The Performance of Different
Two-Stage Instrumental Variable Methods for
Binary Outcomes
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Abstract

Instrumental variable (I1V) analysis, one of the techniques to solve problems
generated from non-random experiments, has been increasingly applied in many
fields such as econometrics and epidemiology. Its utility stems from the belief that IV,
if correctly selected, can potentially mimic randomization by adjusting for
unmeasured confounders. However, because of less concern about IV analysis on
categorical data, we center our discussion on binary outcome, treatment, and IV in
this study. Four methods are compared: the one-stage generalized linear model (GLM),
two-stage predictor substitution (2SPS), two-stage residual inclusion (2SRI), and
two-stage residual inclusion considering Taylor expansion (2SRI-T). We conduct both
the simulation and the empirical study to evaluate the performances of these four
estimators.

The simulation results indicate that, while 2SPS and 2SRI have better
performances than the other two estimators with respect to the bias, they suffer from
larger variability. On the other hand, 2SRI-T generally has smaller standard error than
2SPS and 2SR, and hence might be preferred if MSE is the main concern. Noticeably,
it also suggests that 2SR1 does not outperform 2SPS which was inversely shown in
Terza et al. (2008). The same conclusion is also found when implementing these
methods on a real dataset to investigate whether having children has significant effect

on one’s life satisfaction.
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Chapter 1 Introduction

When discussing causality, randomized experiment is the golden rule to
estimate treatment effects and make further inferences. Random assignment of
treatments assures nice statistical properties, such as unbiasedness and consistency.
However, due to practical or ethical concern, experiment is infeasible sometimes.
Take our empirical study provided in Chapter 4 for an example, the primary interest
there is the impact of having children on one’s satisfaction towards life, whereas in
practice we cannot make a decision of whether to have children for each subject.
Therefore, in cases like this, what we obtain is observational data.

Under such circumstance, non-random assignment of treatment possibly leads to
selection bias. Traditionally, covariate adjustment has been utilized for controlling
observable bias. On the other hand, this simultaneously points out the limitation of
covariate adjustment approach- the inability to remove unmeasured confounding,
which is either unknown or not readily quantifiable. To overcome the difficulty,
instrumental variable (V) analysis provides a viable alternative. By definition, a
variable, Z, can be called an instrumental variable if it satisfies the following
conditions: (1) correlated with the treatment variable; (2) conditionally independent of
the outcome given the treatment variable and all confounders; (3) independent of the
whole set of immeasurable confounders (Greenland (2000)). Let Y be the outcome
variable, D be the treatment variable, C be a set of unmeasured confounders, and X be
a set of measured covariates. The relations between these variables can be illustrated

as Figure 1.1.
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Figure 1.1 Diagram for 1V and Related Variables




IV methods rest on the identification of 1V to control unmeasured bias,
substitution for the actual assignment of treatment, and finally obtaining the estimated
treatment effect if all necessary assumptions are met (Angrist et al. (1996), Greene
(2003), and Hernan and Robins (2006)). The two-stage least squares (2SLS) approach
is the most commonly implemented technique among the 1V estimators. The
procedures of 2SLS can be formulated as Equations 1.1 and 1.2, the first- and
second-stage regression, respectively, where e, and &, stand for random error terms,

and ¢ and S (i =0, 1, 2) are the corresponding regression coefficients .

D=ay+aZ+a,X + a3;C +¢p

(1.1)
Y =By +BD+BiX+B5C+ ¢

(1.2)

We first find an IV which meets the three conditions stated above and regress the
treatment on this IV and X (i.e. regress D on Z and X). Then, the observed treatment D
is substituted for the predicted value, D, in the second-stage equation for estimation
of the treatment effect, S, by regressing Y on D and X . Through this two-step
procedure, we can obtain A;, a generally biased but consistent estimator of . As this
method was originated from the field of econometrics, the proof of this nice property
can be easily found in many econometrics books (see, for example, Greene (2003),
Kennedy (2003)).

Alternatively, Hausman (1978) proposed the two-stage residual inclusion (2SRI)
method. The name of the method originated from taking the residual term into
account. The first-stage equation of 2SR is exactly the same as that of 2SLS.

However, the second-stage equation is replaced by Equation 1.3.

Y=PBo+PD+BX+P3(D—D)+¢e
(1.3)

The rationale behind 2SRI approach is that it makes use of D — D to control
unmeasured confounder C. It looks fine in linear model setting. Indeed, it can be
shown that 2SLS and 2SRl yield the same f; estimate, and hence both methods are

consistent.



Obviously, Equations 1.1-1.3 are of a linear model form. For continuous variates,
they should work fine. However, as far as categorical treatment variable and/or
response variable are concerned, they create a problem. f$; obtained from either
2SLS or 2SRl is not consistent any more. Nowadays, 1V analysis has been
increasingly applied in epidemiology and health services research, in which discrete
data are more easily encountered (McClellan et al. (1994), Wang et al. (2005),
Brookhart et al. (2006), Schneeweiss et al. (2006), Stukel et al. (2007), Brookhart et al.
(2010)). Using 1V methods to deal with categorical response and/or treatment
variables provides a challenge that researchers need to take on.

To overcome inconsistent estimation in the cases of categorical variables, the
two-stage predictor substitution (2SPS) approach was proposed. In fact, 2SPS can be
regarded as the rote extension of 2SLS by transforming linear models to generalized
linear models. With respect to a binary treatment variable D and a binary response Y,

and under the use of logit link function, 2SPS can be stated as Equations 1.4 and 1.5.

D = expit(ay + a;Z + a3 X + a5C) + ¢
(1.4)
Y = expit(By + B1D + B3X + B4C) + &
(1.5)
where expit(u) = exp (u)/(1 + exp(u)).

In addition, Terza et al. (2008) discussed a version of 2SRI to deal with categorical
data. Specifically, let D = expit(&, + &, Z + @,X), and includes it as an additional

covariate in the second-stage equation, as formulated as Equation 1.6.

Y = expit(Bo + 1D + B5X + (D — D)) + &
(1.6)

According to Terza et al. (2008), 2SRI approach is superior to 2SPS under their
simulation design in that the estimated treatment effect through 2SRI is consistent.
However, we think that, under a nonlinear model setting like Equation 1.4 and 1.5,
D — D cannot fully represent C. The finding given in Terza et al. (2008) that favors
2SRl is not sound since their simulated data are constructed so that unmeasured
confounders C is of the form of D — D, that makes their findings in doubt.

3



In order to provide C a suitable estimate for the estimation of £, we propose a
new version of 2SRI, namely, 2SRI-T. Solving the first-order Taylor expansion term
of D — D for C, 2SRI-T uses it as the role of C in the second stage equation.

Due to less concern about IV analysis on categorical data, we center our
discussion on binary outcome, treatment, and IV in this study. The rest of the article is
organized as follows. In Chapter 2, related literatures are briefly reviewed and
detailed descriptions of 2SLS, 2SPS and 2SRI are provided. In order to compare the
performance of 2SLS, 2SPS and 2SR, a simulation study is performed. Simulation
design and results analysis are given in Chapter 3. An empirical study that uses the
survey data of the World Value Survey (WVS) in 2005 obtained from Academia

Sinica is conducted in Chapter 4. We conclude and discuss the findings in Chapter 5.



Chapter 2 Statistical Models and Estimation Methods
2.1 Underlying Assumptions

Although less known in the statistical literature until recently, the 1V method
has been well-known and is widely used in the field of economics over fifty years due
to the difficulty of conducting controlled experiments. Its utility stems from the belief
that IV, if correctly selected, can potentially mimic randomization by adjusting for
unmeasured confounders. In contrast, multiple regression with adjusted covariate and
propensity score analysis can only adjusted for observable confounders.

Letyi, di, zi, X;, and ¢; denote the outcome, the treatment variable, the
instrumental variable, a vector of exogenous covariates, and an unmeasured
confounding variable for the i of n subjects. The usefulness of the IV method hinges
heavily on the following three assumptions. First, the instrumental variable z; is
assumed to be associated with d; conditional on x;. The second assumption is that z; is
uncorrelated with y; conditional on (d;, ¢;, X;). Third, z; is uncorrelated with c;
conditional on x;. The second assumption, also called the exclusion restriction,
indicates that any effect of z; on y; must be via an effect of z; on d;. However, this
assumption cannot be verified in that it relates quantities that can never be jointly
observed (Angrist et al. (1996)). The third assumption suggests that z; is uncorrelated
with any unmeasured variables which predict y;. That is, no common causes exist
between z; and y;. If this assumption does not hold, z; may relate to y; through an
unmeasured confounding variable (Brookhart et al. (2010)). Moreover, Small (2007)
pointed out that controlling for x; generally enhances the believability of the second
and the third assumption by controlling for variation in unmeasured confounders

which is correlated with X;.

2.2 IV Methods
Because our focus in this study is on binary IV, treatment assignment variable,
and response, odds ratio is used as the measure of treatment effect to evaluate the
performances of different IV methods. With the same focus, Terza et al. (2008)
compared the performance of 2SPS and 2SRI methods through a simulation study that

we do not quite agree with, and Rassen et al. (2009) exploited IV analysis to address
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the similarities and dissimilarities among several 1V estimators via three real data sets.
In this study, we consider four estimation methods: the traditional one-stage
generalized linear model (GLM) that serves as the baseline method to be compared,
and three two-stage estimators 2SPS, 2SRI, and 2SRI-T. Their performances will be
assessed in terms of simulated data and a real data set. Descriptions of these four

approaches are as follows:

(1) One-stage Generalized Linear Models (GLM)

logit(P(Y = 1)) = By + B1D + B5X
(2.1)

B, is the parameter of interest, and e is the odds ratio of those who receive
the treatment compared to those who do not receive the treatment with observed
covariates X controlled. However, this one-stage estimator does not take the
unmeasured bias into consideration, and is expected to result in inconsistent

estimation of ;.

