples, the implemented DSS architecture based on the proposed dual 

approach can perform well; furthermore, compared with conventional methods for FFD, 

the feature extracting results also add more fraud-related characteristics for the 

investigated samples which are identified fraud. 

The limitations of this study would be: (1) compared with other FFD scenarios, the 

sample size for the FFR issue is limited, (2) subjective parameter setting of the GHSOM, 

(3) the fraud patterns are various depend on the focused FFD scenario and the results of 

the pattern-extracting module need to be verified by the domain experts, and (4) the 

proposed DSS architecture does not evaluated or refined practically until a system 

prototype is actually being developed. 

Future works are suggested as follows: (1) derive the theoretical justification of 

the rule-forming module in the modeling phase, (2) improve the discrimination 

boundary setting in the rule-forming module with more sensitivity via an enhanced 

optimization approach for developing the classification rules, or try other good 

classifiers, (3) use other clustering methods in the clustering module and compare the 

results of classifying module in terms of the classification performance and the 

dominate classification rule derived from which spatial hypothesis, (4) improve the 
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pattern-extracting module with systematic tools, and (5) conduct experiments on other 

FFD applications. 
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Appendix 

The overall FFR fraud categories extracted from each leaf node of FT are 

summarized in Table A1. The common FFR fraud categories within each leaf node are 

marked with * in the column. 

 

Table A1. Common FFR fraud categories within all leaf nodes of FT. 

leaf node #11 *FC1 FC2 FC3 FC4 FC5 *FC6 FC7 *FC8 FC9 FC10 
(code)  (year) 
2505   1998 ●          
2529   1998      ●  ●   
8716   1999      ●  ●   
2334   1999      ●  ●   
3039   2004 ●          
1601   1998        ●   
1221   2002 ●       ●  ● 
1221   2003 ●       ●  ● 
2014   2003 ●       ●   
5901   1997      ●  ●   
5901   1998      ●  ●   
5901   1999      ●  ●   
leaf node #12-21 FC1 FC2 *FC3 FC4 FC5 FC6 FC7 FC8 FC9 FC10 
5385   2001    ●      ● 
8713   1999   ●        
1918   1998   ●      ●  
leaf node #12-22 *FC1 FC2 FC3 *FC4 FC5 *FC6 FC7 FC8 *FC9 FC10 
2398 2001 ●  ● ● ●   ● ●  
2398 1999 ●  ● ● ●   ● ●  
2494   2002 ●          
3001   2000      ●   ●  
3001   2001      ●   ●  
3001   1999      ●   ●  
5385   2000    ●      ● 
6145   2003 ●          
6145   2004 ●          
6250   2004     ● ●   ●  
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1602   1994    ●  ●  ●  ● 
leaf node #12-23 FC1 *FC2 FC3 *FC4 FC5 *FC6 FC7 *FC8 *FC9 FC10 
8702   1994  ●      ●   

8702   1995  ●      ●   

5504   2000  ●         

8710   1999  ●         

8719   1997      ●     

8701   1995   ● ●       

8701   1996   ● ●       

1602   1995    ●  ●  ●  ● 

1918   1996   ●      ●  

1918   1997   ●      ●  

2101   1997        ● ● ● 

2613   1999      ●   ●  

2913   1996    ●    ●   

leaf node #12-24 *FC1 FC2 FC3 FC4 FC5 FC6 FC7 FC8 *FC9 FC10 
4113   2004 ●        ●  

leaf node #13-21 FC1 FC2 FC3 FC4 FC5 FC6 *FC7 *FC8 FC9 FC10 
8712   1998       ● ●   

5503   2000       ●  ● ● 

8719   1998      ●     

2014   2001 ●       ●   

2014   2002 ●       ●   

8717   1998       ●  ●  

leaf node #13-22 FC1 FC2 FC3 FC4 FC5 *FC6 *FC7 FC8 FC9 FC10 
2553   1999      ● ●    

