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中文摘要 

 

在因子模型下，損失分配函數的估算取決於混合型聯合違約分配。蒙地卡羅是一

個經常使用的計算工具。然而，一般蒙地卡羅模擬是一個不具有效率的方法，特

別是在稀有事件與複雜的債務違約模型的情形下，因此，找尋可以增進效率的方

法變成了一件迫切的事。 

 

對於這樣的問題，重點採樣法似乎是一個可以採用且吸引人的方法。透過改

變抽樣的機率測度，重點採樣法使估計量變得更有效率，尤其是針對相對複雜的

模型。因此，我們將應用重點採樣法來估計偏常態關聯結構模型的尾部機率。這

篇論文包含兩個部分。Ⅰ：應用指數扭轉法---一個經常使用且為較佳的終點採樣

技巧---於條件機率。然而，這樣的程序無法確保所得的估計量有足夠的變異縮減。

此結果指出，對於因子在選擇重點採樣上，我們需要更進一步的考慮。Ⅱ：進一

步應用重點採樣法於因子；在這樣的問題上，已經有相當多的方法在文獻中被提

出。在這些文獻中，重點採樣的方法可大略區分成兩種策略。第一種策略主要在

選擇一個最好的位移。最佳的位移值可透過操作不同的估計法來求得，這樣的策

略出現在 Glasserman 等(1999)或 Glasserman 與 Li (2005)。 

 

第二種策略則如同在 Capriotti (2008)中的一樣，則是考慮擁有許多參數的因子

密度函數作為重點採樣的候選分配。透過解出非線性優化問題，就可確立一個未

受限於位移的重點採樣分配。不過，這樣的方法在尋找最佳的參數當中，很容易

引起另一個效率上的問題。為了要讓此法有效率，就必須在使用此法前，對參數

的穩健估計上，投入更多的工作，這將造成問題更行複雜。 

 

本文中，我們說明了另一種簡單且具有彈性的策略。這裡，我們所提的演算

法不受限在如同 Gaussian 模型下決定最佳位移的作法，也不受限於因子分配函數

參數的估計。透過 Chiang, Yueh 與 Hsie (2007)文章中的主要概念，我們提供了重

點採樣密度函數一個合理的推估並且找出了一個不同於使用隨機近似的演算法來
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加速模擬的進行。 

 

最後，我們提供了一些單因子的理論的證明。對於多因子模型，我們也因此

有了一個較有效率的估計演算法。我們利用一些數值結果來凸顯此法在效率上，

是遠優於蒙地卡羅模擬。 

 

關鍵字：蒙地卡羅模擬；重點採樣法；信用風險組合；變異縮減。 
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ABSTRACT 

 

Under a factor model, computation of the loss density function relies on the 

estimates of some mixture of the joint default probability and joint survival probability. 

Monte Carlo simulation is among the most widely used computational tools in such 

estimation. Nevertheless, general Monte Carlo simulation is an ineffective simulation 

approach, in particular for rare event aspect and complex dependence between defaults 

of multiple obligors. So a method to increase efficiency of estimation is necessary.  

 

Importance sampling (IS) seems to be an attractive method to address this problem. 

Changing the measure of probabilities, IS makes an estimator to be efficient especially 

for complicated model. Therefore, we consider IS for estimation of tail probability of 

skew normal copula model. This paper consists of two parts. First, we apply exponential 

twist, a usual and better IS technique, to conditional probabilities and the factors. 

However, this procedure does not always guarantee enough variance reduction. Such 

result indicates the further consideration of choosing IS factor density. 

 

Faced with this problem, a variety of approaches has recently been proposed in the 

literature ( Capriotti 2008, Glasserman et al 1999, Glasserman and Li 2005). The better 

choices of IS density can be roughly classified into two kinds of strategies. The first 

strategy depends on choosing optimal shift. The optimal drift is decided by using 

different approximation methods. Such strategy is shown in Glasserman et al 1999, or 

Glasserman and Li 2005. 
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The second strategy, as shown in Capriotti (2008), considers a family of factor 

probability densities which depend on a set of real parameters. By formulating in terms 

of a nonlinear optimization problem, IS density which is not limited the determination 

of drift is then determinate. The method that searches for the optimal parameters, 

however, incurs another efficiency problem. To keep the method efficient, particular 

care for robust parameters estimation needs to be taken in preliminary Monte Carlo 

simulation. This leads method to be more complicated. 

 

In this paper, we describe an alternative strategy that is straightforward and flexible 

enough to be applied in Monte Carlo setting. Indeed, our algorithm is not limited to the 

determination of optimal drift in Gaussian copula model, nor estimation of parameters 

of factor density. To exploit the similar concept developed for basket default swap 

valuation in Chiang, Yueh, and Hsie (2007), we provide a reasonable guess of the 

optimal sampling density and then establish a way different from stochastic 

approximation to speed up simulation. 

 

Finally, we provide theoretical support for single factor model and take this 

approach a step further to multifactor case. So we have a rough but fast approximation 

that execute entirely with Monte Carlo in general situation. We support our approach by 

some portfolio examples. Numerical results show that such algorithm is more efficient 

than general Monte Carlo simulation. 

 

Keywords: Monte Carlo simulation; Importance Sampling; Portfolio credit risk; 

Variance reduction. 
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Chapter 1 Introduction 

The impressive development of the securities markets has led financial institutions to 

quantify their risk by stochastic models. A main component of financial risk is credit 

risk, in particular for rare event aspect and complex dependence between defaults of 

multiple obligors. By referring to losses resulting from the default of obligor, the bank 

and other institutions therefore make a contractual payment for structural financial 

products.  

 

An important feature of modern credit risk management is to capture the effect of 

dependence among obligors. In the development of commercial models, the dependence 

structure among obligors is specified through a set of “systematic factors”. It is 

so-called factor copula model approach, which is originally associated with J. P. 

Morgan’s CreditMetrics system. To match the observed financial data, the methodology 

to find an adequate factor copula to model dependencies becomes very popular. There 

are a lot of papers to address better empirical fits of observed data by copula factor 

models. Examples are the normal copula model in Gupta, Finger& Bhatia (1997), the 

Student-t copula in Schloegl and O’Kane (2005), the double t distribution copula in 

Hull and White (2004) and Marshall-Olkin copula in Andersen and Sidenius (2005). 

 

In practice, normal and Student-t copula models are two of the most widely used 

models. It has been incorporated into many popular risk management systems. However, 

more empirical works have argued the leptokurtic and asymmetric factor distribution 

rather than symmetric distribution. In fact, the feature of leptokurtic and asymmetry 

leads to significant inaccuracies in assessing the probability of extreme cases like large 
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portfolio losses and default threshold of obligor. This result shows the importance of 

choosing an appropriate factor distribution for application of copula model. 

 

In our opinion, the skew normal (SN) distribution can come up with the leptokurtic 

and asymmetric features. However, like most approximations in different copula cases 

(Glasserman (2004); Kostadinov (2005)), there are no closed form analytical results 

which provide the error bound of estimation. So we need a viable alternative which not 

only assess the performance of default but provide more information of error. 

 

Monte Carlo simulation is the most widely used in the estimation of default. It has 

the advantage of being very general and disadvantage of being slowly. For estimating 

rare event default probability, the generalization of this method can serve the 

complicated copula well, but disadvantage cause time-consuming problem. This 

motivates research on variance reduction methods like IS to increase simulation 

efficiency.  

 

For normal copula, a special case of skew normal factor model, Glasserman and Li 

(2005) (henceforth GL) propose a process by applying two step IS. Such approach 

speed up the occurrence of default event to achieve optimality of simulation. However, 

portfolio with SN factor is unlike the normal case, the asymmetry of SN distribution 

leads the procedure developed in GL is not applicable here. Surprisingly, the application 

of exponential twisted shift, which is a usual and better IS technique, does not always 

guarantee efficient variance reduction. Hence, we need to search a new way to devise IS 

algorithm. 
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Different from only considering adjustment of parameters, our approach emphasize 

on choosing “form” of IS density distribution. Our procedure consists of two parts. For 

the first step, we exploit independence property to apply IS technique to conditional 

probability. By this, we can reduce the part of total variance. For the second step, we 

eliminate the linear part of variability resulting from first step and simultaneously 

minimize residual volatility. Combine the two step, we then have an efficient algorithm. 

 

The rest of this article is organized as follows. In the next chapter, In addition to 

the introduction of the credit risk copula model and importance sampling method, we 

also present the brief properties of skew normal distribution. In Chapter 3, we review 

two-step IS method in GL and modify the procedure of applying exponential twist 

technique to factor. The modified procedure does not remain well behaved in different 

shape parameter setting. Next, we extend a CYH procedure and build an efficient 

algorithm in Chapter 4. Numerical examples are illustrated in Chapter 5 and finally the 

concluding remarks are presented in Chapter 6. 
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Chapter 2 Portfolio Credit Risk Models 

Credit portfolio models can be divided into reduced-form models and structural models. 

Discussions of several models have been put in the literatures of Crouhy et al.(2000), 

Bluhm et al.(2002) and McNeil et al.(2005). Different credit risk models differ in the 

mechanisms they use to capture dependence among obligors. In this paper, we consider 

the model approach similar to CreditMetricsTM (as in Gupta et al (1997) and Li (2000)), 

which is based on foundational work of Merton(1974). The default setting is incurred 

when the obligor’s shortage exceeds a default threshold. 

 

2.1 The Portfolio Loss Distribution 

Consider a portfolio with m  obligors, for the i th obligor, ic and iX  denote the 

exposure and status respectively. The exposure ic  may be assumed to be stochastic. 

For sake of simplicity, we will assume ic  to be deterministic and refer the reader to 

Glasserman, Kang, Shahabuddin (2008) for stochastic case. The i th obligor default if 

iX  exceed the threshold ix , then the portfolio loss mL  is 

 

1
{ }

m

m i i i
i

L c I X x
=

= >∑                                       (2.1) 

 

In practice, threshold ix  of i th obligor is chosen according to the marginal default 

probability ip  so that ( )i i iP X x p> = . This value ip  is usually set based on the 

average historical default frequency with similar credit profiles. In the credit risk 

context, iX  is usually given a financial interpretation. By such framework, mL  
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models the loss of a portfolio of m  obligors.  