(2) Two-stage Predictor Substitution (2SPS)

logit(P(D = 1)) = ay + 0, Z + a, X

(2.2)
logit(P(Y = 1)) = Bo + 1D + B2X

(2.3)

The 2SPS estimator can be viewed as the extension of the 2SLS method when
shifting to the non-linear cases from the linear ones. Equation 2.3 is similar to
Equation 2.1, the first stage GLM. What distinguishes the two is that we use the
observed value D in Equation 2.1, while in Equation 2.3 it is replaced by the estimates

obtained through Equation 2.2.



(3) Two-stage Residual Inclusion (2SRI)

logit(P(D = 1)) = ag + &, Z + a,X
(2.4)

logit(P(Y = 1)) = By + B1D + B2X + B3(D — D)
(2.5)

This is an approach that is consistent with the one introduced by Hausman
(1978) for linear models. Similar to 2SPS, the probability of receiving the treatment is
estimated by Equation 2.4. Instead of plugging D into the second stage equation to
replace D, D — D s calculated and plugged in to replace C.

According to Terza et al. (2008), in fully linear models, the 2SLS method is
identical to 2SPS and 2SRI approaches. However, they yield different outcomes in the
nonlinear case. Hence, there is a need to compare their performances under nonlinear

model settings.

(4) Two-stage Residual Inclusion- Taylor Expansion (2SRI-T)

D=r(ay+a,Z+aX)+C
(2.6)
Y = M(Bo + p1D + B2X + B30) + &
(2.7)
where r and M are known nonlinear functions.

The framework considered in Terza et al. (2008) is as above. Because of the
way unmeasured confounder C is defined, it is legitimate to substitute C in the first
equation by D — D. And a consistent 2SR estimator is expected. However, the
functional form of Equation 2.6 associated with D is not quite the same as the one we
previously discussed, that is,

D = T(ao + a1Z + a'2X + aéC) + €p
(2.8)
Since their simulated data also constructed using Equation 2.6, this makes their
findings that 2SRI yields consistent estimates and its performance is much better than
that of 2SPS questionable.
In order to find a proper estimate of C in terms of Equation 2.8, we propose the

following approach based on the first-order Taylor expansion term of . Let r be the
7
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expit function. Note that le ~ (1- lieu), it follows that

Tewty © Tyeu T Vi eu
€ =D —expit(ay + a1, Z + a, X + a3C)
~ D —expit(ay + a1 Z + a,X) —
as;C - expit(ay + a1 Z + a,X)[1 — expit(ay + a1, Z + a,X)],

and hence
D — expit(ay + a;Z + a,X) — ¢

C~= .
3 expit(ay + a1 Z + a,X)[1 — expit(ay + a1, Z + a,X)]

D—expit (ap+a; Z+a5X)

This prompts us to consider D — D = [expit(aomlera,ZX) (1—expit(a0+alz+agx))] , to
play the role as D — D in Equation 2.5. And we term the approach as 2SRI-T.
Specifically, this method is formulated as follows:
logit(P(D = 1)) = ay + a1 Z + a X
(2.9
logit(P(Y = 1)) = By + 1D + B3 X + f3(D — Dy)
(2.10)



Chapter 3 Simulation and Results
3.1 Simulation Design

To explore the properties of the IV estimators delineated in the previous section,
we conducted a simulation study. The study design was similar to that of Johnston et
al. (2008).

As binary outcome was of the primary interest, data were simulated for a
Bernoulli-distributed response variable. Different levels of correlation between the
treatment and the instrument, and between the treatment and unobserved confounder
were considered. The simulation procedure was carried out as follows:

1. Generate an unobserved confounder (C) from a standard normal distribution,
N(0,1), and a covariate X from N(—2, 4°).

2. Let Z* be a latent variable generated from an independent standard normal
distribution, and let Z be a binary instrumental variable generated from Z* such

that

A {1, ifZ*> 0
" |0, otherwise °

3. Generate the latent variable D*= aZ+hC+X+ &, where a and b indicate the
strengths of IV and confounding effect associated with D*, respectively, and ¢ is
an error term from an independent standard normal distribution. Define the

treatment (D) so that

£ {1, ifD* >0
10, otherwise °

4. Generate the outcome variable Y from a Bernoulli distribution with the logit of the
probability of response equal to S, +1og(3)D +1og(0.5)C +10g(0.75) X , that is, the
odds ratio associated with D, C and X are 3, 0.5, and 0.75, respectively.

5. Estimate the odds ratio associated with D by fitting a traditional generalized linear
model (GLM) with a logit link without accounting for C, and by fitting 2SPS and
2SR1 with logit links. Two versions of residual are considered in 2SRI method,

namely, C =D -expit(e, +¢,Z +«,X), and

Co D —expit(e, + 4 Z + a, X) .
[expit(e, + o, Z +a, X) - (1—expit(e, + o, Z + a, X))]




In step 3, 0.5, 1, 2, 5 were considered for a and b, respectively. There were
altogether 16 combinations. Tables 3.1 and 3.2 displayed the corresponding
correlation coefficients of D* and Z, and D* and C, respectively. Formulas for the

calculations are as follows. Since D*= aZ+bhC+X+ ¢, it follows that

Corr(D",2) = Cov(D’,2)
JVar(D")Var(z)
B Cov(aZ +bC+¢,2)
- JVar(az +bC + ) Var(z)
_ a-Var(Z)
- Ja?Var(Z) +b?Var(C) + Var(s)/Var(Z)
B a
JaZab2 41741
/ a
Similarly,
Corr(D",C) = Cov(D',C)
JVar(D")/Var(C)
3 Cov(aZ +bC +¢,C)
- JVar(aZ +bC +¢)/Var(C)
3 b-Var(C)
B Ja?Var(Z)+b?Var(C) + Var(s)-/Var(C)
\ b
CJatib117A
B b
Jatib?17
Table 3.1 Correlations between D* and Z
among Different Values of (a, b)
Corr(D*, 2) a
0.5 1 2 5
0.5 0.120 0.234 0.434 0.769
b 0.117 0.229 0.426 0.762
0.108 0.213 0.400 0.737
0.077 0.152 0.295 0.611
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Table 3.2 Correlations between D* and C
among Different Values of (a, b)

Corr(D*, C) a

0.5 1 2 5
0.5 0.120 0.117 0.108 0.077
0.234 0.229 0.213 0.152
0.434 0.426 0.400 0.295
0.769 0.762 0.737 0.611

As shown in the two tables, stronger association between D* and Z corresponds
to larger a and smaller b, while stronger association between D* and C relates to both
larger a and larger b. More specifically, with the increasing value of a and the fixed
value of b, we can see from Tables 3.1 and 3.2 that Corr(D*, Z) levels up and
Corr(D*, C) levels down. However, although the values of Corr(D*, C) are declining,
their values are roughly the same, indicating that the changing the value of a
influences more on the strength of 1V. By the same argument, with the increasing
value of b and the fixed value of a, it results in a decrease in Corr(D*, Z) and an
increase in Corr(D*, C). However, changing the value of b appears to influence more
on the strength of confounding effect.

Subsequently, in step 4, three levels of 3, were considered: 0, 0.91, and 3,
which corresponds to 0.50, 0.71, and 0.95 for P(Y =1|Z =C = X =0). In addition,
the sample sizes n considered were 1,000 and 10,000. For each combination of a, b,
5, and n, the above steps were carried out for 1,000 iterations. Bias, standard error,
mean squared error (MSE), and coverage probability of the estimated coefficients
were calculated to evaluate the performance of the methods. The programming code is

provided in Appendix A.

3.2 Results
Since the results were basically the same regardless of the value of S, and the
sample size n, our discussion focused only on the case with 4, =0.91 and n = 10,000.
We hence presented only the information associated with 4, =0.91 and n = 10,000 in
Figures 3.1 and 3.2, and Tables 3.3 and 3.4 (As for the histograms of the estimated

coefficients, please refer to Appendix B.). The simulation results for the rest of
11



combinations of A, and n were tabulated in Appendix C. Most strikingly, we found
that 2SRI did not outperform 2SPS which was inversely shown in Terza et al. (2008).
The two indeed had almost the same performance. Generally speaking, when 2SPS
and 2SRI had better performances than the other two estimators with respect to the
bias, they suffered from larger variability. On the other hand, 2SRI-T generally had
smaller standard error than 2SPS and 2SR, and hence might be preferred if MSE was
the main concern. Detailed comparisons from the perspective of bias, standard error,
MSE, and coverage probability for the four estimators were given in the following

subsections.
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Table 3.3 Simulation Results as 4, =0.91 and n = 10,000 under Weaker IV

Bias a=0.5 a=1

Confounding |[Tra. cLM* 2SPS 2SRl 2SRI-T Tra. GLM 2SPS 2SRl 2SRI-T
0.5 -0.3790 -0.0760 -0.0661 -0.3157 -0.3725 -0.0783 -0.0683 -0.3103
1| -0.6471 -0.0857 -0.0800 -0.5472 -0.6351 -0.0857 -0.0802 -0.5343
2| -0.9629 -0.1359 -0.1345 -0.8470 -0.9519 -0.1222 -0.1210 -0.8270
5 -1.1164 -0.3226 -0.3256 -0.9808 -1.1149 -0.2144 -0.2165 -0.9557

