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Biomedical Semantic Role Labeling with a Markov Logic

Network and Automatically Generated Patterns

Abstract

Background: Biomedical semantic role labeling ( SRL ) is a natural language
processing technique that expresses the sentences that describe biological
processes as predicate-argument structures ( PASs) . SRL usually suffers from
the unbalanced problem of arguments and consuming time and memory on
learning the dependencies between the arguments.

Method: We constructed a Markov Logic Network ( MLN ) -based SRL system,
and the system uses SRL patterns, which utilizes automatically generated
approaches, to simultaneously recognize the constituents and candidates of
semantic roles.

Results and conclusions: Our method is evaluated on the BioProp corpus.
The experimental result shows that our method outperforms the state-of-the-art
system. Furthermore, after applying SRL patterns, the costs of the time and
memory are greatly reduced, and our automatically generated patterns are
helpful in the development of these patterns. We consider that our method can
be further improved by adding new SRL patterns such as biological experts
manually written patterns and it also provide a possible solution to process large

SRL corpus.



GHILILA 2w AR R FREW FRBELF > FLf EEED

;}%]g.‘j LR AE Y 5 %ﬁfr Wi gk o 1A 2R EEBY o pUF B
FRisE fF > et 2 MIG 95 2 {5\ ch AR » K X 78 4 3 ¥4

-

Ripd EOEEY o B (FRF R IR PRF S A g - B
fofles o g L ulg #e i IASL § 2% 248 0= B U@ ik~ AT 2 4
BREFE > 2 e GRBIASLRE - F o - EF - HIRFLY - @
TRHE S ED A MBS A D o BT MIGF %A R

ipHERA o AR L FRY CRRERENEREHRT  RIF %

%:‘1

2§l o
B SR PR AP L R R AR L R A
ESESK I S S

ST FA R FERREF M RREF R E -

fips 2012 & 72



TABLE OF CONTENTS

CHAPTER 1 INTFOQUCTION ...ttt sttt ettt 1
I T Vo (o | (011 ] o [ SR 1

1.2 Biomedical Semantic Role Labeling ( SRL ) ..ccooviiviieiiiiecieeee e 2

1.3 Traditional Formulation 0f SRL .........cccccoiiiiiiiiiieee e 3

LA PrOBIBMS ... et 5
141 Unbalanced Problem ... 5

1.4.2 Dependency ProbIem........cceoiiiiiiie i 6

(SN O U] g o | o ST USRS RPN 7

(O A e I = A |V T 1 oo SRR 8
2 N Y/ - U 101V 0o o SO SUSSR 8
2.1.1 FIrSt-Order LOGIC ..ottt 8

2.1.2 MAFKOV NETWOTKS ... viiiiiieie et esiesee e see et ee e e ee e sneenee s 8

2.1.3 Markov LogiC NETWOIKS .........cccoiieieiiiiieie et 9

2.2 Implement Biomedical Semantic Role Labeling..........ccccooveviiiiiiiniiiiins 9
2.2.1 FOrmulating SRL ........c.ooiiiiiei i 9

2.2.2 BasiC FOrmMUIAE ... 10

2.2.3 Conjunction fFOrmMUIAE .........cooviiiiiie i 11

2.2.4 Global Formulae ..o 12

2.3 Patterns FOr SRL .....iiiiiiieieiece sttt 12
2.3.1 Introduction of the Patterns ..........cccocoveviiiecieeie e 12

2.3.2 THEE PrUNING. ..ottt bbb 13

2.3.3 (= q oo I - L =] o 1SS 14

2.34 TemMPOral PAttern ..o 15

2.35 CoNJUNCEION PAtIerN ......coiiiiiie e 15

2.3.6 Syntactic Path Pattern ... 19

2.4 Collective Learning for SRL.........ccooiiiiiiiii e 19
24.1 COllECTIVE LEAINING ...eoivieiiiie et 19

24.2 LiNQUIStIC CONSTFAINTS .....coviiiiiiiieiiieie e e 19
CHPATER 3 EXPEFIMENT .....oiiiiiiiiie ettt ettt et te e nnaenas 21



3.1 [T 1 = T PR 21

3.2 EXPEriment DESIGN ....oooiiieiieiiee sttt 22
3.21 Experiment 1 — The Effect of Automatically Generated Patterns .....22

3.2.2 Experiment 2 — Improvement by Using Collective Learning............. 22

3.3 EVAIUALION IMETFIC .....iiiiiiiicicieee e 22

4 TEST. 23
CHAPTER 4 ReSults and DISCUSSION........c.oiuiiiiiiiiiriinisieieieste sttt 25
4.1 Improvement by Using SRL PatternS.......ccccoveiieiiiie s 25

4.2 Improvement by Using Collective Learning ..........ccocoevvenieienenencncsenen 26

4.3 ReIAtEA WOIK ..ot 28
4.3.1 Biomedical Semantic Role Labeling Corpus...........cccoceovvenenenennninns 28

4.3.2 Biomedical Semantic Role Labeling System ...........ccocvveviiininiennninns 28
CHAPTER 5 CONCIUSION ittt bbbttt 30
RETEIEICES. ... ekt b ettt et bbbttt bbb 31



LIST OF FIGURES

Figure 1.1: A parsing tree annotated with semantic roles...........ccccovvveiiiiiiiii e 2
Figure 1.2: The pipeline methods of the SRL. .......ccccooiiiiiiiie s 4
Figure 2.1: The examples show the tree pruning.........ccccceeiieiiieiie e 14
Figure 2.2: The examples for mining assoCiation TUIES. ..........cocoviiiiirinienieiee e 17

Figure 4.1: An example - ARGM-MNR is failed to be labeled using BIOSMILE + Pattern w/o

YA | (o TR TR 26

Vi



Table 1.1:

Table 2.1:

Table 2.2:

Table 2.3:

Table 3.1:

Table 4.1:

Table 4.2:

Table 4.3:

Table 4.4:

Table 4.5:

LIST OF TABLES

The statistic of the constituents and semantic roles. ............cccooevveiiiinniii e 6
The features are used in previous SRL SYSTEMS. ......ccooeriririniniinieee e 11
The information extracted from ARGM-LOC on Figure 2.2.a. ......cccccovevvveiveninnne 17
The transactions are transformed from FIQure 2.2..........cccocoveviineienenenc e 18
The statistics on the BIOPrOp COMPUS. .....cviiiviiiieiieeiie et 21

The performances of SRL using SRL Patterns. .......cccovvveerveiesieesieere e esee e 25

The distribution of ARGM on BIOSMILE and BIOSMILE + Pattern w/o Auto....26
The performances of SRL using collective learning. .........ccccoovvvvvinienencncnenn, 27
The performances of SRL on sentence-wide evaluation metrics. ............cccceeenenne 27
The cost of time and MEMOTY. .....cueveiriiiiie e 27

vii



CHAPTER 1

Introduction
1.1 Background

The volume of biomedical literature available on the World Wide Web has experienced
unprecedented growth in recent years. Automatically processing biomedical literature has
been receiving lot attentions. Many information extraction ( IE ) researches[1] have shown
their interested in the challenges of the biomedical text mining. Because of the difficulties
on processing natural language texts, many biomedical relation-extraction systems only
consider the main relation targets and the verbs linking them. However, they frequently
ignore phrases describing location, manner, timing, condition, and extent[2]. In the
biomedical field, these modifying phrases are especially important. Biological processes can
be divided into temporal or spatial molecular events, for example activation of a specific
protein in a specific cell or inhibition of a gene by a protein at a particular time. Having
comprehensive information about when, where and how these events occur is essential for
identifying the exact functions of proteins and the sequence of biochemical reactions.
Detecting the extra modifying information in natural language texts requires semantic

analysis tools.



Figure 1.1: A parsing tree annotated with semantic roles.
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IL4 and IL13 receptors activate STAT6 , STAT3 , and STATS proteins in the human B cells

1.2 Biomedical Semantic Role Labeling ( SRL )

Semantic role labeling ( SRL ) , also called shallow semantic parsing[3], is a popular semantic
analysis technique. On SRL, sentences are represented by one or more predicate argument
structures ( PASs ) , also known as propositions[4]. Each PAS is composed of a predicate
(e.g., a verb) and several arguments (e.g., noun phrases) that have different semantic roles,
including main arguments such as an agent and a patient, as well as adjunct arguments, such
as time, manner, and location. Here, the term argument refers to a syntactic constituent of
the sentence related to the predicate; and the term semantic role refers to the semantic
relationship between a predicate (e.g., a verb) and an argument (e.g., a noun phrase) of a
sentence. For example, in Figure 1.1, the sentence "IL4 and IL13 receptors activate STATG,
STATS3, and STATS proteins in the human B cells.” describes a molecular activation process.
It can be represented by a PAS in which "activate" is the predicate, "IL4 and IL13 receptors"
and "STATG6, STAT3, and STATS proteins™ comprise the ARGO and ARG respectively, and

"in the human B cells" is the location. ARGO and ARG1 have different defines on different



predicate, and describe agent and patient respectively. Thus, the agent, patient, and location

are the arguments of the predicate.

1.3 Traditional Formulation of SRL

SRL has being formulated as a classification problem in which supervised machine learning
methods can be applied [2, 5, 6]. In order to constructing such a classifier, it is essential to
select an annotated corpus and a PAS standard, such as PropBank[7]. Figure 1.2 shows the
most general formulation of SRL, a pipeline method [8]. As shown in Figure 1.2.a, SRL
usually starts with accepting a syntactic structure of a sentence (parse tree), because the
structure encode more information such as the headwords [9]. The second step (Figure 1.2.b)
Is predicate identification that identifies the verb on the sentence. This step can be achieved
by using a part-of-speech (POS) tagger with some filtering rules. Figure 1.2.c and Figure
1.2.d shows the two major tasks of SRL. Figure 1.2.c is called argument identification that
identifies the word boundaries by determining whether the constituents, the nodes on the
syntactic tree, contain semantic roles or not. Figure 1.2.d refers to as the argument
classification step that assigns appropriate semantic role labels to the constituents. Finally,
Figure 1.2.e checks whether the semantic roles are legal or not[10] by checking constraints
such as word boundaries cannot be overlapped and determines the final semantic roles of the

sentence. This step has been shown as an importance step in SRL [10].

Some systems, such as BIOSMILE[2], treat argument identification and argument
classification as a single step, and recognize word boundaries and semantic roles
simultaneously. However, the formulation usually suffers from the unbalanced problem of
semantic role labels, because there are many kinds of semantic role labels for instance
BioProp defines thirty-two kinds of semantic role labels. Furthermore, SRL is a non-i.i.d
(individual and identical distribution) problem. Following the formulation, the dependencies
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between semantic roles could not be known immediately until the last step. In the next
section, we will describe our observations on both problems on the current biomedical SRL

approaches.

Figure 1.2: The pipeline methods of the SRL.
The input of SRL is the syntactic tree of the sentence, and the nodes of the syntactic
tree are called constituents.
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d. Argument classification assigns appropriate the semantic role labels to the
constituents.

Thing to be induced

NN RB

Thing to be induced

e. Checking whether the semantic role labels violate the linguistic constraints.