 

Our interest is in measuring the tail behavior of mL , particularly for rare event. 

Since it is impossible to exactly compute the probability of large portfolio losses, we 

consider asymptotic regime which supports an analysis. Such regime is relevant to 

portfolios of high rated obligor, or measuring risk over a short period. We assume the 

default threshold for the individual obligor is i ix b m= , where marginal default of 

each obligor decrease when the number of obligors m  increase. Our goal is to estimate 

the probability of { }mL mq> , particular at large value of m  and q . 

 

In the framework of copula, the dependence between defaults is determined by the 

correlation structure between jX  and kX , j k≠ . In general, the dependence 

structure is specified through a factor form. For example, if we set k kX fρ ε= +  for 

ρ ∈ℜ  where f  and kε  are normal random variable, we obtain the dependence 

structure introduced in CreditMetricsTM. In addition, let /( )k kX fε ρ=  with 0ρ >  

and f  and kε  follow Gamma and exponential distributions respectively, we get a 

way of introducing alternative dependence structure shown in Credit Suisse. 

 

Here, we consider the dependence structure whose correlation is determined 

through a linear form, that is  

 

2

1 1

1
d d

i ij j ij i
j j

X a Z a ε
= =

= + −∑ ∑       , 1, ,i m= "  
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where 1, , dZ Z"  and iε  are independent random variables. The systematic factor 

1, , dZ Z"  affects multiple obligors simultaneously, but idiosyncratic factor iε  only 

influences the i th obligor. The coefficient ija  is the loading for the j th factor and 

2

1

1
d

ij
j

a
=

<∑ . Those loadings are assumed to be nonnegative. Although the condition is not 

essential, the limitation can simplify our discussion, especially for large losses occur 

primarily because of highly positively correlated structure. 

 
In the following section, we will briefly introduce properties of distribution in SN 

copula model. 

 

2.2 Skew Normal Distribution and Its Properties 

Let φ  and Φ  to be the standard normal probability density function and cumulative 

density function respectively. The density function of a random variable jZ  is given 

by 

 

2( | ; ; ) ( ) ( )z zf z μ μμ σ λ φ λ
σ σ σ

− −
= Φ  

 

, which is called SN distribution with location parameterμ∈ℜ , scale parameter 0σ > , 

and shape parameterλ∈ℜ , denoted by 
2~ ( , , )Z SN μ σ λ . Let 0λ = , we obtain the 

normal density. As λ →∞ , it converges pointwise to half-normal density. The SN 

distribution was first introduced by O’Hagan and Leonard (1976) as a prior distribution 

for estimating a normal location parameter. It can be applied to different fields such as 
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economics, psychometry and so on. The moment generating function of 2( , , )SN μ σ λ  

is given by 

 

2

2

( )( | ; ; ) 2exp( ) ( )
2 1
tM t t tσ λμ σ λ μ σ

λ
= + Φ

+
 

 

(0,1, )SN λ  is called the standard skew normal distribution. Some main properties of 

SN distribution are 

 

1. if ~ (0,1, )Z SN λ , then ~ (0,1, )Z SN λ− − . 

2. if ~ (0,1, )Z SN λ , then 2 2
1~Z χ . 

3. 2( ) ( 2 / )( / 1 )E Z μ σ π λ λ= + + . 

4. 2 2 2( ) {1 (2 / ) /(1 )}Var Z σ π λ λ= − + . 

5. if 1 ~ (0,1, )Z SN λ  and 2 ~ (0,1,0)Z SN , then 

    2
1 2 2 2

1 ~ (0,1, )
1 (1 )

Z Z SN ρλρ ρ
λ ρ

+ −
+ −

 

 

For more properties of the skew normal distribution, we refer the reader to Azzalini 

(1985); Gupta, Nguyen and Sanqui (2004); or Arnold and Lin(2004). 

 

Consider 2~ ( , , )j j j jZ SN μ σ λ , 1, ,j d= " and ~ (0,1,0)i SNε , we can generate 

jZ , 1, ,j d= "  and iε  in each replication for straightforward simulation. We compute 

the value iX  and determine whether the i th obligor default. From the default setting 
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of every obligor, we get the portfolio loss (2.1) and then evaluate the probability of 

{ }mL mq> . However, Monte Carlo estimator can’t achieve fixed relative precision 

when the value of threshold becomes large. This makes variance reduction 

methodologies potentially attractive. In the next chapter, we will introduce one method 

to make Monte Carlo effective. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-1  The density function of (0,1, )SN λ  
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Chapter 3 Variance Reduction Methodology 

Although generally easy to be implemented, Monte Carlo simulations are infamous for 

being slow. Stochastic outcome is always affected by a statistical error which can 

generally be reduced to the expected accuracy by iterating the procedure for a long 

enough time. Usually, in order to reduce the error by a factor of ten one has to spend one 

hundred times as much computer time. This result contradicts practical necessity. 

 

Several approaches to accelerate the efficiency of simulation, such as control 

variates, antithetic variables, and IS, have been proposed over the years. The goal of 

these technique is to reduce the variance of replications so that an expected level 

accuracy can be obtained with a smaller number samples. Antithetic variables and 

control variates are the most commonly used variance reduction techniques, but their 

effectiveness varies largely across applications, and is sometimes rather limited.  

 

Different antithetic variables and control variates, IS generally involves a bigger 

implementation effort and is less straightforward to include in general Monte Carlo 

framework. Furthermore, when used improperly, such method will “increase” the 

variance of estimator. That is why it has not been employed much in professional 

contexts until recently. For all that, its powerful variance reduction is potentially 

attractive. 

 

3.1 IS Method 

IS method is a standard approach of variance reduction in Monte Carlo methods. The 

idea behind IS method is to reduce the statistical uncertainty of a Monte Carlo 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

 10

calculation by focusing on the important region of space from which the random 

samples are drawn. For example, suppose we have to evaluate [ ( )]fE G X  where ( )G ⋅  

is a positive measurable function with respect to the probability space and f  is the 

density function of X , we hence have another representation 

 

[ ( )] ( ) ( )E G X G x f x dx= ∫  

*
*

( )( ) ( )
( )

f xG x f x dx
f x

= ∫  

 

where *f  is another density function of X . The ratio is called likelihood ratio or 

Randon-Nikodym derivative. One can sample X  from new density and obtain the 

unbiased estimator *

( )( )
( )

f xG x
f x

. Its variance, then, is shown to be 

 

2
2 2

*

( )( ) [ ( )]
( )

f XE G X E G X
f X

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 

 

Indeed, we have the following optimal IS density function optf  to achieve zero 

variance 

 

1( ) ( ) ( )
[ ( )]optf x G x f x

E G X
=  

 

Such a density exists, but it is not feasible to be found unless the desired quantity is 

known from the outset. Much of the literature on IS technique are focused on methods 
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of choosing a reasonable approximation of zero-variance IS density (Sadowsky and 

Bucklew (1990); Glasserman et al (1999); Capriotti (2008)). The effectiveness of IS 

mainly depend on how close between new density and zero-variance density is. 

Different methods of approximation to zero-variance density will lead to various 

computational performances. In view of practicability consideration, we turn our 

attention to the apparently weaker notations of effectiveness. 

 

Consider an estimation of [ ( )]mE G X  where ( )mG X  is a function which 

decrease to zero as m →∞ . Then an estimator *

( )( )
( )

m
m

m

f XG X
f X

 is said to be of 

bounded relative error if it satisfies the requirement 

 

*
( )[ ( ) ]
( )

limsup
[ ( )]

m
m

m

m m

f XVar G X
f X

E G X→∞
<∞  

 

Additionally, an estimator is called logarithm asymptotically efficient or asymptotically 

optimal if it satisfies the requirement 

 

2
2

*
( )ln ( )
( )

lim 2
ln [ ( )]

m
m

m

m
m

f XE G X
f X

E G X→∞

⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜ ⎟⎜⎢ ⎥⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦ =  

 

An estimator with bounded relative error can remain the number of replication 

bounded in a fixed bounded relative error. However, asymptotically optimal only ensure 

that the rate of decay of second moment achieves twice that of itself. By Jensen’s 
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inequality, this is the fastest possible rate of decrease for any unbiased estimator. By the 

simple algebra, we know that an estimator with bounded relative error is also 

asymptotically optimal. General Monte Carlo can’t achieve asymptotically optimal. For 

example, let ( )mp P X m= >  where ~ (0,1)X N , then a general Monte Carlo 

estimator { }I X m>  has the following result 

 

2ln [ { }]lim 1
ln [ { }]m

E I X m
E I X m→∞

>
=

>
 

 

3.2 IS Conditional on SN Factor 

In this section, we apply the one-step of GL to the credit portfolio with skew normal 

factors. To keep the notation simple, we restrict our attention to single factor 

homogeneous model, that is 1ic d= = , iρ ρ= , ib b=  and iX  is given by 

 

21i iX Zρ ρ ε= + −  

 

Thus the total loss mL  can be written as 

 

2

1
{ 1 }

m

m i
i

L I Z b mρ ρ ε
=

= + − >∑  

 

Let 2{ 1 }i iY I Z b mρ ρ ε= + − > . Conditioning on Z z= , iY  is a Bermoulli 

random variable and the conditional default probability ( )p z  is given by 
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( ) ( 1| )ip z P Y Z z= = =  

               
2

( )
1

z b mρ
ρ

−
= Φ

−
 

 

The joint probability of 1( , , )mY Y"  is then given by 

 

1

1

( ( )) (1 ( ))i i

m
Y Y

i

p z p z −

=

−∏  

 

Consider a new probability ( ; ( ))q z zθ  which is specified by 

 
( )

( )
( )( )

exp( ( ( ); ))

z

z
p z ep z

z z

θ

θ ψ θ
=                                 (3.1) 

 

where ( )( ( ); ) ln(1 ( )( 1))zz z p z eθψ θ = + − . If we replace each probability ( )p z  with a 

new probability ( ) ( )zp zθ , then the estimation of [ { }]mE I L mq>  can be written as 

 

1

1 ( ) ( )

( ) 1 ( ){ } ( ) ( )
( ) 1 ( )

i i

m
Y Y

m
i Z Z

p Z p ZE I L mq
p Z p Zθ θ

−

=

⎡ ⎤−⎢ ⎥>⎢ ⎥−⎢ ⎥⎣ ⎦
∏  

 

(3.1) is called exponential twist. If ( ) 0zθ > , then ( ) ( ) ( )zp z p zθ > ; the original 

probability correspond to ( ) 0zθ = . The new measure can increase the default 

probability and so decrease the variance resulting from stochastic volatility.  

