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ABSTRACT

Under a factor model, computation of the loss density function relies on the
estimates of some mixture of the joint default probability and joint survival probability.
Monte Carlo simulation is among the most widely used computational tools in such
estimation. Nevertheless, general Monte Carlo simulation is an ineffective simulation
approach, in particular for rare event aspect and complex dependence between defaults

of multiple obligors. So a method to increase efficiency of estimation is necessary.

Importance sampling (IS) seems to be an attractive method to address this problem.
Changing the measure of probabilities, IS makes an estimator to be efficient especially
for complicated model. Therefore, we consider IS for estimation of tail probability of
skew normal copula model. This paper consists of two parts. First, we apply exponential
twist, a usual and better IS technique, to conditional probabilities and the factors.
However, this procedure does not always guarantee enough variance reduction. Such

result indicates the further consideration of choosing IS factor density.

Faced with this problem, a variety of approaches has recently been proposed in the
literature ( Capriotti 2008, Glasserman et al 1999, Glasserman and Li 2005). The better
choices of IS density can be roughly classified into two kinds of strategies. The first
strategy depends on choosing optimal shift. The optimal drift is decided by using
different approximation methods. Such strategy is shown in Glasserman et al 1999, or

Glasserman and Li 2005.

il



The second strategy, as shown in Capriotti (2008), considers a family of factor
probability densities which depend on a set of real parameters. By formulating in terms
of a nonlinear optimization problem, IS density which is not limited the determination
of drift is then determinate. The method that searches for the optimal parameters,
however, incurs another efficiency problem. To keep the method efficient, particular
care for robust parameters estimation needs to be taken in preliminary Monte Carlo

simulation. This leads method to be more complicated.

In this paper, we describe an alternative strategy that is straightforward and flexible
enough to be applied in Monte Carlo setting. Indeed, our algorithm is not limited to the
determination of optimal drift in Gaussian copula model, nor estimation of parameters
of factor density. To exploit the similar concept developed for basket default swap
valuation in Chiang, Yueh, and Hsie (2007), we provide a reasonable guess of the
optimal sampling density and then establish a way different from stochastic

approximation to speed up simulation.

Finally, we provide theoretical support for single factor model and take this
approach a step further to multifactor case. So we have a rough but fast approximation
that execute entirely with Monte Carlo in general situation. We support our approach by
some portfolio examples. Numerical results show that such algorithm is more efficient

than general Monte Carlo simulation.

Keywords: Monte Carlo simulation; Importance Sampling; Portfolio credit risk;

Variance reduction.
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Chapter 1  Introduction

The impressive development of the securities markets has led financial institutions to
quantify their risk by stochastic models. A main component of financial risk is credit
risk, in particular for rare event aspect and complex dependence between defaults of
multiple obligors. By referring to losses resulting from the default of obligor, the bank
and other institutions therefore make a contractual payment for structural financial

products.

An important feature of modern credit risk management is to capture the effect of
dependence among obligors. In the development of commercial models, the dependence
structure among obligors is specified through a set of ‘“systematic factors”. It is
so-called factor copula model approach, which is originally associated with J. P.
Morgan’s CreditMetrics system. To match the observed financial data, the methodology
to find an adequate factor copula to model dependencies becomes very popular. There
are a lot of papers to address better empirical fits of observed data by copula factor
models. Examples are the normal copula model in Gupta, Finger& Bhatia (1997), the
Student-t copula in Schloegl and O’Kane (2005), the double t distribution copula in

Hull and White (2004) and Marshall-Olkin copula in Andersen and Sidenius (2005).

In practice, normal and Student-t copula models are two of the most widely used
models. It has been incorporated into many popular risk management systems. However,
more empirical works have argued the leptokurtic and asymmetric factor distribution
rather than symmetric distribution. In fact, the feature of leptokurtic and asymmetry

leads to significant inaccuracies in assessing the probability of extreme cases like large



portfolio losses and default threshold of obligor. This result shows the importance of

choosing an appropriate factor distribution for application of copula model.

In our opinion, the skew normal (SN) distribution can come up with the leptokurtic
and asymmetric features. However, like most approximations in different copula cases
(Glasserman (2004); Kostadinov (2005)), there are no closed form analytical results
which provide the error bound of estimation. So we need a viable alternative which not

only assess the performance of default but provide more information of error.

Monte Carlo simulation is the most widely used in the estimation of default. It has
the advantage of being very general and disadvantage of being slowly. For estimating
rare event default probability, the generalization of this method can serve the
complicated copula well, but disadvantage cause time-consuming problem. This
motivates research on variance reduction methods like IS to increase simulation

efficiency.

For normal copula, a special case of skew normal factor model, Glasserman and Li
(2005) (henceforth GL) propose a process by applying two step IS. Such approach
speed up the occurrence of default event to achieve optimality of simulation. However,
portfolio with SN factor is unlike the normal case, the asymmetry of SN distribution
leads the procedure developed in GL is not applicable here. Surprisingly, the application
of exponential twisted shift, which is a usual and better IS technique, does not always
guarantee efficient variance reduction. Hence, we need to search a new way to devise IS

algorithm.



Different from only considering adjustment of parameters, our approach emphasize
on choosing “form” of IS density distribution. Our procedure consists of two parts. For
the first step, we exploit independence property to apply IS technique to conditional
probability. By this, we can reduce the part of total variance. For the second step, we
eliminate the linear part of variability resulting from first step and simultaneously

minimize residual volatility. Combine the two step, we then have an efficient algorithm.

The rest of this article is organized as follows. In the next chapter, In addition to
the introduction of the credit risk copula model and importance sampling method, we
also present the brief properties of skew normal distribution. In Chapter 3, we review
two-step IS method in GL and modify the procedure of applying exponential twist
technique to factor. The modified procedure does not remain well behaved in different
shape parameter setting. Next, we extend a CYH procedure and build an efficient
algorithm in Chapter 4. Numerical examples are illustrated in Chapter 5 and finally the

concluding remarks are presented in Chapter 6.



Chapter 2 Portfolio Credit Risk Models

Credit portfolio models can be divided into reduced-form models and structural models.
Discussions of several models have been put in the literatures of Crouhy et al.(2000),

Bluhm et al.(2002) and McNeil et al.(2005). Different credit risk models differ in the
mechanisms they use to capture dependence among obligors. In this paper, we consider

the model approach similar to CreditMetrics™ (as in Gupta et al (1997) and Li (2000)),
which is based on foundational work of Merton(1974). The default setting is incurred

when the obligor’s shortage exceeds a default threshold.

2.1  The Portfolio Loss Distribution

Consider a portfolio with m obligors, for the ith obligor, ¢, and X, denote the
exposure and status respectively. The exposure C; may be assumed to be stochastic.
For sake of simplicity, we will assume C, to be deterministic and refer the reader to

Glasserman, Kang, Shahabuddin (2008) for stochastic case. The ith obligor default if

X, exceed the threshold X, then the portfolio loss L. 1is

Lm:icil{xi>xi} 2.1

In practice, threshold X, of ith obligor is chosen according to the marginal default
probability p, so that P(X, >x)=p,. This value p, is usually set based on the
average historical default frequency with similar credit profiles. In the credit risk

context, X, is usually given a financial interpretation. By such framework, L
4



models the loss of a portfolio of m obligors.

Our interest is in measuring the tail behavior of L, particularly for rare event.
Since it is impossible to exactly compute the probability of large portfolio losses, we
consider asymptotic regime which supports an analysis. Such regime is relevant to
portfolios of high rated obligor, or measuring risk over a short period. We assume the
default threshold for the individual obligor is X, = bi\/a , where marginal default of
each obligor decrease when the number of obligors m increase. Our goal is to estimate

the probability of {L >mq}, particular at large value of m and (.

