1. Introduction

In 1927, L. H. Thomas and E. Fermi [15] independently gave a method of
studying the electron distribution in an atom, using the statistics for a degen-

erate gas. This led to a nonlinear second-order differential equation

The physicists were interested in three boundary value problem for this equa-

tion,

In the first problem, r is the Bohr atom radius. The second problem cor-
responds to the neutral atom, whereas the last is the ion case. The physicists
presumably have got out of the Thomas-Fermi theory all that is of interest to
them. They have enriched the mathematical literature by the equation above
and it seems to be time for mathematicians to react to the challenge by discover-
ing the astounding properties of the solutions. The present note is a preliminary

account of results obtained for which proofs will be published elsewhere [15].

In R. Bellman [14], the important nonlinear second-order equation

d du
8 g yoyn =
dt( dt) u" =0,

this equation has several interesting physical applications, occurring in astro-
physics in the form of the Emden equation and in atomic physics in the form of
the Fermi-Thomas equation. There seems little doubt that nonlinear equations
of this type would enter with greater frequency into mathematical physics, were
it more widely known with what ease the properties of the physical solutions

can be determined.



Mathematically, the equation possesses great interest: it is a nontrivial,
nonlinear differential equation with a large class of solutions whose behavior can
be ascertained with astonishing accuracy, despite the fact that the solutions, in
general, cannot be obtained explicitly.

In order to isolate this large class of tractable solutions, we employ the
concept of proper solution, which is a real and continuous solution for t > tg.
Henceforth we shall confine ourselves to the consideration of proper solutions
alone. In order to remind the reader of this fact, we shall constantly insert this
assumption into our hypotheses. This assumption is a natural one as far as

physical applications are concerned.

In papers Li [1 — 8] the semi-linear wave equation Ou+ f (u) = 0 under some
conditions, some interesting results on blow-up, blow-up rate and estimates for
the life-span of solutions are obtained. We want to use the methods in [9 — 13]
to study the case of Emden-Fowler type wave equation in 0—dimensional form,
that is, to consider the equation 20 — Au = uP, with space dimension n = 0
for ¢ > 1 under the given initial conditions: u (1) = ug, u (1) = u;. Using the

transformation ¢t = e, u (t) = v (s), we have

Uss (8) —ws () =v(s)’, peN-{1},

v(0) = ug, vs(0)=wuy.

We discuss this problem into three different cases under some given condi-
tions: (a) ug =0, ug >0, (b) ug >0, up > 0, (c) uy <0, ug € (O, (ful)%) and

we have the following main result for u; <0, ug € (0, (—ul)%) :
u(t) < (uo — (u1 + Ug)) + (ug +u§)t — ug Int.

Furthermore, for £ (0) > 0,




2. Local Existence of Solutions

In this chapter we establish the local existence and uniqueness result for the

problem of particular type of Emden-Fowler equation.

Theorem 1. For p € N, these functions t=2uP for t > 1 are locally

Lipschitz, the local existence and uniqueness of solutions of the equation

t?u =wP,  peN-{1},
u (1) = uy, u (1) = w4,

can be obtained.

Proof. Let us consider the transformation ¢t = e*, u (¢t) = v (s), then

u (t) = v (s) % =t "1, (s),
" d -1 o) &
u (t) = pn (t7 s (5)) = =t %05 (s) + v (s),

"

t2u (t) = —vs (8) + vss (),

u(t)” = v (s)" = =vs (s) + vss (5)

and

’

v(0)=u(l) =ug; vs(0)=u (1) =wu.
Therefore, we obtain

vss (8) —vs (s) =v(s)!, peN-{1},
(2.1)

v (0) = ug, vs(0) =us.

Thus, the local existence of solution w for (%) in [1,T) is equivalent to the

local existence of solution v for (2.1) in [0,InT).



Since vgs (8) — vs (s) = v (s)?, by integrating this equation with respect to s,

we obtain

vs(s):ul—l—/osv(r)l’dr—i-v(s)—uo

= (u1 —uo) +v(s) + /Osv (r)? dr.

Again, by integrating the above equation with respect to s, we have

v(s):uo+(u1—uo)s—t—/osv(r)dr—i—/os/onv(r)pdrdn

:u0+(u1—uo)s+/osv(r)dr+/ (s —r)v(r)’dr

0

u0+(u1u0)s+/os(v(r) + (s—r)v('r)p)dr.