 

Let 
1

( ( ), ) ( ( ); )
m

m
L i

z z z zψ θ ψ θ
=

=∑ , the corresponding likelihood ratio is simplified 

into 
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( ) ( ( ), )1

1 ( ) ( )

( ) 1 ( )( ) ( )
( ) 1 ( )

m Li i m

m
z L z zY Y

i z z

p z p z e
p z p z

θ ψ θ

θ θ

− +−

=

−
=

−∏  

 

, then we have an unbiased estimator 

 

( ) ( ( ), ){ } m Lmz L z z
mI L mq e θ ψ θ− +>                                 (3.2) 

 

for ( )mP L mq> . It remains to choose ( )zθ  to reduce the variance of (3.2). We know 

the fact that a key element of variance reduction is based on minimizing the second 

moment. It is difficult to solve this problem directly, but minimizing the upper bound of 

the second moment is easy. For ( )zθ , we know 

 

2 ( ) 2 ( ( ), ) 2{ ( ) ( ( ), )}[ { } | ]m L Lm mz L z z z mq z z
mE I L mq e Z z eθ ψ θ θ ψ θ− + − −> = ≤  

 

Note that the function ( ( ), )
mL z zψ θ  is strictly convex in ( )zθ  and pass through 

the origin. So the function ( ) ( ( ), )
mLz mq z zθ ψ θ−  is a concave function and the 

supremun is attained at just one point, which we denote by ( ; )m z qθ . If ( )p z q≥ , then 

the maximum value occurs at ( ; ) 0m z qθ = ; otherwise, it occurs at the unique solution 

of 

 

( ( ; ), )
( ) mL m z q z mq
z
ψ θ

θ
∂

=
∂

 

 

In this discussion, ( ; )m z qθ  may be viewed as a measure of the conditional rarity of the 
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set { }mL mq> . If { }mL mq>  is not rare event, we generate the |iY Z z=  from the 

original probability; otherwise we twist by ( ; )m z qθ . Observe the set { }mL mq> , any 

element of { }mL mq>  has the property 

 

( ; ) ( ; )m m mz q L z q mqθ θ≥ , 

 

,then we have the lower bound  

 

( ; ) ( ( ; ), ) ( )
mm m L m mz q L z q z F zθ ψ θ− + ≤  

 

Here ( ) ( ; ) ( ( ; ), ) 0
mm m L mF z z q mq z q zθ ψ θ=− + ≤ . This result shows that the asymptotic 

of upper bound depend on the point q  when we apply IS to conditional probability. 

This unique point q  is called the dominating point. Essentially, the decreasing rate of 

( )mF z  determines whether the new estimator achieve asymptotically optimal. Observe 

that the equation  

 

[ | ] ( ( ; ), )
( ) mm L mE L Z z z q z
z
ψ θ

θ
∂

= =
∂

 

mq=  

 

holds. This fact indicates that the mean value of |mL Z z
m

=  will be shifted to the 

dominating point q  if { }mL mq>  becomes rare event. More details about dominating 

point we refer the readers to Ney (1983) or Sadowsky and Bucklew (1990). 
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Fig. 3-1  A specific example with ρ = 0.3 , 0.2b = , 100m = , 
0.1q =  and 0.5z = . The tangent to ( , ) /

mL z mψ ⋅  at the point 

            ( ; )m z qθ  is q . The vertical distance from ( ( ; ), ) /
mL m z q z mψ θ  

to the line through the original is ( ) /mF z m− . 
 

Note that the value of ( ; )m z qθ  is chosen to reduce the variance of 

( | )mP L mq Z>  rather than ( )mP L mq> . In GL, failure of asymptotical optimal 

results from the extra variability of Z . To analyze further, we should first realize how 

( )mF z  behave. Set loading ρ  to be 0.1, 0.3, and 0.8 respectively, ( ) /mF z m−  is 

shown in Fig. 3-2. 

 

In Fig. 3-2, it is obvious the larger value ρ  is, the larger influence Z  has. One 

step IS turns out to be less effective if the structure of ( )mF z  has a width which depart 

from a constant. The behavior of ( )mF z  indicates irrationality to neglect the effect 
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from the factor. Hence, we need to exploit proper IS method again to reduce the impact 

of factor. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-2  Comparisom of ( ) /mF z m−  under different loading  
values with 0.2b = , 100m = , 0.1q = . 

 

 

3.3 IS For SN Factor 

As discussion in section 3.2, the key to improve efficiency of (3.2) is based on the 

elimination of residual randomness. Consider the (3.2) with ( ) ( ; )mz z qθ θ= , any 

estimator l
mqp  has the variance decomposition as following 

 

l l l[ ] [ [ | ]] [ [ | ]]mq mq mqVar p E Var p Z Var E p Z= +  
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Applying IS to conditioning Z  only makes l[ [ | ]]mqE Var p Z  small. To get further 

improvement of efficiency, GL focus on the second term in the variance decomposition. 

By simple algebra, we know that the zero-variance IS density for l[ [ | ]]mqVar E p Z  is 

 

1 [ { }| ] ( | ; ; )
[ { }] m

m

E I L mq Z z f z
E I L mq

μ σ λ> =
>

 

 

It is pity that sampling from this density is generally infeasible because of the 

normalization constant. For ( , , ) (0,1,0)μ σ λ = , GL thus suggest using original 

distribution with a appropriate mode as optimal density. Rather than choose IS density 

arbitrarily, it is intuitively clear that shifting the mode makes the likelihood ratio inside 

expectation to be small. For symmetric density, such strategy may make a substantial 

variance reduction. Whenever zero variance density cannot be approximated only by 

shifting the mode, however, this algorithm becomes less beneficial. For instance, when 

the structure of [ { } | ] ( | ; ; )mE I L mq Z z f z μ σ λ> =  has a width which is very different 

from original density, shifting a drift will turn out to be ineffective mechanism. 

 

Faced with a similar problem, Capriotti (2008) uses Levenberg-Marquardt method 

to provide a reasonable IS density which is not limited the determination of drift. The 

implementation to determine the optimal parameters, however, incurs another efficiency 

problem. To keep the algorithm efficient, particular care for robust parameter estimation 

needs to be taken in preliminary Monte Carlo simulation. This leads algorithm to be 

more complicated. 
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Instead of solving robust problem, we adopt another strategy to vanish randomness 

from Z . Let a new estimator applying IS for factor and conditional on factor to be 

 

           2{ ( ; ) ( ( ; ), )}{ } ( )m m L mmZ q L Z q Z
mI L mq e W Zθ ψ θ− −>              (3.3) 

 

Here *( ) ( | ; ; ) / ( | ; ; )W Z f z f zμ σ λ μ σ λ=  and *( | ; ; )f z μ σ λ  denotes the IS density. 

We put emphasis on the variance of (3.3) rather than variance decomposition. Observe 

the second moment of (3.3) 

 

2 ( ; ) 2 ( ( ; ), ) 2{ } ( )m m L mmz q L z q z
mE I L mq e W Zθ ψ θ− +⎡ ⎤>⎢ ⎥⎣ ⎦  

           2 ( ) 2{ } ( )mF Z
mE I L mq e W Z⎡ ⎤≤ >⎢ ⎥⎣ ⎦  

           2 ( ) 2 *( ) ( | ; ; )mF ze W Z f z dzμ σ λ≤∫  

 

Directly minimizing second moment is difficult, a surrogate to guide proper IS 

density factor is required and thus we consider the upper bound of second moment. To 

avoid integrating intricate function ( )mF z , we choose a different approximation. By the 

simple differentiation, we know ( )mF z  is concave and then we have a loose upper 

bound by the first order Taylor expansion at point mt . 

 

'2 ( ) 2{ ( ) ( )( )}2 * 2 *( ) ( | ; ; ) ( ) ( | ; ; )m m m m m mF z F t F t z te W Z f z dz e W Z f z dzμ σ λ μ σ λ+ −≤∫ ∫  

             
'{ ( ) ( )( )} 2[{ ( )} ]m m m m mF t F t Z tE e W Z+ −=  
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Considering Jensen’s inequality, the inequality holds if  

 

' '( ) ( )( ) ( ) ( )( )( ) [ ( )]m m m m m m m m m mF t F t Z t F t F t Z te W Z E e W Z+ − + −=  

'( ) ( )( )[ ]m m m m mF t F t Z tE e + −= , 

 

then the formulation yields 

 

' ( )
*

'( | ; ; ) ( | ; ; )
( ( ))

m mF t z

Z m m

ef z f z
M F t

μ σ λ μ σ λ=  (3.4) 

 

where ( )ZM ⋅  denotes the moment generating function of Z . If we consider the 

exponential twist density of Z  as  

 

*( | ; ; ) ( | ; ; )
( )

mt z

Z m

ef z f z
M t

μ σ λ μ σ λ= , (3.5) 

 

this connection of (3.4) and (3.5) implies that we can design a new exponential twisted 

IS density where ' ( )m m mt F t= , namely 2arg max{ ( ) / 2}m m
t

t F t t= −  

 

Once we have selected the new IS density of Z , the algorithm proceeds as 

follows: 
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1. Compute 2arg max{ ( ) / 2}m m
t

t F t t= −  

2. Sample Z  from *( | ; ; )f z μ σ λ  

3. Twisting the conditional default probability 

4. Return the estimator  

( ; ) ( ( ; ), ) log ( )ˆ { } m m L mm m Z mZ q L Z q Z t Z M t
ET mp I L mq e eθ ψ θ− + − += >  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-3  Graph of '( ) ( )( )m mF t F t z t+ −  for a single factor  
with 0.2b = , 0.3ρ = , 0.1q =  and 1,000m = . 