ArgM-MNR

Thing to be induced

/ / N
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NN RB @ i) IN DT NNS , RB  VBG or’ 1 NN NN
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cannot Overlap Thing to be induced

1.4 Problems

1.4.1 Unbalanced Problem

At first, we found the major reason causing unbalanced semantic roles comes from the stages
of argument identification and argument classification. Table 1.1 shows our statistics of the
constituents that possess semantic role labels on BioProp. As shown in Table 1.1, about

93.55% of the constituents in the syntactic tree do not have any semantic role label, meaning
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that these constituents are labeled with the NULL label in the dataset. By further analyzing
these semantic roles, we observed that some of them can be found by simple patterns such as
their syntactic path. For instance, in Figure 1.2, the inducer “T3” can be recognized by the
syntactic path from the constituent to the verb “NP>S<VP<VBD”. However, most systems
take all constituents as the input, and spend a lot time on tuning the weights for features of the
NULL label and ignore the semantic roles with few instances.

Table 1.1: The statistic of the constituents and semantic roles.

Role a(ht%(igf’gltuents Coverage
Arg0 0.69 (1333) 1.56%
Argl 0.99 (1941) 2.21%
Arg2 0.16 (310) 0.33%
Arg3 0.01(10) 0.01%
ArgM-NEG 0.05(102) 0.12%
ArgM-LOC 0.19 (373) 0.44%
ArgM-TMP 0.07 (138) 0.16%
ArgM-MNR 0.24 (470) 0.52%
ArgM-EXT 0.01(23) 0.02%
ArgM-ADV 0.15(298) 0.30%
ArgM-PNC 0.00(3) 0.00%
ArgM-CAU 0.01(15) 0.02%
ArgM-DIR 0.01(22) 0.02%
ArgM-DIS 0.09 (179) 0.24%
ARGM-MOD 0.06 (121) 0.13%
ARGM-REC 0.00(6) 0.01%
Overall 2.9 (5727) 6.45%
Overall (includes

NULL ) 53.57 (105121) 100%

1.4.2 Dependency Problem

Based on our error analysis on the output generated by BIOSMILE, some sentences failed to
be expressed as PAS, which mainly results from incorrect SRL due to the complexity of the
sentences. An example is shown in Figure 1.2.e. If we have enough knowledge of the
linguistic constraints between semantic roles, it might help us in assigning the appropriate

semantic role labels. This is also called collective learning. We think this observation



emphasizes the importance of collectively learned semantic roles.

1.5 Our Goal

In this paper, we focus on 1) how to automatically select and assign initial semantic roles; 2)
how to enhance SRL with collectively learned semantic roles through using a Markov Logic
Network[11]. Following is an overview of this paper. In Chapter 2, we describe our
method. The subsection 2.1 introduces MLN proposed by [12]. The implementation of our
SRL system is described in subsection 2.2. The subsection 2.3 proposes the method of using
SRL patterns to select and assign initial semantic role labels. Due to the difficulties for
employing biological experts in manually writing the SRL patterns, we propose an automatic
pattern generation method. In the subsection 2.4, we introduce the collectively learned
semantic roles method that implements linguistic constraints. In Chapter 3, we detail the
experiments designed for examining the effect of our methods. In Chapter 4, we show the
experimental results and related analysis. Finally, Chapter 5 concludes the contributions of

this paper.



CHAPTER 2

Method

2.1 Markov Logic

2.1.1  First-Order Logic

MLN combines first order logic (FOL) and Markov networks. In FOL, formulae consist of
four types of symbols: constants, variables, functions, and predicates. Constants represent
objects in a specific domain ( e.g. Part-of-speech: NN, VB, etc.) . Variable is the range over
the objects ( e.g., PoS ( Part-of-speech ) , where PoS ={pos| pos € Part —of —speech} ) .
Functions represent mappings from tuples of objects to objects ( e.g., ChildrenOf , where
ChildrenOf (i) =children of treenodei ). Predicates represent relationships among objects
( e.g., PoS of headword ) , or attributes of objects ( e.g., Arg0 ) . Constants and variables
may belong to specific types. An atom is a predicate symbol applied to a list of arguments,
which may be constants or variables ( e.g., role(p,i,r) ) . A ground atom is an atom
whose arguments are all constants ( e.g.,
event _trigger ={p| p eselected 30 frequent verbs} ) . A world is an assignment of truth
values to all possible ground atoms. A knowledge base ( KB ) is a partial specification of a

world; each atom in it is true, false or unknown.

2.1.2 Markov Networks

A Markov network represents the joint  distribution of a set of

variables X ={X;,..., X, }e Xas a product of factors: P(X = x):%H f (x, ), where each
k

factor f, is a non-negative function of a subset of the variables x, , and Z is a normalization
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constant.  The distribution is usually equivalently represented as a log-linear form:
1 . .
P(X = X):EeXp(ZW‘ gj(x)j, where the features g, (x)are arbitrary functions of ( a subset

of ) the variables’ states.

2.1.3  Markov Logic Networks

An MLN is a set of weighted first-order formulae. Together with a set of constants
representing objects in the domain, it defines a Markov network with one variable per ground
atom and one feature per ground formula. The probability distribution over possible worlds

is given by P(X =x)= %exp(z Zwigj(x)jwherez is the partition function, is the set of

ieF jeG;
all first-order formulae in the MLN, g is the set of groundings of the i-th first-order formula,

and g, (x)=1if the j-th ground formula is true and g,(x)=0 otherwise. Markov logic

enables us to compactly represent complex models in non-i.i.d. domains. General
algorithms for inference and learning in Markov logic are discussed in Richardson and
Domingos[13]. We uses 1-best MIRA online learning method [14] for learning weights and
employs cutting plane inference [15] with integer linear programming as its base solver for
inference at test time as well as during the MIRA online learning process. To avoid the
ambiguity between the predicates in FOL and SRL, we refer the predicate in SRL as “event

trigger” from now on.

2.2 Implement Biomedical Semantic Role Labeling

2.2.1  Formulating SRL

Our SRL system incorporates three components: (1) SRL patterns; (2) collective learning
formulae; (3) a MLN-based classifier.

SRL patterns: The SRL patterns are the patterns described in subsection 2.3. We use

9



pattern _match (p,i,r) to describe that there is an event trigger p and the constituent i has
a semantic role r.