Let us denote

F(v(s)):=up+ (ug —uo)$+/0S (v(r) + (s—r)v(r)f’> dr
and for k € (0,1),
X = {u eC® [o , 1nT) ol < M},

k‘ul — 7.L0‘+|U0|
M = k=InT,

A0

pMPLE? 4 2k < 2.

with

For s <InT, v € X, by (2.2), we have

1
IF (v (s))| < |uo|+\ul _ uo’s+Ms+M”~532

1
= |ug| + (‘ul — uo‘ +M> s+ §Mp82

M

=l (o = ]+ 3) o+ (G201 &

(2.2)



and
M

= ol (o )+ G2

§|u0|+(‘u1 _ u0‘+M)k:+%(1—k:)

M M
§|uo|++<‘u1—u0‘+M— )k
p p

M 1
|u0|++<1——>M|uo|M.
p p

Therefore we obtain that F': X — X, this means that F maps X into X
itself.

Next, we claim that F' is a contractive map. By (2.2) again, we have

F(v(s)~F (w(s)) :/Os (vr) - w(n) dr+/08 (s=7) (0" — w(r))dr

F(0() — F(uw(s)
<[
<[

= | p(s—ryMP~t 1 1) |v(r) — w(r)|dr
/ )| |

dr

v(r) — w(r)

dr+/08 (S—T)‘v(r)p — w(r)?

v(r) — w(r)‘dr—i—/os (s —r)pMP~1 ‘v(r) - w(r)‘dr

< (ot ) o - o

1 2

< <2PMP_1 ( InT ) + 1nT> Hv - wH .
1 2

From the definition of M and T we can find that ipMp’1 ( InT ) +InT <

1, thus F' is contractive in X and the local existence of solution of v of (2.1) can

be obtained.l



3. Notation and Fundamental Lemmas

For a given function v in this work we use the following abbreviations

a(s)=wv(s)*, E(0) :u%—pilu’gﬂ, J(s)=a(s)” T .

After some calculations we can obtain the follwing lemmas 2 and 3.

Lemma 2. Suppose that v € C?[0,InT) is the positive solution of (2.1),

then
E () = s () 2/051)3 () dr = o = EO, ()
(P+3)vs(5)° = P+ 1) E(0) +a (s) —a' (5)
+2(p+1) /Osvs (r)dr, (3.2)

p+1
and
T 0 = 707 + =g ) (7% — 10
—1)? 2(p+1 s
+ (p . 1) J(S)% /0 Vs (T)2 dr. (34)

Proof. 1) We claim the conservation (3.1). By (2.1) and the definition of




ii ) To (3.2), using the definition of a,

a (s)=2v(s)vs(s),

—d (s)+2 (vs (5)2 + v (S)P“) . (3.5)
By (3.1)
E(0) = v, (s)° — 2/05115 (r)dr — pi 1 (s)P*

(p+1)E(0) = (p+1) s (3)> = 2(p+ 1) /Ov () dr — 20 (5)"*"
By (35),

20 (5P =d (s) —a (s) - 2v, (s)7,

(P+3)vs(s)> =+ 1) E(0)+a (s)—a (s)+2(p+1) / v ()2 dr.

iii ) For (3.3), use the definition of J (s), we have

7' (s) = ]%IJ (s)55 ((p +3) M Lo (s)> (30

By (3.6) and the definition of a, we obtain

" 2 _ p+3 a(s)rd (52 d (s
HOES 1 Ll <(p+3) (4)(p+1()) - p+(1)>
=1 e ((p3)u(s)’ —a” (s)
== J (s) ( ) ) (3.7)

By (3.2) and (3.7), then we have

J(s) = b ;1,](3)%? (E(O) - Z-l(-sl) +2/Osvs (r)zdr> .

7



iv ) From the definition of J, we have

and

2(p+1) 2(p+1)

£ (J(s) Ty (s)2 — J(0) 7T v, (0)2).