In the framework of copula, the dependence between defaults is determined by the
correlation structure between X; and X, , j=k. In general, the dependence
structure is specified through a factor form. For example, if we set X, = pf +¢, for
peR where f and & are normal random variable, we obtain the dependence
structure introduced in CreditMetrics™. In addition, let X, =& /(pf) with p>0
and f and g, follow Gamma and exponential distributions respectively, we get a

way of introducing alternative dependence structure shown in Credit Suisse.

Here, we consider the dependence structure whose correlation is determined

through a linear form, that is



where Z,,---,Z, and & are independent random variables. The systematic factor
Z,---,Z, affects multiple obligors simultaneously, but idiosyncratic factor ¢ only
influences the ith obligor. The coefficient @; is the loading for the jth factor and
iaﬁ <1. Those loadings are assumed to be nonnegative. Although the condition is not
j=1

essential, the limitation can simplify our discussion, especially for large losses occur

primarily because of highly positively correlated structure.

In the following section, we will briefly introduce properties of distribution in SN

copula model.

2.2  Skew Normal Distribution and Its Properties

Let ¢ and ® to be the standard normal probability density function and cumulative
density function respectively. The density function of a random variable Z; is given

by

f(zm;o;z):%ﬂz;“)@(ﬂZ;’S

, which is called SN distribution with location parameter i € ‘R, scale parametero >0,
and shape parameter 1 € R | denoted by Z ~ SN(x, o°,1). LetA=0, we obtain the

normal density. As A — oo, it converges pointwise to half-normal density. The SN
distribution was first introduced by O’Hagan and Leonard (1976) as a prior distribution

for estimating a normal location parameter. It can be applied to different fields such as
6



economics, psychometry and so on. The moment generating function of SN(u,o°,1)

is given by

Mt 037) = 2exp(ut + T o2t

A
N1+ 4

SN(0,1,4) 1is called the standard skew normal distribution. Some main properties of

SN distribution are

1. if Z~SN(0,1,4), then —Z ~SN(0,1,—A).

2. if Z~SN(0,1,4), then Z>~ 4>.

3. E@)=pu+o(N2/7)AINI+AY).
4. Var(Z)=c’{1-Q/n)A* I(1+ A7)} .
5. 1f Z,~SN(0,1,4) and Z, ~SN(0,1,0), then

pA

pZ, ++1-p°Z, ~SN(0,1, )
J1+ 22 (1= p?)

For more properties of the skew normal distribution, we refer the reader to Azzalini

(1985); Gupta, Nguyen and Sanqui (2004); or Arnold and Lin(2004).

. 2 -
Consider Z; ~SN(y,;,0;,4;), j=1--.d and & ~SN(0,1,0), we can generate

Z;,j=1,---,d and & in each replication for straightforward simulation. We compute

the value X, and determine whether the ith obligor default. From the default setting



of every obligor, we get the portfolio loss (2.1) and then evaluate the probability of
{L, >mq}. However, Monte Carlo estimator can’t achieve fixed relative precision
when the value of threshold becomes large. This makes variance reduction

methodologies potentially attractive. In the next chapter, we will introduce one method

to make Monte Carlo effective.

L1
o
— A=-Z
- :.U:U
------- A=5
©w
o
T
= O
™
=
e “i
=
I I I I I
-4 -2 0 2 4

Fig. 2-1 The density function of SN (0,1, 1)



Chapter 3 Variance Reduction Methodology

Although generally easy to be implemented, Monte Carlo simulations are infamous for
being slow. Stochastic outcome is always affected by a statistical error which can
generally be reduced to the expected accuracy by iterating the procedure for a long
enough time. Usually, in order to reduce the error by a factor of ten one has to spend one

hundred times as much computer time. This result contradicts practical necessity.

Several approaches to accelerate the efficiency of simulation, such as control
variates, antithetic variables, and IS, have been proposed over the years. The goal of
these technique is to reduce the variance of replications so that an expected level
accuracy can be obtained with a smaller number samples. Antithetic variables and
control variates are the most commonly used variance reduction techniques, but their

effectiveness varies largely across applications, and is sometimes rather limited.

Different antithetic variables and control variates, IS generally involves a bigger
implementation effort and is less straightforward to include in general Monte Carlo
framework. Furthermore, when used improperly, such method will “increase” the
variance of estimator. That is why it has not been employed much in professional
contexts until recently. For all that, its powerful variance reduction is potentially

attractive.

3.1 IS Method

IS method is a standard approach of variance reduction in Monte Carlo methods. The

idea behind IS method is to reduce the statistical uncertainty of a Monte Carlo

9



calculation by focusing on the important region of space from which the random

samples are drawn. For example, suppose we have to evaluate E,[G(X)] where G(-)

is a positive measurable function with respect to the probability space and f is the

density function of X , we hence have another representation

E[G(X)]= jG(x) f (x)dx

f(X) ;-
f*(x)f (x)dx

= [G(x)
where f” is another density function of X . The ratio is called likelihood ratio or

Randon-Nikodym derivative. One can sample X from new density and obtain the

f(%)
f(x)

unbiased estimator G(X) . Its variance, then, is shown to be

E{GZ(X)(%} }EZ[G(X)]

Indeed, we have the following optimal IS density function f_. to achieve zero

opt

variance

1
fopr (X) = MG(X) f(x)

Such a density exists, but it is not feasible to be found unless the desired quantity is

known from the outset. Much of the literature on IS technique are focused on methods

10



of choosing a reasonable approximation of zero-variance IS density (Sadowsky and
Bucklew (1990); Glasserman et al (1999); Capriotti (2008)). The effectiveness of IS
mainly depend on how close between new density and zero-variance density is.
Different methods of approximation to zero-variance density will lead to various
computational performances. In view of practicability consideration, we turn our

attention to the apparently weaker notations of effectiveness.

Consider an estimation of E[G(X,)] where G(X,) is a function which

f(Xy)
7 (Xn)

m

decrease to zero as m—oo. Then an estimator G(X,) is said to be of

bounded relative error if it satisfies the requirement

\/Var[e<xm> fff(f(m))
lim sup —

- E[G(X,)]

]

Additionally, an estimator is called logarithm asymptotically efficient or asymptotically

optimal if it satisfies the requirement

InE

f(X,) )
(X,

GZ(Xm)[
lim
mx InE[G(X,)]

An estimator with bounded relative error can remain the number of replication
bounded in a fixed bounded relative error. However, asymptotically optimal only ensure

that the rate of decay of second moment achieves twice that of itself. By Jensen’s
11



inequality, this is the fastest possible rate of decrease for any unbiased estimator. By the
simple algebra, we know that an estimator with bounded relative error is also
asymptotically optimal. General Monte Carlo can’t achieve asymptotically optimal. For

example, let p, =P(X>m) where X ~N(0,1), then a general Monte Carlo

estimator | { X > m} has the following result

po ME[RX >my)
s In E[1{X >m}]

3.2 IS Conditional on SN Factor

In this section, we apply the one-step of GL to the credit portfolio with skew normal
factors. To keep the notation simple, we restrict our attention to single factor

homogeneous model, thatis ¢, =d =1, p,=p, b =Db and X, isgiven by

Xi=pZ+1-ps

Thus the total loss L, can be written as

L, =i|{pz +41-p’& >bym}

Let Y, ={pZ+1-p’¢ >b\/a} . Conditioning on Z=1z, Y, is a Bermoulli

random variable and the conditional default probability p(z) is given by

12



p(2)=P(;=1|Z=2)

pL— b«/_
JI=p°

=

The joint probability of (Y,,---,Y,) is then given by

H(D(Z))Y‘ (1—-pz)""

Consider a new probability q(z;0(z)) which is specified by

0(z)

P(2)e 3.1)
exp(¥(60(2);2))

Py (2) =

where 1(0(2);2) = In(1+ p(2)(e"” —1)). If we replace each probability p(z) with a

new probability  p,,,(2), then the estimation of E[I{L, >mq}] can be written as

)lfY

PZ) . 1-PE)
Ell L
{ >mq}Hl( @ TP

(3.1) is called exponential twist. If 6(z)>0, then p,, (z)> p(z); the original
probability correspond to 6(z)=0. The new measure can increase the default

probability and so decrease the variance resulting from stochastic volatility.