8716   1998      ●  ●   

8188   2001       ●    

8724   2000       ●  ●  

8724   1999       ●  ●  

2005   1999        ●   

2019   2000      ●     

2019   1999      ●     

8711   1999      ● ●   ● 

leaf node #13-23 FC1 FC2 FC3 *FC4 FC5 FC6 *FC7 *FC8 FC9 FC10 
8705   1998    ● ● ● ● ●   

8714   1999   ●    ●    

8382   1998    ●  ●  ●   
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8706   1998    ●   ● ●   

leaf node #13-24 FC1 FC2 FC3 FC4 FC5 FC6 FC7 *FC8 *FC9 FC10 
1505   1998         ●  

1505   1999         ●  

8708   1998       ● ●   

8708   1999       ● ●   

2101   1998        ● ● ● 

2101   1999        ● ● ● 

leaf node #14-21 FC1 FC2 FC3 FC4 FC5 *FC6 FC7 *FC8 *FC9 FC10 
5504   1999  ●         

2328   1998  ● ●      ●  

2334   1998      ●  ●   

1505   1997         ●  

5007   1998    ●    ●   

2614   1999 ●     ●  ● ● ● 

1466   1998   ●   ●   ●  

leaf node #14-22 *FC1 FC2 FC3 FC4 FC5 FC6 FC7 *FC8 FC9 FC10 
2505   1997 ●          

2328   1997  ● ●      ●  

2334   1997      ●  ●   

2350   1997        ●   

2398   2000 ●  ● ● ●   ● ●  

2490   2001 ●       ●   

1601   1997        ●   

1602   1996    ●  ●  ●  ● 

leaf node #14-23 FC1 FC2 FC3 FC4 FC5 *FC6 *FC7 *FC8 FC9 FC10 
2206   2000        ●   

1436   1997       ●    

1436   1998       ●    

2553   1998      ● ●    

1207   2000 ●     ●  ● ● ● 

1207   1998 ●     ●  ● ● ● 

1207   1999 ●     ●  ● ● ● 

2005   1998        ●   

2016   1997    ●   ●    

2016   1998    ●   ●    

2017   1996    ●    ●   

2017   1998    ●    ●   
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2019   1998      ●     

8705   1997    ● ● ● ● ●   

8708   1997       ● ●   

8714   1997   ●    ●    

8714   1998   ●    ●    

9911   1998   ●      ●  

9801   2000 ●     ●  ● ● ● 

9801   1998 ●     ●  ● ● ● 

9801   1999 ●     ●  ● ● ● 

leaf node #14-24 *FC1 FC2 FC3 *FC4 FC5 FC6 FC7 *FC8 FC9 FC10 
2206   1999        ●   
2350   1998        ●   
2407   2002 ●   ● ●  ● ●  ● 
2407   2003 ●   ● ●  ● ●  ● 
2407   2004 ●   ● ●  ● ●  ● 
2490   2000 ●       ●   
2490   2002 ●       ●   
8295   1998    ●    ●   
1221   2001 ●       ●  ● 
8723   1998    ●    ● ●  
2017   1997    ●    ●   
5007   1999    ●    ●   

Note: The common FFR fraud categories of each leaf node are marked with *. 

 

Table A2 summarizes the commonly adopted FFR fraud categories of the testing 

samples identified as the fraud class in all leaf nodes of the FT. The code and year in 

the first two columns indicate the company SIC code and the year of financial 

statements. The common FFR fraud categories extracted from the feature-extracting 

module are marked in gray. The common FFR fraud categories within each leaf node 

are marked with * in the column. 
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Table A2. Common FFR fraud categories of the testing samples. 

leaf node #11 *FC1 FC2 FC3 FC4 FC5 FC6 FC7 *FC8 FC9 FC10 
1606   2008   ●     ●   
2418   2006 ●       ●   
2418   2008 ●       ●   
4413   2005 ●       ●   
leaf node #12-22 *FC1 FC2 FC3 *FC4 FC5 FC6 FC7 FC8 FC9 FC10 
3506   2003 ● ●  ●  ●     