By (3.1), then

J (s)> = J (0)°

E(0)J (s)

= (pi 1)2 )% (pf 1)2 ( )—%172(::11) ( )P-‘rl
= 2(p+ 1)1} S VIS

(p—1)° , 20 ° o (p—1)° e
J(s) /0 vs (1) dr 1 J(0) E(0)

_p—12(p+1) 1
o ()T g




and

Lemma 3. For ug > 0, the positive solution v of the equation (2.1), we

have:

i) uy > 0, then v, (s) >0  for all s> 0. (3.8)

i) ug <0, ug € (O, (—ul)%) , then vs (s) <0 for all s>0. (3.9)

Proof. i) Since vss (8) = vs(s) + v (s)” and vss (0) = vs (0) + v (0)” =
uy + ufy > 0, we know that vss (s) > 0 in [0, s1) for some s; > 0 and v (s) is
increasing in [0, s1) for some s; > 0. Then, vs(s) > v, (0) = u; > 0 for all

s €[0,s1) and v (s) is increasing in [0, s1) for some s; > 0.

Moreover, since v and v are increasing in [0, s1) ,
Vss (51) = vs (51) + v (51)" > 05 (0) +v(0)P >0 for all s € |0,s;)

and

vs (1) > vs(s) >0 for all s€]0,s1),
we know that there exists a positive number sy > 0, such that v, (s) > 0 for all
s €1[0,s1 + s2).
Continuing such process, we obtain v, (s) > 0 for all s > 0.

ii ) Since vgs (8) = vs (s) + v (s)” and ug € (O, (ful)%), vss (0) = vs (0) +

v (0)” = uy +ub < 0, there exists a positive number s; > 0 such that

vss (8) <0 in  [0,s1),



vs (8) is decreasing in [0, s1); therefore, vs (s) < vs (0) = ug < 0 for all s € [0, s1)

and v (s) is decreasing in [0, s1) for some s; > 0.

Moreover, since v and v are decreasing in [0, 1),
Vs (81) = vs (81) + v (s1)” <vs (0)+v(0)’ <0 for all se][0,s1)

and

vs (51) <ws(s) <0 for all se€][0,s1),

we know that there exists a positive number sy > 0, such that v, (s) < 0 for all

CES [0,81 + 82).

Continuing such process, we obtain v, (s) < 0 for all s > 0.1

10



4. Estimates for the life-span of positive
solution « of (+) under v, =o, vy >0

In this chapter we want to estimate the life-span of positive solution u of (x)
under uq; = 0, ug > 0. Here the life-span T* of u means that u is the positive
solution of equation (%) and w exists only in [1,7*) so that the problem (x)

possesses the positive solution v € C? [1,T*) for T < T*.

Theorem 4. For u; =0, ug > 0, the positive solution u of () blows

up in finite time; that is, there exists a bound number T* so that

wu(t) ' =0 for t—T"

Proof. By lemma 3, (3.8), we know that vs (s) > 0 for all s > 0 under u; = 0,

ug > 0.

From the definition of a (s), we have

a (s)=2v(s)vs(s) >0 for all s>0.

By lemma 2, (3.5), we have a’ (s) —a (s) =2 (vs (s)° +w (s)p+1).
By multiplying e~® to the above equation, we obtain

1

(al (s) e’5>/ =e° (a” (s)—a (s)) =2e° (vs (s)” +v (s)pH) .

By integrating the above equation with respect to s, then

’

a (s)e ™ —a (0) = 2/0367’ (vs (r)* +v (r)pH) dr

11



and in addition, @’ (0) = 0, we have

a (s)e > 8 (v (r)pTB e "0 +/ v (7")13Ta erdr>
0

“p+3
8 p+3 p+3 8 8 p+3
=——(v(s) 2 e®—2v(0 2)+7 r) 2 e "dr.
5 (00 OF )+ 5[ v

Since o’ (s) > 0 for all s > 0, we know that @ is increasing in (0, c0). From

the definition of a (s), v is increasing in (0, c0) and

a (s)e ® > I% (v (s)¥ e ¥ — v(O)ﬁ) + I% OSU (O)I)TS e "dr
:%( ()% e — v (0)F) +pi3v(0)% (1 - )
and
a (s) > pi?) (v (5)% —0(0)"F ¢ 40 (0) (ea _ 1))
:pf—?) (v —0 (%)
:I% v(s)g—u?). (4.1)

Since vgs (5) = vs (s) + v (s)?, u1 = 0 and by integrating this equation with

respect to s, we have

:ul—l—v(s)—uo—&-/‘v(T)PdT
0

:v(s)—uo—i-/osv(r)pdr

and v is increasing in (0, c0), then
vs (s) > v (s) —u0+/ v (0)Pdr
0

=v(s)—up+uf-s

12



and

vs (8) — v (s) > ub - s — up.