Collective learning formulae: The collective learning formulae are the formulae
described in subsection 2.4.

MLN-based classifier: Our MLN-based classifier uses the features of BIOSMILE,
transform them into the formulae. In subsection 2.2.2, we will propose our method about
how to transform these features into the formulae and how to incorporate SRL patterns and
the classifier. In section 2.2.3, we propose a method to automatically generate conjunction
formulae using only annotated PAS information. In section 2.2.4, we further apply the
collective learning on SRL.

In our formulation, we use event _trigger (p) to express a constituent p that is an
event trigger; event type (p,t) to express that the event type of p is tsuch binding;
role (p,i,r) to express that there is an event trigger p and a constituent i with the
semantic role r.

2.2.2 Basic formulae

Basic formulae are derived from the features used on the SRL systems[5, 16-18] that are
based on Maximum Entropy Model ( ME ), Support Vector Machine (SVM ). As shown in
Table 2.1. These features are also used on BIOSMILE. These features have been proved
their contributions on SRL. To apply these features on our classifier, we transform the
features into the formulae, since MLN only accepts the formulae rather than features.

A basic formula consists of two predicates, one corresponding to the event trigger and
the other one is a feature of a constituent. For example, the headword feature could be
expressed in FOL as pattern_match ( p,i,+r) A headword (i,+w)=>role ( p,i,+r), where w
is the headword of the constituent i. If the “+” symbol appears before a variable, it

indicates that each different value of the variable has its own weight.

10



Table 2.1: The features are used in previous SRL systems.

BASIC FEATURES

Predicate — The predicate lemma

Path — The syntactic path through the parsing tree from the constituent being classified to
the predicate

Constituent type

Position — Whether the phrase is located before or after the predicate

\oice — passive if the predicate has a POS tag VBN, and its chunk is not a VP, or it is
preceded by a form of "to be" or "to get" within its chunk; otherwise, it is active

Head word — Calculated using the head word table described by Collins (1999)

Head POS — The POS of the Head Word

Sub-categorization — The phrase structure rule that expands the predicate's parent node in
the parsing tree

First and last Word and their POS tags

Level — The level in the parsing tree

PREDICATE FEATURES

Predicate’s verb class
Predicate POS tag
Predicate frequency
Predicate's context POS
Number of predicates

FULL PARSING FEATURES

Parent, left sibling, and right sibling paths, constituent types, positions, head words, and
head POS tags

Head of Prepositional Phrase (PP) parent - If the parent is a PP, then the head of this PP
is also used as a feature

COMBINATION FEATURES

Predicate distance combination
Predicate phrase type combination
Head word and predicate combination
\oice position combination

OTHERS

Syntactic frame of predicate/NP
Headword suffixes of lengths 2, 3, and 4
Number of words in the phrase

Context words & POS tags

2.2.3  Conjunction formulae

In addition to the basic formulae described above, we also employ conjunction formulae.
We use a similar approach described in the subsection 2.3 to generate conjunction formulae.
However, unlike those patterns would like to achieve a higher recall and not care about the
precision, the conjunction formulae should as possible as improving the recall and precision.

Therefore we use Apriori algorithm to generate conjunction formulae.

11




Apriori algorithm has been described in the subsection 2.3, and to generate conjunction
formulae we set the default minimum support and confidence are 15 times and 80%, and we
believe the values could generate the reliable conjunction formulae.

Conjunction formulae are composed of three or more predicates, one is the event trigger

and the others are the linguistic properties of a constituent. For instance,

event _trigger (p) A constituent _type (i,"PP") A firstword (i,"in")
Alastword (i,"cell") = role (p,i,"ARGM-LOC")

means that the constituent i should be labeled as “ARGM-LOC” when its constituent type is

(13992

“PP”, its first word is “in”, and its last word is “cell”.

2.2.4 Global formulae

Basic formulae and conjunction formulae are local formulae whose conditions only consider
the observe predicates. That is the dependencies of the semantic roles do not take into
considered. The global formula is the condition of the formula including hidden predicates
or the constraints that cannot be violated. In our system the hidden predicate is
role (p,i,r). We use the global formulae described in subsection 2.4 to the collectively
learned semantic roles with dependences including tree collective and path collective.

2.3 Patterns for SRL

2.3.1 Introduction of the Patterns

In this section, we propose the formal definition of our patterns. In ideal situation, the patterns
of SRL can express the sentences as PASs. However, it is difficult without the help of the
biological experts. For example, a pattern indicates that the noun phrase that appears in
front of an active verb such as bind is the agent, but another pattern indicates that the protein
before bind is the agent. It is difficult to determine which pattern is corrected. The first
pattern might be wrong while the noun phrase describes the process about a protein.
However the second pattern might be fail while the protein could not be recognized.

Therefore, it requires to manually design the dependencies of the patterns. Because it is

12



difficult for human to manually design the dependencies. Our patterns are designed to
answer what are the candidate labels of the semantic roles on the sentences rather than what
are the appropriate semantic role labels. Our patterns focus on removing the constituents
that should not be assigned semantic role labels and recognizing the candidate labels of the
semantic roles. Following sections describe our SRL patterns.

2.3.2  Tree Pruning

Since the ratio of the constituents with semantic roles is much lower than all constituents.
The goal of tree pruning is to reduce the number of the constituents. Some SRL systems
also use the pruning methods[17] or pre/post-processing filtering method[10] on the SRL to
reduce the complexity or improve the performance. These methods are also used in our SRL
patterns. We use two different tree pruning methods in our SRL. The first one is removing
the constituents in the same path with the predicate. If a constituent overlaps with the
predicate and it should not be assigned the semantic role. Removing these overlapped
constituents before classification not only make sure they cannot be assigned the semantic
roles but also make training/testing efficiently. Figure 2.1.a shows an example. The
second one is that SRL prefer to annotate semantic roles on the phrase rather than the token,
while the constituents 1) are leaves, 2) do not have any sibling 3) are stop words, they should

be removed. Figure 2.1.b shows an example.
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Figure 2.1: The examples show the tree pruning.
The constituents overlap with the predicate regulate.