Let ¢ (0(2),2) = Z:n:] Y(6(2);2), the corresponding likelihood ratio is simplified

into
13



ﬁ( p(Z) —p(2) ) _ p M@, (02).2)
il p(-)(z)() pe(z)(z)

, then we have an unbiased estimator

I{Lm > mq}e_a(z)l-m"'ﬁlm(ﬂ(z):z) (3.2)

for P(L, >mq). It remains to choose 6(z) to reduce the variance of (3.2). We know

the fact that a key element of variance reduction is based on minimizing the second
moment. It is difficult to solve this problem directly, but minimizing the upper bound of

the second moment is easy. For 6(z), we know
—20(z)L,+2 0(z), —2{6 - 0(z),
E[I {Lm > mq}e @)Ly + wLm( (2),2) | Z _ Z] S e {0(z)mq w'—m( (2),2)}

Note that the function 1, (6(z),2) is strictly convex in 6(z) and pass through
the origin. So the function 6(z)mq—1_(6(z),z) is a concave function and the
supremun is attained at just one point, which we denote by 6_(z;q). If p(z)>(q, then

the maximum value occurs at 0, (z;q) = 0; otherwise, it occurs at the unique solution

of

202 )i/JLm( (2:0),2) =mq

In this discussion, 6 (z;0q) may be viewed as a measure of the conditional rarity of the

14



set {L, >mq}. If {L,>mq} is not rare event, we generate the Y;|Z =2z from the
original probability; otherwise we twist by 6, (z;q). Observe the set {L, >mq}, any

element of {L >mq} has the property

0.(z;9)L, >0, (z;)mq,
,then we have the lower bound
—0n(z9L, + ¢ (0,,(2:9),2) < F,(2)

Here F,(2)=—0,(z;9)mq+¢(6,(z;9),2) <0. This result shows that the asymptotic
of upper bound depend on the point q when we apply IS to conditional probability.
This unique point ¢ 1is called the dominating point. Essentially, the decreasing rate of
F.(z) determines whether the new estimator achieve asymptotically optimal. Observe

that the equation

9

E[L, |Z=1]= 55

¢Lm (em(za q)a Z)

holds. This fact indicates that the mean value of i| Z =7 will be shifted to the
m

dominating point q if {L, > mq} becomes rare event. More details about dominating

point we refer the readers to Ney (1983) or Sadowsky and Bucklew (1990).

15



Uy (8(2).2) /m-

B(z)q

8(z)

Fig. 3-1 A specific example with p=0.3, b=0.2, m=100,
q=0.1 and z=05.Thetangentto y, (-,z)/m atthe point

6,(z;q) IS q. The vertical distance from w, (0,(2;9),2)/m
to the line through the original is —F, (z)/m.
Note that the value of 6 (z;q) is chosen to reduce the variance of

P(L, >mq|Z) rather than P(L,>mq). In GL, failure of asymptotical optimal

results from the extra variability of Z . To analyze further, we should first realize how

F.(z) behave. Set loading p to be 0.1, 0.3, and 0.8 respectively, —F_ (z)/m is

shown in Fig. 3-2.

In Fig. 3-2, it is obvious the larger value p is, the larger influence Z has. One
step IS turns out to be less effective if the structure of F_ (z) has a width which depart

from a constant. The behavior of F (z) indicates irrationality to neglect the effect

16



from the factor. Hence, we need to exploit proper IS method again to reduce the impact

of factor.

04

03

_Fﬂ’. ( Z) 'Ill m

0.2

SN(0,1,-0.3)

0.1

0.0

Fig. 3-2 Comparisom of —F_(z)/m under different loading
values with b=0.2, m=100, gq=0.1.

3.3 IS For SN Factor

As discussion in section 3.2, the key to improve efficiency of (3.2) is based on the

elimination of residual randomness. Consider the (3.2) with 6(z)=0,(z;q), any

estimator p,, has the variance decomposition as following

var[p,,]1= EIVar[p,, | Z1]+Var[E[p,, | Z]]

17



Applying IS to conditioning Z only makes E[\/ar[Bm |Z]] small. To get further
improvement of efficiency, GL focus on the second term in the variance decomposition.

By simple algebra, we know that the zero-variance IS density for Var[E[qu |Z]] 1is

1
E[1{L, >mq;]

E[1{L, >ma} | Z = 2] (2] i054)

It is pity that sampling from this density is generally infeasible because of the

normalization constant. For (u,0,A)=(0,1,0) , GL thus suggest using original

distribution with a appropriate mode as optimal density. Rather than choose IS density
arbitrarily, it is intuitively clear that shifting the mode makes the likelihood ratio inside
expectation to be small. For symmetric density, such strategy may make a substantial
variance reduction. Whenever zero variance density cannot be approximated only by
shifting the mode, however, this algorithm becomes less beneficial. For instance, when

the structure of E[I{L, >mq}|Z =z]f(z|x;0;4) has a width which is very different

from original density, shifting a drift will turn out to be ineffective mechanism.

Faced with a similar problem, Capriotti (2008) uses Levenberg-Marquardt method
to provide a reasonable IS density which is not limited the determination of drift. The
implementation to determine the optimal parameters, however, incurs another efficiency
problem. To keep the algorithm efficient, particular care for robust parameter estimation
needs to be taken in preliminary Monte Carlo simulation. This leads algorithm to be

more complicated.

18



Instead of solving robust problem, we adopt another strategy to vanish randomness

from Z . Let a new estimator applying IS for factor and conditional on factor to be
I {L > mq}efz{em(ziq)Lm*wLm (Hm(z§q)sz)}w (Z) (3 3)
- :

Here W(Z)= f(z|u;0;4)/ £ (z| ;0;4) and f7(z|w;0;4) denotes the IS density.
We put emphasis on the variance of (3.3) rather than variance decomposition. Observe

the second moment of (3.3)

E I{Lm > mq}efzem(ﬂq)l-mezwLm (em(zéq),z)\NZ(Z)}
< E[I{L, > mgie’ ™2 W?(2)]

gfe"m(”\Nz(Z)f*(z|,u;a;)\)dz

Directly minimizing second moment is difficult, a surrogate to guide proper IS
density factor is required and thus we consider the upper bound of second moment. To

avoid integrating intricate function F_(z), we choose a different approximation. By the
simple differentiation, we know F (z) is concave and then we have a loose upper

bound by the first order Taylor expansion at point t .

fesz(Z)\Nz(Z) f°(z| uso3 \)dz < fe“Fm“m”F%(‘m)“—tm”w2(2) £°(z| wyo Nz

— E[{e{Fm(thF.{q(tm)(Z*tm)}W (Z)}Z]
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Considering Jensen’s inequality, the inequality holds if

eFm<tm>+Fg<tm><zftm>VV(z) — E[eFm<tm)+Fn}<tm><zftm>\N(Z)]

_ E[eFm<tm>+Fn'n<tm>(Z—tm)]
b

then the formulation yields

an'namn

f*(ZW;U;l)Zm

f(z|u;0;2) (3.4

where M, (-) denotes the moment generating function of Z . If we consider the

exponential twist density of Z as

tnZ

M. (t,)

m

f(z| w052) =

f(z| p054), (3.5)

this connection of (3.4) and (3.5) implies that we can design a new exponential twisted

IS density where t, =F (t ), namely t, =argmax{F, (t)-t>/2}
t

Once we have selected the new IS density of Z, the algorithm proceeds as

follows:
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1. Compute t =argmax{F, (t)-t*/2}
t

2. Sample Z from f'(z|u;0;A)
3. Twisting the conditional default probability

4. Return the estimator

—On (Z:0) Ly +yi, (00 (Z2:0).2) 1, Z+logM5 (ty)

Ber = 1L, >maje e

Fu(z,)=0

F.(2)

-6
|

-8
I

-10

5% ]

Fig.3-3 Graphof F (t)+F (t)(z-t) forasingle factor
with b=0.2,p=0.3,9=0.1 and m=1,000.