S

Multiplying the above inequality by e™*, we have

(e™v(s)), =e"* (vs (s) —w (s)) >e® (ug ‘8 — uo) .
By integrating the above inequality with respect to s, we obtain

S S
e v (s) —ug > ug/ re~"dr — uo/ e "dr
0 0

and

v(s)2u0+ug(es - 1—5).

According to (4.2), we get

and

p+3 p(p+3) =
=(e—8)uy? +euy ? (6371_3> .

Now, we want to find a number sy > 0 such that

p+3 p(p+3) pTN
(e—8)ug? +euy 2 <eS° - 1—50> =0,

13



that is,

p+3

(650 — 1—30) - 8_€u§#(17p)

€

and

2
8 —€ pi3(1_ P+3
e — 59 =14 < : ug? ’”) . (4.3)

This means that there exists a number sg > 0 satisfying (4.3) with € € (0,1)

such that

p+3 p+3

ev(s) 2 —8ug? >0 for all s> s.

By (4.1), we have

¢ )2 () -
p+3 p+3
i3 i3
P 8—ev(s)pT3+e-v(s) 2 — 8uy?
p+3 p+3
8—e€ pt3

_p+3v(s) 2 for all s> sg.

From the definition of a and for all s > s, € € (0,1), we obtain

8 —¢€ pt3
2

v(s) ?,

20 (s) vs (8) 2p—|—3

p+1 8—¢

>7
~2(p+3)’

L )

and

Integrating the above inequality with respect to s, we have

1-p 1-p 8—e¢ p-—1
v(s) 2 <wv(s) 2 ———— —(s—50)-
()% <o) ™ - 55 T 6 )
Thus, there exists a finite number
N 2(p+3) 2 1-p
81§80+ﬁ'pf11}(80) 2 =k

14



such that v (s)”' — 0 for s — s%, that is,

w(t)"" =0 for t—exp(k),

which implies that the life-span T™* of positive solution u is finite and 7™ <

exp (k1).0

Graphs of positive solution « of (x) under w, =0, u, > 0:

8—¢

According to €% — 55 = 1+ u(lfp(

~—

p+3 v )
81525 e % 8—c p—1 8\ 575 ,, 2
(8) 7 ug, weget that v(s) 2 <w(sg) ? — Spid T (s —s0) = (8)"" uy® —

€

1-p 1—p T-p
i) 21 (s — sg), this means that u () > <(§) PES g7 — g8me polig so)> )

(a) Graphs for different e:
1. Givene = 0.1, p = 2, ugp = 0.25: e —sg = 1+ 4795, 59 =
In (50 +1+4- 79%), using the soft for Solving Equation, the solution is: sg ~
1 _
3.3009, u > @ 1381-0395 M 0)%" 2.1384 — 0.395InT = 0, T ~ 224.45.

u4.5e+6
4e+6
3.5e+4
3e+6|
2.5e+4
2e+6

1.5e+§

I I I
t t t t
224 224.3 224.5 224.8

Figure 1: Graph of u
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2
2. Given e = 03, p = 2, up = 0.25: e —s9 = 1 +4(Z)°, 55 =
2
In (50 +1+4+4 (g) 5) , using the soft for Solving Equation, the solution is: sy ~

1 —

7.5e+5

6.25e+5[

Set+5T

3.75e+5[

2.5e+5

I I I I I I
t t t t t t
273.5 274 2745 275 275.5 276

-

Figure 2: Graph of u

2
3. Given ¢ = 0.6, p = 2, ug = 0.25: e’ — sy = 1 + 4(76—4)5 , So =
2
In (so +1+4 (%«) 5) , using the soft for Solving Equation, the solution is: sg ~

1 —

1.25e+

le+7)

7.5et+6

S5et+6§

I I I
365.3 365.5 365.8 366

-

Figure 3: Graph of u
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4. Givene=1,p=2,up = 0.25: e%0—sy = 14473, 50 = In (so +144- 7%),
using the soft for Solving Equation, the solution is: so ~ 2.5062, 0.25 x 85 —

& InT 4 0.87591 = 0, T ~ 529.87, u > 1 -
(0-25x85 — 5 In t+0.87591 )