 

By simple algebra, we know that the new IS distribution for Z  is the closed skew 

normal ( ,1, , ,1)m mCSN t tλ λ−  if the original distribution is (0,1, )SN λ . In fact, the 

appropriate IS distribution is not limited to the original distribution family and this 

result shows the difficulty in searching the optimal IS density. For more properties of 

closed skew normal one can see Graciela et al (2004). 
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Note that if 0λ = , the choice of IS density coincides with the result of GL , that is a 

normal density with mean mt , namely ( ,1,0,0,1)mCSN t . 

 

Theorem 3.1 

Consider a single factor homogeneous portfolio with the factor ~ (0,1, )Z SN λ  and 

~ (0,1,0)i SNε . Suppose the default and loss threshold are b m  and mq  

respectively. Then the estimator ˆ ETp  satisfy 

 

(a)For 0λ ≥  
2

2

1lim log [ { }]
2mm

bE I L mq
m ρ→∞

> = −  

              
2

2
2

1 ˆlim log [( ) ]ETm

bE p
m ρ→∞

= −  

(b)For 0λ <  
2

2
2

1lim log { { }} (1 )
2mm

bE I L mq
m

λ
ρ→∞

> = − +  

              
2 2

2
2 2

1 1 2ˆlim log {( ) } ( )
1ETm

bE p
m

λ
ρ λ→∞

+
= −

+
 

 

Proof: The result would follow from a similar discussion in GL (2004). To start, we 

consider lower bound and upper bound of liminf and limsup respectively. 

 

(a) 0λ ≥ : First, we show that  
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2

2

1liminf log [ { }]
2mm

bE I L mq
m ρ→∞

> ≥ −   

 

By conditional property, for any 0υ > , we have the following result 

 

[ { }]mE I L mq> = [ [ { } | ( ) ]]mE E I L mq p Z q υ> ≥ +  

      ( | ( ) ) ( ( ) )mP L mq p Z q P p Z qυ υ= > ≥ + ≥ +  

      ( | ( ) ) ( ( ) )mP L mq p Z q P p Z qυ υ≥ > = + > +  

 

The inequality holds because mL  is binomially distributed with parameter m  

and ( )p Z . 

 

Applying the lower bound (3.62) of Johnson et al. (1993), we have a lower bound for 

the conditional probability ( | ( ) )mP L mq p Z q υ> = + 1/ 2≥ .Substituting the result into 

the lower bound, we have 

 

[ { }]mE I L mq>
1 ( ( ) )
2

P p Z q υ≥ > +   

2 11 ( )1 ( )
2

b m q
P Z

ρ υ
ρ

−+ − Φ +
= >   

                
2 11 ( )1 {1 ( )}

2 Z
b m q

F
ρ υ
ρ

−+ − Φ +
= −  

 

where ( )ZF ⋅  denotes the cdf of Z  and 
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2 11 ( )1 1liminf log [ { }] liminf log{1 ( )}m Zm m

b m q
E I L mq F

m m
ρ υ
ρ

−

→∞ →∞

+ − Φ +
> ≥ −  

 

Applying l’Hospital’s rule, we obtain 

  

2 11 ( )1liminf log{1 ( )}Zm

b m q
F

m
ρ υ
ρ

−

→∞

+ − Φ +
−  

2
1 1

2
1 1
2

1 (1 / )
2 2liminf

1 (1 / )
( )

2

q q

m
q q

b m
b m

b m
m

ρ ξ δ ξ ρ
ρ

ρ ρ ξ δ ξ
λ

ρ

− −

→∞
− −

− − +
+

= −
− − +

Φ

 

2
1 1

2 2
1 1 1 1
2 2

1 (1 / )
liminf{ }

1 (1 / ) 1 (1 / )
2 ( ) 2 ( )

2 2

q q

m
q q q q

b mb
b m b m

m m

ρ ξ δ ξ ρ
ρ ρ ξ δ ξ ρ ξ δ ξ

ρ λ λ
ρ ρ

− −

→∞
− − − −

− − +
= − +

− − + − − +
Φ Φ

 

2

22
b
ρ

= −  

 

which proves the formulation. 

 

Next we show that 

 

          
2

2
2

1 ˆlimsup log {( ) }ET
m

aE p
m ρ→∞

≤ −  

 

Write 2ˆ{( ) }ETE p  as 

        

2ˆ{( ) } { { }exp{ 2 ( ; ) 2 ( ( ; ), ) 2 2 ln ( )}}
mET m m m L m m Z mE p E I L mq Z q L Z q Z t Z M tθ ψ θ= > − + − +
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         2 2

2
4 [exp( 2 ( ; ) 2 ( ( ; ), )) 2 } ( )]

1mm L m m m mE Z q mq Z q Z t Z t tλθ ψ θ
λ

≤ − + − + Φ
+

 

2 2

2
4 {exp{2 ( ) 2 }} ( )

1
m m m mE F Z t Z t tλ

λ
≤ − + Φ

+
 

 

where ( ) ( ; ) ( ( ; ), )
mm m L mF z z q mq z q zθ ψ θ= − + . 

 

By differentiation, we know that ( )mF ⋅  is an increasing and concave function, thus we 

know for any mt ∈ℜ   

 

        '( ) ( ) ( )( )m m m m m mF z F t F t z t≤ + −  

 

and  

 

        2 2 ' 2

2
ˆ{( ) } 4 ( ) {exp{2( ( ) ( )( )) 2 }}

1
ET m m m m m m m mE p t E F t F t Z t t Z tλ

λ
≤ Φ + − − +

+
 

                 
2

4exp{2( ( ) )}
2
m

m m
tF t≤ −  

 

The second inequality holds because ' ( )m m mF t t=  and ( ) 1Φ ⋅ ≤ . Consider  

 

        
2 11 ( )

m
b m q

z
ρ

ρ

−+ − Φ
=  
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Thus we have ( )mp z q=  and ( )mp z q≥  for any mz z≥ . Next, we show that for small 

0ς > , we can find 1m  that ( (1 ), )m m mt z zς∈ −  if 1m m> . It suffices to show 

 

        ' ( (1 )) (1 ) 0m m mF z zς ς− − − >  and ' ( ) 0m m mF z z− <  

 

We know that the second inequality holds because ( )mp z q=  and  

 

'

2 2

( )( ) ( ) ( )
( )(1 ( )) 1 1

m
q p z z b mF z m

p z p z
ρ ρφ

ρ ρ
− −

=
− − −

 

 

where ( )φ ⋅  denotes the density function of standard normal random variable. For the 

first inequality, we get 

 

        '

2 2

( (1 )) (1 )( (1 )) ( ) ( )
( (1 ))(1 ( (1 ))) 1 1

m m
m m

m m

q p z z b mF z m
p z p z

ς ρ ς ρς φ
ς ς ρ ρ

− − − −
− =

− − − − −
 

 

By l’Hospital’s rule, we thus have 

 

        

2

( (1 )) 1( )
( (1 ))(1 ( (1 ))) (1 )( )

1

m

m m m

q p z O
p z p z b m z

ς
ς ς ρ ς

ρ

− −
=

− − − − −
Φ −

−

  

 

Applying the property that ( ) / ( ) ~x x xφ Φ −  if x →∞ , thus we conclude that 
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         ' 3/ 2( (1 )) ( )m mF z O mς− =  

 

Since 1/ 2( )mz O m= , we obtain the first inequality when m  is large enough.  

Substituting the result into the upper bound of 2ˆ{( ) }ETE p , we then obtain 

 

          
2

2ˆ{( ) } 4exp{2( ( ) )}
2
m

ET m m
tE p F t≤ −  

2( (1 ))4exp{2( ( ) )}
2

m
m m

zF z ς−
≤ −  

 

The second inequality holds because ( )mF z  is increasing function. Due to ( ) 0m mF z = . 

we then get 

           2 21 1ˆlimsup log {( ) } limsup ( (1 ))ET m
m m

E p z
m m

ς
→∞ →∞

−
≤ −  

                               
2

2

1limsup { ( )}
m

b m o m
m ρ→∞

−
≤ +  

                               
2

2

b
ρ

= −  

 

By Jensen’s inequality, we complete the proof.   