By simple algebra, we know that the new IS distribution for Z is the closed skew
normal CSN(t,,1,4,—At,,1) if the original distribution is SN(0,1,4). In fact, the
appropriate IS distribution is not limited to the original distribution family and this

result shows the difficulty in searching the optimal IS density. For more properties of

closed skew normal one can see Graciela et al (2004).
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Note that if 4 =0, the choice of IS density coincides with the result of GL , that is a

normal density with mean t_, namely CSN(t,,1,0,0,1).

Theorem 3.1

Consider a single factor homogeneous portfolio with the factor Z ~SN(0,1,4) and
& ~SN(0,1,0) . Suppose the default and loss threshold are bJm and mq

respectively. Then the estimator P, satisfy

(a)For 120
1 b*
lim —log E[I{L, >mq}]=—-—
m— ) 2p
1 ! ’
lim —log E[(Pgr) 1=— 2
m—o m Y
(b)For 4<0
o b* 1.2
lim —log E{l{L, >mq}} =——(1+4)
m—>oom 2
1 b> 1+24°
lim —loo Ef( B )2 = ——_ (22
ml_r){)lomOg {(Per)} p2(1+12)

Proof: The result would follow from a similar discussion in GL (2004). To start, we

consider lower bound and upper bound of liminf and limsup respectively.

(a) A >0: First, we show that
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2

2

liminfilog E[I{L, >mq}]> -
m-—oo m

By conditional property, for anyv > 0, we have the following result

E[I{L, >ma}] = E[E[l{L, >mq}| p(Z) > q+v]]
=P(Ly>mq|p(£)=q+v)P(p(Z) 2q+v)

2 P(L, >mq| p(Z)=q+v)P(p(Z) >q+v)

The inequality holds because L, 1is binomially distributed with parameter m

and p(2).

Applying the lower bound (3.62) of Johnson et al. (1993), we have a lower bound for

the conditional probability P(L, >mq| p(Z) =qg+v) =1/2 .Substituting the result into

the lower bound, we have

E[I{L, >maqj] 2%F’(ID(Z)MHU)

b\/a-h/l—pz(l)’l(q +0)

P

=%P(Z> )

—%{1_Fz<bﬁ”l‘g2®l(q”))}

where F,(-) denotes the cdf of Z and
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Liogpi—p, M HI=p'0 @)

liminleog E[1{L, >mqg}] = liminf
m—oo m m—oo m p

Applying I’Hospital’s rule, we obtain

b\/a+\/1—p2®"(q +u))}
P

1iminfllog{1 -F(
m—oo m

bvm —1- p? (4815 p

D iminr = 2/\7 : 2Jm
p " bvm —4/1— 1+0/
\/HCD(/”L m P thqu( + égpq))
2p
—Dimine b\/a_\/—l_/j/ ol S N C ;
P 2p\/ﬁcp(/1b m—+Jl-p flz_q(1+5/§1_q)) 2m<1)(/1b m—+J1-p gﬁ{“(lw/é"q))
2p 2p
b2
:—2p2

which proves the formulation.

Next we show that

2

limsup—log E{(Per '} < — 2
m P

Write E{(Pgr)’} as

E{(Per)’} = E{H{L, > ma} exp{-26,(Z;0)Ly, + 207 (0n(Z50),2) = 2t,Z +2In M, (1)} }
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A

< 4E[exp(-26,(Z;q)Mq + 2y, (6,(Z;9),Z)) - 2t,Z +t;}®2(ﬁtm)]
+
2 2 /1
<4E{exp{2F,(Z)-2t,Z +t2}}® t
{exp{2F,(Z) +i )} ('—1+/12 )

where F,(2)=-0,(z;q)mq+y, (6,(2;9),2).

By differentiation, we know that F_(-) is an increasing and concave function, thus we

know for any t, eR

Fm(z) < Fm(tm)+ Fn'l(tm)(z _tm)

and

E{(Per)’} < 4(D2(\/1j:7tm)E{exp{2(Fm(tm)+ Fo(t)(Z —ty) =2t 2 +17} }

2

<4exp 2(Fy 1)~ 2]
The second inequality holds because F, (t )=t and ®()<1. Consider

, _bVmyi-p o @)

" p
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Thus we have p(z,)=0 and p(z,)=q forany z>z,.Next, we show that for small

¢>0,wecanfind m that t e(z,(1-¢),z,) if m>m,.Itsuffices to show
Fr;(zm(l_g))_zm(l_G)>O and Fn;(zm)_zm<0

We know that the second inequality holds because p(z,)=0q and

, q-Pp(2) pz-bJm.  p
F (7)=
T T LA ety e

where @(-) denotes the density function of standard normal random variable. For the

first inequality, we get

q-P(Z,(1-9)) )¢(pzm(l—g)—bﬁ) P

p(z,(1=)(1 - p(z,(1-¢))) J1I-p° J1-p°

F(Z, (1= ¢)) =m(

By I’Hospital’s rule, we thus have

9P, (1-6) ! :
P (1-eN1- P (=60 b= pz, (1=¢),
Ji-p?

o

Applying the property that @#(X)/D(=X) ~ x if X — oo, thus we conclude that

26



Fo(z,(1-¢))=0(m’?)

1/2

Since z,, =O(m'7), we obtain the first inequality when m is large enough.

Substituting the result into the upper bound of E{(Pg;)*}, we then obtain

E{(Per)’} s4exp{2<Fm(tm>—%m>}

s4exp{2(Fm(zm)—@)}

The second inequality holds because F,(z) is increasing function. Due to F,(z,)=0.

we then get

limsup— log E{(Per )} < lim sup%(zm 1-¢)

m—oo m—oo

2

D+ o(m)}

. -1
<limsup—{—;

m—o0

b2
Y

o,

By Jensen’s inequality, we complete the proof.

(b)A<0:

First, we show the lower bound
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2

1+ 42
2,02( )

liminfilog E[I{L,>mq}]> -
m-—oo m

Define

Z,(0) =

bvm +1- p*®7'(q+0)
Yo

By the lower bound (3.62) of Johnson et al. (1993), we have

E[1{L, >ma}] = P(L, > mq| p(Z)=q+0)P(P(Z) 2 q +v)
> P(L, > Mg | p(Z) = g+ 0)P(P(Z) > q+0)

_LpgpZbym

5 W )=(q+v)

%P(zm(u)sz <7 (0)+xK,)

for any v,x,>0. Note that z (v)>0 for m sufficiently large. Hence, the

probability is lower bounded by
Ko P(2,, (V) + 5 )P(A(Z,, (V) + &)

and we obtain
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liminfllog E[1{L, >mq}]
m-—w m

> liminfl log#(z,, (V) + ;) + liminfl log®(A(z,(V) +K,))
m—o0 m m—oo m

Note that

lim infl logd(z,,(L)+x,) = liminfl {_71 (2, (L) +x,)°}
m—o0 m m-—oo m

= hrn 1nf

Applying I’Hospital’s rule and the property that #(X)/®(=X) ~ X asX — oo, we have

lim in’fl log®(A(z,(v)+k,)) =lim infilog O(—-[1|(z,(v)+K,))
m—o0 m m—o M

timint 2C1A 1@, @) &) bIA|
m—>0 (D( [A1(z,,(V)+K,)) 2p\/_

e 0A1(2,0)+K,) b4 ]
(=212, ) ) 2pm

= hmmf | |

ﬂMu(w+%H0N_nJ—

—b’2?
= 2p2

Combining all results, we get the formulation.
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Next we show the upper bound