3.5e+8

2.5e+8

2e+8

15e+8

1e+8 t t t t t t
529.8 529.8 529.9 529.9 530 530

Figure 4: Graph of u

5. Givene =2 p =2, ug = 0.25: e0—s — 144-3%, 50 = In (50 F144- 32)
using the soft for Solving Equation, the solution is: sg ~ 2.2464, % X435 — 1‘30 InT+

0.67392 =0, T ~ 1478.5, u > . L v
(445 — % 1nt40.67392)

u3.5e+8

2.5e+8

2e+8

1.5e+8

let8

I I I h
t t t t
1478 1478 1479 1479 1479

Figure 5: Graph of u
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6. Givene =7,p = 2, ug = 0.25: e*0—g9 = 1+4 (%)% , S0 =1In (so —i—1—|—4(%)%>7
1

using the soft for Solving Equation, the solution is: s ~ 2.2464, u > —— 7,
(785 — 35 Int+0.07286)

VI85 — LInT +0.07286 = 0, T ~ 3.5224 x 10'7, let ¢ = r - 107, u >
1

5, 4 2.
(¥E85 -2 mnr+0.07286— 174310)

6.25e+47

Se+4 T

3.75e+4T

2.5e+4T

3.25 35 3.75 4

Figure 6: Graph of u

(b) Graphs for different p:
1. Given e =1, p = 2,up = 0.25: €059 = 14473, 50 = In (so F144- 7*)

Solution is: sg ~ 2.5026, u > - 5, 025 x 83 — LInT +
(0.25x85 — L In t40.87591)

0.87591 = 0, T ~ 529.87.

4.5e+8

3.5e+8

2.5e+8

2e+8

L5e+8l | | | |
529.8 529.8 529.9 529.9 530

Figure 7: Graph of u
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2. Givene=1,p = 3, up = 0.25: €0 —s9 = 141673, 5o = In (so +1416- 7%).

Solution is: sg ~ 3.5601, u > W_%m 4.0767— SInT =0, T ~ 1084.2, let

_ 1
t=10007, v 2 —7 1 i orer—Tm1o

807

60T

407

20T

I I I
t t t
1 1.25 /__,——1—'5*, 1.75

Figure 8: Graph of u

3. Givene = 1, p = 5, ug = 025 e —s9 = 1+ 25671, s =

. 1 . s ~ 1 _
In (80 +1+256 74). Solution s 50 ~ 60484, u >~ de e, V3D
1

7 = ~ 5 =105 >
TInT+5.2924 = 0, T ~ 2.7197x10°, let t = 10°7, u > N T T

1507

1257

1007

75T

50T

25™= f t t t
2.715 2.716 2.717 2.719

Figure 9: Graph of u
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(c) Graphs for different ug:
1. Givene =1,p =2, ug = 0.25: e’9—sp = 1—|—4~7%7 so =In (50 +14+4- 7§).

Solution is: sy ~ 2.5026, u > — 5, 0.25 x 85 — LInT +
(0.25x85 — 5 Int+0.87591)

0.87591 =0, T ~ 529.87.

2.5e+7

2e+7

1.5e+7

le+7

I
t t t t
529.5 529.8 530 530.3

Figure 10: Graph of u

2. Givene=1,p=2,ug = 0.5: e’0—sg = 1+2~7%, So =1n (80 +14+2- 7%).

Solution is: s ~ 1.9948, u > r I 5, 0.17678 X 85 —
(0.17678x85 — 5 In t40.69818)

35 InT +0.69818 = 0, T’ ~ 105.71.

u
8.75et5 T

75457

6.25et5 T

3.75et5 T

2.5e45

I
t t t t t
105.3 105.5 105.8 106 106.3

Figure 11: Graph of u
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3. Givene=1,p=2,uy = 2: 680—30:1+%~7%,30:In<50+1+%~7%>.

Solution is: sy ~ 1.1864, u > - L =, 1—‘/65 .85 — %lnT +
(Y285 — & Int+0.41524)

0.41524 =0, T ~ 12.42.

1.75e+4

1.5e+47

1.25e+4

letdT

75007

I I I
t t t t
12 12.25 125 12.75

Figure 12: Graph of u
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5. Estimates for the life-span of positive
solution « of () under v, >0, vy >0

In this chapter we start to estimate the life-span of positive solution u of (x)

under u; > 0, ug > 0.