Standard

Error a=0.5 a=1

Confounding |Tra. GLM 2SPS 2SRl 2SRI-T Tra. GLM 2SPS 2SRl 2SRI-T
0.5| 0.0864 0.1441 0.1445 0.0964 0.0880 0.1404 0.1410 0.0981
1| 0.0842 0.1613 0.1616 0.0985 0.0850 0.1577 0.1580 0.1038
2| 0.0767 0.2278 0.2281 0.0968 0.0774 0.2200 0.2203 0.1004
5/ 0.0658 0.7140 0.7142 0.1530 0.0650 0.5890 0.5892 0.1515

MSE a=0.5 a=1

Confounding [Tra. GLM 2SPS 2SRl 2SRI-T Tra. GLM 2SPS 2SRl 2SRI-T
0.5/ 0.1511 0.0265 0.0253 0.1090 0.1465 0.0259 0.0246 0.1059
1| 0.4258 0.0334 0.0325 0.3091  0.4106  0.0322 0.0314 0.2963
2| 09330 0.0704 0.0701 0.7268 0.9121 0.0633 0.0632 0.6940
5| 1.2507 0.6138 0.6161 0.9853  1.2472  0.3929 0.3941 0.9364

Coverage

- a=0.5 a=1

Probability

Confounding [Tra. GLM 2SPS 2SRl 2SRI-T Tra. GLM 2SPS 2SRl 2SRI-T
05 07% 90.1% 91.0% 10.5% 0.1% 90.7% 91.9% 11.7%
1 0.0% 90.4% 90.5% 0.1% 0.0% 91.0% 91.4% 0.2%
2| 0.0% 89.5% 89.6% 0.0% 0.0% 90.3% 90.7% 0.0%
5 0.0% 92.0% 92.1% 0.0% 0.0% 92.7% 92.6% 0.0%

! Tra. GLM stands for estimation through the one-stage GLM approach.
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Table 3.4 Simulation Results as 4, =0.91 and n = 10,000 under Stronger 1V

Bias a=2 a=5
Confounding | Tra. GLM  2SPS 2SRl 2SRI-T Tra. GLM 2SPS 2SRl 2SRI-T
0.5 -0.3441 -0.0764 -0.0672 -0.2812 -0.2432 -0.0616 -0.0586 -0.1821
1] -0.5915 -0.0766 -0.0721 -0.4844 -0.4170 -0.0639 -0.0623 -0.3097
2 -0.9041 -0.0925 -0.0918 -0.7592 -0.6920 -0.0749 -0.0749 -0.5214
5 -1.1055 -0.1071 -0.1083 -0.8775 -1.0247 -0.0764 -0.0771 -0.6679
Standard
a=2 a=5
Error
Confounding | Tra. GLM 2SPS  2SRI 2SRI-T Tra. GLM 2SPS 2SRl 2SRI-T
0.5 0.0873 0.1272 0.1276 0.0995 0.0779  0.0952 0.0955 0.0880
1] 0.0868  0.1410 0.1413 0.1047 0.0786 0.1016 0.1018 0.0947
2| 0.0777 0.1857 0.1859 0.1048 0.0752 0.1202 0.1203 0.1012
5 0.0668  0.3860 0.3862 0.1485 0.0707  0.1922 0.1922 0.1312
MSE a=2 a=5
Confounding | Tra. GLM  2SPS 2SRl 2SRI-T Tra. GLM 2SPS 2SRl 2SRI-T
0.5 0.1260  0.0220 0.0208 0.0889 0.0652 0.0129 0.0125 0.0409
1] 0.3574 0.0258 0.0252 0.2456 0.1800 = 0.0144 0.0142 0.1049
2| 0.8235 0.0431 0.0430 0.5873 0.4846  0.0201 0.0201 0.2821
5 1.2267  0.1605 0.1608 0.7920 1.0550 0.0428 0.0429 0.4633
Coverage
- a=2 a=5
Probability
Confounding | Tra. GLM  2SPS 2SRl 2SRI-T Tra. GLM 2SPS 2SRl 2SRI-T
05 2.3% 90.8% 91.4% 16.8% 128%  90.1% 90.6% 40.5%
1  0.0% 91.1% 91.4% 0.7% 0.1% 90.4% 90.5% 8.6%
2| 0.0% 91.2% 91.2% 0.0% 0.0% 90.7% 90.7% 0.0%
5/ 0.0% 94.6% 94.7% 0.0% 0.0% 93.2% 93.1% 0.2%
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3.2.1 Bias

Moving from the top to the bottom of each column in Tables 3.3 and 3.4, since
changing the value of b impact more on Corr(D*, C), we can see that biases increase
as confounding levels up no matter the value of a and estimators that are considered.
This finding goes along well with our expectation. On the other hand, for the three
two-stage estimators, as we go from the left to the right of the table, suggesting the
increase of Corr(D*, Z), we can also find that biases are decreasing. This, too, is as
expected. Although we can also find that the one-stage GLM estimator also shares the
same finding that biases are decreasing as a goes up, it should be noted that the
changes are not due to the increase of Corr(D*, Z), but the decrease of Corr(D*, C), as
the one-stage GLM estimator has nothing to do with IV. Since the amount of bias
diminishes as the effect of IV becomes stronger, it suggests that 1V really does its
work. Among the four estimators, the one-stage GLM estimator is outperformed by
the other three two-stage estimators in each (a, b) setting. 2SPS and 2SRI have similar

performances with smaller biases than 2SRI-T method.

3.2.2 Standard Error

Intuitively, we may think that the more serious confounding, the more variation
of the estimator. In the three two-stage estimators, it is really this case as we can see
from the top to the bottom of each column in Tables 3.3 and 3.4. However, the
standard error of the one-stage GLM estimator slightly declines as confounding
becomes more serious. Besides, as a increases while holding on the level of b, the
three two-stage estimators become less varied, whereas the one-stage GLM method
does not share the same pattern. Among the four estimators, the one-stage GLM
approach has the smallest standard error, ranging from 0.06 to 0.09, 2SRI-T has the
second smallest ones, falling between 0.08 and 0.15, while the standard errors of

2SPS and 2SRI range from 0.09 to 0.71, and vary the most.
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3.2.3 MSE

As an index to evaluate estimators, MSE simultaneously takes bias and standard
error into consideration. Hence, an estimator with small MSE represents both small
bias and small variability. Generally speaking, when confounding becomes more
serious, MSEs of all the four estimators augment. It is also true that the values of
MSE decline as IV grows in strength. Overall, the three two-stage estimators had
smaller MSEs than the one-stage GLM estimator. Moreover, 2SPS and 2SR, again
similarly performed, generally outperform 2SRI-T in terms of MSE. However, we do
observe situations where 2SRI-T might have better performances than 2SPS and 2SRl
particularly when the smaller biases, that they usually have, cannot offset the effect of

large variability.

3.2.4 Coverage Probability

Set the desired value of 0.95, the coverage probabilities of 2SPS and 2SRI are
quite close to it, while that of 2SRI-T and the one-stage GLM estimators are far from
it. It makes sense since the latter two estimators generally result in larger biases,
which result in confidence intervals easier to miss the mark. Although having poor
performances, 2SRI-T is still superior to the one-stage GLM estimator. Generally
speaking, the coverage probabilities of these two relative poor methods reduced as
confounding levels up. As for 2SPS and 2SR, there is no big difference between the

two.
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Chapter 4 Empirical Study and Results
4.1 Data Description
To empirically compare the performance of 2SPS, 2SRI, and 2SRI-T to an
observational data set, we consider the data coming from the World Value Survey
(WVS), a worldwide survey conducted once every five years since 1981 in Europe.
We use the part of Taiwan data collected in 2005. This particular survey includes
many realms of questions, ranging from oneself, interpersonal relationship, family to
society, environment, culture, and global issues. There are 253 questions in total. The
number of subjects completed the survey successfully is 1,227.

Our primary interest in this study is the effect of having children on one’s life
satisfaction. In the past, most researchers utilized covariates adjustment method, i.e.,
the traditional one-step GLM model, to remove potential confounding in a study like
this. However, as delineated in Chapter 1, one of the problems associated with this
method is the inability to control unmeasured bias. And this is why IV comes into play.
We choose the attitude towards family, a question that asks subjects whether or not
they agree a child can only grow up with happiness in a family with both parents, as
the V.

To sum up, the outcome (y) is whether or not one is satisfied with his/her life,
the treatment (d) is whether one has children or not, and the 1V (z) asks one’s opinion
in family. All these three are binary variables, exactly the same as the simulation
settings discussed in Chapter 3. In addition, we consider another nine variables
serving as the control covariates. Corresponding to all variables used in our analysis,
the related questions in the WVS survey is provided in Appendix D. After the data
cleaning process, the sample size involved in this study is 1,154. Descriptive statistics

of the variables and subsequent analyses are provided in the following sections.

4.2 Descriptive Analysis
Table 4.1 displays the characteristics of all variables used in this study with
respect to the whole sample, those who have no child, and those with children. The
nine control covariates (xi, ..., Xg) encompass one’s basic information, such as gender,

age, levels of education, economic status, and so on.
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Among 1,154 subjects, 332 have no child and 822 are having children. As can
be seen from the table, there exist obvious differences between those with no child
and those having children in six of the nine control variates- age, family income class,
primary breadwinner, economic status, social class, and education level. Generally
speaking, those with no child are younger, having higher family income, less primary
breadwinner, with more saving, with higher social class, and more educated. With
respect to the 1V, attitude towards family, their distributions are roughly the same, but
for those without children, they slightly more disagree that children can only grow up
with happiness in a family with both parents present. However, we suspect that the

differences are possibly relevant to age difference between the two groups.