 

(b) 0λ < : 

 

First, we show the lower bound 
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2

2
2

1liminf log [ { }] (1 )
2mm

bE I L mq
m

λ
ρ→∞

> ≥ − +  

 

Define  

 

            
2 11 ( )

( )m
b m q

z
ρ υ

υ
ρ

−+ − Φ +
=  

 

By the lower bound (3.62) of Johnson et al. (1993), we have 

 

[ { }]mE I L mq> ( | ( ) ) ( ( ) )mP L mq p Z q P p Z qυ υ= > ≥ + ≥ +  

( | ( ) ) ( ( ) )mP L mq p Z q P p Z qυ υ≥ > = + > +  

2

1 ( ( ) )
2 1

Z b mP qρ υ
ρ

−
= Φ ≥ +

−
 

0
1 ( ( ) ( ) )
2 m mP z Z zυ υ κ≥ ≤ ≤ +  

 

for any 0, 0υ κ > . Note that ( ) 0mz υ >  for m  sufficiently large. Hence, the 

probability is lower bounded by 

 

0 0 0( ( ) ) ( ( ( ) ))m mz zκ φ υ κ λ υ κ+ Φ +  

 

and we obtain  
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1liminf log [ { }]mm
E I L mq

m→∞
>  

0 0
1 1liminf log ( ( ) ) liminf log ( ( ( ) ))m mm m

z z
m m

φ υ κ λ υ κ
→∞ →∞

≥ + + Φ +  

 

Note that 

 

2
0 0

1 1 1liminf log ( ( ) ) liminf { ( ( ) ) }
2m mm m

z z
m m

φ υ κ υ κ
→∞ →∞

−
+ = +  

2

2

1liminf { ( ( ))}
2m

b m o m
m ρ→∞

−
= +  

2

22
b
ρ

= −  

 

Applying l’Hospital’s rule and the property that ( ) / ( ) ~x x xφ Φ −  as x →∞ , we have 

 

0
1liminf log ( ( ( ) ))mm

z
m

λ υ κ
→∞

Φ + 0
1liminf log ( | | ( ( ) ))mm

z
m

λ υ κ
→∞

= Φ − +  

0

0

( | | ( ( ) )) | |liminf
( | | ( ( ) )) 2

m

m
m

z b
z m

φ λ υ κ λ
λ υ κ ρ→∞

− + −
=

Φ − +
 

0

0

(| | ( ( ) )) | |liminf
( | | ( ( ) )) 2

m

m
m

z b
z m

φ λ υ κ λ
λ υ κ ρ→∞

+ −
=

Φ − +
 

0
| | 1liminf {| | ( ( ) ) ( )}

2 mm

b z o m
m

λ λ υ κ
ρ→∞

−
= + +  

2 2

22
b λ
ρ

−
=  

 

Combining all results, we get the formulation. 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

 30

 

Next we show the upper bound  

 

             
2

2
2

1limsup log [ { }] (1 )
2m

m

bE I L mq
m

λ
ρ→∞

> ≤ − +  

 

We know 

 

2[ { }] 2 { ( ) exp{ ( ; ) ( ( ; ), ) / 2}}
mm m L m m mE I L mq E Z Z q mq Z q Z t Z tλ θ ψ θ> ≤ Φ − + − +  

22 { ( ) exp{ ( ) / 2}}m m mE Z F Z t Z tλ≤ Φ − +  

' 22 { ( )exp{ ( ) ( )( ) / 2}}m m m m m m mE Z F t F t Z t t Z tλ≤ Φ + − − +  

22exp{ ( ) / 2} { ( )}m m mF t t E Zλ≤ − Φ  

22exp{ ( ) / 2} { ( ( ))}m m m mF t t E Z tλ= − Φ +  

  

For any 0ζ > , if m  is large sufficiently, we have 

 

{ ( ( ))} [ { 0} ( ( ))] [ { 0} ( ( ))]m m mE Z t E I Z Z t E I Z Z tλ λ λΦ + = ≥ Φ + + < Φ +  

              1 1( )(1 2 ) ( )(1 )
2 2m mt tλ ζ λ ζ≤ Φ − + Φ +  

( )(1 )
2mt
ζλ≤ Φ −  

 

The inequality holds because of second mean value theorem for integral, so we know 
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2

[ { }] 2(1 )exp{ ( ) } ( )
2 2

m
m m m m

tE I L mq F t tζ λ> ≤ − − Φ  

 

By the similar argument of mz  and mt , for any 0ς > , if m  is sufficiently large , we 

get 

 

            
2( (1 ))[ { }] 2(1 ) ( (1 )) exp{ }

2 2
m

m m
zE I L mq zζ ςλ ς −

> ≤ − Φ − −  

 

and 

 

            1limsup log [ { }]m
m

E I L mq
m→∞

>  

21 1 ( (1 ))limsup log ( (1 )) limsup
2

m
m

m m

zz
m m

ςλ ς
→∞ →∞

− −
≤ Φ − +  

                                

For the second term, we know that  

 

             
2 2

2

1 ( (1 )) 1limsup limsup { ( )}
2 2

m

m m

z b m o m
m m

ς
ρ→∞ →∞

− − −
= +  

                               
2

22
b
ρ
−

=  

 

Applying l’Hospital’s rule and the property that ( ) / ( ) ~x x xφ Φ −  as x →∞ , we have 

 

1limsup log ( (1 ))m
m

z
m

λ ς
→∞

Φ −
1limsup log ( | | (1 ))m

m
z

m
λ ς

→∞
= Φ − −  
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( | | (1 )) | |limsup
( | | (1 )) 2

m

m m

z b
z m

φ λ ς λ
λ ς ρ→∞

− − −
=

Φ − −
 

(| | (1 )) | |limsup
( | | (1 )) 2

m

m m

z b
z m

φ λ ς λ
λ ς ρ→∞

− −
=

Φ − −
 

| | 1limsup {| | (1 ) ( )}
2 m

m

b z o m
m

λ λ ς
ρ→∞

−
= − +  

2 2

22
b λ
ρ

−
=  

 

Combining those inequalities, we obtain 

 

            
2 2

2

1 (1 )limsup log [ { }]
2m

m

bE I L mq
m

λ
ρ→∞

− +
> ≤  

                            

By the limsup and liminf, we have 

 

2
2

2

1lim log [ { }] (1 )
2mm

bE I L mq
m

λ
ρ→∞

> = − +  

 

which complete the first part of proof.                                            

 

Next, we show  

 

            
2 2

2
2 2

1 1 2ˆliminf log {( ) } ( )
1ETm

bE p
m

λ
ρ λ→∞

+
≥ −

+
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For any 0δ >  and let 
2 11 ( )

( )m
b m q

z
ρ δ

δ
ρ

−+ − Φ −
− = , we have 

 

2 2

2
ˆ[( ) ] 4 ( ) [ { }

1
ET m mE p t E I L mqλ

λ
= Φ >

+
 

2exp{ 2 ( ; ) 2 ( ( ; ), ) 2 }]
mm m L m m mZ q L Z q Z t Z tθ ψ θ− + − +  

         2

2
4 ( ) [ { ( )}

1
m mt E I mq L m qλ δ

λ
≥ Φ < < +

+
 

                  2exp{ 2 ( ; ) ( ) 2 ( ( ; ), ) 2 }]
mm L m m mZ q m q Z q Z t Z tθ δ ψ θ− + + − +  

         2

2
4 ( ) [ { ( )} { ( ) }

1
m mt E I mq L m q I p Z qλ δ

λ
≥ Φ < < + ≤

+
 

                  2exp{ 2 ( ; ) ( ) 2 ( ( ; ), ) 2 }]
mm L m m mZ q m q Z q Z t Z tθ δ ψ θ− + + − +  

         2

2
4 ( ) [ { ( )} | ( ) ]

1
m mt E I mq L m q p Z qλ δ

λ
= Φ < < + ≤

+
 

                      2[ { ( ) }exp{2 ( ( )) 2 }]m mE I q p Z q mG p Z t Z tδδ− ≤ ≤ − +  

         2

2
4 ( ) [ { ( )} | ( ) ]

1
m mt E I mq L m q p Z qλ δ

λ
= Φ < < + ≤

+
 

                      2
,[ { }exp{2 ( ( )) 2 }]m m m mE I z Z z mG p Z t Z tδ δ≤ ≤ − +  

         2

2
4 ( ) [ { ( )} | ( ) ]

1
m mt E I mq L m q p Z qλ δ

λ
≥ Φ < < + ≤

+
 

                               2
,exp{2 ( ( )) 2 }m m m mmG p z t z tδ δ − +  

 

Here ( ( )) 2 ( ; ) ( ) 2 ( ( ; ), )
mm L mG p z Z q m q Z q zδ θ δ ψ θ= − + +  and ( ( ))G p zδ  is increasing 

function of z . The equation hold because mL  and Z  are independent given 

( )p z q≤ . The loss mL  has a binomial distribution with parameter m  and q . Hence, 
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by the central limit theorem, for m  large enough, 

 

           [ { ( )} | ( ) ]mE I mq L m q p Z qδ< < + ≤  

                                1[ {0 }]
(1 ) 4(1 )

mL mq mE I
q qmq q

δ−
= ≤ ≤ ≥

−−
 

 

and for all 0δν > , we also have ,( ( ))mG p zδ δ δν≥ − . Therefore 

 

2 2

2

1 1ˆliminf log {( ) } liminf log ( )
1

ET mm m
E p t

m m
λ
λ→∞ →∞

≥ Φ
+

 

                                         21liminf { 2 2 }m m mm
m t z t

m δν
→∞

+ − − +  

 

Apply the result, ( (1 ), )m m mt z zς∈ − for any 0ς >  if m  large enough and l’Hospital’s 

rule, by following the same steps discussed before then we get  

 

            
2 2

2
2 2

1 1 2ˆliminf log {( ) } ( )
1ETm

bE p
m

λ
ρ λ→∞

+
≥ −

+
 

 

Next, we show 

 

            
2 2

2
2 2

1 1 2ˆlimsup log {( ) } ( )
1ET

m

bE p
m

λ
ρ λ→∞

+
≤ −

+
 

 

Consider 
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2 2

2
ˆ[( ) ] 4 ( ) [ { }

1
ET m mE p t E I L mqλ

λ
= Φ >

+
 

2exp{ 2 ( ; ) 2 ( ( ; ), ) 2 }]
mm m L m m mZ q L Z q Z t Z tθ ψ θ− + − +  

         2 2

2
4 ( )exp{ 2 ( ; ) 2 ( ( ; ), ) 2 }]

1 mm m L m m mt Z q mq Z q Z t Z tλ θ ψ θ
λ

≤ Φ − + − +
+

 

2 ' 2

2
4 ( ) [exp{2 ( ) 2 ( )( ) 2 }]

1
m m m m m m m mt E F t F t Z t t Z tλ

λ
≤ Φ + − − +

+
 

         
2

2

2
4 ( ) exp{ ( ) }

21
m

m m m
tt F tλ

λ
≤ Φ −

+
 

         
2

2

2
4 ( ) exp{ ( ) }

21
m

m m m
tt F tλ

λ
= Φ −

+
 

 

Therefore we have 

 

             2 2

2

1 1ˆlimsup log {( ) } limsup log ( )
1

ET m
m m

E p t
m m

λ
λ→∞ →∞

≤ Φ
+

 

 

                                            
21limsup { ( ) }
2
m

m m
m

tF t
m→∞

+ −  

 

Apply the result, ( (1 ), )m m mt z zς∈ − for any 0ς > and l’Hospital’s rule, by following 

the same steps discussed before then we get  

 

2 2
2

2 2

1 1 2ˆlimsup log {( ) } ( )
1ET

m

bE p
m

λ
ρ λ→∞

+
≤ −

+
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Combining all results, we get the formulation. 