Theorem 5 For uy > 0, ug > 0, the positive solution u of (x) blows

up in finite time; that is, there exists a bound number T™* so that
w(t)t =0 for t— T

Proof. We separate the proof into two parts, F (0) > 0 and E (0) < 0.

i) E(0)> 0. By lemma 2, (3.1), we have

2 2 p+1
— >F
0 (8~ v (0" = B Q)
and
2 2 p+1
>
vs (s) _p+1v(8) + E(0)

By lemma 3, (3.8), we obtain

vs (s) > \/pilv(s)pH—FE(O).

Under the condition E (0) > 0, we have

(5) >y ——v (s)"*
vg (8) > v(s ,
p+1
_en 2
v (s) p2lvs(s)2 _
p+1

and



Integrating the above inequality with respect to s, we have

1-p 1-p 17p 2

< +2p13

- p-—1 2

= U —QS.
0 2 p+1
Thus, we obtain that there exists a finite time

2 p+1 iz
R QY 2 =k
SZ*p—l 2 %o 2

such that v (s)”' — 0 for s — s3, that is,

wu(®t)™" =0 for t— exp(ky),

which implies that the life-span T* of positive solution w is finite and T* <
exp (kz).

ii ) E(0) < 0. From the definition of J (s), we have

_p+3
4

a (s).

T (5) = £ 2a)

By lemma 3, (3.8), we have a' (s) > 0, v, (s) > 0 for all s > 0and J (s) <0

for all s > 0, that is, J is decreasing in (0, c0).

Under the condition E (0) < 0 and by lemma 2, (3.4), we obtain

2(p+1) 2(p+1))
p—1 1

B(O0)(T(s) F T —J(0)

and

Integrating the above inequality with respect to s, we have

J(s) < J(0)+J (0)s



Thus, there exists a finite number

o < 4 a(0) 2 Up
3=p—1d(0) p—1lu’

such that J (s5) = 0 and a (s)”" — 0 for s — s3, that is,

w(t)™" =0 for t— exp(ks).

This means that the life-span T* of « is finite and 7™ < exp (k3).H

Graphs of positive solution « of () under w; >0, u > 0:

2
1 f=
i)E(o)zo:u<t)z(uO2 = ]ﬁlnt)l .

(a) Graphs for different p:

—2
1. Given p = 2, ug = 0.25: u > (2 = 36 lnt> ,2V/6-InT =0, T ~ 134.15.

3.5e+5]

3e+5T

2.5e+5]

2e+57

1.5e+5]

I I I
t t t t
133.5 134 134.5 135

Figure 13: Graph of u
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2. Givenp = 3, ug = 0.25: u > —=2 4V/2-InT =0, T = e*V2 ~ 286.25.

8—v2Int’
u
60007
40007
20007
0 } } } :
286 286.3 286.5 286.8 287
t
Figure 14: Graph of u
3. Given p =7, up = 0.25: u > ———, 64— 3InT =0, T ~ 3.3876 x
P=0R = Yfor-gme’ 2 ’
108, let t = 1087, u > L .
{/64—27In10—35 Inr
u
7.57T
o
25T
0 } } f
0 1.25 2.5 3.75 5
r
-2.5T

Figure 15: Graph of u
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(b) Graphs for different ug:

2
1. Given p = 2, up = 0.25: u > (27%1110 L 2- Y InT =0, T ~
134.15.

5e+6|

4.5e+§

4et6|

3.5et+§

3e+6

2.5et§

2e+6

1.5e+6

I I I I
t t t t
134 134.1 134.3 134.4

-

Figure 16: Graph of u

2
2. Given p='2, ug = 0.5: u > (1.4142 - @m) L 14142 — VB In T = 0,
T ~ 31.947.

5e+6|

4e+6|

3e+6|

2e+6|

I I I I I
t t t t t
31.9 31.93 31.95 31.98 32

-

Figure 17: Graph of u
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—2
3. Given p = 2, ug = 1.5: u > (0.8165 — %lnt) , 0.8165 — %lnT =

0, T ~ 7.3891.

1.2e+§

let6

8e+5|

6e+5|

4et5|

I
t
7.362

I I I I
t t t t
7.375 7.388 7.4 7.413

-

ii) E(0) <0: w(t)> <

Figure 18: Graph of u

2

1-p —1 _pf1 T-p
Ug _p2 Ug > ullnt> .