2

(1+21%)

2

limsupilog E[I{L, >mqg}]<— b
m 2

m—oo

We know

E[1{L, > ma}]< 2E{Q(AZ) exp{~6, (Z;)MA + v (6,(Z59),Z) ~t,Z +17/2}}
< 2E{D(AZ)exp{F,(Z)—t,Z +12/2}}
< 2E{O(AZ)exp{F, (tn) + Fy (tnN(Z 1) ~tnZ +15 /2}}
< 2exp {Fy(ty) ~t2 / 2 E{D(AZ)}

=2exp{F, () ~ tn / 2} E{@(A(Z +1,,))}
Forany ¢ >0,if m is large sufficiently, we have

E{O(A(Z +1,))} = E[I{Z 2 0}D(A(Z +1,)]+ E[{Z < 0}D(A(Z +1,))]

< S OU)1-20) + 2 D0, )1 +0)
<o, )(1-2)

2

The inequality holds because of second mean value theorem for integral, so we know
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E[I{L, >maq}] < 2(1—%) exp{F, (tm)—%}q)(ﬂtm)

By the similar argument of 7z, and t_, forany ¢>0,if m is sufficiently large , we

get

E111L, > ma}] <20 )01z, (- epexp (- =Dy

and

limsup%bg E[1{L, >mq}]

m—oo

_ _ 2
<lim supllog ®(Az,(1-¢))+lim sup—l (Zn(1-¢))

m—o0 m—oo 2

For the second term, we know that

2 2
limsup—lM=limsupl{ b T+O(m)}
m—wo M 2 mow M 2
—b?
_2p2

Applying I’Hospital’s rule and the property that #(X)/ D(—X) ~ X asX — oo, we have

lim supl log®d(Az,(1-¢)) =lim sup%log O(-|1]z,(1-¢))

m—o0 m—oo
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H(=|A|2,(1-¢) —b| 2]
=1 m
e ([ 2| 2,(1- ) 2p4m

o g(Alz(1=2) -b|A]
S 1 4] 2,(1-¢)) 2pfm

. b1 1
=limsup——{| 1| z,(1-¢)+0 Jmy—
Ly {1A1z,(I1=¢)+0( )}\/ﬁ
-b*2?
Combining those inequalities, we obtain
R 2
limsup— log E[1{L,, > mq}] < -4
m—o0 m 2,0
By the limsup and liminf, we have
.1 b 2
lim —log E[I{L, >mq}]=-—=(1+1")
m—o0 m 2p
which complete the first part of proof.
Next, we show
2 2
liminf —log E{(Per )’} 2~ (L)
m—o M p 1+4
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[ 2q-lry
Forany &>0 and let zm(—a):b\/aJr I-p"® (q-9)
P

, we have

A

E[( f)ET )2] = 4®2(m

exp{~20,(Z; Q)L + 2y, (60(Z30),2) = 2t,Z +1,}]

t)E[1{L, >mq;

> 40°(

t.)E[1{mg < L, <m(q+9)}

A
VI+ A2
exp {20, (Z;)M(q+8) + 2y (6n(Z;0),Z) - 2t,Z +1;}]

Z4<I>2(\/1:}7tm)5[|{mq <Ly <m(q+0)}1{p(Z)<q;

exp {~260,(Z;0)M(q +5) + 2y, (On(Z50),2) ~ 2t,Z +17}]

=4®2(\/1j7tm)|5[|{mq <Ln<m(q+0)}| p(Z)<q]

E[1{9-0 < p(Z) < q}exp{2mG, (p(2)) - 2t,Z +1;}]

A
=40° t,)E[I{mg<L,<m o Z)<
(s WELHma <L, <m(@+)}| pZ) <]

E[1{zy; <Z <z, }exp{2mG;(P(Z)) ~2t,Z +15}]

z4d>2<Jlf7tm)E[l{mq< L, <m(q+8)}| p(Z) < q]

eXp {2mGJ( p(zm,6 )) - 2tm Zm + tr%]}

Here G;(p(2))=-260,(Z;q)m(q+0)+2y, (6,(Z;09),z) and G4z(p(z)) is increasing
function of z . The equation hold because L, and Z are independent given

p(z)<q. The loss L, has a binomial distribution with parameter m and (. Hence,
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by the central limit theorem, for m large enough,

E[l{mq <L, <m(q+9)}|p(£)<q]

L, —mq

< >_
yma(-q) Q(l }]

= E[l{0<

and for all v; >0, we also have G;(p(z,s))=—V;. Therefore

A
1+

liminfllog E{(Per )’} Zliminfllogd)z( t,)
m—o0 m m—oo m

2

+11m1nf {2mv5 2t,2, +t7}

m—oo

Apply the result, t e(z,(1-¢),z,)forany ¢ >0 if m large enough and I’Hospital’s

rule, by following the same steps discussed before then we get

1 b* 1+24°
hmlnf—log E{(Pgr )’ }_——(1 PE )
Next, we show
b 1+2A4°
thUP—log E{(Per)’ }———( )
mow M 1+4

Consider
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A

t )E[1{L, >m
NP )E[I{L, >maq}

exp{~20,(Z;Q)Ly + 2y, (6n(Z30),2) = 2,Z +1,}]

E[(Per)’]=4D*(

A
< 4®2(mtm)exp{—29m(Z;Q)mq +20 (0n(Z50), 2) = 2tnZ +13}]

< 4@*(

Jletm>E[exp{2Fm(tm)+2Fn;(tm)(z —ty) =24, Z +1;}]

t2

s4®2(Jlf7tm)exp{Fm(tm)—5m}

A t,
1:m)exp{lzm(tm)_ m}
1+ A7 2

=4d%(

Therefore we have

1 1 A
limsup—log E{(Pg; )’} < limsup— log ®* t
msup-—_log {(Per)’} msup—_log (W )

. 1 t2
+limsup—{F, (t,) ——}
m 2

m—oo

Apply the result, t e(z,(1-¢),z,)for any ¢>0and I’Hospital’s rule, by following

the same steps discussed before then we get

_ 1 ) b> 1+21°
limsup—log E{(Pgr )’} < - 7 ( 2
mow M p 1+/1

)
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Combining all results, we get the formulation.

1 b 1+24°
lim —log E{(Pe )} =——
mo® m g {(pET) } p2 ( 1+/12

) [

Note That Theorem 3.1 shows that the estimator is asymptotical optimal only in the
case 1>0. With —/1+/2 <1<0 , the second moment decreases faster than the first
moment, but not twice as fast. For 4 <— 1+\/§ , however, the second moment even

decreases slower than the first moment. This result implies that sampling from the new

measure is no more effective than general Monte Carlo.