S
NP \’II’
S}»\R
\s
NP\VP
NP PP \Vp
NP \VP
NP \PP
NP NP NP PP \PP
NP \S
VP

DT NNS VBP IN NN IN NN , NN NN CC NN NN NNS MD VB VBN IN 1 NN NN CE IN ::‘VBG’::- NN NN
These results suggest that expression of c-jun , jun B and jun D genes might be involved in terminal diffe on or in .‘.‘“. granulocyte  functionality

The constituents are stop words or without the siblings.
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2.3.3 Lexicon Pattern

Lexicon pattern assigns the semantic role label to the constituent. Like most of the SRL
systems use lexicon features on argument identification/classification. Here we describe the
semantic role labels could be found by their words, and we use the string match method to
identify these semantic role labels.

Discourse ( ARGM-DIS ) : Discourse connects a sentence to a preceding sentence, it is
not necessary to use classification to find them but a simple list.

Modals ( ARGM-MOD ) , Negation ( ARGM-NEG ): While the predicate next to these
words, we would assign the words the semantic roles. We collect these words and semantic

role pairs with the words list.
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2.3.4  Temporal Pattern

The semantic roles with number or time are difficult to be recognized. These semantic roles
also make the sentences much complex. Recognizing these semantic roles before
classification could decrease the complexity of the sentences. We manually write the
patterns to recognize these semantic roles

Extent Marker ( ARGM-EXP ) : Extent marker indicates the amount of change occurring
from an action such as “... fold”. We observe that extent markers usually are the siblings of
the verb. Therefore, we design our pattern as following: if there is a trigger of the extent
markers such as “%” or “fold”, the constituent of the sibling of the verb which contains this
trigger would be assigned the extent marker.

Temporal Marker ( ARGM-TMP ) : Temporal marker indicates when an action took
place. Like extent marker, temporal markers usually are the siblings of the verb. Therefore,
we use the same methods to find temporal markers. Furthermore, temporal markers
sometimes appear in the head of sentence, we also assign the temporal marker to the
constituent which has the trigger of temporal marker such as “hour” and is the start of the
sentence.

2.3.5  Conjunction Pattern

In addition to all above patterns, there still have a lot of potential patterns could be used to
annotate the semantic roles. Here we propose a method that uses the association rule mining
and can automatically generate the patterns that conjunct several features of the constituents.
For instance, first_word (i, “in” ) A last_word (i, “cell” ) => role ( p, i, “ARGM-LOC” ),
this pattern means the constituent i started with “in” and ended with “cell” should be assigned
the locative modifiers ARGM-LOC. In subsection 2.3.5.1, we introduce the association rule
mining; in subsection 2.3.5.2, we propose our formulation of the transactions on SRL; in

subsection 2.3.5.3, we describe our filtering methods to select the conjunction patterns.
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2.3.5.1 Association Rule Mining

Association rule mining[19] is to discover the interesting relations, called association rules,
from certain database, and it also is a popular research method. An association rule is a rule
like “If a person buys wine and bread, he/she often buys cheese, too”. We found that the
SRL patterns are very similar with the association rules. For an instance, a SRL pattern can
be written as a rule like “If a constituent starts with the word in and ends with the word cell, it
often plays an ARGM-LOC”. Therefore, we apply association rule mining to generate
conjunction patterns. In order to discover the interesting relations, it is necessary to define
four things including item, transaction, support and confidence. An item is the object
participating in the rules, continuing the example, the started word in, the ended word cell and
the semantic role ARGM-LOC are the items. The transaction is a collection of the items.
The support is the number of the itemset, a subset of the transaction, appearing in the
collection of the transactions. A minimum support could be used to make sure that the
mined rules are not to overfit the database. The confidence is the number of the rule hold
divided by the number of the condition hold. A minimum confidence could make sure that
mined rules often are corrected in the database. A maximum confidence could make sure
that mined rules are not obviously in the database. In our paper, we will focus on how to

discover the rules instead of how to implement the association rule mining method.
2.3.5.2 Formulate the Transaction

By observing the individual semantic role, we find sometimes the semantic role could be
determined by its first and last words such as a phrase likes “in...cell” usually play a role
ARGM-LOC. Therefore, we propose a method which could automatically generate the

patterns like that, and the steps are below:
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Figure 2.2: The examples for mining association rules.
a. T3 efficiently induced erythroid differentiation in these cells, thus overcoming the
v-erbA-mediated differentiation arrest.

S
NJ’[ARGoj ) i ;@p\fl)[ARGM}M“] VP
NP[ARGI] 'pP[AﬁdM:Loc]' - 's[ARbM-Ap\{]
NP VP
NP
NN RB VVliD[EvemTrig«b;er:]r JJ NN IN DT NNS VRBV[ARGI\TI-DVIrS]V VBG DT 1 NN NN
T3 efficiently induced erythroid differentiation in these cells , thus overcoming the v-erbA-mediated differentiation arrest .

b. In contract mMRNA representing pAT 591/EGR2 was not expressed in these cells.

— S e _
CPRARGMDIS] D CNARGLD Ve
“‘NP NP VP‘ VP
"N /) ST
N NN NN VBG NN NN VBD RBE/{RGM:‘\@G] ‘-ﬁﬁ:@@[:F“m Tigger] > IN JT “NNS "
In contrast mRNA representing pAT 591/EGR2  was not expressed in these cells

Step 1: Extracts the information about all the arguments include constituent type, first
word and last word, syntactic path from the predicate and the predicate. We treat these
information as the items. For instance, in Figure 2.2.a, for ARGM-LOC, we could extract

the information as following:

Table 2.2: The information extracted from ARGM-LOC on Figure 2.2.a.
Constituent type : PP

Firstword / POS :in/IN
Last word / POS : cells / NNS
Syntactic path from the predicate : VBD > VP < PP

Predicate : induce

Step 2: We treat each constituent with the semantic role as a transaction, and its
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information extracted in Step 1 is its items.  For instance, we have two sentences as shown in

Figure 2.2, and we could transform them into the transactions:

Table 2.3: The transactions are transformed from Figure 2.2.