(a) Graphs for different p:

1. Given p =2, ug = 0.25, u = 0.25: u > m——, 2—InT =0, T = €.

( )

W se+af

6.25e+4]

S5e+4T

3.75e+4]

2.5e+47]

I
t
7.35

I I
t t t
7.375 7.4 7.425

-

Figure 19: Graph of u
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2. Given p=3,up =025, u1 =025: u> ——, 1 -InT =0, T =e.

7500

5000

2500

0
2.718

}
2.718

2.719 - 2.7
t

Figure 20: Graph of u

3. Given p =5, ug = 0.25, uy = 0.25: u > ;=

e3 ~ 1.6487.

V1-2Int’

1-2InT =0, T =

u 1007

75T

50T

25T

0
1.648

I
t
1.649

I I
t t
1.649 1.649

I
t
1.649

t

Figure 21: Graph of u
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(b) Graphs for different ug:

1. Given p=2, up = 0.25, u; = 0.25: © > —+—, 2—InT =0, T = €.

(2—Int)??
u L
7.5e+4]
6.25e+4
S5etdT
3.75e+4]
2.5e+47
t t t t
7.35 7.375 7.4 7.425
t

Figure 22: Graph of u

2. Given p =2, ug = 0.5, uy = 0.25: u > (1.414270'135355 Ok

1.4142 — 0.35355InT = 0, T = e* ~ 54.598.

3et5T

2.5e+5]

2e+57

1.5e+5]

letSl | | | |
54.25 54.5 54.75 55

-

Figure 23: Graph of u
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1

-1 lnt)27

(1-%

3. Givenp=2,up=1, u; =0.25: u >
2981.

8—InT=0,T=ed~

u
3.5e+9

3et+9

2.5e+9

2e+9

1.5e+9

le+

t t t t t
2980 2981 2981 2981 2981

t
2982

-

Figure 24: Graph of u

(c) Graphs for different u:

1. Given p =2, ug = 0.25, u; = 0.25: u > w 2-InT=0,T=¢>

u
7.5e+4T
6.25e+4]

S5e+dT
3.75e+4T
2.5e+4T

7.35 7.375 7.4 7.425
t

Figure 25: Graph of u

30



2. Given p =2, ug = 0.25, u; = 0.5: u > 2—-2InT=0,T=ce.

1
(2—21Int)%’

75007

62507

50007

37507

25007,

I I I I
t t t t
2.7 2.712 2.725 2.738

-

Figure 26: Graph of u

3. Given p=2,up =025, u; = 1: u > —+—— 2—4lnT:O,T:e%~

(2—41nt)2’
1.6487.
u
75007
62507
50001
37507
25001
T t t t t t t f
1.64 1.643 1.645 1.648 1.65 1.653 1.655 1.65
t

Figure 27: Graph of u

31



6. Magnitude of positive solution « of () under

1

U1 <0, 0<’U,0 < (—u1)5

Finally, we study the behavior of positive solution u of (%) under u; < 0,

0<ug < (—ul)% in this chapter.
Theorem 0. For up <0, ug € (O, (—ul)%>, we have:
u(t) < (up — (ur + ub)) + (ug +uf)) t — uf Int.

Furthermore, for E (0)> 0,

2
ip p-—1 2 1-e
t) < 2 — Int .
u();(uo + 5 p+1n>

Proof. Since vss (s) = vs (s) + v (s)” and by integrating this equation with

respect to s, we have

vs (8) = vs (0) + v (s) —v(0) + /OS'U (r)? dr

= (u1 — up) + v (s) —|—/ v (r)? dr.
0
By lemma 3, (3.9), we have v is decreasing and

vs (8) < (up —up) +v(s) + /Osv (0)? dr

= (u1 —ug) +v(s)+ub-s

and

vs (8) —v(s) < (ug —ug) + ub - s.

S

Multiplying the above inequality by e™%, we have

(e v(s)), =€"" <vs (s) —w (8)) < e ((u1 —uo) + uf - 5).-

By integrating the above inequality with respect to s, we obtain

S S
e v (s) —ug < (ug — uo)/ e "dr + ug/ re”"dr
0 0
= (u1 — up) (1 - €7S> + ub (—8675 — e’ 1)
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and
U(s) < (UO_U1)+U165+UIO) (es _ 1_5)7

that is,
u (t) < (uo — u1) + urt + ug (t — 1—lnt)

= (up — (u1 +up)) + (ug +ub)t — uf) Int.