3506   2004 ● ●  ●  ●     

6232   2006 ●          

6232   2007 ●          

6103   2008 ●   ●    ●   

3079   2005    ●     ●  

5017   2003         ●  

1606   2006   ●     ●   

leaf node #12-23 FC1 *FC2 FC3 FC4 FC5 *FC6 FC7 *FC8 FC9 FC10 
3506   2002 ● ●  ●  ●     

1532   2008    ●  ●  ● ●  

5605   2002  ●    ●  ●   

5605   2003  ●    ●  ●   

5605   2004  ●    ●  ●   

5605   2005  ●    ●  ●   

leaf node #14-22 *FC1 FC2 FC3 FC4 FC5 FC6 FC7 *FC8 FC9 FC10 
6232   2002 ●          

6103   2004 ●   ●    ●   

3350   2004        ●   

2418   2004 ●       ●   

leaf node #14-24 *FC1 FC2 FC3 *FC4 FC5 FC6 FC7 *FC8 FC9 *FC10
6103   2005 ●   ●  ●  ● ●  

6103   2006 ●   ●  ●  ● ●  

2614   2008 ●   ●    ●  ● 

2614   2006 ●   ●    ●  ● 

2614   2007 ●   ●    ●  ● 

FC1: recording fictitious revenues;    FC2: recording revenues prematurely; 
FC3: no description/overstated about revenues;  FC4: overstating existing assets; 
FC5: recording fictitious assets or assets not owned;  FC6: capitalizing items that should be expensed; 
FC7: understatement of expenses/liabilities;  FC8: misappropriation of assets; 
FC9: inappropriate disclosure;    FC10: other miscellaneous techniques. 
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The identification performance of the FFR fraud categories are summarized in 

Table A3, in which the classification errors (type I error and type II error) are 

calculated. 

 

Table A3. The identification performance of the FFR fraud categories. 

leaf node 
true predict 

fraud-> 
fraud 

fraud-> 
non-fraud

true predict 
non-fraud->
non-fraud 

non-fraud
->fraud 

#11         

1606   2008 
(code)  (year)

1,8 1,6,8 100.00% 0.00% 2,3,4,5,6
,7,9,10 

2,3,4,5,7
,9,10 

87.50% 12.50%

2418   2006 1,8 1,6,8 100.00% 0.00% 2,3,4,5,6
,7,9,10 

2,3,4,5,7
,9,10 

87.50% 12.50%

2418   2008 1,8 1,6,8 100.00% 0.00% 2,3,4,5,6
,7,9,10 

2,3,4,5,7
,9,10 

87.50% 12.50%

4413   2005 3,8 1,6,8 50.00% 50.00% 1,2,4,5,6
,7,9,10 

2,3,4,5,7
,9,10 

75.00% 25.00%

#12-22 
true predict 

fraud-> 
fraud 

fraud-> 
non-fraud

true predict 
non-fraud->
non-fraud 

non-fraud
->fraud 

3506   2003 1,2,4,6 1,4,6,9 75.00% 25.00% 3,5,7,8,9
,10 

2,3,5,7,8
,10 

83.33% 16.67%

3506   2004 1,2,4,6 1,4,6,9 75.00% 25.00% 3,5,7,8,9
,10 

2,3,5,7,8
,10 

83.33% 16.67%

6232   2006 1 1,4,6,9 100.00% 0.00% 2,3,4,5,6
,7,8,9,10

2,3,5,7,8
,10 

66.67% 33.33%

6232   2007 1 1,4,6,9 100.00% 0.00% 2,3,4,5,6
,7,8,9,10

2,3,5,7,8
,10 

66.67% 33.33%

6103   2008 1,4,8 1,4,6,9 66.67% 33.33% 2,3,5,6,7
,9,10 

2,3,5,7,8
,10 

71.43% 28.57%

3079   2005 4,9 1,4,6,9 100.00% 0.00% 1,2,3,5,6
,7,8,10 

2,3,5,7,8
,10 

75.00% 25.00%

5017   2003 9 1,4,6,9 100.00% 0.00% 1,2,3,4,5
,6,7,8,10

2,3,5,7,8
,10 

66.67% 33.33%

1606   2006 3,8 1,4,6,9 0.00% 100.00% 1,2,4,5,6
,7,9,10 

2,3,5,7,8
,10 

62.50% 37.50%

#12-23 
true predict 

fraud-> 
fraud 

fraud-> 
non-fraud

true predict 
non-fraud->
non-fraud 

non-fraud
->fraud 
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3506   2002 1,2,4,6 2,4,6,8,9 75.00% 25.00% 3,5,7,8,9
,10 