— 1432
- (1+39) /2
------- (1+222)/(1+29)

Walue of rate function
4
|

Fig. 3-4 Comparison of rate function under A2<0 for
a single homogeneous model.
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In the case 4 <0, to eliminate the linear effect of F_(Z), using exponential twist

method with parameter F_ (t.) does not achieve the maximum utility. Review the

properties of exponentially twisted procedure, we know that the maximal variance

reduction occurs when parameter F (t ) makes the mean value of f'(z|u;0;4)

locate at the point t . Consider (u;0;4)=(0,1,4) and A4>0, we have

t,2 '
J._ 7 f(Z|0;l;/’t)dz:Mz(tm)

MZ(tm) Mz(tm)
t3 th
2tme7q>(4t )+2e? ¢ ( 4 t)
/ I+ A2 I+ 1+ 22
2e2cD( 3 t,)
I+ A2
P(———=t,)
A J1+ /12
\/1+/1 @( t )
\/1+/12
-t ,if m>o (3.6)

(3.6) show that the maximal utility will happen if we apply exponential twist method to

factor. The phenomenon coincides with that GL suggest. However, if A4 <0, the mean

value of f'(z|0;1;4) is

t,2 '
J. 7 f(Z|0;l;/’t)dz:Mz(tm)
—o0 MZ(tm) Mz(tm)

37



2]
" /1 ¢(m m)

J’_
" \/1+/12 1-d( [4] t)
Ji+22 "

Q

t 3.7
1+4% " 37

This equation holds because of @(x)/1—-®D(x)~ X. Observe (3.7), we know that the

algorithm is less efficient if A is getting smaller. This result in (3.7) also corresponds
with Fig. 3-4. Namely, negative A incurs a width which makes the variance increase.
In the next Chapter, we will tailor the algorithm to eliminate the effect from shape

parameter A .
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Chapter 4 The New Method for SN Factor

In Chapter 3, we know that asymptotical efficiency can not be achieved because the
nonlinear behavior of F (Z) is non-negligible. This suggests that to obtain further
variance reduction we need to address the other component of F_(Z). Glasserman et al

(1999) attempted to use stratification technique to decrease variability except for linear
part. Here, we completely limit ourselves to IS methodology to build an efficient
algorithm. Our approach emphasizes on choosing density “form” of Z rather than
shifting, scaling or exponentially twisting. In the next section, we begin with a more
general result in Chiang, Yueh, and Hsie (2007) (henceforth CYH) but for a different

model.

4.1  Extension of CYH Importance Sampling Algorithm

The key idea in CYH is to find a simple alternative characterization of default

event. To motivate the algorithm we take, observe the following proposition:

Proposition 4.1

Consider a single factor model where ¢, =1, b =Db and p, =p; Random variables
Z and & follow SN(0,1,4) and SN(O0,1,0) respectively. Then the set {L,>mq}
is equivalent to the event {Z >H, ;} if Hy,., is denoted as [mq+1]th order

statistics of {H,}",, where

i=1°

H = bvm —1- p*¢,
| p
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Proof: Since

I{L, >mq} =1

@Zl{xi>bx/ﬁ}>mq

@ZI{Z>b\/E_ Vl_ngi}>mq
i p

& HZ > Hypgy) =1

Hence, the event {L > mq} is equivalent to the event {Z > H .} - []

Proposition 4.1 indicates a simple alternative characterization for the event

{L, > mq} . It provides a simpler way to ensure that for every replication where the set

we interest always takes place. By Proposition 4.1, we create an estimator of single SN

factor model as following
I{L,, > maq}L, (4.1)

where L =1-F,(H,,,,) denotes the likelihood ratio and F, is the cumulative

mg-+1
density function of Z . Clearly, (4.1) is not restricted to what the distribution of Z is.
This means that the algorithm is allowed to general case. We will consider behavior of
(4.1) in the following theorem. By analyzing the asymptotical performance, we can find

a useful guideline for choosing appropriate IS density of Z.
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Theorem 4.1
Consider a single factor model where ¢, =1, b =Db, p,=p and (Z,s) follow the

same distribution assumption in Proposition 1, then (4.1) has bounded relative error.

Proof: First, we exploit the result shown in Lucas et al (2003). Assume that S ; isa

latent variable which obeys the general factor model
j = g( f b 6])

where f is common factor, ¢,

; 1s specific risk factor, and g(,-) defines the

functional form of the factor model. Lucas et al (2003) used the Theorem 12.13 of

Williams (1991) and indicate that

lim =3 148, <51 oP(S, <57 )
n4s

By the same argument as Lucas et al (2003), we then have

tim T “SE[1{X, > bdm} | 2]

m—oo m

So, we have
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E[I{L, >mq}]— P(E[1{X; >bvm}|Z]>q)

. bﬁ—@“(l—q)«h—ﬁ)
p

g, OYmoeta—ai-pt
P

The second moment of (4.1) is written as (by Theorem 1.10 of Shao (1998) and

Theorem 4.3.1 of Sen and Singer (1993))

E[I{L, >mg}L}]

= E[1{L,, > ma}(1— F, (H, )ngeny)’]

b\/a — \/ 1— :02 (Ei )mf[mq] )2
p

=E|{L,>mq}(1—-F,(

<(- FJbﬁ_@l“_g)“_pz IONC

Therefore, we have

i sy N VAT(HL, > maiL,)
mﬂoop E[I{L, > maq}]

_ \JEIHL, > ma}2]— EX[I4L, > ma}L, ]
= limsup
m—oo E[I{L,, > maq}]

<00 []
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The method works well for portfolio whose tail behavior is dominated by a “key”
random variable. To show that the results have content, we give two specific examples.

For the first example, consider the model

Xi:\/%(piZ—f— 1-ple) , I=L...,m

Here Z 1is a standard normal random variable, ¢; are i.i.d standard normal random

variables, and S 1is chi-square distribution with r degrees of freedom. Applying the

key idea behind Proposition 1, we can find the set {S <(H;),,.,} where

H, =(p,Z +J1-ple)/ bvm . It is the simpler expression of {L_ > mq}. Note that the

sample of Z is generated from the original distribution. By a analogous algorithm in

section 3.3, we get a efficient estimation of {L > mq}. In this model, the random

variable S plays a key role to vanish variability. Changing the measure of S is

sufficient to achieve substantial variance reduction.

Table 4-1 : Comparison of different methods for m=250; v=12;9=0.25.

P(L, > mq)
Algorithm 1 CYH Method
Method

(Runs: 5x10%) (Runs:5x10*) V.R
Y Prob. est S.E Prob. est S.E
0.1 | 858x10° | 1.63x107" 8.53x10°° 1.36x1077 | 1.43
02 | 974%x10™ | 1.85x107 9.75%107° 2.04x107 | 0.82
03 | 1.18x10° | 4.13x1077 1.18x10°° 3.18x1077 | 1.68
0.4 | 1.39%x107° | 8.61x1077 1.42x10°° 493x107 | 3.05
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Table 4-1 shows the performance of two estimators. Algorithm 1 is the suggestion
of Bassamboo et al (2008) and we know that it has the bounded relative error. In the last

column, we list the sample variance ratio V.R

- 2 4
vR= [SE@LT  5x10°
[S.E(Pey))” 5x10

, where EJ  refers to the estimator of Algorithm 1 and EJCYH refers to the estimator of

CYH method. We find the fact that [3 A and BCYH have analogous performance of

simulation in Table 4-1. But, note that the implementation of the new method is more

easily.

The next example illustrates the normal case discussed in Glasserman (2004). All

obligors are divided into two blocks. The first block consists of m, obligors whose
marginal default probability is p, . This block is dominated by the factor Z, and has a
common loading a,. The second block comprises the last m—m, obligors. All
obligors in the second block have marginal default probability p, and affected only by

factor Z, with a common loading a,. This model is

X,=aZ +1-a’¢, i=1,...,m

X;=a,Z,+1-a;¢;, j=m+1...m
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Set N, =Z 1{X,>®'(1-p,)} and N, = Z 1{X; >®'(1-p,)}, the equivalent set

i=1 j=m+1

then is written as U E , where E,={(z,z)|N,+N,>/N =i}.

Table 4-2 shows the performance of general Monte Carlo and the CYH method.
Note that variance reduction is measured relative to general Monte Carlo simulation.
The CYH method provides an excellent performance than general Monte Carlo. The

behavior of loss distribution seems to be successfully captured by the CYH method.