 

2 2
2

2 2

1 1 2ˆlim log {( ) } ( )
1ETm

bE p
m

λ
ρ λ→∞

+
= −

+
                         □ 

 

Note That Theorem 3.1 shows that the estimator is asymptotical optimal only in the 

case 0λ ≥ . With 1 2 0λ− + < < , the second moment decreases faster than the first 

moment, but not twice as fast. For 1 2λ ≤ − + , however, the second moment even 

decreases slower than the first moment. This result implies that sampling from the new 

measure is no more effective than general Monte Carlo. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-4  Comparison of rate function under 0λ <  for 
a single homogeneous model. 
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In the case 0λ < , to eliminate the linear effect of ( )mF z , using exponential twist 

method with parameter ' ( )m mF t  does not achieve the maximum utility. Review the 

properties of exponentially twisted procedure, we know that the maximal variance 

reduction occurs when parameter ' ( )m mF t  makes the mean value of *( | ; ; )f z μ σ λ  

locate at the point mt . Consider ( ; ; ) (0,1, )μ σ λ λ=  and 0λ ≥ , we have 

 

' ( )( | 0;1; )
( ) ( )

mt z
Z m

Z m Z m

M tez f z dz
M t M t

λ
∞

−∞
=∫  

2 2

2

2 2
2 2 2

2
2

2 ( ) 2 ( )
1 1 1

2 ( )
1

m m

m

t t

m m m

t

m

t e t e t

e t

λ λ λφ
λ λ λ

λ
λ

Φ +
+ + +=

Φ
+

 

2

2

2

( )
1

1 ( )
1

m

m

m

t
t

t

λφ
λ λ

λλ
λ

+= +
+ Φ

+

 

mt→  , if m →∞                         (3.6) 

 

(3.6) show that the maximal utility will happen if we apply exponential twist method to 

factor. The phenomenon coincides with that GL suggest. However, if 0λ < , the mean 

value of *( | 0;1; )f z λ  is 

 

' ( )( | 0;1; )
( ) ( )

mt z
Z m

Z m Z m

M tez f z dz
M t M t

λ
∞

−∞
=∫  
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2

2

2

| |( )
1

| |1 1 ( )
1

m

m

m

t
t

t

λφ
λ λ

λλ
λ

+= +
+ −Φ

+

 

2

1
1 mtλ

≈
+

                        (3.7) 

 

This equation holds because of ( ) /1 ( ) ~x x xφ −Φ . Observe (3.7), we know that the 

algorithm is less efficient if λ  is getting smaller. This result in (3.7) also corresponds 

with Fig. 3-4. Namely, negative λ  incurs a width which makes the variance increase. 

In the next Chapter, we will tailor the algorithm to eliminate the effect from shape 

parameter λ . 
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Chapter 4 The New Method for SN Factor  

In Chapter 3, we know that asymptotical efficiency can not be achieved because the 

nonlinear behavior of ( )mF Z  is non-negligible. This suggests that to obtain further 

variance reduction we need to address the other component of ( )mF Z . Glasserman et al 

(1999) attempted to use stratification technique to decrease variability except for linear 

part. Here, we completely limit ourselves to IS methodology to build an efficient 

algorithm. Our approach emphasizes on choosing density “form” of Z  rather than 

shifting, scaling or exponentially twisting. In the next section, we begin with a more 

general result in Chiang, Yueh, and Hsie (2007) (henceforth CYH) but for a different 

model. 

 

4.1 Extension of CYH Importance Sampling Algorithm 

The key idea in CYH is to find a simple alternative characterization of default 

event. To motivate the algorithm we take, observe the following proposition: 

 

Proposition 4.1 

Consider a single factor model where 1ic = , ib b=  and iρ ρ= ; Random variables 

Z  and iε  follow (0,1, )SN λ  and (0,1,0)SN  respectively. Then the set { }mL mq>  

is equivalent to the event [ 1]{ }mqZ H +>  if [ 1]mqH +  is denoted as [ 1]mq+ th order 

statistics of 1{ }m
i iH = , where  

 

21 i
i

b mH ρ ε
ρ

− −
=  
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Proof: Since 

 

{ } 1mI L mq> =  

{ }i
i

I X b m mq⇔ > >∑  

21
{ }i

i

b m
I Z mq

ρ ε
ρ

− −
⇔ > >∑  

[ 1]{ } 1mqI Z H +⇔ > =  

 

Hence, the event { }mL mq>  is equivalent to the event [ 1]{ }mqZ H +> .          □ 

 

Proposition 4.1 indicates a simple alternative characterization for the event 

{ }mL mq> . It provides a simpler way to ensure that for every replication where the set 

we interest always takes place. By Proposition 4.1, we create an estimator of single SN 

factor model as following 

 

 { }m rI L mq L>  (4.1) 

 

where [ 1]1 ( )r Z mqL F H += −  denotes the likelihood ratio and ZF  is the cumulative 

density function of Z . Clearly, (4.1) is not restricted to what the distribution of Z  is. 

This means that the algorithm is allowed to general case. We will consider behavior of 

(4.1) in the following theorem. By analyzing the asymptotical performance, we can find 

a useful guideline for choosing appropriate IS density of Z . 
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Theorem 4.1 

Consider a single factor model where 1ic = , ib b= , iρ ρ=  and ( , )iZ ε  follow the 

same distribution assumption in Proposition 1, then (4.1) has bounded relative error. 

 

Proof: First, we exploit the result shown in Lucas et al (2003). Assume that jS  is a 

latent variable which obeys the general factor model 

 

( , )j jS g f ε=  

 

where f  is common factor, jε  is specific risk factor, and ( , )g ⋅ ⋅  defines the 

functional form of the factor model. Lucas et al (2003) used the Theorem 12.13 of 

Williams (1991) and indicate that 

 

.
* *

1

1lim { } ( | )
n a s

j jn
j

I S s P S s f
n→∞

=

< → <∑  

 

By the same argument as Lucas et al (2003), we then have 

 

.
lim [ { }| ]

a s
m

im

L E I X b m Z
m→∞

→ >   

 

So, we have 
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[ { }] ( [ { } | ] )m iE I L mq P E I X b m Z q> → > >  

1 2(1 ) 1
( )

b m q
P Z

ρ
ρ

−−Φ − −
= >  

1 2(1 ) 1
1 ( )Z

b m q
F

ρ
ρ

−−Φ − −
= −  

 

The second moment of (4.1) is written as (by Theorem 1.10 of Shao (1998) and 

Theorem 4.3.1 of Sen and Singer (1993)) 

 

2[ { } ]m rE I L mq L>  

2
[ 1][ { }(1 (( ) )) ]m Z i mqE I L mq F H += > −  

2
[ ] 21 ( )

{ }(1 ( )i m mq
m Z

b m
E I L mq F

ρ ε

ρ
−

⎡ ⎤− −⎢ ⎥= > −⎢ ⎥
⎢ ⎥⎣ ⎦

 

1 2
2(1 ) 1 (1)

(1 ( ))Z
b m q o

F
ρ

ρ

−−Φ − − +
≤ −  

 

Therefore, we have 

 

( { } )
limsup

[ { }]
m r

m m

Var I L mq L
E I L mq→∞

>

>
 

2 2[ { } ] [ { } ]
limsup

[ { }]
m r m r

m m

E I L mq L E I L mq L
E I L mq→∞

> − >
=

>
 

<∞                                                                 □ 
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The method works well for portfolio whose tail behavior is dominated by a “key” 

random variable. To show that the results have content, we give two specific examples. 

For the first example, consider the model  

 

2( 1 )i i i iX Z
S
ν

ρ ρ ε= + −         , 1, ,i m= …  

 

Here Z  is a standard normal random variable, iε  are i.i.d standard normal random 

variables, and S  is chi-square distribution with r  degrees of freedom. Applying the 

key idea behind Proposition 1, we can find the set [ 1]{ ( ) }i mqS H +<  where 

2( 1 ) /i i i iH Z b mρ ρ ε= + − . It is the simpler expression of { }mL mq> . Note that the 

sample of Z  is generated from the original distribution. By a analogous algorithm in 

section 3.3, we get a efficient estimation of { }mL mq> . In this model, the random 

variable S  plays a key role to vanish variability. Changing the measure of S  is 

sufficient to achieve substantial variance reduction. 

 

Table 4-1：Comparison of different methods for 250m = ; 12ν = ; 0.25q = . 
( )mP L mq>  

Method 
Algorithm 1 

(Runs: 45 10× ) 

CYH Method 

(Runs: 45 10× ) 

ρ  Prob. est .S E  Prob. est .S E  

.V R  

0.1 68.58 10−×  71.63 10−× 68.53 10−×  71.36 10−×  1.43 

0.2 69.74 10−×  71.85 10−× 69.75 10−×  72.04 10−×  0.82 

0.3 51.18 10−×  74.13 10−× 51.18 10−×  73.18 10−×  1.68 

0.4 51.39 10−×  78.61 10−× 51.42 10−×  74.93 10−×  3.05 
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Table 4-1 shows the performance of two estimators. Algorithm 1 is the suggestion 

of Bassamboo et al (2008) and we know that it has the bounded relative error. In the last 

column, we list the sample variance ratio .V R  

 

l
l

2 4
1

42

[ . ( )] 5 10.
5 10[ . ( )]

A

CYH

S E pV R
S E p

×
= ×

×
  

 

, where l
1Ap  refers to the estimator of Algorithm 1 and l

CYHp  refers to the estimator of 

CYH method. We find the fact that l
1Ap  and l

CYHp  have analogous performance of 

simulation in Table 4-1. But, note that the implementation of the new method is more 

easily. 