Table 4.1 Characteristics of Variables Used in the Analysis

All No Child Having Children
Count % Count % Count %
( Mean) ( Mean) ( Mean)
No. of Subjects 1,154 - 332 - 822 -
Life Satisfaction (y)
Unsatisfied 298 25.8 77 23.2 221 26.9
Satisfied 856 74.2 255 76.8 601 73.1
Having Children or not (d)
No Children 332 28.8 332 100.0 0 0.0
Having Children 822 71.2 0 0.0 822 100.0
Attitude Towards Family (z)
Disagree 142 12.3 69 20.8 73 8.9
Agree 1012 87.7 263 79.2 749 91.1
Gender (x1)
Male 587 50.9 187 56.3 422 51.3
Female 567 49.1 145 43.7 400 48.7
Age (X2) 43.2 - 27.3 - 49.7 -
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Race (x3)
Minnan from Taiwan
Hakka from Taiwan
Mainlander from Any City or
Province
Others

Family Income Class (x4)
Low
Medium
High

Primary Breadwinner (Xs)
No
Yes

Economic Status (Xs)
Saving
Even
Spending Some Savings

Spending Savings and Borrowing

Social Class (x7)
Above Upper Middle
Lower Middle
Working Class
Lower Class

Employment Status (Xs)
Unemployed
Employed

Education Level (xo)
Middle School or Lower
High School
College or Above

939
97

97

21

339
779
36

648
506

329
478
220
127

308

416

359
71

372
782

378
332
444

81.4
8.4

8.4

1.8

29.4
67.5
3.1

56.2
43.8

28.5
41.4
19.1
11.0

26.7

36.0

311
6.2

32.2
67.8

32.8
28.7
38.5

269
33

27

55
266
11

233
99

113
128
60
31

95
151
76
10

86
246

28
84
220

81.0
9.9

8.1

0.9

16.6
80.1
3.3

70.2
29.8

34.0
38.6
18.1
9.3

28.6
455
22.9
3.0

25.9
74.1

8.4
25.3
66.3

670
64

70

18

284
513
25

415
407

216

350
160
96

213

265

283
61

286
536

350
248
224

81.5
7.8

8.5

2.2

345
62.4
3.0

50.5
49.5

26.3
42.6
19.5
11.7

25.9

32.2

34.4
7.4

34.8
65.2

42.6
30.2
27.3
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4.3 Results

We analyze the data by implementing each method discussed in Chapter 3:
one-stage GLM, 2SPS, 2SRlI, and 2SRI-T. We intend to investigate the effect of
having children on life satisfaction, and compare the results of the four different
approaches. Moreover, we examine the validity of 1V, i.e., attitude towards family,
used in the three two-step estimators by a GLM with logit link, where the dependent
variable is the treatment (d) and the regressors are the IV (z) and the nine control
covariates.

We first examine the validity of the IV through the first stage regression model
in the two-step procedures. It indicates that a significant association between d and z
is found, with p-value = 0.03, suggesting that this IV is valid. Hence, the IV in our
example does meet the first assumption described in Chapter 2, whereas the other two
assumptions cannot be verified in that we have no information about the unmeasured
confounders. In addition, we also find the relationship between one’s opinion in
family and the life satisfaction is not that strong.

Table 4.2 presents the empirical results of the four estimators. Although a
consistent finding that whether or not having children does not have significant effect
on one’s life satisfaction is reached at significance level o = 0.05 no matter which
approach is utilized, the estimates are apparently somewhat different. Again, we
observe that 2SPS and 2SRI perform similarly, with similar estimated values and
standard errors. On the other hand, the traditional one-stage GLM and 2SRI-T are less
varied than 2SPS and 2SRl.

Table 4.2 Results of the Four Methods

Estimate Standard Error p-value

Tra. GLM  0.192 0.394 0.225
2SPS -0.042 0.507 0.934
2SRl -0.084 0.869 0.509
2SRI-T 0.425 0.291 0.144
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Chapter 5 Conclusion and Discussion

In the previous two chapters, we conducted both simulation and the empirical
studies to evaluate the performances of different IV estimators when applied in
analyzing data sets with binary outcome, treatment, and IV. In addition to the
traditional one-stage GLM, 2SPS, and 2SR, we also consider 2SRI-T, a version of
2SR that intends to replace unmeasured confounders through the use of the
first-order Taylor expansion term of the error term ¢, . In the simulation design,
strengths of IV, levels of confounding, probabilities of receiving the treatment, and
sample sizes were considered in altogether 16 combined scenarios. Bias, standard
error, MSE, and coverage probability are the main tools to evaluate the performances
of the four estimators. Subsequently, we investigated the effect of having children on
one’s life satisfaction in the empirical study, using the WVS data from Survey
Research Data Archive of Center for Survey Research, Academia Sinica.

Contradictory to Terza et al. (2008), we found that 2SRI did not outperform
2SPS according to the simulation results. In fact, these two had almost the same
performances. As far as bias is concerned, 2SPS and 2SRI outperformed the other two
estimators, and the one-stage GLM had the worst performance. Somewhat beyond our
expectation was that 2SRI-T did not perform as well as 2SRI. On the other hand,
2SPS and 2SR suffered from larger variability, while 2SRI-T generally had smaller
standard error. Therefore, 2SRI-T might be preferred if MSE was the main concern.

As for the empirical study, the results revealed that having children or not did
not significantly impact one’s life satisfaction. The conclusion was agreed upon no
matter which method was applied. Moreover, the results of the four approaches were
consistent with what we observed in the simulation study. 2SPS and 2SR again had
similar performances with similar estimated treatment effect and standard error, and
standard errors were larger than the other two estimators.

Before concluding this chapter, we need to emphasize that the usefulness of the
results we provide in this study rests on the availability of an appropriate 1V. However,
this is also a problem associated with any IV analysis. Without an appropriate 1V, any
of the methods cannot be implemented. Furthermore, due to the binary nature of the

variables, we focus only on odds ratio as the effect of treatment. However, in many
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studies, risk difference and risk ratio may also be the parameters of interest. It may be
worthwhile to investigate the performance of these 1V estimators on the estimation of

risk difference and risk ratio as well.
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Appendix A. Programming Code of Simulation
(Under a=0.5, A,=0.91, and n=10,000)

a=.5; b1=.5; b2=1; b3=2; b4=5
n=10000

temp.tra.or.1=NULL;temp.sps.or.1=NULL ;temp.sri.or.1=NULL;temp.tay.or.1=NULL
temp.tra.or.2=NULL;temp.sps.or.2=NULL;temp.sri.or.2=NULL;temp.tay.or.2=NULL
temp.tra.or.3=NULL;temp.sps.or.3=NULL;temp.sri.or.3=NULL;temp.tay.or.3=NULL
temp.tra.or.4=NULL;temp.sps.or.4=NULL ;temp.sri.or.4=NULL;temp.tay.or.4=NULL

for (i in 1:1000){
set.seed(591208+117*i)

Z.=rnorm(n,0,1)

set.seed(139084+315*i)
C=rnorm(n,0,1)

set.seed(92843+131*i)
e=rnorm(n,0,1)

set.seed(240789+117*i)
X=rnorm(n,-2,4)
Z=ifelse(Z2.>0,1,0)
D1.=a*Z+b1*C+X+e; D2.=a*Z+b2*C+X+e; D3.=a*Z+b3*C+X+e; D4.=a*Z+b4*C+X+e
Di=ifelse(D1. > 0, 1, 0); D2=ifelse(D2. > 0, 1, 0); D3=ifelse(D3. > 0, 1, 0); D4=ifelse(D4. > 0, 1, 0)

lambdal=as.vector(numeric(n)); lambda2=as.vector(numeric(n))
lambda3=as.vector(numeric(n)); lambdad=as.vector(numeric(n))
pl=as.vector(numeric(n)); p2=as.vector(humeric(n))
p3=as.vector(numeric(n)); p4=as.vector(numeric(n))
yl=as.vector(numeric(n)); y2=as.vector(numeric(n))

y3=as.vector(numeric(n)); y4=as.vector(numeric(n))

int=log(411/166)
for (j in 1:n){
lambdal[j]=int+log(3)*D1[j]+log(.5)*C[j]+log(.75)*X[j]
lambda2[j]=int+log(3)*D2[j]+log(.5)*C[j]+log(.75)*X[j]
lambda3[j]=int+log(3)*D3[j]+log(.5)*C[j]+log(.75)*X[j]
lambda4[j]=int+log(3)*D4[j]+log(.5)*C[j]+log(.75)*X[j]
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pl[j]=exp(lambdal[j])/(1+exp(lambdal[j])); p2[j]=exp(lambda2[j])/(1+exp(lambda2[j]))
p3[j]=exp(lambda3[j])/(1+exp(lambda3[j])); p4[i]=exp(lambda4[j])/(1+exp(lambda4l[j]))
set.seed(327043+100%j-104)
y[j]=rbinom(1,1,p1[j])
set.seed(327043+100%j-104)
y2[j]=rbinom(1,1,p2[j])
set.seed(327043+100%j-104)
y3[j]=rbinom(1,1,p3[j1)
set.seed(327043+100%j-104)
y4[j]=rbinom(1,1,p4[j])

data.mat.1=chind(y1,D1,Z,X)

fst.ols.1=Im(D1~Z+X)
fst.glm.1=gIm(D1~Z+X,data=data.frame(data.mat.1),family=binomial(link=logit))
D1.glm.hat=fst.glm.1$fitted.values