Itemset

FW (T3),LW (T3),CT (NP), PATH (NP>S<VP<VBD ), event_trigger ( induce ) , ROLE (ARGO )

FW ( efficiently ) , LW ( efficiently ) , CT ( ADVP ), PATH ( ADVP>S<VP<VBD ), event_trigger ( induce ) , ROLE
(ARGM-MNR)

FW (erythroid ) , LW ( differentiation ) , CT (NP ), PATH (VBD>VP<NP), event_trigger ( induce ) , ROLE (ARGL1)

FW (in), LW (cell),CT (PP), PATH (VBD>VP >S<PP), event_trigger (induce ), ROLE (ARGM-LOC)

FW (thus), LW (thus),CT (RB), PATH (VBD>VP<RB), event_trigger (induce ) , ROLE (ARGM-DIS)

FW (overcoming ), LW (arrest), CT (S), PATH (VBD>VP<S), event_trigger ( induce ) , ROLE (ARGM-ADV )

FW (iin), LW (contrast), CT (PP), PATH ( PP>S<VP<VP<VBN ), event_trigger (express) , ROLE (ARGM-DIS)

FW (mRNA), LW (591/egr2), CT ( NP), PATH ( NP>S<VP<VBN ), event_trigger ( express) , ROLE (ARG1)

FW (not),LW (not),CT (RB), PATH ( RB>VP<VBD ), event_trigger ( express ), ROLE (ARGM-NEG )

FW (in), LW (cell),CT (PP), PATH (VBD>VP<S<PP), event_trigger ( express ), ROLE (ARGM-LOC)

Step 3: Using association rule mining, we could generate the rule likes

event _trigger (p) A constituent _type (i,"PP") A firstword (i,"in")
A lastword (i, " cells™)
Alastword _ POS (i,"NNS") = role (p,i,"ARGM-LOC")
2.3.5.3 Select the Patterns

However, the patterns generated in Step 3 probably are not suite for the SRL. We observe
the characteristics of different semantic roles, and we apply following the metrics to select
SRL patterns:

a) The conjunction patterns for ARGX must contain “the syntactic path and the
predicate type” and must appear more than 2 times, and the condition should only
include these two items.

b) The conjunction pattern for ARGM-LOC should contain either “the first word and

the last word” or “the first word and the syntactic path” and should appear more than
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2 times.
c) The conjunction pattern for the other ARGM should contain “the word and the
syntactic path” and should appear more than 2 times.
2.3.6  Syntactic Path Pattern
In addition to all above methods, we use the shortest syntactic path patterns, while the
constituents have no candidate semantic role label, we check whether the constituent has
similar syntactic path with semantic roles that appear in training set, if it exists, the

constituent would be assigned the semantic role label.

2.4 Collective Learning for SRL

241  Collective Learning

Collective learning is also known as collective classification. In classification problems,
they assign appropriate labels to the instances. For instance, the disease-gene related
document classification problem distinguish disease-gene related document from other
documents. In this problem, it assumes whether the document is disease-gene related or not,
that is independent with other reference documents. However, there is rich information on
its reference documents.  Using collective learning can benefit from this information. And
MLN also show that it performs well on collection learning[20].

2.4.2  Linguistic Constraints

The linguistic constraints[10] have shown their contributions on SRL. In our paper, we
called the linguistic constraints as tree collective and path collective.
Tree collective indicates that two or more arguments in a sentence may be assigned the

same semantic role, which contradicts PAS. To prevent this, we use the formula
event _trigger (p) Acore_arg (+r) = |role (p,i,+r)[<1

This formula ensures that each semantic role is assigned to only one constituent. We called
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the formula as tree collective, since the formula limits an event trigger could not has more

than one core argument ( the number argument : ARGX).

Furthermore, the arguments may overlap when a node and it antecedent node(s) are all

assigned semantic roles. The formula overlap (i, j) Arole (p,i, ) = |ro|e (p, J, r2)| =0

ensures that if two or more constituents overlap, then only one can be assigned a semantic
role. We called the formula as path collective, since the formula limits the argument could

not appear in the same path on the syntactic tree.
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3.1 Dataset

CHPATER 3

Experiment

To evaluate our SRL system, we select BioProp[9] as our dataset. BioProp is a semantic

role labeling corpus, including 445 biomedical abstract labeled with the semantic roles and 30

predicates, which are most important or frequently appearing in biomedical literatures.

Table 3.1 shows the statistics of the BioProp.

Table 3.1: The statistics on the BioProp corpus.

Role Number
Core argument types 11
Adjunctive argument types 21
Feature Number
Constituent types 17
Unique words 5258
Part-of-speech 34
Other Number
Event types 30
Abstracts with Propositions 445
Sentences with Propositions 1622
Propositions 1962

Core arguments play the major semantic role of the event, including ARGX, R-ARGX

and C-ARGX. ARGX usually plays the agent, patients and objects; R-ARGX indicates the

start of the clause that describes ARGX; C-ARGX describes the continuous ARGX.

Adjunctive arguments play the location, manner, temporal, extent used to indicate the state of

the event.