Table 4-2 : Comparison for (m,m;a;a,; p;; p,) = (1,000;150;0.8;0.7;0.05;0.001)

P(L> /)
Monte Carlo (Run 10°) | CYH Method (Run 10°)

14 V.R
Estimation S.E Estimation S.E

90 1.36x1072 3.66x107* 1.41x107° 8.26x107° 1965

110 6.71x107° 2.57x107* 6.99%x10°° 4.65x10°° 3073

130 2.63x10°° 1.61x107* 2.69x10°° 2.11x10°° 5947

150 3.80x10°* 6.16x10° 4.46x107* 2.92x10° 44261

Although using order statistic increases simplicity, the flexibility is restricted

simultaneously. For instance, if all the exposures ¢, are different from each other, then

the sorting and partitioning procedures make the method time consuming. Obviously,
the original problem in estimating rare event is transferred into another one. For more
discussions about determination of key random variable is referred in Lucas et al

(2003).
45



4.2  The Proposed algorithm for Skew Factor Model

Note the conclusion in Theorem 4.1, we know the likelihood L, has an excellent
utility in variance reduction. Although the new method is inflexible to tackle

inhomogeneous portfolio, it provides a way to build IS density for Z . In the following,

we will introduce the strategy to search an effective IS algorithm.

Consider the result described in section 3.3, we know that vanishing linear

variability of F_(z) can increase the efficiency of simulation except for A <O0.
Therefore, the procedure of eliminating the linear part of F (z) is essential. This

means the new likelihood ratio L'*(z)= f(z|0;1;)\)/ f,,,(z) must contain the

New

function exp(—t,,z), namely

L (2) oc exp(~t . 2) 4.2)

Furthermore, in the second part of Theorem 3.1, we find that the nonlinear behavior of

F.(z) seriously effect the efficiency of variance reduction. To eliminate this effect

from the nonlinear part, we consider the limit regime rather than integral itself. We
focus on modifying the other part of density of Z but for vanishing nonlinear part of

F.(z) directly. With the definition of asymptotically optimal, we need to find a

likelihood ratio which decrease as fast as possible if we apply [Sto Z .

In Theorem 4.1, L  is of the bounded relative property. It is reasonable to utilize

r
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asymptotical decay rate of L  to create appropriate IS density. In multifactor and
inhomogeneity case, however, getting a likelihood ratio like L, is difficult. So we turn
attention to setting where expectation of likelihood ratio decays in the same rate of L, .

In other words, we expect the following equation holds

logl,

lim ——————= 4.3
n-> log E[L;™"(2)] @

Once we find a new L'™(z) satisfying (4.2) and (4.3), the corresponding IS density is

then determined. Note that the combinative way leads to not only vanishing the linear

effect but considering the nonlinear part of F_(z) simultaneously.

To represent our procedure precisely, we consider the setting where

Z ~SN(0,1,A) and A <O0. Clearly, it is difficult to directly calculate

L= fommr,  260PO0dt
P

[mg-+1

If m is large sufficiently, an approximation for the integral (e.g, Shao 1998, Chap. 1

and Sen and Singer 1993, Chap. 4) suggests that

Lo~ fm 2¢(H)P(At)dt
P
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Therefore, for any small value 6, L,  is simplified into
L, = 266t +o(-/m)P(At, +0(/m))

The last equation holds because of t = O(+/m). This discussion of t, is shown in GL.

N

new 1S Written as

Then, the associated new IS density f

frew(2) = A(Z—1,,) (4.4)
Note that the choice of IS density makes E[L'*"(z)] satisfy (4.3), that is

E[L*"(2)] = ZIZ%(z—tm)dz

=2 f i exp(—t_z +%)@(Az)¢(z —t )dz

2

=2exp(—t,(§+t,) +t5m) PAE+T,)

~L

T

where ¢ denotes a constant. The last equation holds because of the second mean value

theorem for integral. Note that the choice of an appropriate IS density in such procedure

is not unique. For instance, the following density

frew(2) = 20(2 =1, )2( A | (2 +1,))
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is another feasible one. By the similar argument, a appropriate IS density for A >0 1is

2

Mo H(2)P(\2) (4.5)

fNF;W(Z) =

Especially, when A=0, f.

New

becomes the IS density GL suggest. For notational

simplicity, considering (u,o0)=(0,1), we build our algorithm as following:

1. Calculate t =argmax{F, (t)-t*/2}.
t

2. Check value A of Z, choose (4.5) as IS density of Z if A>0 and (4.4)
otherwise.

3. Set t tothe IS density.
4. Sampling Z and calculate the product L'*'(z) of each likelihood ratio.
5. Compute 0, (z;0).

6. Return the estimate 1{L_>mq}L,

=0 (Z:09) Ly +Um (6 (2:0).2) LNeW
r

where I:r =e is the combined likelihood ratio. If we repeat step

1to 6 .- times, an estimator f,,, can be constructed by averaging the .-~ values of

the estimates, we have a estimation for P(L, > mq) under skew normal copula model.

Once we have selected a new parameter vector t which satisfies
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t =argmax{F (1) —%tTt} ,
t

choosing (4.4) or (4.5) and component of t for single IS density; we can easily extend

the single factor to multiple factors.
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4.3  Asymptotic Optimality
We now consider the performance of the estimator p,,, . The strength of our proposed

lies in its variance reduction efficiency established by the following theorem:

Theorem 4.2

Consider the same assumption in Theorem 4.1, then

(@) For A >0
1 2
lim —log E[1{L, >mQ}]=—-—
m—>oom 2,0
1 . b*
llm_log E[(pNew)z]:__z
m—w® M) P
(b) For A <0
2 2
lim L log E[1{L,, > mq}] =~ 20 4)
m— ) 2p
o . b’(1+4°
r1112010510gE[(pNew)z]:_¥

Proof: For 1>0, the proof is the same as (a) in Theorem 3.1. We consider the part
(b) directly.

(b): First we show that

b2(1+ %)

liminfilog E[lI{L, >mqg}]=— 2
moe 2p

By the similar argument in Theorem 3.1, we know for arbitrary 7 >0
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E[I{L, >ma}]=P(L, >mq| p(Z) =q+v)P(p(Z2) >q+v)

bm +@ (g +v)
p

>_P(Z >

)

N | —

> ¢(Zy, +T)ON(Z,, + 7))

where 7z, = {b\/a—i—(lfl(q +v)}/p. We have

liminfllog E[I{L,>mq}]> liminfllog¢§(zm +7)
m—oo m m—oo m

+liminfllog O(A(z, +7))
m-—oo m

Note that

b2

2

liminfllog ML, +7)=—
m—o0 m

Applying the property ¢(X)/P(—X)~X as X — oo, we get

—b|A[¢(A(z, + 7))
2p0(A(z, +7))

lim infllog O(A(z, + 7)) =liminf
m—oo M m—oo

Al A2+ 0)
=1 f
o 2o MO 1] (2 + 2)

 fiminf 2! {| A](z, +7)+0(-/m)}

m—oo zp\/ﬁ
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bA?
2p

Next, we show

2 2
limsup—log E[(Pren)’] < — 204

m—oo

By the similar discussion in Theorem 3.1, we have

E[(Prew)’ 1= E[1{L,, > ma} 7]
< 4E[exp{2F.(Z)—t Z +t2}0*(\Z)]
<4exp{2F_(t )—t2}E[®*(\Z)]

< 4exp{2F,(t,) —t} E[D*(AZ + Xt,,)]

Using the second mean value theorem for integral, for a small value ¢, we get

lim sup— log E[( Py )] < hmsup%{—z;a o)

m—oo m—oo

+limsup 1 log E[D*(AZ + At,)]
m—oo m
2

= —b—2 +1im supllog ®(At,, +0(~/m))
P

m—oo

Observe that

53



lim supllog ®> (At +0(vm)) = lim supzlog d(Az, +0(m))
m

m—o m—o0

. —b|A]
= limsup {{ Az, +0(Vm)}
m—oo p\/m

b1’
T 2

P

Combining all the result and applying Jensen’s inequality we complete the proof. [ ]

This result indicates that our proposed IS algorithm should be effective in estimating
loss distribution. Even though the assumption in Theorem 4.2 is for homogeneous single
factor model, the proposed algorithm is practicably applied to multifactor and
inhomogeneity cases. Note that our proposed algorithm does not require what density
the factor Z should follow. When the specific factors are of arbitrary distribution, we

need only to modify the associated f,, (z) to satisfy equation (4.3). In next chapter,

New

our numerical results for skew normal factor model also confirm the expectation.
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Chapter 5 Implementation Issues

In this chapter we compare performance of the new estimator f,,, Wwith general Monte
Carlo simulation. We investigate sensitivity to A, b, p and . The broad

conclusions are that the new algorithm provides significant improvement over the
performance of general Monte Carlo simulation. This improvement increase as the
event becomes rare. This result supports our theoretical conclusions that the sample
variance ratio, as measured by the ratio of the standard deviation of general Monte

Carlo simulation to the standard deviation of p,,,, remains well behaved as the

probability of large losses becomes increasingly rare.