D1.ols.hat=fst.ols.1$fitted.values

D1.new=D1.glm.hat-D1

D1.tay= (D1-D1.gIm.hat)/(D1.glm.hat*(1-D1.gIm.hat))

tra.or.1=glm(y1~D1+X,data=data.frame(data.mat.1),family=binomial (link=logit))

sps.or.1=glm(y1~D1.glm.hat+X,data=data.frame(data.mat.1),family=binomial(link=logit))
sri.or.1=glm(y1~D1+X+D1.new,data=data.frame(data.mat.1),family=binomial(link=logit))
tay.or.1=glm(y1~D1+X+D1.tay,data=data.frame(data.mat.1),family=binomial(link=logit))

data.mat.2=chind(y2,D2,Z,X)

fst.ols.2=Im(D2~Z+X)
fst.glm.2=glm(D2~Z+X,data=data.frame(data.mat.2),family=binomial(link=logit))
D2.glm.hat=fst.gIm.2$fitted.values

D2.ols.hat=fst.ols.2$fitted.values

D2.new=D2.glm.hat-D2

D2.tay= (D2-D2.gIm.hat)/(D2.glm.hat*(1-D2.gIm.hat))

tra.or.2=glm(y2~D2+X,data=data.frame(data.mat.2),family=binomial(link=logit))

sps.or.2=glm(y2~D2.glm.hat+X,data=data.frame(data.mat.2),family=binomial(link=logit))
sri.or.2=glm(y2~D2+X+D2.new,data=data.frame(data.mat.2),family=binomial(link=logit))
tay.or.2=glm(y2~D2+X+D2.tay,data=data.frame(data.mat.2),family=binomial (link=logit))
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data.mat.3=cbind(y3,D3,Z,X)

fst.ols.3=Im(D3~Z+X)
fst.glm.3=gIm(D3~Z+X,data=data.frame(data.mat.3),family=binomial(link=logit))
D3.glm.hat=fst.glm.3%fitted.values

D3.ols.hat=fst.ols.3%fitted.values

D3.new=D3.glm.hat-D3

D3.tay= (D3-D3.gIm.hat)/(D3.glm.hat*(1-D3.gIm.hat))

tra.or.3=glm(y3~D3+X,data=data.frame(data.mat.3),family=binomial(link=logit))

sps.or.3=glm(y3~D3.gIlm.hat+X,data=data.frame(data.mat.3),family=binomial(link=logit))
sri.or.3=glm(y3~D3+X+D3.new,data=data.frame(data.mat.3),family=binomial(link=logit))
tay.or.3=glm(y3~D3+X+D3.tay,data=data.frame(data.mat.3),family=binomial (link=logit))

data.mat.4=cbind(y4,D4,Z,X)

fst.ols.4=Im(D4~Z+X)
fst.glm.4=glm(D4~Z+X,data=data.frame(data.mat.4),family=binomial(link=logit))
D4.glm.hat=fst.glm.4%fitted.values

D4.ols.hat=fst.ols.4$fitted.values

D4.new=D4.glm.hat-D4

D4.tay= (D4-D4.gIm.hat)/(D4.gIm.hat*(1-D4.gIm.hat))

tra.or.4=glm(y4~D4+X,data=data.frame(data.mat.4),family=binomial(link=logit))

sps.or.4=gIlm(y4~D4.glm.hat+X,data=data.frame(data.mat.4),family=binomial(link=logit))
sri.or.4=glm(y4~D4+X+D4.new,data=data.frame(data.mat.4),family=binomial (link=logit))
tay.or.4=glm(y4~D4+X+D4.tay,data=data.frame(data.mat.4),family=binomial (link=logit))

temp.tra.or.1=c(temp.tra.or.1,summary(tra.or.1)$coefficients[2],summary(tra.or.1)$coefficients[5])
temp.sps.or.1=c(temp.sps.or.1,summary(sps.or.1)$coefficients[2],summary(sps.or.1)$coefficients[5])
temp.sri.or.1=c(temp.sri.or.1,summary(sri.or.1)$coefficients[2],summary(sri.or.1)$coefficients[6])
temp.tay.or.1=c(temp.tay.or.1,summary(tay.or.1)$coefficients[2],summary(tay.or.1)$coefficients[6])
temp.tra.or.2=c(temp.tra.or.2,summary(tra.or.2)$coefficients[2],summary(tra.or.2)$coefficients[5])
temp.sps.or.2=c(temp.sps.or.2,summary(sps.or.2)$coefficients[2],summary(sps.or.2)$coefficients[5])
temp.sri.or.2=c(temp.sri.or.2,summary(sri.or.2)$coefficients[2],summary(sri.or.2)$coefficients[6])
temp.tay.or.2=c(temp.tay.or.2,summary(tay.or.2)$coefficients[2],summary(tay.or.2)$coefficients[6])
temp.tra.or.3=c(temp.tra.or.3,summary(tra.or.3)$coefficients[2],summary(tra.or.3)$coefficients[5])
temp.sps.or.3=c(temp.sps.or.3,summary(sps.or.3)$coefficients[2],summary(sps.or.3)$coefficients[5])
temp.sri.or.3=c(temp.sri.or.3,summary(sri.or.3)$coefficients[2],summary(sri.or.3)$coefficients[6])

temp.tay.or.3=c(temp.tay.or.3,summary(tay.or.3)$coefficients[2],summary(tay.or.3)$coefficients[6])
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temp.tra.or.4=c(temp.tra.or.4,summary(tra.or.4)$coefficients[2],summary(tra.or.4)$coefficients[5])
temp.sps.or.4=c(temp.sps.or.4,summary(sps.or.4)$coefficients[2],summary(sps.or.4)$coefficients[5])
temp.sri.or.4=c(temp.sri.or.4,summary(sri.or.4)$coefficients[2],summary(sri.or.4)$coefficients[6])

temp.tay.or.4=c(temp.tay.or.4,summary(tay.or.4)$coefficients[2],summary(tay.or.4)$coefficients[6])

}

#Form Coefficients and Their Standard Errors as Matrices#
tra.or.coef.1=matrix(temp.tra.or.1,2,1000);sps.or.coef.1=matrix(temp.sps.or.1,2,1000);sri.or.coef.1=mat
rix(temp.sri.or.1,2,1000);tay.or.coef.1=matrix(temp.tay.or.1,2,1000)
tra.or.coef.2=matrix(temp.tra.or.2,2,1000);sps.or.coef.2=matrix(temp.sps.or.2,2,1000);sri.or.coef.2=mat
rix(temp.sri.or.2,2,1000);tay.or.coef.2=matrix(temp.tay.or.2,2,1000)
tra.or.coef.3=matrix(temp.tra.or.3,2,1000);sps.or.coef.3=matrix(temp.sps.or.3,2,1000);sri.or.coef.3=mat
rix(temp.sri.or.3,2,1000);tay.or.coef.3=matrix(temp.tay.or.3,2,1000)
tra.or.coef.4=matrix(temp.tra.or.4,2,1000);sps.or.coef.4=matrix(temp.sps.or.4,2,1000);sri.or.coef.4=mat

rix(temp.sri.or.4,2,1000);tay.or.coef.4=matrix(temp.tay.or.4,2,1000)

data.or=rbind(tra.or.coef.1,sps.or.coef.1,sri.or.coef.1 tay.or.coef.1,tra.or.coef.2,sps.or.coef.2,sri.or.coef.2
tay.or.coef.2,tra.or.coef.3,sps.or.coef.3,sri.or.coef.3,tay.or.coef.3,tra.or.coef.4,sps.or.coef.4,sri.or.coef.4,t
ay.or.coef.4)
rownames(data.or)=c("beta.tra.1","se.tra.1","beta.sps.1","se.sps.1","beta.sri.1","se.sri.1","beta.tay.1","s
e.tay.1","beta.tra.2","se.tra.2","beta.sps.2","se.sps.2","beta.sri.2","se.sri.2","beta.tay.2","se.tay.2","beta.t
ra.3","se.tra.3","beta.sps.3","se.sps.3","beta.sri.3","se.sri.3","beta.tay.3","se.tay.3", "beta.tra.4" "se.tra.4"
,"beta.sps.4","se.sps.4","beta.sri.4","se.sri.4","beta.tay.4","se.tay.4")

datal.or=t(data.or)

##Calculate bias##

bias.tra.or.1 = mean(tra.or.coef.1[1,])-log(3); bias.sps.or.1 = mean(sps.or.coef.1[1,])-log(3)

bias.sri.or.1 = mean(sri.or.coef.1[1,])-log(3); bias.tay.or.1 = mean(tay.or.coef.1[1,])-log(3)

bias.tra.or.2 = mean(tra.or.coef.2[1,])-log(3); bias.sps.or.2 = mean(sps.or.coef.2[1,])-log(3)

bias.sri.or.2 = mean(sri.or.coef.2[1,])-log(3); bias.tay.or.2 = mean(tay.or.coef.2[1,])-log(3)

bias.tra.or.3 = mean(tra.or.coef.3[1,])-log(3); bias.sps.or.3 = mean(sps.or.coef.3[1,])-log(3)

bias.sri.or.3 = mean(sri.or.coef.3[1,])-log(3); bias.tay.or.3 = mean(tay.or.coef.3[1,])-log(3)

bias.tra.or.4 = mean(tra.or.coef.4[1,])-log(3); bias.sps.or.4 = mean(sps.or.coef.4[1,])-log(3)

bias.sri.or.4 = mean(sri.or.coef.4[1,])-log(3); bias.tay.or.4 = mean(tay.or.coef.4[1,])-log(3)
bias.or=matrix(c(bias.tra.or.1,bias.sps.or.1,bias.sri.or.1,bias.tay.or.1,bias.tra.or.2,bias.sps.or.2,bias.sri.or.
2,bias.tay.or.2,bias.tra.or.3,bias.sps.or.3,bias.sri.or.3,bias.tay.or.3,bias.tra.or.4,bias.sps.or.4,bias.sri.or.4,b
ias.tay.or.4),nrow=4,ncol=4,byrow=T)

colnames(bias.or)=c("Tra. GLM","2SPS","2SRI-L","2SRI-T"); rownames(bias.or)=c(0.5,1,2,5)
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##Calculate standard error##