1,3,5,7 
,10 

66.67% 33.33%

1532   2008 4,6,8,9 2,4,6,8,9 100.00% 0.00% 1,2,3,5,7
,10 

1,3,5,7 
,10 

83.33% 16.67%

5605   2002 2,6,8 2,4,6,8,9 100.00% 0.00% 1,3,4,5,7
,9,10 

1,3,5,7 
,10 

71.43% 28.57%

5605   2003 2,6,8 2,4,6,8,9 100.00% 0.00% 1,3,4,5,7
,9,10 

1,3,5,7 
,10 

71.43% 28.57%

5605   2004 2,6,8 2,4,6,8,9 100.00% 0.00% 1,3,4,5,7
,9,10 

1,3,5,7 
,10 

71.43% 28.57%

5605   2005 2,6,8 2,4,6,8,9 100.00% 0.00% 1,3,4,5,7
,9,10 

1,3,5,7 
,10 

71.43% 28.57%

#14-22 
true predict 

fraud-> 
fraud 

fraud-> 
non-fraud

true predict 
non-fraud->
non-fraud 

non-fraud
->fraud 

6232   2002 1 1,8 100.00% 0.00% 2,3,4,5,6
,7,8,9,10

2,3,4,5,6
,7,9,10 

88.89% 11.11%

6103   2004 1,4,8 1,8 66.67% 33.33% 2,3,5,6,7
,9,10 

2,3,4,5,6
,7,9,10 

100.00% 0.00% 

3350   2004 8 1,8 100.00% 0.00% 1,2,3,4,5
,6,7,9,10

2,3,4,5,6
,7,9,10 

88.89% 11.11%

2418   2004 1,8 1,8 100.00% 0.00% 2,3,4,5,6
,7,9,10 

2,3,4,5,6
,7,9,10 

100.00% 0.00% 

#14-24 
true predict 

fraud-> 
fraud 

fraud-> 
non-fraud

true predict 
non-fraud->
non-fraud 

non-fraud
->fraud 

6103   2005 1,4,6,8,
9 

1,4,8 60.00% 40.00% 2,3,5,7,1
0 

2,3,5,6,7
,9,10 

100.00% 0.00% 

6103   2006 1,4,6,8,
9 

1,4,8 60.00% 40.00% 2,3,5,7,1
0 

2,3,5,6,7
,9,10 

100.00% 0.00% 

2614   2008 1,4,8 1,4,8 100.00% 0.00% 2,3,5,6,7
,9,10 

2,3,5,6,7
,9,10 

100.00% 0.00% 

2614   2006 1,4,8 1,4,8 100.00% 0.00% 2,3,5,6,7
,9,10 

2,3,5,6,7
,9,10 

100.00% 0.00% 

2614   2007 1,4,8 1,4,8 100.00% 0.00% 2,3,5,6,7
,9,10 

2,3,5,6,7
,9,10 

100.00% 0.00% 

Average   86.23% 13.77%
(type II)

  82.47% 17.53%
(type I) 
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According to Table A3, the identification performance regarding the FFR fraud 

category is quite well. For each FT leaf node, the fraud categories extracted by the 

pattern-extracting module can cover most of the common fraud categories of the 

testing samples (see the ‘fraud->fraud’ column) and the can cover most of the common 

excluded fraud categories (see the ‘non-fraud->non-fraud’ column). Overall, the results 

can effectively support the decision making process for FFR identification. 

 

 