3.2 Experiment Design

3.21  Experiment 1 — The Effect of Automatically Generated Patterns

In this experiment, we evaluate the effect of using SRL patterns. In order to evaluate the
effect of automatically generated patterns. We compare three different configurations. 1)
BIOSMILE : This only implements the basic formulae but with slightly difference is that
event trigger (p) replaces pattern _match ( p,i,+r), which means the patterns are not
used. 2) BIOSMILE + pattern w/o auto : To examine the effect of the patterns, another
configuration implements  the basic ~ formulae. In  this  configuration,
pattern _match _wo _auto _gen( p,i,+r) replaces pattern _match ( p,i,+r) , which
means automatically generated patterns are not used in this configuration. 3) BIOSMILE +
pattern : The configuration implements all the patterns and the formulae including basic
formulae and conjunction formulae. Comparing configuration 2 and configuration 3 could
show the effects of using automatically generated patterns.

3.2.2  Experiment 2 — Improvement by Using Collective Learning

In this experiment, we examine whether the patterns incorporated with collective learning
could further enhance SRL. We compare four different configurations. 1) BIOSMILE :
BIOSMILE is the same configuration with that is used in experiment 1. 2) BIOSMILE +
pattern : it is also the same with that is used in experiment 1. 3) BIOSMILE + CL :
BIOSMILE incorporate with the collective learning. 4) BIOSMILE + pattern + CL :
BIOSMILE + pattern incorporate with the collective learning.

3.3 Evaluation Metric
The results are given as F-score using the CoNLL-05[8] evaluation script and defined as

F=2><P><R
P+R

for calculating precision and recall are as follows:

, where P denotes the precision and R denotes the recall. The formulae
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the number of correctly recognized arguments
the number of recognized arguments

Precision =

the number of correctly recognized arguments

Reacll =
the number of truearguments

Furthermore, we also evaluate the F-score with sentence-level F, , which we denote

P, and R, as follows:

the number of correctly recognized Propositions

Precision = - —
the number of recognized Propositions

the number of correctly PASs
the number of true PASs

Reacll =

3.4 t-test
In order to develop a much fairer environment, we apply a two-sample paired t-test, which is
defined as following:
The null hypothesis, which states that there is no difference between the two
configurations A and B, is given as
Ho ©atp = ttg
where u, is the true mean F-score of configuration A, g is the mean of the configuration B,
and the alternative hypothesis is
Hyfaen > ptp
A two-sample paired t-test is applied since we assume the samples are independent. As
the number of samples is large and the samples’ standard deviations are known, the following

two-sample t-test is suitable:

(X = XG5)
Si,Se
r-]A nB

If the resulting t-score is equal to or less than 1.67 with a degree of freedom of 29 and a

statistical significance level of 95%, the null hypothesis is accepted; otherwise it is rejected.
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To get the average F-scores and their deviations required for the t-test, we randomly
sampled thirty training sets (ga, ..., 9s0) and thirty test sets (d, ..., d3o) from the 500 abstracts.
We trained the model on g; and tested it on d;. Afterwards, we summed the scores for all

thirty test sets, and calculated the averages for performance comparison.
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CHAPTER 4

Results and Discussion
4.1 Improvement by Using SRL Patterns

Table 4.1 shows the results of using SRL patterns on CoNLL evaluation metrics. There are
three different configurations. First, the config. 1 is BIOSMILE. Secondly, the config. 2 is
SRL patterns excluded automatically generated patterns and basic formulae. The config. 3
iIs SRL patterns, basic formulae and automatically generated formulae. We use “*’ to

indicate the configuration has statistically significant improvement with the config. 1 and 2.

The results show that the config. 2 outperforms the BIOSMILE by 0.44% on ARGX, and
the config. 3 outperforms the BIOSMILE by 1.20% and 0.54% on ARGX and Overall ARG,

respectively. The config. 2 and 3 decrease 2.39% and 0.25% on ARGM respectively.

As show in Table 4.1 that both the config. 2 and 3 perform better in recall but worse on
precision. The reason might be that lacks negative examples that SRL patterns remove the

constituents which were considered to be without semantic role labels.

Table 4.1: The performances of SRL using SRL patterns.

ARGX ARGM Overall ARG

Configuration
P R F AF P R F AF P R F | AF

1. BIOSMILE 90.62|84.55/87.48| - 82.96 |162.65(71.39| - 88.59 |77.78|82.83| -

2.1 + Pattern w/o Auto |89.48 86.42|87.92|+0.44 | 76.63 |62.76|69.00| -2.39 | 86.00 |79.21(82.46| -0.37

3. 1 + Pattern 89.69(87.70(88.68| +1.20" | 74.20 |68.33|71.14| -0.25 | 85.10 |81.71/83.37|+0.54
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Table 4.2: The distribution of ARGM on BIOSMILE and BIOSMILE + Pattern w/o Auto.

BIOSMILE BIOSMILE + Pattern w/o Auto
ARGM corr. eXCess missed cofrr. eXCess missed
ARGM-ADV 639 332 1102 706 552 933
ARGM-LOC 1465 364 797 1546 494 693
ARGM-MNR 1952 341 811 2025 527 671
ARGM-MOD 696 11 49 709 29 36
ARGM-NEG 521 5 43 536 48 28
ARGM-TMP 286 93 527 327 140 483

Figure 4.1: An example: ARGM-MNR is failed to be labeled using BIOSMILE + Pattern w/o Auto.

Collectively , these data suggest that [NFAT arc1] [Canarem-mop] be [activatedeyent Trigger]
and IL-2 can be produced [in a calcineurin independent mannerarem-mnr]

Furthermore, we analysis the possible reasons why the config. 2 uses the patterns could
improve on ARGX, but decrease on ARGM. Table 4.2 shows the individual distribution of
different semantic roles. After applying the patterns, the both number of corrected and
excessed semantic roles on the ARGM increased. Figure 4.1 shows that the patterns of the
config. 2 without automatically generated patterns are hardly on recognizing the ARGM such
as ARGM-MNR which needs the other information such as the last word, the constituent

started with “in” and ended with “manner” usually indicates ARGM-MNR.