For implementation of new algorithm, (4.4) is easily generated using the inverse
transform method. However, the cumulative distribution associated with (4.5) does not
have a closed form. It is not straightforward to use the inverse transform methods to
generate samples from this distribution. Instead, we use a root-finding method of

numerical integration to generate samples we need.

Our first example is a single factor portfolio of m=1,000 and Z ~SN(0,1,)).
The model parameters are chosen to be q=0.4, b=0.0345, p=0.3 and exposure
c,=1. We generate 5,000 samples for proposed algorithm and 100,000 samples for

general Monte Carlo simulation. Table 5-1 reports samples variance ratio for several

values of A in estimating P(L, >mq).
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Table 5-1: Variance Reduction for decreasing .

P(L,, > mq)
General Monte Carlo Prew
Method

(Runs:1x10%) (Runs: 5x10°) V.R
A Prob. est S.E Prob. est S.E
1.0 471x107 | 2.17x107* 4.82%107° 1.15%x10°* 65
0.5 446x107° | 2.10x107* 4.63x107° 1.03x107* 82
0.5 | 270%x10* | 5.19x107° 3.04x107* 8.49%10°° 748
-1.0 | 1.00x10° | 9.98x10°° 9.42x10°° | 3.49x107 | 16281

At small value of A, the variance ratio becomes very large. The performance of

Pues 1S significantly better than general Monte Carlo simulation. The improvement is

substantial especially for negative value of . Note that the variance ratio rapidly

changes when negative value A wvaries slowly.

Table 5-2: Variance Reduction for increasing b.

P(L,, > mq)
General Monte Carlo Priew

Method

(Runs:1x10°) (Runs:5x10?) V.R

b Prob. est S.E Prob. est S.E

0.0345 | 471x107 | 2.17x10°* 4.82x107 1.15x107* 65
0.0375 | 1.62x107° | 1.27x107* 1.76x107° 4.53%107° 153
0.0405 | 561x10* | 7.48x107° 5.65%107 1.54%107° 469
0.0435 | 150%x10™* | 3.87x10°° 1.62x107* 4.62x107° 1399

Table 5-2 shows the performance of the proposed algorithm as b changes. Again
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we set m=1,000, q=0.4, A=1. The factor loading p is kept fixed at 0.3, each
¢, =1. We generate 5,000 samples for proposed algorithm and 100,000 samples for

general Monte Carlo simulation. In last column, we observe that all performances are
significantly better than general Monte Carlo simulation. The variance ratio improves as

b increases.

Table 5-3 shows performance of the proposed algorithm as factor loading p
changes. In this case, the parameters of model are m=1,000, q=04, A=-1,
b=0.0345 and c,=1. We generate 5,000 samples for proposed algorithm and

100,000 samples for general Monte Carlo simulation. All results perform significantly

better than general Monte Carlo simulation, especially when p decrease.

Table 5-3: Variance Reduction for increasing p.

P(L,, > mq)
General Monte Carlo Prew
Method
(Runs:1x10%) (Runs: 5x10°) V.R
P Prob. est S.E Prob. est S.E

0.3 1.00x107° | 9.98x10°° 9.42x10°° | 3.49x107 | 16281
0.35 1.01x107* 3.16x107° 6.16x10° 2.05x10°° 4756
0.4 3.10x107* | 5.56x107° 2.73x107* 8.58x10°° 840
045 | 7.01x10* | 836x10° 7.76 10" 2.41x10°° 241

Our next example is a multifactor portfolio of m=1,000 and Zj ~ SN (0,1, )\j),

J=1--,5. Bach factor Z; has shape parameter )\, which is generated uniformly
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from the interval (-1,0) The exposures ¢, is kept fixed at 1; b, and a; are distributed

uniformly from (0.02, 0.07) and (0, 1/ J5 ) respectively. Table 5-4 compares the
performance of the proposed algorithm with general Monte Carlo simulation as q

change. The general Monte Carlo simulation results are based on 50,000 replications
whereas the number of IS replications is 1,000. When the loss level is small, the
proposed algorithm is a bit better than general Monte Carlo simulation. At large values

of q, the {L, >mq} becomes rare and then the variance ratio becomes large. The

improvement is obvious for  in the range of 0.45 to 0.5.

Table 5-4: Variance Reduction for increasing ¢ .

P(L,, > mq)
General Monte Carlo Prew
Method
(Runs: 5x10°) (Runs:1x10°) V.R
q Prob. est S.E Prob. est S.E

035 | 1.90x107 | 1.94x107* 1.91x107 1.79%107* 59
040 | 8.01x10* | 1.26x107* 7.55%107* 7.22x10°° 153
045 | 220x10* | 6.63x10° | 2.72x10* | 2.59x10°° 325
050 | 1.00x107* | 4.47x10° 1.00x10"* 1.09%10°° 827
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Chapter 6 Concluding Remarks

In this thesis, we have proposed a new algorithm for estimation of tail probability in
skew normal copula model. We started with the case of applying exponential twist
technique to the default random variables conditional on common factors. However, GL
show that the conditional IS estimator does not achieve asymptotical optimal unless the
correlation between obligors is very weak. Therefore, GL further suggest shift the mean
of underlying factor to eliminate the residual variability. This procedure makes the

algorithm asymptotical optimal.

Different from the normal copula model, however, the leptokurtic and asymmetric
characters of skew normal result in the situation where second moment of IS estimator
converge in unintelligible decreasing rate. So, to choose IS density of underlying factors
becomes intricate. To improve the efficiency of simulation, we intuitively consider the
usual exponential twist to eliminate the linear part of F (z). Surprisingly, using
exponential twist does not guarantee variance reduction. A way to speed up the

decreasing rate of likelihood ratio is necessary.

Further analyze the failure of case (3.7), we know that the achievement of
optimality depends on the location of mean value. Once the mean value locate on a

specific point t,, we will obtain the maximal utility of simulation. We had considered a
new exponential twist density e"”f(z|0;1;)\)/M,(H(z)) where H(t )=F (t ) and

H(t,) simultaneously satisfy the following equation
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H(ty)z

[f 2 (2|0 A dz >,
= Mz (H(,))

However, searching the function H() is not easy in practice and that is to be the one

direction of future work. We next extend the CYH method to solve utility problem. By

finding an asymptotical behavior, we can decide the IS density of factors.

Note that our proposed algorithm is also applied to other factor assumption.
Because our consideration of building IS density put emphasis on adjusting the width of
a distribution to mimic the form of optimal density but for the determination of the
optimal shifting. We have successfully extended single factor assumption in CYH to
multifactor cases and illustrated its effectiveness in more complex cases through
numerical results. The other direction of future work is to extend the approach to

different factor assumption.
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