We plot the graphs of u for fixed p and u; under the condictions:

u1 <0, 0 <wup < (—ul)% cu(t) < (up — (ur +uf)) + (ug +ub)t —ufInt.

1. p=2, u1:—1,u(t)§1—|—u0—u(2)+(—1+u8)t—uglnt::f(t,uo).

uo

Figure 28: Graph of f (¢, uo)
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2.p=2, u1 =-2, u(t) <24uo—ud + (-2 +ud)t —u}lnt := f(t,up).

u0

Figure 29: Graph of f (¢, uo)

3p=2u =-5ult)=5+u —u}+ (—5+ud)t—udlnt:= f(tup).

uo0

Figure 30: Graph of f (¢, uo)
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dop=4d,uy=-1Lu(t)<l4+u —uf+ (—14+uj)t—udlnt:= f(t,u).

uo

Figure 31: Graph of f (¢, uo)

5.p=4,up=-2u(t) <24 uy—uf+ (—24uf) t —udlnt = f(t,uo).

u0

Figure 32: Graph of f (¢, uo)
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6. p=4,ur=-5u(t) <5+u—ud+ (=5+uf)t—udlnt:= f(t,ug).

1 2 3 4 >
u0 1

-207

Figure 33: Graph of f (¢, uo)

T.p=8u=-1u(t)<l4+u —uf+ (—1+ud)t—uilnt:=f(tup).

uo

Figure 34: Graph of f (¢, uop)
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8. p=8 u=-2u(t)<24+u—u§+ (—2+ud)t —uilnt:= f(t,ug).

u0

Figure 35: Graph of f (¢, uo)

9. p=8 uy=-5u(t) <5+u—uf+ (—5+ub)t —ullnt:= f(t,ug).

u0

Figure 36: Graph of f (¢, uo)
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Moreover, under the condition F (0) > 0, By lemma 2, (3.1), we have

2

— v ()" =E(0)+ 2/08115 (r)*dr > E(0).

2
vs (8)° —
(s) p+1

Since F (0) > 0, then

2 2 41
vs (8)° > E(0) + ——wv (s)?
5 2 B0+ 2009
2
> — p—&-l.
> 2 0)

By lemma 3, (3.9), we have

—vs (s)v(s) = = -

e

By integrating the above inequality with respect to s, we have

and

and

that is,

e p—1 [ 2 =7
u(t) < <u02 +2- lnt) |
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Graphs of positive solution « of (x) under v, <0, 0 < uo <
(—uy)» and E(0) > o:

(a) Graphs for fixed u:
2

Loug =025, f(tp) = (2071 + 258 [ me) 77

Figure 37: Graph of f (¢,p)
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2

2 w0 =05, f(tp) = (27 + 557 R ne) T

0.5

04

0.3

[Sleclo ¥ NI

Figure 38: Graph of f (¢,p)

2

1—-p

3.ug=1, f(t,p) = (1+2%1 ;%hlt)

Figure 39: Graph of f (¢,p)
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,1 -2
(b) Graphs for fixed p: 1. p=2, g (up,t) = (uoT + \/glnt) .

Figure 40: Graph of g (ug,t)

Figure 41: Graph of g (ug,t)
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-1
3. p=5, g(uo,t) = (u52+2 %lnt) L

Figure 42: Graph of g (uo,t)

—1

4. p=17, g(ug,t) = (uo_?’—i—%lnt)T.

Figure 43: Graph of g (ug,t)
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7. Conclusions

In this paper, we have studied the behavior of positive solution u of (x) under

three different cases. We summarize as follows:

(a) up =0, up >0:
The life-span T < exp (k1), where

k = _ L 2,
1= S04 — o p_lv(SO)

(b)U1>O,U0>OI
(i) E(0) > 0, the life-span T* < exp (kz2), where

2 p+1 I*TP.

iy
2= 1V T

(ii) E(0) < 0, the life-span T* < exp (k3), where

2
kg = ———1'11-0
p—=1lu

-

(C) up < 07 U € (07 (_ul)g) :
u(t) < (ug — (ug +ub)) + (ug + uf)) t — uf Int.

Furthermore, for E (0) > 0,
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