se.tra.or.1 = sd(tra.or.coef.1[1,]); se.sps.or.1 = sd(sps.or.coef.1[1,])
se.sri.or.1 = sd(sri.or.coef.1[1,]); se.tay.or.1 = sd(tay.or.coef.1[1,])

se.tra.or.2 = sd(tra.or.coef.2[1,]); se.sps.or.2 = sd(sps.or.coef.2[1,])
se.sri.or.2 = sd(sri.or.coef.2[1]); se.tay.or.2 = sd(tay.or.coef.2[1,])

se.tra.or.3 = sd(tra.or.coef.3[1,]); se.sps.or.3 = sd(sps.or.coef.3[1,])
se.sri.or.3 = sd(sri.or.coef.3[1,]); se.tay.or.3 = sd(tay.or.coef.3[1,])

se.tra.or.4 = sd(tra.or.coef.4[1,]); se.sps.or.4 = sd(sps.or.coef.4[1,])

se.sri.or.4 = sd(sri.or.coef.4[1]); se.tay.or.4 = sd(tay.or.coef.4[1,])

se.or=matrix(c(se.tra.or.1,se.sps.or.1,se.sri.or.1,se.tay.or.1,se.tra.or.2,se.sps.or.2,se.sri.or.2,se.tay.or.2,se.t
ra.or.3,se.sps.or.3,se.sri.or.3,se.tay.or.3,se.tra.or.4,se.sps.or.4,se.sri.or.4,se.tay.or.4),nrow=4,ncol=4,byro
w=T)

colnames(se.or)=colnames(bias.or); rownames(se.or)=rownames(bias.or)

#Calculate MSE##

mse.tra.or.1 = var(tra.or.coef.1[1,])+ mean(tra.or.coef.1[1,]-log(3))"2
mse.sps.or.1 = var(sps.or.coef.1[1,])+ mean(sps.or.coef.1[1,]-log(3))"2
mse.sri.or.1 = var(sri.or.coef.1[1,])+ mean(sri.or.coef.1[1,]-l0og(3))"2
mse.tay.or.1 = var(tay.or.coef.1[1,])+ mean(tay.or.coef.1[1,]-log(3))"2
mse.tra.or.2 = var(tra.or.coef.2[1,])+ mean(tra.or.coef.2[1,]-10g(3))"2
mse.sps.or.2 = var(sps.or.coef.2[1,])+ mean(sps.or.coef.2[1,]-log(3))"2
mse.sri.or.2 = var(sri.or.coef.2[1,])+ mean(sri.or.coef.2[1,]-log(3))"2
mse.tay.or.2 = var(tay.or.coef.2[1,])+ mean(tay.or.coef.2[1,]-log(3))"2
mse.tra.or.3 = var(tra.or.coef.3[1,])+ mean(tra.or.coef.3[1,]-10g(3))"2
mse.sps.or.3 = var(sps.or.coef.3[1,])+ mean(sps.or.coef.3[1,]-log(3))"2
mse.sri.or.3 = var(sri.or.coef.3[1,])+ mean(sri.or.coef.3[1,]-log(3))"2
mse.tay.or.3 = var(tay.or.coef.3[1,])+ mean(tay.or.coef.3[1,]-log(3))"2
mse.tra.or.4 = var(tra.or.coef.4[1,])+ mean(tra.or.coef.4[1,]-log(3))"2
mse.sps.or.4 = var(sps.or.coef.4[1,])+ mean(sps.or.coef.4[1,]-log(3))"2
mse.sri.or.4 = var(sri.or.coef.4[1,])+ mean(sri.or.coef.4[1,]-log(3))"2

mse.tay.or.4 = var(tay.or.coef.4[1,])+ mean(tay.or.coef.4[1,]-log(3))"2

mse.or=matrix(c(mse.tra.or.1,mse.sps.or.1,mse.sri.or.1,mse.tay.or.1,mse.tra.or.2,mse.sps.or.2,mse.sri.or.
2,mse.tay.or.2,mse.tra.or.3,mse.sps.or.3,mse.sri.or.3,mse.tay.or.3,mse.tra.or.4,mse.sps.or.4,mse.sri.or.4,
mse.tay.or.4),nrow=4,ncol=4,byrow=T)

colnames(mse.or)=colnames(bias.or); rownames(mse.or)=rownames(bias.or)
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##Calculate Coverage Probability##

cp.tra.or.1 = sum( tra.or.coef.1[1,]+1.96*tra.or.coef.1[2,] >=log(3) &
tra.or.coef.1[1,]-1.96*tra.or.coef.1[2,] <= log(3) )/1000

cp.sps.or.1 = sum( sps.or.coef.1[1,]+1.96*sps.or.coef.1[2,] >= log(3) &
sps.or.coef.1[1,]-1.96*sps.or.coef.1[2,] <= log(3) )/1000

cp.sri.or.1 = sum( sri.or.coef.1[1,]+1.96*sri.or.coef.1[2,] >= log(3) &
sri.or.coef.1[1,]-1.96*sri.or.coef.1[2,] <= log(3) )/1000

cp.tay.or.1 = sum( tay.or.coef.1[1,]+1.96*tay.or.coef.1[2,] >= log(3) &
tay.or.coef.1[1,]-1.96*tay.or.coef.1[2,] <= log(3) )/1000

cp.tra.or.2 = sum( tra.or.coef.2[1,]+1.96*tra.or.coef.2[2,] >=log(3) &
tra.or.coef.2[1,]-1.96*tra.or.coef.2[2,] <= log(3) )/1000

cp.sps.or.2 = sum( sps.or.coef.2[1,]+1.96*sps.or.coef.2[2,] >=log(3) &
sps.or.coef.2[1,]-1.96*sps.or.coef.2[2,] <= log(3) )/1000

cp.sri.or.2 = sum( sri.or.coef.2[1,]+1.96*sri.or.coef.2[2,] >= log(3) &
sri.or.coef.2[1,]-1.96*sri.or.coef.2[2,] <= log(3) )/1000

cp.tay.or.2 = sum( tay.or.coef.2[1,]+1.96*tay.or.coef.2[2,] >= log(3) &
tay.or.coef.2[1,]-1.96*tay.or.coef.2[2,] <= log(3) )/1000

cp.tra.or.3 = sum( tra.or.coef.3[1,]+1.96*tra.or.coef.3[2,] >= log(3) &
tra.or.coef.3[1,]-1.96*tra.or.coef.3[2,] <= log(3) )/1000

cp.sps.or.3 = sum( sps.or.coef.3[1,]+1.96*sps.or.coef.3[2,] >= log(3) &
sps.or.coef.3[1,]-1.96*sps.or.coef.3[2,] <= log(3) )/1000

cp.sri.or.3 = sum( sri.or.coef.3[1,]+1.96*sri.or.coef.3[2,] >=log(3) &
sri.or.coef.3[1,]-1.96*sri.or.coef.3[2,] <= log(3) )/1000

cp.tay.or.3 = sum( tay.or.coef.3[1,]+1.96*tay.or.coef.3[2,] >=log(3) &
tay.or.coef.3[1,]-1.96*tay.or.coef.3[2,] <= log(3) )/1000

cp.tra.or.4 = sum( tra.or.coef.4[1,]+1.96*tra.or.coef.4[2,] >=log(3) &
tra.or.coef.4[1,]-1.96*tra.or.coef.4[2,] <= log(3) )/1000

cp.sps.or.4 = sum( sps.or.coef.4[1,]+1.96*sps.or.coef.4[2,] >= log(3) &
sps.or.coef.4[1,]-1.96*sps.or.coef.4[2,] <= log(3) )/1000

cp.sri.or.4 = sum( sri.or.coef.4[1,]+1.96*sri.or.coef.4[2,] >=log(3) &
sri.or.coef.4[1,]-1.96*sri.or.coef.4[2,] <= log(3) )/1000

cp.tay.or.4 = sum( tay.or.coef.4[1,]+1.96*tay.or.coef.4[2,] >=log(3) &
tay.or.coef.4[1,]-1.96*tay.or.coef.4[2,] <= log(3) )/1000

cp.or=matrix(c(cp.tra.or.1,cp.sps.or.1,cp.sri.or.1,cp.tay.or.1,cp.tra.or.2,cp.sps.or.2,cp.sri.or.2,cp.tay.or.2,c
p.tra.or.3,cp.sps.or.3,cp.sri.or.3,cp.tay.or.3,cp.tra.or.4,cp.sps.or.4,cp.sri.or.4,cp.tay.or.4),nrow=4,ncol=4,
byrow=T)

colnames(cp.or)=colnames(bias.or); rownames(cp.or)=rownames(bias.or)
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Appendix B. Histograms of Estimated Coefficients under Different Values of a

Tra. GLM,(a,)=(0.5,0.5) 28PS,(a,b)=(0.5,0.5) 28Rl,(a,b)=(0.5,0.5) 28RI-T,(a,b)=(0.5,0.5)
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Figure B.1 Histogram of Estimated Coefficients under a=0.5
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Figure B.2 Histogram of Estimated Coefficients under a=1
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Appendix C. Tables of Simulation Results under Different g, and n

Table C.1.1 Simulation Results as S,=0.71 and n = 1,000 under Weaker IV

Bias a=0.5 a=1

Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 -0.4090 -0.1012 -0.0921 -0.3067 -0.4064 -0.1040 -0.0946 -0.3020
1] -0.6699 -0.1107 -0.1058 -0.5113 -0.6568 -0.1102 -0.1049 -0.4935
2| -0.9636 -0.1466 -0.1464 -0.8031 -0.9546 -0.1346 -0.1336 -0.7838
5 -1.1086 -0.2206 -0.2264 -1.0412 -1.1067 -0.1508 -0.1533 -1.0053