4.2 Improvement by Using Collective Learning

Table 4.3 shows the performance of using collective learning on CoNLL evaluation metrics.
Table 4.4 shows performance of using collective learning on sentence-wide evaluation
metrics. We use “*’ to indicate the configuration has statistically significant improvement
with BIOSMILE use °**’ to indicate the configuration has statistically significant
improvement with both BIOSMILE and the config. 2. There are four different

configurations.  The config. 3 incorporates BIOSMILE with collective learning; the config.
4 incorporate BIOSMILE + SRL patterns with collective learning. Table 4.3 shows that the
config.3 and 4 applying collective learning outperform BIOSMILE and BIOSMILE + SRL

pattern by F-score 1.91% and 1.65% on overall ARG respectively. And, their improvements
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on sentence-wide evaluation, in Table 4.4, are F-score 6.93% and 4.43% on overall ARG
respectively, especially on ARGX with 7.54% and 6.93%. These improvements indicate
that uses MLN to collectively learned SRL can improve both individual arguments and the
sentence-wide argument. Table 4.5 shows the costs of the time and memory. Despite, the
performances of our system, the config. 4, is slightly lower than the config. 3, but costs are

much lower than the config 3 on both time and memory.

Table 4.3: The performances of SRL using collective learning.

ARGX ARGM Overall ARG
Configuration
PI/R|F| AF| P | R|F| AF | P | R| F | AF
1. BIOSMILE 90.62|84.55|87.48| - |82.96|62.65(71.39| - |88.59(77.78/82.83| -
2.1 + Pattern 89.69(87.70(88.68|+1.20" | 74.20 |68.33|71.14/-0.25 |85.10 (81.71/83.37|+0.54"
3.1+CL 89.88(88.88/89.37|+1.89" | 80.00 |68.15|73.60(+2.21" | 87.13 |82.48/84.74|+1.91"
4.2 +CL 90.90(88.44(89.65(+2.17" | 77.81 |66.93|71.96/+0.57 |87.24 (81.89/84.48|+1.65

Table 4.4: The performances of SRL on sentence-wide evaluation metrics.

ARGX Overall ARG
Configuration
P R | F AF P R | F | AF
1. BIOSMILE 71.83|70.41|71.11| - |51.78|51.41/51.60| -
2.1 + Pattern 74.77|73.94|74.35/+3.24" | 55.27 [55.12/55.19|+3.59"
3.1+CL 78.75|78.54|78.65|+7.54" | 58.58 |58.57/58.57|+6.93 "
4.2+CL 78.2677.82|78.04/+6.93" | 56.09 |55.95(56.02|+4.42"

Table 4.5: The cost of time and memory.
Configuration | Traintime | Test time Memory

1. BIOSMILE | 1hr10m 127.0ms 1130MB
2. 1+ Pattern 36m 91.0ms 92MB
3. 1+CL 2 hr 55m 143.0ms 1130MB
4, 2+CL 1 hr 40m 103.0ms 92MB
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4.3 Related Work

4.3.1 Biomedical Semantic Role Labeling Corpus

PASBIo0[21] is the first PAS standard used in the biomedical field, but it does not provide the
SRL corpus. GREC[22] is an information extraction corpus focuses on gene regulation
event. However, GREC do not support the Treebank format SRL annotations[23].
BioProp is the only corpus that provides SRL annotations and annotates semantic role labels
on the syntactic trees. BioProp is created by [24]. BioProp selects 30 most frequently or
important verbs appearing in the biomedical literatures, and defines the standard of the
biomedical PAS. Furthermore, following the style of PropBank[7], which annotates PAS on
Penn Treebank ( PTB ) [23], BioProp annotates their PAS on GENIA TreeBank ( GTB ) beta
version[25]. GTB contains a collection of 500 MEDLINE abstracts selected from the search
results with the following keywords: human, blood cells, and transcription factors and

contains the TreeBank that follows the style of Penn Treebank.

4.3.2 Biomedical Semantic Role Labeling System

Most semantic role labeling systems follow the pipeline method, which includes predicate
identification, argument identification and argument classification. However, in recent years,
instead of using pipeline method, several researches have shown that using the collective
learning method could outperform the pipeline method. [20] uses Markov Logic to
collectively learned these stages on SRL. However, we found that there seem to be no SRL
system using MLN in the biomedical field. [26] uses the domain adaption approaches to
improve SRL in biomedical field. [27] considers SRL as token-by-token labeling problem

and focuses on the SRL in the transport protein. BIOSMILE is the biomedical SRL system
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focus on 30 frequently appearing or important verbs in biomedical literatures and trained on

the BioProp, and it is based on Maximum Entropy ( ME ) Model.
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CHAPTER 5

Conclusion

We observe that some SRL ignore the complexity in classification and the dependencies
between the semantic roles. These systems usually take all constituents as candidate
semantic roles and use a post-processing step to deal with their dependencies. In this paper,
to tackle both problems, we construct a biomedical SRL system that uses SRL patterns and a
Markov Logic Network ( MLN ) to collectively learned semantic roles. However, SRL
patterns are difficult to be manually written, and we use automatically generated approaches,
to recognize the words boundaries and the candidates of semantic roles simultaneously. Our
system is trained on BioProp corpus. The experimental results show that using SRL patterns
can improve the performance by F-score 0.54% on overall ARG. Furthermore, using
collective learning, which incorporated with linguistic constraints, can improve the result by
F-score 1.65%. We show that uses SRL patterns can improve the efficiency of training
model and predicate instances, and reduce the memory. Also, we show that our approaches
can compete with current state-of-the-art approaches. The corpus used in our experiments is
a small biomedical SRL corpus that only uses one out of four of GENIA TreeBank corpus and
also focuses on 30 verbs. It is important to enable SRL to be trained on a large corpus in the
future. We consider that our approaches provide a possible solution to process large SRL

corpus.
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