 

The next example illustrates the normal case discussed in Glasserman (2004). All 

obligors are divided into two blocks. The first block consists of 1m  obligors whose 

marginal default probability is 1p . This block is dominated by the factor 1Z  and has a 

common loading 1a . The second block comprises the last 1m m−  obligors. All 

obligors in the second block have marginal default probability 2p  and affected only by 

factor 2Z  with a common loading 2a . This model is 

 

2
1 1 11i iX a Z a ε= + − , 11, ,i m= …  

2
2 2 21j jX a Z a ε= + − , 1 1, ,j m m= + …  
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Set 
1

1
1 1

1
{ (1 )}

m

i
i

N I X p−

=

= > Φ −∑  and 
1

1
2 2

1

{ (1 )}
m

j
j m

N I X p−

= +

= > Φ −∑ , the equivalent set 

then is written as ,i
i

E A∪ where , 1 2 1 2 1{( , ) | , }iE z z N N N i= + ≥ =A A .  

 

Table 4-2 shows the performance of general Monte Carlo and the CYH method. 

Note that variance reduction is measured relative to general Monte Carlo simulation. 

The CYH method provides an excellent performance than general Monte Carlo. The 

behavior of loss distribution seems to be successfully captured by the CYH method. 

 

Table 4-2：Comparison for 1 1 2 1 2( , ; ; ; ; ) (1,000;150;0.8;0.7;0.05;0.001)m m a a p p =  

( )P L > A  

 Monte Carlo (Run 510 ) CYH Method (Run 310 ) 
A  

Estimation S.E Estimation S.E 
.V R  

90 21.36 10−×  43.66 10−×  21.41 10−×  58.26 10−×  1965 

110 36.71 10−×  42.57 10−×  36.99 10−×  54.65 10−×  3073 

130 32.63 10−×  41.61 10−×  32.69 10−×  52.11 10−×  5947 

150 43.80 10−×  56.16 10−×  44.46 10−×  62.92 10−×  44261 

 

Although using order statistic increases simplicity, the flexibility is restricted 

simultaneously. For instance, if all the exposures ic  are different from each other, then 

the sorting and partitioning procedures make the method time consuming. Obviously, 

the original problem in estimating rare event is transferred into another one. For more 

discussions about determination of key random variable is referred in Lucas et al 

(2003). 
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4.2 The Proposed algorithm for Skew Factor Model 

Note the conclusion in Theorem 4.1, we know the likelihood rL  has an excellent 

utility in variance reduction. Although the new method is inflexible to tackle 

inhomogeneous portfolio, it provides a way to build IS density for Z . In the following, 

we will introduce the strategy to search an effective IS algorithm. 

 

Consider the result described in section 3.3, we know that vanishing linear 

variability of ( )mF z  can increase the efficiency of simulation except for 0λ< . 

Therefore, the procedure of eliminating the linear part of ( )mF z  is essential. This 

means the new likelihood ratio ( ) ( | 0;1; ) / ( )New
r NewL z f z f zλ=  must contain the 

function exp( )mt z− , namely 

 

( ) exp( )New
r mL z t z∝ −  (4.2) 

 

Furthermore, in the second part of Theorem 3.1, we find that the nonlinear behavior of 

( )mF z  seriously effect the efficiency of variance reduction. To eliminate this effect 

from the nonlinear part, we consider the limit regime rather than integral itself. We 

focus on modifying the other part of density of Z  but for vanishing nonlinear part of 

( )mF z  directly. With the definition of asymptotically optimal, we need to find a 

likelihood ratio which decrease as fast as possible if we apply IS to Z .  

 

In Theorem 4.1, rL  is of the bounded relative property. It is reasonable to utilize 
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asymptotical decay rate of rL  to create appropriate IS density. In multifactor and 

inhomogeneity case, however, getting a likelihood ratio like rL  is difficult. So we turn 

attention to setting where expectation of likelihood ratio decays in the same rate of rL . 

In other words, we expect the following equation holds 

 

loglim 1
log [ ( )]

r
Newm
r

L
E L z→∞

=    (4.3)               

 

Once we find a new ( )New
rL z  satisfying (4.2) and (4.3), the corresponding IS density is 

then determined. Note that the combinative way leads to not only vanishing the linear 

effect but considering the nonlinear part of ( )mF z  simultaneously. 

 

    To represent our procedure precisely, we consider the setting where 

~ (0,1, )Z SN λ  and 0λ< . Clearly, it is difficult to directly calculate 

 

2

[ 1]
1

( )
2 ( ) ( )

i
mq

b mrL t t dtρ ε
ρ

φ λ
+

∞

− −= Φ∫  

 

If m  is large sufficiently, an approximation for the integral (e.g, Shao 1998, Chap. 1 

and Sen and Singer 1993, Chap. 4) suggests that 

 

1 2( ) 1~ 2 ( ) ( )b m qrL t t dtρ
ρ

φ λ−

∞

+Φ − Φ∫  
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Therefore, for any small value δ , rL  is simplified into  

 

2 ( ( )) ( ( ))r m mL t o m t o mδφ λ= + Φ +  

 

The last equation holds because of ( )mt O m= . This discussion of mt  is shown in GL. 

Then, the associated new IS density N
Newf  is written as  

 

( ) ( )N
New mf z z tφ= −                                        (4.4) 

 

Note that the choice of IS density makes [ ( )]New
rE L z  satisfy (4.3), that is  

 

( ) ( )[ ( )] 2 ( )
( )

New
r m

m

z zE L z z t dz
z t

φ λ
φ

φ

∞

−∞

Φ
= −

−∫  

         
2

2 exp( ) ( ) ( )
2
m

m m
tt z z z t dzλ φ

∞

−∞
= − + Φ −∫  

2

2exp( ( ) )
2
m

m m
tt tξ= − + + ( ( ))mtλ ξΦ +  

~ rL  

 

where ξ  denotes a constant. The last equation holds because of the second mean value 

theorem for integral. Note that the choice of an appropriate IS density in such procedure 

is not unique. For instance, the following density 

 

( ) 2 ( ) (| | ( ))N
New m mf z z t z tφ λ= − Φ +  
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is another feasible one. By the similar argument, a appropriate IS density for 0λ≥  is  

 

2( ) ( ) ( )
( | 0;1; )

mt zP
Newf z e z z

M t
φ λ

λ
= Φ  (4.5) 

 

Especially, when 0λ= , P
Newf  becomes the IS density GL suggest. For notational 

simplicity, considering ( , ) (0,1)μ σ = , we build our algorithm as following: 

 

1. Calculate 2arg max{ ( ) / 2}m m
t

t F t t= − . 

2. Check value λ  of Z , choose (4.5) as IS density of Z  if 0λ≥  and (4.4) 

otherwise. 

3. Set mt  to the IS density. 

4. Sampling Z  and calculate the product ( )New
rL z  of each likelihood ratio. 

5. Compute ( ; )m z qθ . 

6. Return the estimate { }m rI L mq L> �  

 

where ( ; ) ( ( ; ), )m m m mZ q L Z q Z New
r rL e Lθ ψ θ− +=�  is the combined likelihood ratio. If we repeat step 

1 to 6 $  times, an estimator ˆ Newp  can be constructed by averaging the $  values of 

the estimates, we have a estimation for ( )mP L mq>  under skew normal copula model. 

Once we have selected a new parameter vector mt  which satisfies 
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1arg max{ ( ) }
2

T
m m

t
t F t t t= − , 

 

choosing (4.4) or (4.5) and component of mt  for single IS density; we can easily extend 

the single factor to multiple factors. 
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4.3 Asymptotic Optimality 

We now consider the performance of the estimator ˆ Newp . The strength of our proposed 

lies in its variance reduction efficiency established by the following theorem: 

 

Theorem 4.2 

Consider the same assumption in Theorem 4.1, then 

(a) For 0λ≥  

2

2

1lim log [ { }]
2mm

bE I L mq
m ρ→∞

> = −  

              
2

2
2

1 ˆlim log [( ) ]Newm

bE p
m ρ→∞

= −  

(b) For 0λ<  

2 2

2

1 (1 )lim log [ { }]
2mm

bE I L mq
m

λ
ρ→∞

+
> = −  

              
2 2

2
2

1 (1 )ˆlim log [( ) ]Newm

bE p
m

λ
ρ→∞

+
= −  

 

Proof: For 0λ ≥ , the proof is the same as (a) in Theorem 3.1. We consider the part 

(b) directly. 

 

(b): First we show that  

 

2 2

2

1 (1 )liminf log [ { }]
2mm

bE I L mq
m

λ
ρ→∞

+
> = −  

 

By the similar argument in Theorem 3.1, we know for arbitrary 0τ>  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

 52

 

[ { }] ( | ( ) ) ( ( ) )m mE I L mq P L mq p Z q P p Z qυ υ> = > = + > +  

                        
11 ( )( )

2
b m qP Z υ

ρ

−+Φ +
≥ >  

( ) ( ( ))m mz zφ τ λ τ≥ + Φ +  

 

where 1{ ( )}/mz b m q υ ρ−= +Φ + . We have 

 

1 1liminf log [ { }] liminf log ( )m mm m
E I L mq z

m m
φ τ

→∞ →∞
> ≥ +  

1liminf log ( ( ))mm
z

m
λ τ

→∞
+ Φ +  

 

Note that  

 

2

2

1liminf log ( )
2mm

bz
m

φ τ
ρ→∞

+ = −  

 

Applying the property ( ) / ( ) ~x x xφ Φ −  as x →∞ , we get 

 

1 | | ( ( ))liminf log ( ( )) liminf
2 ( ( ))

m
mm m

m

b zz
m z

λ φ λ τλ τ
ρ λ τ→∞ →∞

− +
Φ + =

Φ +
 

| | (| | ( ))liminf
2 ( | | ( ))

m

m
m

b z
m z
λ φ λ τ

ρ λ τ→∞

− +
=

Φ − +
 

| |liminf {| | ( ) ( )}
2 mm

b z o m
m
λ λ τ

ρ→∞

−
= + +  



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

 53

2

22
bλ
ρ

= −  

 