SE a=0.5 a=1

Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.2634  0.4434 0.4447 0.3409 0.2646 0.4308 0.4324 0.3316
1 0.2541 0.5042 0.5048 0.3257 0.2608 0.4891 0.4899 0.3350
2 0.2271 0.7045 0.7052 0.3215 0.2309 0.6728 0.6733 0.3248
5 0.1939 2.2006 2.2053 0.5058 0.1945 19100 1.9126 0.5056

MSE a=0.5 a=1

Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.2367 0.2069 0.2063 0.2103 0.2352 0.1964 0.1959 0.2011
1 0.5133 0.2664 0.2660 0.3675 0.4995 0.2514 0.2510 0.3558
2 0.9801 0.5178 0.5187 0.7483 0.9647 0.4708 0.4712 0.7199
5 1.2667 4.8912 4.9147 1.3399 1.2627 3.6707 3.6815 1.2663

Coverage

Probability 25 a=l

Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 65.9% 93.8% 93.9% 82.7% 65.5% 94.0% 94.2% 83.0%
1 24.9% 93.6% 93.7% 61.2% 29.1% 93.9% 93.7% 62.2%
2 1.4% 92.9% 92.7% 26.7% 1.7% 93.1% 93.1% 30.1%
5 0.0% 93.4% 93.6% 45.7% 0.0% 93.8% 93.8% 47.5%
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Table C.1.2 Simulation Results as S,=0.71 and n = 1,000 under Stronger 1V

Bias a=2 a=5

Confounding [Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 -0.3775 -0.1086 -0.0987 -0.2670 -0.2868 -0.1083 -0.1049 -0.1815
1] -0.6137 -0.1096 -0.1044 -0.4416 -0.4508 -0.1120 -0.1104 -0.2694
2| -0.9097 -0.1243 -0.1227 -0.7133 -0.7121 -0.1225 -0.1228 -0.4704
5 -1.0990 -0.0892 -0.0890 -0.9099 -1.0247 -0.1072 -0.1081 -0.6415

SE a=2 a=5

Confounding [Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.2619 0.3889 0.3901 0.3191 0.2417 0.2995 0.3002 0.2971
1] 0.2562 0.4351 0.4359 0.3201 0.2418 0.3188 0.3191 0.3033
2| 0.2340 0.5690 0.5701 0.3286 0.2343 0.3670 0.3676 0.3101
5 0.1979 1.2574 1.2588 0.4853 0.2108 0.5847 0.5854 0.3986

MSE a=2 a=5

Confounding [Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.2111 0.1630 0.1619 0.1731 0.1406 0.1014 0.1011 0.1212
1] 0.4422 0.2013 0.2009 0.2975 0.2617 0.1142 0.1141 0.1646
2 0.8823 0.3392 0.3401 0.6167 0.5620 0.1497 0.1502 0.3175
5 1.2471 15890 1.5926 1.0633 1.0944 0.3534 0.3544 0.5704

Coverage

Probability 72 a=>

Confounding [Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 67.6% 94.1% 94.0% 85.4% 77.3% 93.9% 94.2% 89.1%
1 32.1% 93.6% 93.5% 65.8% 51.7% 93.7% 93.8% 80.6%
2 28% 93.3% 93.1% 35.5% 13.9% 94.8% 94.8% 69.1%
5 0.0% 94.2% 94.1% 48.2% 0.1% 95.6% 95.6% 55.5%

35



Table C.2.1 Simulation Results as s, =0 and n = 1,000 under Weaker IV

Bias a=0.5 a=1

Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 -0.4284 -0.1473 -0.1413 -0.3306 -0.4302 -0.1497 -0.1432 -0.3331
1] -0.6677 -0.1480 -0.1438 -0.5116 -0.6600 -0.1529 -0.1483 -0.5092
2| -0.9528 -0.1486 -0.1482 -0.7891 -0.9431 -0.1485 -0.1477 -0.7750
5 -1.0998 -0.1199 -0.1274 -0.9751 -1.0985 -0.0945 -0.0985 -0.9495

SE a=0.5 a=1

Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.2233 0.3523 0.3540 0.2754 0.2179 0.3449 0.3464 0.2763
1 0.2156 0.3975 0.3982 0.2834 0.2129 0.3876 0.3882 0.2751
2 0.1979 0.5606 0.5612 0.2800 0.1931 0.5358 0.5363 0.2764
5 0.1687 1.7763 1.7766 0.4248 0.1680 1.5615 15620 0.4267

MSE a=0.5 a=1

Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.2334 0.1458 0.1453 0.1852 0.2325 0.1414 0.1405 0.1873
1 0.4923 0.1799 0.1793 0.3420 0.4809 0.1736 0.1727 0.3349
2 0.9471 0.3364 0.3369 0.7010 0.9267 0.3091 0.3094 0.6771
5 1.2380 3.1695 3.1725 1.1313 1.2349 2.4472 2.4497 1.0837

Coverage

Probability ¥ a=l

Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 50.0% 92.2% 92.0% 73.6% 49.3% 92.0% 92.1% 74.6%
1 129% 925% 92.7% 47.3% 13.0% 92.4% 92.4% 48.9%
2 0.3% 934% 93.4% 18.1% 0.2% 93.2% 93.3% 17.8%
5 0.0% 93.6% 93.6% 32.4% 0.0% 94.1% 94.1% 35.2%
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Table C.2.2 Simulation Results as

S, =0and n = 1,000 under Stronger IV

Bias a=2 a=5

Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 -0.4070 -0.1607 -0.1532 -0.3107 -0.3132 -0.1568 -0.1515 -0.2110
1] -0.6249 -0.1559 -0.1514 -0.4745 -0.4620 -0.1499 -0.1470 -0.2956
2| -0.9008 -0.1376 -0.1361 -0.7124 -0.7031 -0.1299 -0.1287 -0.4637
5 -1.0872 -0.0755 -0.0764 -0.8623 -1.0084 -0.0974 -0.0966 -0.6393

SE a=2 a=5

Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.2092 0.3186 0.3195 0.2617 0.1893 0.2408 0.2413 0.2310
1] 0.2050 0.3526 0.3533 0.2632 0.1898 0.2534 0.2536 0.2414
2| 01941 0.4605 0.4610 0.2719 0.1843 0.2926 0.2929 0.2582
5 0.1666 1.0349 1.0357 0.4027 0.1695 0.4730 0.4735 0.3185

MSE a=2 a=5

Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.2094 0.1273 0.1256 0.1650 0.1340 0.0826 0.0812 0.0979
1] 04326 0.1486 0.1477 0.2944 0.2495 0.0867 0.0859 0.1457
2| 0.8492 0.2310 0.2310 0.5815 0.5283 0.1025 0.1023 0.2816
5 1.2098 1.0768 1.0786 0.9057 1.0456 0.2332 0.2336 0.5102

Coverage

Probability R72 a=>

Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 52.0% 914% 91.8% 76.4% 63.3% 89.6% 90.1% 82.9%
1 15.0% 92.1% 92.2% 52.4% 31.7% 90.6% 90.9% 70.7%
2 05% 93.7% 93.8% 21.1% 3.6% 92.0% 92.0% 46.0%
5 0.0% 95.1% 95.1% 40.8% 0.0% 94.4% 944% 41.3%
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Table C.3.1 Simulation Results as S, = 0 and n = 10,000 under Weaker IV

Bias a=0.5 a=1

Confounding |[Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 -0.4219 -0.1280 -0.1209 -0.3605 -0.4181 -0.1329 -0.1256 -0.3574
1] -0.6643 -0.1275 -0.1227 -0.5648 -0.6580 -0.1319 -0.1273 -0.5573
2 -0.9544 -0.1364 -0.1350 -0.8307 -0.9466 -0.1410 -0.1397 -0.8187
5 -1.1018 -0.1572 -0.1589 -0.9625 -1.0984 -0.1468 -0.1479 -0.9401

SE a=0.5 a=1

Confounding |[Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.0689 0.1098 0.1102 0.0817 0.0678 0.1050 0.1054 0.0791
1 0.0665 0.1241 0.1242 0.0839 0.0656 0.1195 0.1197 0.0839
2 0.0610 0.1771 0.1771 0.0865 0.0603 0.1693 0.1693 0.0874
5 0.0516 0.5577 0.5577 0.1203 0.0514 0.4793 0.4792 0.1192

MSE a=0.5 a=1

Confounding |[Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.1827 0.0284 0.0268 0.1366 0.1794 0.0287 0.0269 0.1340
1 0.4457 0.0316 0.0305 0.3260 0.4373 0.0317 0.0305 0.3176
2 0.9146 0.0500 0.0496 0.6976 0.8996 0.0485 0.0482 0.6779
5 1.2165 0.3357 0.3362 0.9409 1.2091 0.2512 0.2515 0.8981

Coverage

Probability PP a=l

Confounding |[Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.0% 79.2% 81.6% 0.8% 0.0% 785% 80.0% 0.7%
1 0.0% 82.6% 835%  0.0% 0.0% 815% 824% 0.0%
2 0.0% 87.7% 87.7% 0.0% 0.0% 86.5% 86.6%  0.0%
5 0.0% 92.9% 93.0% 0.0% 0.0% 91.9% 91.9%  0.0%
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Table C.3.2 Simulation Results as S, =0 and n = 10,000 under Stronger 1V

Bias a=2 a=5

Confounding | Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 -0.3974 -0.1414 -0.1339 -0.3371 -0.2914 -0.1293 -0.1244 -0.2320
1] -0.6221 -0.1360 -0.1319 -0.5182 -0.4428 -0.1197 -0.1176 -0.3352
2| -0.9065 -0.1324 -0.1313 -0.7654 -0.6889 -0.1030 -0.1026 -0.5113
5 -1.0857 -0.1157 -0.1163 -0.8686 -1.0017 -0.0834 -0.0837 -0.6658

SE a=2 a=5

Confounding | Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.0643 0.0952 0.0954 0.0746 0.0603 0.0734 0.0736 0.0688
1 0.0648 0.1062 0.1063 0.0804 0.0606 0.0783 0.0783 0.0777
2 0.0616 0.1447 0.1448 0.0875 0.0588 0.0925 0.0926 0.0862
5 0.0512 0.3167 0.3166 0.1166 0.0522 0.1503 0.1503 0.1018

MSE a=2 a=5

Confounding [ Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.1621 0.0291 0.0270 0.1192 0.0885 0.0221 0.0209 0.0586
1 0.3912 0.0298 0.0287 0.2750 0.1997 0.0205 0.0200 0.1184
2 0.8256 0.0385 0.0382 0.5934 0.4780 0.0192 0.0191 0.2688
5 1.1813 0.1137 0.1138 0.7680 1.0061 0.0295 0.0296 0.4536

Coverage

Probability 7 a=>

Confounding [ Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.0% 71.6% 74.4% 0.7% 0.2% 60.7% 624% 7.7%
1 0.0% 78.4% 79.0% 0.0% 0.0% 67.3% 685% 0.5%
2 0.0% 845% 84.8% 0.0% 0.0% 804% 805%  0.0%
5 0.0% 922% 92.1% 0.0% 0.0% 904% 90.4%  0.0%
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Table C.4.1 Simulation Results as

S, =3 and n = 1,000 under Weaker 1V

Bias a=0.5 a=1
Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 -0.3709 -0.0813 -0.0536 -0.2714 -0.3708 -0.0859 -0.0602 -0.2627
1] -0.6348 -0.1086 -0.0934 -0.4966 -0.6206 -0.0997 -0.0847 -0.4756
2| -0.9527 -0.1850 -0.1788 -0.8188 -0.9539 -0.1643 -0.1580 -0.7946
5 -1.1487 -0.5348 -0.5274 -1.0251 -1.1484 -0.4334 -0.4231 -0.9868
SE a=0.5 a=1
Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.5658 0.8959 0.9017 0.6834 0.5688 0.8927 0.8977 0.6853
1] 05565 1.0116 1.0173 0.6784 0.5698 0.9968 1.0018 0.6757
2| 0.5066 1.4220 1.4272 0.6524 0.5146 1.3636 1.3674 0.6683
5| 0.4304 3.9676 3.9887 0.9607 0.4305 3.5243 3.5342 0.9461
MSE a=0.5 a=1
Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.4577 0.8092 0.8160 0.5407 0.4610 0.8043 0.8094 0.5387
1] 0.7127 1.0351 1.0436 0.7069 0.7098 1.0036 1.0108 0.6827
2|  1.1642 2.0564 2.0687 1.0960 1.1747 1.8864 1.8947 1.0781
5 15048 16.0281 16.1877 1.9737 1.5042 12.6085 12.6698 1.8689
Coverage
. a=0.5 a=1
Probability
Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 88.6% 94.3% 94.4% 92.7% 89.6% 94.1% 943% 93.7%
1 76.4% 94.4% 94.3% 88.6% 776% 94.7% 94.6% 88.9%
2 52.2% 93.8% 93.9% 77.3% 505% 945% 94.6% 79.2%
5 21.7% 93.9% 93.9% 86.3% 21.9% 948% 94.9% 85.8%
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Table C.4.2 Simulation Results as

S, =3 and n = 1,000 under Stronger IV

Bias a=2 a=5

Confounding [Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 -0.3498 -0.0780 -0.0577 -0.2344 -0.2996 -0.1054 -0.1064 -0.1771
1] -0.5824 -0.0954 -0.0845 -0.4257 -0.4764 -0.1261 -0.1325 -0.3067
2| -0.9137 -0.1364 -0.1330 -0.7078 -0.7633 -0.1903 -0.2032 -0.5313
5 -1.1512 -0.2436 -0.2409 -0.8883 -1.0996 -0.2225 -0.2415 -0.6447

SE a=2 a=5

Confounding [Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.5710 0.8526 0.8553 0.6776 0.5354 0.6998 0.7039 0.6255
1 0.5674 0.9331 0.9364 0.6544 0.5288 0.7389 0.7434 0.6108
2 0.5253 1.1999 1.2038 0.6653 0.5063 0.8844 0.8890 0.6209
5 0.4371 25591 25625 0.9139 0.4668 1.3909 1.3950 0.7873

MSE a=2 a=5

Confounding [Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.4484 0.7330 0.7348 0.5140 0.3765 0.5008 0.5069 0.4226
1 0.6611 0.8799 0.8839 0.6095 0.5066 0.5619 0.5702 0.4671
2 1.1109 1.4582 1.4669 0.9436 0.8390 0.8184 0.8317 0.6678
5 1.5164 6.6083 6.6243 1.6244 1.4271 1.9841 2.0044 1.0355

Coverage

Probability a=2 a=>

Confounding [Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 90.0% 94.1% 94.0% 93.5% 91.1% 945% 94.4% 93.9%
1 79.9% 94.3% 94.2% 89.8% 85.7% 94.7% 94.6% 93.2%
2 56.2% 95.1% 95.1% 81.8% 69.5% 95.0% 94.7% 87.5%
5 23.9% 95.3% 95.2% 85.1% 31.3% 94.8% 94.6% 87.8%
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Table C.5.1 Simulation Results as S, = 3 and n = 10,000 under Weaker IV

Bias a=0.5 a=1
Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 -0.3861 -0.0851 -0.0715 -0.3257 -0.3757 -0.0822 -0.0693 -0.3152
1] -0.6418 -0.0910 -0.0848 -0.5544 -0.6269 -0.0843 -0.0786 -0.5360
2| -0.9625 -0.0973 -0.0964 -0.8503 -0.9496 -0.0863 -0.0856 -0.8260
5 -1.1617 -0.0023 -0.0064 -0.9453 -1.1603 0.0048 0.0017 -0.9159
SE a=0.5 a=1
Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.1799 0.2849 0.2850 0.1934 0.1832 0.2780 0.2782 0.1958
1] 0.1791 0.3202 0.3204 0.1955 0.1812 0.3118 0.3120 0.1978
2| 0.1658 0.4455 0.4459 0.1895 0.1715 0.4265 0.4270 0.1984
5 0.1402 1.2849 1.2853 0.2919 0.1433 1.1137 1.1141 0.2887
MSE a=0.5 a=1
Confounding [Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.1814 0.0884 0.0863 0.1435 0.1747 0.0840 0.0822 0.1377
1] 0.4439 0.1108 0.1098 0.3456 0.4259 0.1043 0.1035 0.3264
2 0.9540 0.2079 0.2081 0.7590 0.9312 0.1894 0.1896 0.7217
5 1.3692 1.6510 1.6520 0.9787 1.3667 1.2404 1.2413 0.9222
Coverage
. a=0.5 a=1
Probability
Confounding |Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 457% 94.6% 94.7% 64.3% 472% 94.8% 95.2% 66.9%
1 54% 94.4% 94.6% 21.5% 6.5% 94.3% 94.6% 24.4%
2 0.0% 944% 948% 0.8% 0.0% 944% 94.4% 1.4%
5 0.0% 944% 945% 10.4% 0.0% 94.9% 95.0% 13.5%
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Table C.5.2 Simulation Results as S, = 3 and n = 10,000 under Stronger 1V

Bias a=2 a=5

Confounding [Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 -0.3453 -0.0777 -0.0678 -0.2849 -0.2807 -0.0962 -0.0955 -0.2231
1] -0.5821 -0.0828 -0.0786 -0.4874 -0.4577 -0.1147 -0.1146 -0.3671
2| -0.9004 -0.0879 -0.0876 -0.7630 -0.7371 -0.1502 -0.1519 -0.5922
5 -1.1501 -0.0445 -0.0471 -0.8504 -1.0801 -0.1713 -0.1749 -0.6915

SE a=2 a=5

Confounding [Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 0.1792 0.2613 0.2615 0.1936 0.1741 0.2238 0.2244 0.1891
1| 0.1814 0.2892 0.2895 0.1975 0.1761 0.2379 0.2382 0.1909
2| 0.1734 0.3764 0.3767 0.2004 0.1695 0.2801 0.2803 0.1927
5| 0.1463 0.8074 0.8076 0.2924 0.1579 0.4452 0.4454 0.2726

MSE a=2 a=5

Confounding [Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5( 0.1513 0.0743 0.0730 0.1187 0.1091 0.0594 0.0595 0.0856
1] 0.3717 0.0905 0.0900 0.2766 0.2405 0.0698 0.0699 0.1712
2| 0.8407 0.1494 0.1496 0.6224 0.5720 0.1010 0.1017 0.3879
5 1.3442 0.6540 0.6544 0.8087 1.1916 0.2276 0.2290 0.5524

Coverage

Probability 72 a=>

Confounding [Tra. GLM 2SPS-L 2SRI-L 2SRI-T Tra. GLM 2SPS-L 2SRI-L 2SRI-T
0.5 546% 94.2% 94.3% 71.6% 65.0% 92.2% 92.3% 78.7%
1 11.1% 93.9% 93.8% 31.6% 27.0% 91.8% 92.0% 49.7%
2 0.0% 94.4% 944%  3.5% 04% 91.1% 91.3% 13.2%
5 0.0% 951% 95.1% 18.4% 0.0% 93.0% 92.9% 27.5%
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Appendix D. Questions Used in the WVS Questionnaire in the Empirical Analysis

Outcome Variable (y)
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