Next, we show 

 

2 2
2

2

1 (1 )ˆlimsup log [( ) ]New
m

bE p
m

λ
ρ→∞

+
≤ −  

 

By the similar discussion in Theorem 3.1, we have 

 

2 2ˆ[( ) ] [ { } ]New m rE p E I L mq L= > �  

2 24 [exp{2 ( ) } ( )]m m mE F Z t Z t Zλ≤ − + Φ  

2 24exp{2 ( ) } [ ( )]m m mF t t E Zλ≤ − Φ  

2 24exp{2 ( ) } [ ( )]m m m mF t t E Z tλ λ≤ − Φ +  

 

Using the second mean value theorem for integral, for a small value ζ , we get 

2 21 1ˆlimsup log [( ) ] limsup { (1 )}New m
m m

E p z
m m

ζ
→∞ →∞

≤ − −  

21limsup log [ ( )]m
m

E Z t
m

λ λ
→∞

+ Φ +  

2

2

b
ρ

=− 21limsup log ( ( ))m
m

t o m
m

λ
→∞

+ Φ +  

 

Observe that  
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21 2limsup log ( ( )) limsup log ( ( ))m m
m m

t o m z o m
m m

λ λ
→∞ →∞

Φ + = Φ +  

                         | |limsup {| | ( )}m
m

b z o m
m
λ λ

ρ→∞

−
= +  

                         
2 2

2

b λ
ρ

= −  

 

Combining all the result and applying Jensen’s inequality we complete the proof.   □ 

 

This result indicates that our proposed IS algorithm should be effective in estimating 

loss distribution. Even though the assumption in Theorem 4.2 is for homogeneous single 

factor model, the proposed algorithm is practicably applied to multifactor and 

inhomogeneity cases. Note that our proposed algorithm does not require what density 

the factor Z  should follow. When the specific factors are of arbitrary distribution, we 

need only to modify the associated ( )Newf z  to satisfy equation (4.3). In next chapter, 

our numerical results for skew normal factor model also confirm the expectation. 
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Chapter 5 Implementation Issues 

In this chapter we compare performance of the new estimator ˆ Newp  with general Monte 

Carlo simulation. We investigate sensitivity to λ , b , ρ  and q . The broad 

conclusions are that the new algorithm provides significant improvement over the 

performance of general Monte Carlo simulation. This improvement increase as the 

event becomes rare. This result supports our theoretical conclusions that the sample 

variance ratio, as measured by the ratio of the standard deviation of general Monte 

Carlo simulation to the standard deviation of ˆ Newp , remains well behaved as the 

probability of large losses becomes increasingly rare. 

 

For implementation of new algorithm, (4.4) is easily generated using the inverse 

transform method. However, the cumulative distribution associated with (4.5) does not 

have a closed form. It is not straightforward to use the inverse transform methods to 

generate samples from this distribution. Instead, we use a root-finding method of 

numerical integration to generate samples we need. 

 

Our first example is a single factor portfolio of 1,000m =  and ~ (0,1, )Z SN λ . 

The model parameters are chosen to be 0.4q = , 0.0345b = , 0.3ρ=  and exposure 

1ic = . We generate 5,000 samples for proposed algorithm and 100,000 samples for 

general Monte Carlo simulation. Table 5-1 reports samples variance ratio for several 

values of λ  in estimating ( )mP L mq> . 
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Table 5-1: Variance Reduction for decreasing λ . 

( )mP L mq>  

Method 
General Monte Carlo 

(Runs: 51 10× ) 

ˆ Newp  

(Runs: 35 10× ) 

λ  Prob. est .S E  Prob. est .S E  

.V R  

1.0 34.71 10−×  42.17 10−×  34.82 10−×  41.15 10−×  65 

0.5 34.46 10−×  42.10 10−×  34.63 10−×  41.03 10−×  82 

-0.5 42.70 10−×  55.19 10−×  43.04 10−×  68.49 10−×  748 

-1.0 51.00 10−×  69.98 10−×  69.42 10−×  73.49 10−×  16281 

 

At small value of λ , the variance ratio becomes very large. The performance of 

ˆ Newp  is significantly better than general Monte Carlo simulation. The improvement is 

substantial especially for negative value of λ . Note that the variance ratio rapidly 

changes when negative value λ  varies slowly.  

          

Table 5-2: Variance Reduction for increasing b . 

( )mP L mq>  

Method 
General Monte Carlo 

(Runs: 51 10× ) 

ˆ Newp  

(Runs: 35 10× ) 

b  Prob. est .S E  Prob. est .S E  

.V R  

0.0345 34.71 10−×  42.17 10−×  34.82 10−×  41.15 10−×  65 

0.0375 31.62 10−×  41.27 10−×  31.76 10−×  54.53 10−×  153 

0.0405 45.61 10−×  57.48 10−×  45.65 10−×  51.54 10−×  469 

0.0435 41.50 10−×  53.87 10−×  41.62 10−×  64.62 10−×  1399 

 

Table 5-2 shows the performance of the proposed algorithm as b  changes. Again 
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we set 1,000m = , 0.4q = , 1λ= . The factor loading ρ  is kept fixed at 0.3, each 

1ic = . We generate 5,000 samples for proposed algorithm and 100,000 samples for 

general Monte Carlo simulation. In last column, we observe that all performances are 

significantly better than general Monte Carlo simulation. The variance ratio improves as 

b  increases. 

 

Table 5-3 shows performance of the proposed algorithm as factor loading ρ  

changes. In this case, the parameters of model are 1,000m = , 0.4q = , 1λ=− , 

0.0345b =  and 1ic = . We generate 5,000 samples for proposed algorithm and 

100,000 samples for general Monte Carlo simulation. All results perform significantly 

better than general Monte Carlo simulation, especially when ρ  decrease. 

 

Table 5-3: Variance Reduction for increasing ρ . 

( )mP L mq>  

Method 
General Monte Carlo 

(Runs: 51 10× ) 

ˆ Newp  

(Runs: 35 10× ) 
ρ  Prob. est .S E  Prob. est .S E  

.V R  

0.3 51.00 10−×  69.98 10−×  69.42 10−×  73.49 10−×  16281 

0.35 41.01 10−×  53.16 10−×  56.16 10−×  62.05 10−×  4756 

0.4 43.10 10−×  55.56 10−×  42.73 10−×  68.58 10−×  840 

0.45 47.01 10−×  58.36 10−×  47.76 10−×  52.41 10−×  241 

 

Our next example is a multifactor portfolio of 1,000m =  and ~ (0,1, )j jZ SN λ , 

1, ,5j = " . Each factor jZ  has shape parameter jλ  which is generated uniformly 
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from the interval (-1,0) The exposures ic  is kept fixed at 1; ib  and ija  are distributed 

uniformly from (0.02, 0.07) and (0, 1/ 5 ) respectively. Table 5-4 compares the 

performance of the proposed algorithm with general Monte Carlo simulation as q  

change. The general Monte Carlo simulation results are based on 50,000 replications 

whereas the number of IS replications is 1,000. When the loss level is small, the 

proposed algorithm is a bit better than general Monte Carlo simulation. At large values 

of q , the { }mL mq>  becomes rare and then the variance ratio becomes large. The 

improvement is obvious for q  in the range of 0.45 to 0.5.  

 

Table 5-4: Variance Reduction for increasing q . 

( )mP L mq>  

Method 
General Monte Carlo 

(Runs: 55 10× ) 

ˆ Newp  

(Runs: 31 10× ) 
q  Prob. est .S E  Prob. est .S E  

.V R  

0.35 31.90 10−×  41.94 10−×  31.91 10−×  41.79 10−×  59 

0.40 48.01 10−×  41.26 10−×  47.55 10−×  57.22 10−×  153 

0.45 42.20 10−×  56.63 10−×  42.72 10−×  52.59 10−×  325 

0.50 41.00 10−×  54.47 10−×  41.00 10−×  51.09 10−×  827 
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Chapter 6 Concluding Remarks 

In this thesis, we have proposed a new algorithm for estimation of tail probability in 

skew normal copula model. We started with the case of applying exponential twist 

technique to the default random variables conditional on common factors. However, GL 

show that the conditional IS estimator does not achieve asymptotical optimal unless the 

correlation between obligors is very weak. Therefore, GL further suggest shift the mean 

of underlying factor to eliminate the residual variability. This procedure makes the 

algorithm asymptotical optimal. 

 

Different from the normal copula model, however, the leptokurtic and asymmetric 

characters of skew normal result in the situation where second moment of IS estimator 

converge in unintelligible decreasing rate. So, to choose IS density of underlying factors 

becomes intricate. To improve the efficiency of simulation, we intuitively consider the 

usual exponential twist to eliminate the linear part of ( )mF z . Surprisingly, using 

exponential twist does not guarantee variance reduction. A way to speed up the 

decreasing rate of likelihood ratio is necessary. 

 

Further analyze the failure of case (3.7), we know that the achievement of 

optimality depends on the location of mean value. Once the mean value locate on a 

specific point mt , we will obtain the maximal utility of simulation. We had considered a 

new exponential twist density ( ) ( | 0;1; ) / ( ( ))H z
Ze f z M H zλ  where '( ) ( )m m mH t F t=  and 

( )mH t  simultaneously satisfy the following equation 
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( )

( | 0;1; )
( ( ))

mH t z

m
Z m

ez f z dz t
M H t

λ
∞

−∞
→∫  

 

However, searching the function ( )H ⋅  is not easy in practice and that is to be the one 

direction of future work. We next extend the CYH method to solve utility problem. By 

finding an asymptotical behavior, we can decide the IS density of factors.  

 

Note that our proposed algorithm is also applied to other factor assumption. 

Because our consideration of building IS density put emphasis on adjusting the width of 

a distribution to mimic the form of optimal density but for the determination of the 

optimal shifting. We have successfully extended single factor assumption in CYH to 

multifactor cases and illustrated its effectiveness in more complex cases through 

numerical results. The other direction of future work is to extend the approach to 

different factor assumption. 
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